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ABSTRACT

Implicit functions such as Neural Radiance Fields (NeRFs), occupancy networks,
and signed distance functions (SDFs) have become pivotal in computer vision
for reconstructing detailed object shapes from sparse views. Achieving optimal
performance with these models can be challenging due to the extreme sparsity
of inputs and distribution shifts induced by data corruptions. To this end, large,
noise-free synthetic datasets can serve as shape priors to help models fill in gaps,
but the resulting reconstructions must be approached with caution. Uncertainty
estimation is crucial for assessing the quality of these reconstructions, particularly
in identifying areas where the model is uncertain about the parts it has inferred
from the prior. In this paper, we introduce Dropsembles, a novel method for
uncertainty estimation in tuned implicit functions. We demonstrate the efficacy
of our approach through a series of experiments, starting with toy examples and
progressing to a real-world scenario. Specifically, we train a Convolutional Oc-
cupancy Network on synthetic anatomical data and test it on low-resolution MRI
segmentations of the lumbar spine. Our results show that Dropsembles achieve
the accuracy and calibration levels of deep ensembles but with significantly less
computational cost.

1 INTRODUCTION

Recent advancements in neural implicit functions have facilitated their use for 3D object representa-
tions and applications in novel views synthesis in computer vision. Neural Radiance Fields (NeRFs)
(Mildenhall et al., 2021) have gained recognition for their ability to accurately synthesize novel
views of complex scenes and became an important tool in applications of photorealistic rendering
(Martin-Brualla et al., 2021), such as virtual reality and augmented reality. Signed Distance Func-
tions (SDFs) (Park et al., 2019a; Gropp et al., 2020) is shown to be particularly useful in scenarios
where precise boundary details are crucial, like industrial design and robotics. Occupancy Networks
(Mescheder et al., 2019b), which model shapes as a probabilistic grid of space occupancy, excel in
handling topological variations, making them ideal for medical imaging (Amiranashvili et al., 2022)
and animation. Advancing this concept, Convolutional Occupancy Networks (Peng et al., 2020) in-
tegrate convolutional networks to enhance spatial learning, proving effective in detailed architectural
modeling and complex reconstructions.

In practice, achieving optimal performance with these methods often requires densely sampled input
data and a high degree of similarity between the training data and the target object. However, such
ideal conditions are rarely met in practical applications like augmented reality, virtual reality, au-
tonomous driving, and medical contexts, where inputs are typically sparse and less precise (Truong
et al., 2023; Müller et al., 2022a). For example, in medical applications, generating precise 3D
representations from sparse inputs is particularly crucial for morphological analysis (Tóthová et al.,
2020). Patient-specific anatomical modeling significantly enhances the assessment of a patient’s
condition and aids in devising customized treatment plans (Turella et al., 2021).

In addition to sparsity, real-world data usually suffers from noise and corruption that leads to dis-
tribution shifts with respect to the training data, and thus to significant performance degradation.
Occlusion, noise, truncation, and lack of depth measurements (Liao et al., 2023) greatly affect recon-
struction from monocular observations. Noise in estimations of camera poses inevitably degrades
reconstruction from sparse views (Truong et al., 2023; Zhang et al., 2022; Chen et al., 2021b). Un-
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der input sparsity and distribution shifts, in safety-critical applications, such as medical (Zou et al.,
2023) or autonomous driving (Kiran et al., 2021), it is crucial that inferred information is transpar-
ently disclosed to the end user, as it may significantly influence the decision-making process. One
approach to this end is to quantify uncertainty in the reconstruction. For example, Shen et al. (2021)
derived a variational inference objective to model predictive distribution in NeRFs. However, similar
results are yet to be established for more generic applications of implicit functions.

To tackle the challenges of sparse and corrupted inputs, we propose to leverage dense, noise-free
synthetic data for pre-training. For instance, a pretrained encoder can be shared across both syn-
thetic and real datasets, while a lightweight implicit decoder is initially trained on synthetic data and
subsequently fine-tuned on the sparse, noisy real data. This process introduces two primary sources
of uncertainty: from the encoder’s latent representation and the fine-tuning of the decoder. In this
paper, we focus on the latter and demonstrate that epistemic uncertainty is an important, yet under-
studied source of error in implicit functions, which significantly impacts the predictions quality. To
the best of our knowledge, this type of uncertainty quantification in 3D reconstruction for fine-tuned
neural implicit functions has not been addressed in the literature.

Monte Carlo (MC) dropout (Gal and Ghahramani, 2016) and deep ensembles (Lakshminarayanan
et al., 2017) are two commonly used baselines for estimating uncertainty in computer vision ap-
plications (Kendall and Gal, 2017), which could be readily applied to our task. MC dropout is
simple to integrate and computationally efficient during training. However, it often underestimates
uncertainty and requires multiple forward passes during inference, increasing computational cost
(Postels et al.; 2021). Deep ensembles involve training multiple neural networks independently and
averaging their predictions, capturing a wider range of potential outputs. This method provides
improved predictive performance and better-calibrated uncertainty estimates but is computationally
costly and memory-intensive. This becomes especially demanding in our fine-tuning context, where
each model in an ensemble needs to be trained on both datasets. Here we introduce Dropsembles1,
a method that creates ensembles based on the dropout technique. Dropsembles aim to moderate the
computational demands associated with ensembles while attempting to maintain prediction accu-
racy and uncertainty calibration of deep ensembles. Combined with Elastic Weight Consolidation
(EWC) (Kirkpatrick et al., 2016), Dropsembles is able to mitigate distribution shifts between source
and target datasets.

Contributions This paper introduces several contributions to address the gap in modeling uncer-
tainties in fine-tuned neural implicit functions:

• To the best of our knowledge, we are the first to model epistemic uncertainty in the implicit
decoder during fine-tuning from synthetic data.

• To this end, we introduce Dropsembles (overview in Figure 1) to achieve the performance
of vanilla ensembles with significantly reduced computation cost (subsection 4.1).

• We introduce EWC-inspired regularization for task-agnostic uncertainty adaptation to take
into account the distribution shift in uncertainty modeling (subsection 4.2).

• We include a series of experiments to validate the proposed methods, in a controlled bench-
mark on synthetic data and in a real-world medical application. We demonstrate that it is
possible to achieve high reconstruction quality and preserve patient-specific details when
using synthetic data in the form of an anatomical atlas (section 5).

2 RELATED WORK

Implicit shape modeling from sparse input Much attention has recently been directed towards
the problem of novel view synthesis from sparse views enhancing this task using NeRFs (Truong
et al., 2023; Chen et al., 2021a; Deng et al., 2022; Jain et al., 2021; Kim et al., 2022; Niemeyer
et al., 2022; Roessle et al., 2022; Lin et al., 2021; Oechsle et al., 2021), SDFs (Yu et al., 2022;
Yariv et al., 2020), and occupancy networks (Niemeyer et al., 2020). Implicit functions also found
their applications in medical imaging, particularly in 3D shape reconstruction from sparse MRI

1https://anonymous.4open.science/r/Dropsembles-D919/ (github link available upon
acceptance)
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Figure 1: Occupancy network training with a dense prior and fine-tuning on a sparse dataset.

slices (Amiranashvili et al., 2022; 2024; Gatti et al., 2024; McGinnis et al., 2023; Alblas et al.,
2023; Jacob et al., 2023). In this paper, we focus on occupancy networks due to their relevance
in medical imaging applications but note that Dropsembles can be used with other neural implicit
functions.

Uncertainty modeling Estimating uncertainty in deep models has attracted significant interest
in recent years (Gal and Ghahramani, 2016; Lakshminarayanan et al., 2017; Gawlikowski et al.,
2023). A remaining challenge here is uncertainty estimation under distribution shifts, which in most
real-world scenarios is essential for guaranteeing the reliability and resilience of predictions when
confronted with out-of-distribution (OOD) examples (Tran et al., 2022; Li et al., 2022; Wenzel
et al., 2022). In 3D reconstruction, this is important since corruption and sparsity pattern in test
samples often deviates from those in training data. While numerous methods have been devised to
detect OOD cases (Malinin and Gales, 2018; Tagasovska and Lopez-Paz, 2019; Ren et al., 2019;
Charpentier et al., 2020; Osband et al., 2023) or enhance accuracy in unobserved domains (Liu
et al., 2021; Hendrycks et al., 2021), the adaptation of uncertainty estimates has been relatively
unexplored. In a comprehensive benchmark study, Wenzel et al. (2022) find that from all metrics
considered, calibration transfers worst, meaning that models that are well calibrated on the training
data are not necessarily well calibrated on OOD data. In an era dominated by LLMs and foundation
models, addressing this issue becomes paramount, particularly given the tendency of such models
for overconfidence as a result of fine-tuning (Guo et al., 2017a; Dodge et al., 2020). To overcome
such issues, (Balabanov and Linander, 2024) introduces a method for estimating uncertainty in fine-
tuned LLMs using Low-Rank Adaptation. In computer vision, (Wortsman et al., 2022) highlights
that fine-tuning comes at the cost of robustness, and address this issues by ensembling the weights
of the zero-shot and fine-tuned models. (Lu and Koniusz, 2022) propose uncertainty estimation in
one-shot object detection, particularly focusing on fine-tuned models.

Several works focused on modeling uncertainty in the encoder of neural implicit representations.
(Shen et al., 2022) models uncertainty in the color and density output of a scene-level neural rep-
resentation with conditional normalizing flows. Liao et al. (2023) uses this method in robotics
applications. Liao and Waslander (2024) estimates uncertainty for neural object representation from
monocular images by propagating it from image space first to latent space, and consequently to 3D
object shape. Yang et al. (2023) focused on modeling aleatoric uncertainty in occupancy networks.
Dropsembles can complement all of the above approaches by modeling the epistemic uncertainty in
the weights of implicit functions throughout fine-tuning, rendering them more robust to distribution
shifts. By doing so, it improves both the performance and reliability of methods building on neural
implicit representations.

3 BACKGROUND

3.1 IMPLICIT SHAPE REPRESENTATIONS

Implicit functions are widely used in computer vision to represent complex shapes. Assuming a
continuous encoding of the object domain X , an SDF for a surface S encoding a shape is defined as
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f : X → R where: f(x) < 0⇔ x “inside” S f(x) = 0⇔ x ∈ S. Another popular way to repre-
sent a shape object is an occupancy function g : X → {0, 1} defined as g(x) = IShape Object(x) where
I corresponds to the indicator function. The primary advantage of both approaches lies in their abil-
ity to accurately model complex shapes from sparse observations using deep neural networks. This
capability underpins methods such as “DeepSDF” (Park et al., 2019b) and “Occupancy Network”
(Mescheder et al., 2019a), which approximate functions by non-linearly regressing observations to
the surface encoding the shape. To facilitate learning from training sets, these techniques are often
employed in conjunction with latent representations to capture diverse shape variations and at infer-
ence time yield continuous shape representations. The latent representations can be trained directly
from data using autoencoders (Mescheder et al., 2019a) or autodecoders (Park et al., 2019b). Recent
research has also explored using large pretrained models like CLIP to obtain latent representations
(Cheng et al., 2023). While the specific choice of the latent encoder is beyond the scope of this
paper, we will refer to it as an “oracle”.

Both methods can be described with the same formulation. We consider a dataset D :={
{xi

j , y
i
j}j∈[K], Z

i

}
i∈[N ]

, where N is the number of images, K is the number of available pix-

els per image , Zi is a latent representation of image i given by the “oracle”, xi
j ∈ X ⊆ R3 is the

position corresponding to the observed value yij , which are obtained through an SDF or voxel occu-
pancy following the definitions above. In both settings, the regression function is a neural network
fθ(x, Z), θ ∈ ΘNN . At training, networks are trained using the following optimization objective.

R̂D(θ) =
1

N ·K
∑

j∈[K] ∧ i∈[N ]

l(fθ(x
i
j , Z

i), yij) (1)

Here, the loss function l depends on the method. For occupancy networks, l is the binary cross-
entropy, reflecting the binary nature of occupancy, while it is the L2 norm for SDFs, aligning with
the continuous nature of the distance function.

3.2 UNCERTAINTY MODELING

Deep Ensembles Deep Ensembles (Lakshminarayanan et al., 2017) apply ensemble methods to
neural networks (Lee et al., 2020; Breiman, 2001; Schapire, 1990; Saberian and Vasconcelos, 2010).
Multiple independent networks are trained to determine a set of optimal weights {θ̂i}i∈[M ] with the
subscript i denoting different networks. Ensembles mitigate the risk of selecting a single set of
weights, which may not yield good results particularly when training data consist of fewer samples
relative to the size of the parameter space. Instead, multiple solutions with comparable accuracy are
determined, allowing the ensemble to average outputs and minimize the selection risk. Training of
deep ensembles is associated with high computational demands due to training multiple networks.

Dropout Dropout (Srivastava et al., 2014) is a regularization technique that aims to reduce over-
fitting by randomly omitting subsets of features during each training step. By “dropping out” (i.e.,
setting to zero) a subset of activations within a network layer, it diminishes the network’s reliance
on specific neurons, encouraging the development of more robust features. Gal and Ghahramani
(Gal and Ghahramani, 2016) demonstrated that dropout can also be interpreted from a Bayesian per-
spective and applied toward modeling uncertainty. Dropout at test time (referred to as Monte Carlo
Dropout) is shown to perform approximate Bayesian inference, essentially through using random-
ness in dropout configurations for uncertainty modeling.

3.3 ELASTIC WEIGHT CONSOLIDATION

Elastic Weight Consolidation (EWC) is a regularization technique introduced in continual learning
to address catastrophic forgetting (Kirkpatrick et al., 2016). The underlying principle is to protect
parameters crucial for previous tasks while learning new ones. Assume two distinct tasks, A and B,
with their respective datasets DA and DB , where DA ∩ DB = ∅. The tasks are learned sequentially
without access to previous tasks’ datasets. First, task A is learned by training a neural network on
DA, resulting in a set of optimal weights θ̂A. When learning task B using dataset DB , EWC regu-
larizes the weights so they remain within a region in the parameter space that led to good accuracy
for task A.

4
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Next, during learning for task B, approximate posterior of weights obtained during learning for
A constrains the optimization. A Gaussian approximation to log p(θ|DA) (see App. A for further
details), serves as the regularizer

θ̂B = argmin
θ

R̂DB
(θ) + λ(θ − θ̂A)

TF (θ̂A)(θ − θ̂A) (2)

where R̂DB
(θ) corresponds to the likelihood term log p(DB |θ), λ is a hyperparameter, F is the

diagonal of Fisher information matrix. Details can be found in Appendix A

4 METHODS

We focus on shape reconstruction from sparsely sampled and corrupted inputs using occupancy
networks. While the proposed method can be applied to both SDF and occupancy networks, we
focus on the latter for demonstration. Given the sparse and corrupted nature of our input, we train
an occupancy network with high-quality data and then fine-tune it on a test sample. Through fine-
tuning, we expect the model to adapt to the input while transferring the prior information captured
in training.

Assume access to datasets DA and DB , defined in Section 3.1, with the number of points per image
KA and KB , and the number of images NA and NB . The dataset DA is assumed to be high quality
and “dense”, while the dataset DB is “sparse” in terms of the number of points observed per image
and potentially contains corruptions in individual images, i.e., KA ≫ KB . Additionally, it is as-
sumed that the number of images in DA is greater than in DB , i.e., NA > NB (in our experiments,
we consider the case of a single image NB = 1). The two datasets can only be accessed successively
and not simultaneously; that is, DA is accessed first, followed by DB , without further access to DA.
Note that the latent representation vectors Zi are assumed to be obtained by the same learning oracle
for both datasets DA and DB described in Section 3.1. Without loss of generality, in this paper, we
consider the latent map L : X → Z to be a “frozen” encoder pretrained on dataset DA.

The underlying parametric function class of the model is assumed to be a neural network fθ :
X × Z → Y approximating a regression function as described in Section 3.1. The parameter θ
represents the set of weight matrices of the network i.e θ := {Wi}i∈[L] where L corresponds to
the number of layers. The output space Y corresponds to [0, 1] for occupancy networks and R for
signed distance functions. It is important to note that the versatility of the network model in terms
of its output space is tailored to the specific modeling task. However, this flexibility does not limit
the proposed method, which remains versatile across different tasks.

The procedures outlined in Sections 4.1 and 4.2 involve two stages of training: initially on dataset
DA, denoted as Task A, followed by training on dataset DB , referred to as Task B. The primary ob-
jective is to achieve high prediction accuracy in the second stage, while acknowledging the inherent
challenges posed by the sparsity and smaller size of DB relative to DA.

4.1 DROPSEMBLES

Given the sparsity and corrupted nature of test samples, adaptation of the prior model is prone to un-
certainties. Here we introduce Dropsembles, a technique that combines benefits of both dropout and
deep ensembles, to capture and quantify this uncertainty. This approach aims to moderate the com-
putational demands associated with ensembles while attempting to maintain reasonable prediction
accuracy. Although ensembles are known for their reliable predictions, they are resource-intensive.
In real-world applications, involving large training sets, this cost becomes a hindering factor.

In contrast, dropout involves training only a single model instance. Applying dropout to a neural
network involves sampling a “thinned” network, effectively the same as applying a binary mask
to the weights. However, unlike ensembles where each model is trained independently, dropout
results in networks that are not independent; they share weights. Thus, training a neural network
with dropout is akin to simultaneously training a collection of 2n thinned networks (n - number of
weights), all sharing a substantial portion of their weights. However, often this comes at a price of
less accurate predictions.

In Dropsembles, the model is first trained with dropout on dataset DA. Subsequently, M thinned
network {fθm}m∈[M ] instances are generated by sampling binary masks. Each of these “thinned”

5
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instances is then fine-tuned on dataset DB independently, effectively creating an ensemble of
“thinned” networks initialized with correlated weights. For inference and uncertainty estimations,
this ensemble is treated as a uniformly weighted mixture model, and the predictions are aggregated
in the same manner as traditional ensembles: p(y|x) = 1

M

∑M
m=1 pθm(y|x, θm). Although en-

sembles typically benefit from networks being large and independent, our experiments show that
this relaxation of independence does not significantly diminish prediction performance metrics or
expected calibration error. The overall training procedure is summarized in Algorithm 1.

In the context of implicit functions, networks are optimized according to the objective defined in
Equation (1). However, it is important to emphasize that Dropsembles is a versatile framework that
can be adapted to train with any objective necessary for a specific task.

Algorithm 1 Dropsembles
▷ Task A

Require: : DA

1: p̂(θ|DA)← Train fθ on DA with dropout
▷ Task B

Require: : DB , p̂(θ|DA)
2: for m = 1 to M do
3: θminit ← Sample a thinned network initialized from p̂(θ|DA)

4: θ̂m ← argminθ R̂DB
(θ) ▷ Train thinned network on DB

5: end for
6: Obtain predictions and uncertainty estimates← Ensemble {θ̂m}m∈[M ]

4.2 ELASTIC WEIGHT CONSOLIDATION REGULARIZATION FOR IMPLICIT SHAPE MODELING

In the basic version of optimization described above, networks start their training initialized from
the learned posterior of dataset DA. However, there is no guarantee that during fine-tuning the
network will not diverge arbitrarily from initial weights. This is particularly problematic for implicit
shape modeling, where it is essential to retain information from a large and dense prior dataset
DA while adapting to sparse and noisy data DB to avoid overfitting. To address this concern, we
borrow developments from the continual learning literature, as they seamlessly fit into the framework
described above.

In particular, when fine-tuning individual instances of thinned networks on dataset DB , we can
apply the same reasoning to each network instance as described in EWC. Thus, the learning objec-
tive for part B is replaced by the objective described in (Equation 2), which includes an additional
regularization term.

5 EXPERIMENTAL RESULTS

Our objective is to provide trustworthy predictions on dataset B without hurting performance. We
do so by modeling the uncertainty of the weights of a fine-tuned model. In standard prediction tasks,
models are evaluated with respect to accuracy and Expected Calibration Error (ECE). However, our
specific setup (reconstruction from sparse views) calls for additional evaluation metrics suitable to
computer vision tasks, such as Dice Score Coefficient (DSC) and Hausdorff distance. Besides ECE,
we include reliability diagrams (Guo et al., 2017b) given our preference for a more conservative
modeling approach. Details on evaluation metrics can be found in Appendix B.

All models were evaluated using four network instances. Training details are provided in Appendix
C. The optimal regularization parameter for EWC was determined for each method through an abla-
tion study presented in Appendix D. Additional ablation results on the number of network instances
are included in Appendix E.

5.1 CLASSIFICATION UNDER DISTRIBUTION SHIFT

Toy dataset We first demonstrate our method on a toy data set for binary classification. We gener-
ated two-dimensional datasets A and B with a sinusoidal decision boundary and Gaussian noise. A

6
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Figure 2: Toy classification example. a) Training data for binary classification task (“red” vs “blue”)
from datasets A (points, light) and B (crosses, dark) b) MC dropout trained only on Dataset A. c)
Comparison of methods fine-tuned on Dataset B. Points are colored by the predicted class. EWC
consistently improves both accuracy and uncertainty estimates on both A and B datasets.

moderate distribution shift was modeled between the datasets by adjusting the support values. We
created 1000 train samples for dataset A, and 50 train samples for dataset B. All metrics in Table 1
were averaged across 3 random seeds. From the evaluations (Table 1, Figure 2), it is apparent that
EWC improves the performance of Ensembles and Dropsembles on both datasets.

Table 1: Comparison of methods fine-tuned on dataset B for toy classification, MNIST and ShapeNet
reconstruction experiments. Values are shown in percentages [%] for all metrics.

Toy classification MNIST ShapeNet

Method Acc-A ↑ ECE-A ↓ Acc-B ↑ ECE-B ↓ DSC ↑ ECE ↓ mDSC ↑ ECE ↓

MCdropout 59.0 ± 5.3 40.0 ± 4.3 90.5 ± 0.6 11.5 ± 1.7 54.8 ± 6.9 8.6 ± 2.0 82.8 ± 2.2 19.31 ± 3.97
Dropsembles 59.2 ± 4.3 39.8 ± 4.3 90.5 ± 0.6 9.2 ± 1.3 64.1 ± 4.8 6.1 ± 2.7 83.5 ± 2.1 19.51 ± 4.64
Ensembles 56.5 ± 2.4 42.5 ± 1.7 90.0 ± 0.0 8.5 ± 0.6 62.6 ± 5.1 5.8 ± 2.3 82.6 ± 2.2 25.88 ± 3.27
MCdropout + EWC 66.8 ± 5.6 33.0 ± 4.8 86.5 ± 2.1 10.5 ± 1.9 55.7 ± 7.2 8.4 ± 2.2 83.9 ± 2.4 16.96 ± 3.81
Dropsembles + EWC 96.2 ± 4.2 5.8 ± 5.3 93.5 ± 3.8 7.0 ± 1.4 70.3 ± 1.7 6.1 ± 1.9 84.3 ± 2.1 17.67 ± 4.45
Ensembles + EWC 95.8 ± 2.5 7.5 ± 2.4 95.5 ± 1.3 5.5 ± 1.0 69.3 ± 3.8 5.2 ± 2.0 83.4 ± 1.9 24.59 ± 2.98

5.2 IMPLICIT SHAPE MODELING

MNIST digit reconstruction In our next experiment, we explore the reconstruction from sparse
inputs using the MNIST dataset. To this end, we converted the images into binary masks through
thresholding. To simulate sparse input conditions, we applied a grid mask to the images, masking
out every third row and column. This masking strategy was consistently applied across both datasets
A and B. For dataset A, we utilized all images for a single digit “7” from the MNIST training set.

To introduce a moderate distribution shift and mimic common real-world dataset corruptions, we
rotated the images in dataset B by 15 degrees and obscured approximately 15 percent of the original
pixels. In this section we are focusing on shape reconstruction, therefore “fine-tuning” and “testing”
are applied per image and not per dataset. Given that the occupancy network is trained at the pixel
level, each of these images effectively constitutes an individual “dataset B”. We randomly selected
20 distinct images from the MNIST test split, which would give us 20 different variations of “dataset
B”. Fine-tuning and evaluating the whole test split of MNIST dataset would be computationally
demanding, as each occupancy network is fine-tuned on an individual image.

Our occupancy network comprises an 8-layer MLP, designed to process the latent representation
along with the 2-dimensional coordinates of each pixel, thereby facilitating pixel-wise predictions.
For configurations utilizing dropout, we incorporated a dropout layer with a probability of p = 0.3
following each linear layer in the network.

We demonstrate qualitative predictions and associated uncertainties for a single-image example in
Figure 3. Visual inspection of the uncertainty estimates reveals that EWC-regularized ensembles
exhibit the desired behavior: they not only deliver accurate predictions but also provide conservative
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Figure 3: Corrupted MNIST reconstruction example. a) Example of training images. b) Comparison
of fine-tuned methods on dataset B. A “perfectly calibrated” method would have reliability diagrams
aligned on the diagonal. A “good conservative” method would have all bars above the diagonal.

uncertainty estimates, particularly noting high uncertainty in regions with data corruption. Relia-
bility diagrams, along with quantitative evaluations presented in Table 1, confirm that elastic reg-
ularization enhances the performance across all methods. Notably, EWC-regularized Dropsembles
achieve performance comparable to that of the Ensembles but with significantly reduced resource
usage.

ShapeNet We demonstrate the applicability of Dropsembles for modeling uncertainty in SDFs on
a commonly used ShapeNet dataset. For dataset A, we utilized 1,000 randomly selected airplane
shapes. For dataset B, we selected 10 unseen airplane shapes and introduced a distribution shift by
applying random erosion as corruption. Encoder inputs were provided as occupancy, with the target
SDF estimated from the original meshes. For the corrupted dataset, the SDF was derived by con-
verting the corrupted occupancies into a mesh and then estimating the SDF. The decoder follows the
DeepSDF architecture with a dropout probability of p = 0.2 where applicable. Quantitative results
in Table 1 demonstrate that Dropsembles outperform other methods in terms of DSC, with EWC
regularization providing further improvements in both DSC and ECE metrics across all methods.
Although MC dropout achieves the lowest ECE score, it fails to preserve shape smoothness when
used for uncertainty modeling rather than regularization, as highlighted by additional qualitative
results in Appendix Figure 11.

Recently, non-ReLU activation functions have gained popularity in neural implicit architectures
(Sitzmann et al., 2020; Tancik et al., 2020; Müller et al., 2022b; Mehta et al., 2021; Dupont et al.,
2022). In Appendix Table 4, we demonstrate that Dropsembles can be effectively combined with
periodic activation functions without any loss in performance.

Lumbar spine In this section, we adapt the data preparation procedure from (Turella et al., 2021)
but replace the high-quality CT dataset with a synthetic dataset of anatomical shapes. As an anatomi-
cal shape prior, we utilize a rigged anatomical model from “TurboSquid”. To model patient-specific
variability and variations in poses during MRI acquisition, we generated 94 rigged deformations.
Point-cloud models from the atlas were converted to voxels at 256 voxel resolution in order to corre-
spond to the resolution of the target MRI dataset. We further applied random elastic deformations to
mimic patient-specific shape variability. We created a paired “sparse” - “dense” dataset by selecting
a consistent set of 17–21 sagittal slices and additionally applied two iterations of connected erosions
to simulate patient-specific automatic MR segmentations (Turella et al., 2021). A bicubic upsam-
pling was employed on the “sparse” inputs to adapt them for the encoder. We trained ReconNet
(Turella et al., 2021) on the entire training split of the atlas dataset to obtain an encoder, which we
subsequently kept frozen. For the implicit decoder, we employed only one of the rigged samples
to accurately quantify performance on synthetic data and demonstrate the method’s robustness to
medium and strong distribution shifts. For real-world applications, we recommend using the entire
rigged transformations dataset.

For the occupancy network, we employed the MLP architecture described by (Amiranashvili et al.,
2022), which features eight linear layers, each of 128 dimensions and dropout p = 0.2. The initial
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training of the occupancy network was conducted on an anatomical atlas. This intensive train-
ing process required 48 hours on a single NVIDIA RTX A6000 GPU, equipped with 48 GB of
memory. This pretrained network was then used to fine-tune both Dropsembles and MC dropout
models. Additionally, we trained four distinct instances of Ensembles without dropout, with each
instance requiring 48 hours of training. A key distinction between Dropsembles and Ensembles is
that Dropsembles leverage a single pretrained model from dataset A, significantly reducing compu-
tational demand by a factor equal to the number of thinned networks. This results in a substantial
difference in total training time, as the pre-training on dataset A is much more time-consuming than
the fine-tuning on dataset B (see Table 2 and Appendix E). Additionally, this training time on dataset
A remains constant for Dropsembles as the number of thinned networks increases, while it grows
linearly for Ensembles.

As the target dataset B, we use a publicly available dataset of MR+CT images from 20 subjects
(Cai et al., 2015). We employed the same segmentation network as (Turella et al., 2021) to obtain
segmentations of 5 vertebrae, 5 discs, and the spinal canal (Pang et al., 2020). These automatically
generated segmentations of high-quality MRI samples were used as the ground truth for the sparse
3D reconstruction task. To create sparse inputs, we removed the same set of sagittal slices as in the
atlas dataset. We randomly selected 3 subjects for the consequent fine-tuning and testing.

The MR dataset described above lacks ground truth segmentations, which complicates numerical
evaluation. The goal of the model is to impute missing or misclassified parts using anatomical atlas

uncertainty uncertainty

MC dropout Dropsembles + EWCSparse input Dense GT Dropsembles + EWC
prediction

a c

MC dropout Dropsembles + EWC
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Figure 4: Lumbar spine reconstruction example on Subject 2. a) 3D-rendered views of sparse inputs
(bicubic upsampling), dense ground truth (GT), and predictions by our method. b) Histograms of
uncertainty (entropy) values, truncated between 0.1 and 1 for visibility. c) Examples of uncertainty
estimates for two different sagittal slices of the 3D volume. d) For each method, network predictions
are randomly sampled and the corresponding reconstructions are depicted.

priors, which, while enhancing reconstruction, are typically marked as incorrect in standard seg-
mentation metrics. To facilitate a more accurate assessment of reconstruction metrics, we introduce
an intermediate benchmark. For this purpose, we utilize three random rigged deformations from the
atlas that were not exposed during training and apply a doubled level of erosions. This strong aug-
mentation provides a challenging input for dataset B and allows to model a significant distribution
shift aimed at rigorously testing the model under adverse conditions.

Numerical evaluation in Table 2 demonstrates consistent improvement of our method upon MC-
dropout and comparable performance to Ensembles. In order to investigate the performance of the
proposed method on MR dataset, we perform a detailed qualitative analysis in Figure 4. A consistent
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and distinct pattern not captured by the metrics alone, stands out from the qualitative assessment:
MC-dropout tends to produce noisy reconstructions, as illustrated in Figure 4c-d, and generally
yields predictions that lack coherent, continuous shapes. This behaviour is partially captured in
metric “DSC avg” in Table 2 - dice score evaluated on individual samples of the network instances.
This observation is notable because, although models trained with conventional dropout generate
reasonable predictions, their use in uncertainty estimation undermines the fundamental objective
of 3D modeling. Samples drawn from the dropout distribution do not yield plausible shapes, as
evidenced in Figure 4d. In contrast, our model, which draws from deep ensembles, does not exhibit
these limitations. Furthermore, increasing the number of samples in MC-dropout does not resolve
this issue but rather leads to higher computational demands, as documented in Table 2.

EWC demonstrates only minor improvements in terms of Dice score, while the difference in Haus-
dorff distance is more noticeable. We believe this is because Hausdorff distance better captures small
discrepancies that the Dice score overlooks. Dice is less sensitive to small differences in reconstruc-
tion, as the majority of structures are well reconstructed by both methods. Qualitative inspection
in Figure 5 confirms these subtle variations, which are crucial in medical applications where even
small differences can significantly impact treatment planning.

Table 2: Comparison of methods fine-tuned on dataset B of lumbar spine experiment. Evaluations
are performed on the corrupted atlas. Metrics are reported for dataset B. Baseline is a MC-dropout
model trained on dataset A (w/o fine-tuning).

Method DSC [%] ↑ DSC avg [%] ↑ HD ↓ ECE [%] ↓ Train-A / Tune-B [h]

Baseline 65.0± 2.0 63.9± 1.8 17.5± 1.2 25.2± 0.4 48 / -
MCdropout 84.8± 2.8 83.0± 2.0 18.15± 6.46 3.9± 2.4 48 / 3.5
Dropsembles 86.8± 2.4 86.3± 2.3 11.4± 1.8 4.6± 1.7 48 / 10
Dropsembles + EWC 86.9 ± 2.4 86.4 ± 2.3 10.9± 2.1 4.5± 1.7 48 / 11
Ensembles 86.5± 3.1 86.0± 2.9 10.5 ± 2.8 3.9 ± 2.2 192 / 10

6 DISCUSSION AND CONCLUSION

Figure 5: Example in the performance difference
between Dropsembles w/ and w/o EWC. Grey
segmentations are produced by Dropsembles w/
or w/o EWC regularization overlayed with color-
ful ground-truth segmentations. EWC better cap-
tures subtle details in modeling thin structures,
such as vertebra processes.

Strengths In this study, we advanced sparse
3D shape reconstruction for high-precision ap-
plications by introducing uncertainty model-
ing. We developed a flexible framework that fa-
cilitates uncertainty-aware fine-tuning of mod-
els and showcased its utility in reconstructing
the lumbar spine from sparse and corrupted
MRI data. Our observations suggest that tra-
ditional uncertainty methods like MC dropout
are not ideal for implicit shape reconstruction,
as they tend to undermine the basic principles
of implicit functions. However, our Dropsem-
ble method effectively addresses these limita-
tions, providing a promising alternative for un-
certainty modeling. Additionally, Dropsembles
are significantly more efficient than Ensembles
during the resource-heavy pre-training phase,
allowing for substantial reductions in resource
usage without significant loss in performance.

Limitations During the fine-tuning stage,
Dropsembles face the same computation de-
mands as Ensemble models.

Future directions In this work, we focus on
the epistemic uncertainty of the decoder, assuming the encoder to be frozen. An interesting future
direction is to combine Dropsembles with the uncertainty in the encoder to comprehensively cover
all aspects of uncertainty modeling in sparse 3D shape reconstruction.
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Tamaz Amiranashvili, David Lüdke, Hongwei Bran Li, Bjoern Menze, and Stefan Zachow. Learning
shape reconstruction from sparse measurements with neural implicit functions. In International
Conference on Medical Imaging with Deep Learning, pages 22–34. PMLR, 2022.
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A APPENDIX: ELASTIC WEIGHT CONSOLIDATION

Elastic Weight Consolidation (EWC) was introduced to address catastrophic forgetting in continual
learning (Kirkpatrick et al., 2016). EWC is a regularization that protects crucial parameters in a
network when learning a new task, in order to avoid catastrophic forgetting.

Assume two distinct tasks, A and B, with their respective datasetsDA andDB , whereDA∩DB = ∅.
The tasks are learned sequentially without access to previous task datasets. First, task A is learned
by training a neural network on DA, resulting in a set of optimal weights θ̂A. When learning task
B using dataset DB , EWC regularizes the weights so they remain within a region in the parameter
space that led to good accuracy for task A. The justification of the method is based on probabilistic
principles. Given a combined dataset D := DA ∪ DB , applying Bayes’ rule yields:

log p(θ|D) = log p(D|θ) + log p(θ)− log p(D) (3)

where p(D|θ) corresponds to the likelihood over the entire dataset and p(θ) is the user-defined prior
over the weights of the network. Rearranging equation (3) yields

log p(θ|D) = log p(DB |θ) + log p(θ|DA)− log p(DB) (4)

where it can be observed that all information from DA is contained in the posterior p(θ|DA), which
is usually intractable. Therefore, the EWC method employs the Laplace approximation to the pos-
terior, a process conducted during the training of task A. The resulting approximated posterior
is modeled as a Gaussian distribution, with its mean represented by θ̂A and covariance matrix
ΣA = (F (θ̂A) ◦ I)−1 where F (θ̂A) denotes the Fisher information matrix evaluated over data
set DA at θ̂A.

Next, in stage B, the optimization of parameter θ incorporates the approximation of the posterior
obtained during task A as a constraint in the optimization process. Following the equation (4), this
approximation, log p(θ|DA), serves as a regularizer in the learning objective:

θ̂B = argmin
θ

R̂DB
(θ) + λ(θ − θ̂A)

T (F (θ̂A) ◦ I)(θ − θ̂A) (5)

where R̂(θ) corresponds to the likelihood term log p(DB |θ), λ is a hyperparameter, I represents the
identity matrix, and ◦ describes the Hadamard product.

B APPENDIX: METRICS

Uncertainty estimates for regression tasks involve using unbiased estimates of the modes of the
approximated posterior predictive distribution. In neural networks, this corresponds to performing
multiple stochastic forward passes. For classification tasks, three main methods for uncertainty
estimates are variational ratios, predictive entropy, and mutual information (Gal, 2016). In our
experiments, we opt for predictive entropy.

Dice score The Dice score, also known as the Dice Similarity Coefficient (DSC), measures the
similarity between two data sets, commonly used in medical imaging to evaluate segmentation ac-
curacy. Defined as DSC = 2×|X∩Y |

|X|+|Y | , where X and Y represent the ground truth and predicted
segmentation sets, respectively. The score ranges from 0 to 1, with 1 indicating perfect agreement
and 0 representing no overlap.

Reliability diagrams and Expected Calibration Error Reliability diagrams are graphical tools
used in uncertainty modeling to assess the calibration of probabilistic predictions. They plot pre-
dicted probabilities against empirical frequencies, allowing for visual inspection of how well the
predicted probabilities of a model correspond to the actual outcomes. A perfectly calibrated model
would align closely with the diagonal line from the bottom left to the top right of the plot, indicating
that the predicted probabilities match the observed probabilities. Reliability diagrams are computed
by binning predicted probabilities into intervals. For each bin, the mean predicted probability is
plotted against the observed frequency of the corresponding outcomes. This involves calculating the
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proportion of positive outcomes in each bin and plotting these against the average predicted proba-
bility for the bin. The closer the points lie to the diagonal line from the bottom left to the top right,
the more calibrated the model is considered. Reliability diagrams are closely related to the Expected
Calibration Error (ECE), which quantitatively assesses a model’s calibration. ECE is computed as a
weighted average of the absolute differences between the predicted probabilities and the actual out-
come frequencies across different bins used in reliability diagrams. Each bin’s weight corresponds
to the number of samples it contains. Thus, while reliability diagrams provide a visual interpretation
of model calibration, ECE offers a single numerical value summarizing the calibration error across
all bins.

C APPENDIX: TRAINING DETAILS

Toy experiment We generated two-dimensional datasets A and B with a sinusoidal decision
boundary and Gaussian noise. A moderate distribution shift was modeled between the datasets
by adjusting the support values of x1: x1 ∈ [−0.75, 0.7] for dataset A and x1 ∈ [−0.5, 2.0] for
dataset B. We created 1000 training samples and 500 test samples for dataset A, and 50 train and
500 test samples for dataset B.

We used a consistent model architecture across experiments—a straightforward 3-layer MLP with
256 hidden units in each layer. For methods using dropout, a dropout layer (p = 0.3) followed each
linear layer. For ensemble methods, 4 separate networks were trained on dataset A. For ensembles
and Dropsembles we used 4 network instances for fine-tuning and inference. For MC dropout we
used 100 samples at inference. We trained for 800 epochs for training with a learning rate 1e − 3
and 600 epochs for tuning with a learning rate 5e− 3.

MNIST experiment First, we trained a small autoencoder, consisting of three convolutional layers
in the encoder, only on dataset A. The encoder does not have dropout layers. The encoder was trained
with cross-entropy loss for 50 epochs with a learning rate 0.01 and a cosine warmup scheduler.
After this initial training, the encoder was kept fixed (frozen) for all subsequent experiments, and
the decoder was discarded. This encoder now serves to generate a latent representation of the input
data, which is then supplied to an occupancy network.

The convolutional encoder was trained on Dataset A and consequently frozen for all the rest of the
experiments. Pooling layer was applied to produce same latent code for all 2D coordinates in a
shape.

The 8-layer MLP occupancy network was trained with cross-entropy loss for 50 epochs on dataset
A with a learning rate 0.005 and a cosine warmup scheduler. For ensemble methods, 4 separate
networks were trained on dataset A. For fine-tuning on dataset B we used same learning rate but
tuned the networks for 30 epochs only. For ensembles and Dropsembles we used 4 network instances
for fine-tuning and inference.

ShapeNet experiment For Dataset A, we selected 1,000 random samples from the ShapeNet
dataset’s airplane category. For Dataset B, we randomly selected 10 unseen shapes and applied ran-
dom erosion to simulate real-world distribution shifts. Examples of eroded and high-quality target
shapes are shown in Figure 12. For both datasets, occupancies at a resolution of 128 were provided
to the encoder. SDF values for Dataset A were estimated from ground-truth high-quality meshes.
For Dataset B, meshes were reconstructed from the eroded shapes and subsequently converted into
SDF representations.

The convolutional encoder was trained on Dataset A and consequently frozen for all the rest of the
experiments. Bi-linear upsampling was applied to query latent vectors for specific 3D coordinates
as proposed in convolutional occupancy networks architecture.

The 8-layer DeepSDF MLP network was trained on Dataset A for 100 epochs using a clipped L1
loss (with clipping parameter δ = 0.1), a learning rate of 0.001, and a step scheduler as proposed in
(Park et al., 2019a). When applicable, dropout was added after each activation layer, as suggested
in DeepSDF. For ensemble methods, four separate networks were trained on Dataset A. Fine-tuning
on Dataset B was performed using a non-clipped L1 loss with a slower learning rate of 0.0001
and limited to 75 epochs. For ensembles and Dropsembles, four network instances were employed

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

during fine-tuning and inference. In the SIREN experiment, ReLU activations were replaced with
periodic activation functions (Sitzmann et al., 2020), with dropout applied only after the 4th and 6th
layers in the decoder network.

Lumbar spine experiment All experiments in this section were performed on NVIDIA RTX
A6000 GPU, equipped with 48 GB of memory. The networks were trained at 16-mixed precision
due to memory constraints.

First ReconNet encoder was trained with cross-entropy loss on a full training split of rigged atlas
dataset to obtain a “frozen” encoder. We used a learning rate 0.01 and trained for 100 epochs with
early stopping. Bi-linear upsampling was applied to query latent vectors for specific 3D coordinates
as proposed in convolutional occupancy networks architecture.

The occupancy network architecture incorporates skip connections and ReLU activations, with
dropout layers (p = 0.2) following each linear layer except the last. To effectively model the
entire lumbar spine, we adapted the strategy from (Peng et al., 2020) by replacing the learnable
latent vector with an output from a pretrained convolutional encoder. Specifically, we performed
bilinear upsampling on the output of this frozen encoder to generate a detailed latent representation
for each voxel. This representation, coupled with 3-dimensional voxel coordinates, was provided as
input to the MLP. We used cross-entropy loss for training and fine-tuning the occupancy network.
The network was trained for 100 epochs on dataset A with early stopping applied after 68 epochs.
Learning rate 0.001 and batch size 32 were used for training, where each batch we used only [64,
64, 64] random voxels. For fine-tuning on dataset B we used the same of parameters for all the
methods: learning rate 0.001 and tuned it for 50 epochs without early stopping. Results evaluated at
the checkpoint of the last epoch are presented throughout the paper.

D APPENDIX: SELECTING OPTIMAL REGULARIZATION STRENGTH

MC dropout + EWC Ensembles + EWC Dropsembles + EWC

log10 lambda log10 lambda log10 lambda

Ac
cu

ra
cy

Ac
cu

ra
cy

Ac
cu

ra
cy

Figure 6: Toy classification example ablation for EWC regularization strength. Averages and confi-
dence over 3 random seeds. Red dot represents the optimal lambda selected for the main figure.

MC dropout + EWC Ensembles + EWC Dropsembles + EWC

Figure 7: Corrupted MNIST reconstruction example ablation for EWC regularization strength. Dots
correspond to different samples.
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MC dropout + EWC Dropsembles + EWC

Figure 8: Corrupted atlas reconstruction example ablation for EWC regularization strength. Dots
correspond to different samples. Due to high computational demand we were not able to evaluate
all examples on the full grid.

E APPENDIX: ADDITIONAL EXPERIMENTAL RESULTS

Figure 9: Example in the performance difference between Dropsembles w/ and w/o EWC: tiny
details in patient-specific variability are not captured well in DSC metrics, but are apparent on the
qualitative examples and Hausdorff distance (HD). Grey segmentations are produced by Dropsem-
bles w/ or w/o EWC regularization overlayed with colorful segmentations of the HQ ground-truth.
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Figure 10: Examples of ShapeNet samples. a) Dataset A; b) Dataset B.

Figure 11: Comparison of average predictions b/w MC Dropout and Dropsembles. Dropout predic-
tions even after averaging are not smooth. a) Meshes produced by averaged predictions; b) A slice
of SDF representation produced by averaging predicted samples.
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Figure 12: Examples of Corrupted Atlas dataset.

Figure 13: Example of Atlas to MRI segmentations dataset.

Table 3: ShapeNet: Results for models trained on dataset A only. All metrics are reported in per-
centages [%].

Method mDICE [%] ↑ mIoU [%] ↑ ECE [%] ↓
Dropout 78.4± 2.4 64.5± 3.2 31.66 ± 3.37
Dropout - SIREN 78.5 ± 3.3 64.8 ± 4.4 31.94± 3.89
Ensembles 76.4± 2.9 61.9± 3.7 36.33± 3.11
Ensembles - SIREN 75.9± 3.7 61.3± 4.8 36.44± 3.85
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Table 4: ShapeNet with SIREN activations: Results for models trained on dataset A and B (fine-
tuned on dataset B). All metrics are reported in percentages [%].

Method mDICE [%] ↑ mIoU [%] ↑ ECE [%] ↓
Dropout 80.2± 2.4 67.0± 3.3 27.99± 2.85
Dropsembles 83.8± 2.2 72.2± 3.2 21.04± 3.04
Ensembles 83.4± 2.5 71.6± 3.6 24.44± 3.03
Dropout + EWC 83.3± 2.2 71.5± 3.2 19.27± 2.74
Dropsembles + EWC 84.5 ± 2.3 73.2 ± 3.4 17.73 ± 3.05
Ensembles + EWC 80.9± 2.5 68.0± 3.5 28.95± 3.07

Table 5: Detailed comparison of training time on lumbar spine experiment. We report the results in
GPU-hours [h].

Method Training on atlas [h] Tuning on corrupted atlas / lumbar spine MRI [h] Total [h]

Baseline 48 - / - 48 / 48
MCdropout 48 3.5 / 22 51.5 / 99.5
Dropsembles 48 2.5 / 21 (per network) x4 58 / 132
Dropsembles + EWC 48 2.75 / 22 (per network) x4 58 / 136
Ensembles 48 (per network) x4 2.5 / 21 (per network) x4 202 / 276

Table 6: Comparison of methods tuned on dataset B of lumbar spine MR dataset. Dice Score Coef-
ficient (DSC), Hausdorff distance (HD), Dice Score Coefficient average per network sample (DSC
avg), Expected Calibration Error (ECE), and total inference time (time) are reported for dataset B.
Baseline is MC dropout trained on dataset A.

Method DSC [%] ↑ DSC avg [%] ↑ HD ↓ ECE [%] ↓ time [sec] ↓

Su
bj

ec
t1

Baseline 75.8 74.0± 0.0 18.2 4.7 161
MCdropout 93.5 92.3± 0.0 6.3 3.6 159
Dropsembles 93.9 93.5± 0.1 6.2 4.4 20
Dropsembles + EWC 93.9 93.5± 0.0 6.0 4.2 21
Ensembles 93.9 93.5± 0.2 24.3 4.3 21

Su
bj

ec
t2

Baseline 35.9 36.4± 0.1 34.2 33.6 30
MCdropout 91.3 89.7± 0.0 15.2 4.9 160
Dropsembles 92.0 91.5± 0.1 9.4 6.1 19
Dropsembles + EWC 92.0 91.5± 0.1 9.5 6.1 19
Ensembles 91.9 91.4± 0.1 25.2 6.0 21

Su
bj

ec
t3

Baseline 76.5 74.2± 0.0 19.5 3.7 159
MCdropout 92.5 91.3± 0.0 7.1 4.9 158
Dropsembles 92.6 92.2± 0.0 8.2 5.3 19
Dropsembles + EWC 92.6 92.2± 0.0 6.7 5.2 19
Ensembles 92.8 92.5± 0.1 6.5 5.6 21
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Table 7: Comparison of methods tuned on dataset B of lumbar spine experiment. Evaluations are
performed on the corrupted atlas. Dice Score Coefficient (DSC), Hausdorff distance (HD), Dice
Score Coefficient average per network sample (DSC avg), Expected Calibration Error (ECE), and
total inference time (time) are reported for dataset B. Baseline is MC dropout trained on dataset A.

Method DSC [%] ↑ DSC avg [%] ↑ HD ↓ ECE [%] ↓ time [sec] ↓

C
or

ru
pt

ed
A

tla
s

1

Baseline 65.5 64.4± 0.0 16.8 24.7 172
MCdropout 83.5 81.7± 0.0 14.3 4.6 160
Dropsembles 85.0 84.7± 0.2 13.2 5.7 21
Dropsembles + EWC 85.0 84.7± 0.2 13.3 5.6 21
Ensembles 84.5 84.2± 0.7 13.4 5.0 21

C
or

ru
pt

ed
A

tla
s

2

Baseline 67.2 65.8± 0.0 16.5 25.6 164
MCdropout 88.6 85.7± 0.0 9.4 0.8 170
Dropsembles 90.2 89.6± 0.0 8.9 2.3 22
Dropsembles + EWC 90.3 89.6± 0.0 8.1 2.1 22
Ensembles 90.0 89.3± 0.7 7.8 1.3 22

C
or

ru
pt

ed
A

tla
s

3

Baseline 62.3 61.4± 0.0 23.5 25.4 163
MCdropout 83.7 81.5± 0.0 15.4 4.8 162
Dropsembles 85.2 84.8± 0.1 12.0 5.9 22
Dropsembles + EWC 85.3 84.8± 0.2 11.2 5.8 22
Ensembles 84.9 84.5± 0.7 10.2 5.3 22
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