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Abstract

Reliable mathematical and scientific reasoning remains an open challenge for large
vision–language models (VLMs). Standard final-answer evaluation often masks
reasoning errors, allowing silent failures to persist. To address this gap, we intro-
duce TRACE (Transparent Reasoning And Consistency Evaluation), a framework
for analyzing, diagnosing, and improving reasoning in VLMs. At its core, TRACE
leverages Auxiliary Reasoning Sets (ARS), compact sub-question–answer pairs
that decompose complex problems, evaluate intermediate steps through consistency-
based metrics, and expose failures overlooked by standard evaluation. Our experi-
ments show that consistency across ARS is linked to final-answer correctness and
helps pinpoint the reasoning steps where failures arise, offering actionable signals
for model improvement.

1 Introduction

As shown in the figure, the vertices of 
triangle ABC are located on the grid 
points of a square grid. What is the 
value of tan A?

Ground Truth = 1/2

Inconsistent Answers: [1/5, 1/3, 7/19,..]

Q1) What are the coordinates of point A? (Answer inconsistent)

Q2) What are the coordinates of point B?” (Answer inconsistent)

Q3) Wha  at are the coordinates of point C? (Answer consistent)

Q4) What is the slope of line AB? 

Q5) What is the slope of line AC? 

The two resistors shown are both uniform cylinders 
of equal length made from the same conducting 
putty. The diameter of Y is twice that of X. The 
resistance of Y is R. What is the total resistance of 
the combination?', 'B'] Q1) Question: What is the 
ratio of the diameter of resistor Y to resistor X?

Q1) What is the ratio of the diameter of resistor Y to resistor X? (consistent)

Q2) Are the two resistors connected in series or parallel?(inconsistent)

Ground Truth = 5R

Inconsistent Answer: [4R/5, 5R, ..]

ARS QuestionsARS Questions

Q2 mark the first point of inconsistency

Q1 and Q2 mark the first points of inconsistency
Note: Q4 and Q5 inconsistencies are due to Q1 and Q2 as 
we can see from dependency graph

Q1 Q2 Q3

Q4 Q5
Q1 Q2Q3

Dependency Graph

Dependency Graph

Q3) What is the resistance of resistor Y? (consistent)

Q4) What is the ratio of the cross-sectional area of resistor Y to resistor X? 
(consistent)
Q5) What is the resistance of resistor X in terms of R? (consistent)

Q4

Tiger Dataset MMMUPro Dataset

Main Question
Main QuestionQ5

Figure 1: Illustration of the TRACE framework. (Left) A geometry question from TIGER-
Lab/ViRL39K dataset TIGER-Lab [2025] with its ARS decomposition: Q1–Q3 extract coordinates,
Q4–Q5 compute slopes, and the final question computes tanA. Nodes highlighted in red indicate
inconsistent answers across model generations, allowing us to localize the source of error. (Right) A
physics problem from the MMMUPro dataset Yue et al. [2024] with its ARS decomposition. Nodes
highlighted in red indicate inconsistent answers across model generations, helping to pinpoint where
the reasoning fails.

∗Corresponding author: shimaimani@meta.com

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI.



Evaluating large vision-language models (VLMs) has predominantly focused on final-answer correct-
ness. However, this metric often proves insufficient and misleading for comprehensive assessment.
When a model yields an incorrect final answer, the precise step at which reasoning failed or how
errors propagated through the computational graph remains obscure. Conversely, a correct final
answer does not inherently guarantee a coherent or robust reasoning process; models can arrive at
correct outcomes through flawed or inconsistent intermediate steps, masking underlying conceptual
misunderstandings or accidental self-corrections. These limitations highlight critical, underexplored
challenges: How can we pinpoint failures in multi-step, multimodal VLM reasoning? What types of
reasoning patterns produce “silent errors,” where incorrect intermediate steps still lead to correct
final answers? And to what extent does final-answer accuracy reliably reflect reasoning ability versus
chance or memorization?

To tackle these fundamental challenges, we introduce TRACE (Transparent Reasoning And Con-
sistency Evaluation), a novel framework designed to enhance the diagnostic capabilities of VLM
evaluation. TRACE systematically decomposes complex multimodal reasoning tasks into a series of
interpretable, granular sub-questions, organized into Auxiliary Reasoning Sets (ARS). By evaluating
consistency across these intermediate answers, TRACE enables the precise localization of reasoning
failures, providing granular, structured signals crucial for iterative model improvement. In contrast to
conventional final-answer-centric evaluation, this decomposition not only reveals whether a model’s
prediction is correct, but critically, how it arrives at that prediction and identifies which specific
reasoning steps are most susceptible to errors.

Building on TRACE, ARS maps sub-question dependencies into a reasoning graph to pinpoint the
first point of failure. For example, Figure 1 shows how ARS tracks error propagation from coordinate
identification in geometry or from inconsistencies in reasoning about resistor connections, even in
cases where the final VLM answer does not fully reflect these intermediate errors.

Our contributions are:

1. We propose TRACE: A framework for transparent reasoning in multimodal models, break-
ing down complex tasks into Auxiliary Reasoning Sets (ARS).

2. A dependency-aware evaluation protocol that tracks consistency across intermediate steps to
pinpoint the first point of failure.

3. A benchmark of 3.7k ARS question–answer pairs across 630 reasoning paths, aligned with
STEM problems, for evaluating multimodal reasoning at both intermediate and final answer
levels.

4. Experiments demonstrating TRACE uncovers reasoning errors missed by standard final-
answer evaluation, enhancing interpretability, robustness, and evaluation quality.

2 Related Work

Multimodal reasoning benchmarks. Benchmarks like ScienceQA Lu et al. [2022], MathVista Lu
et al. [2023], MMMU Yue et al. [2024], and MathVision Wang et al. [2024] evaluate VLMs on STEM
tasks involving text and diagrams. While they reveal progress and limitations, they mainly assess
final-answer accuracy, which cannot distinguish genuine reasoning from lucky guesses.

Intermediate reasoning and process supervision. Methods such as chain-of-thought prompt-
ing Wei et al. [2022], self-consistency Wang et al. [2022], and process supervision (e.g.,
GSM8K Cobbe et al. [2021]) improve performance and interpretability by incorporating inter-
mediate steps. However, they often rely on natural language rationales, which are hard to evaluate
automatically, or still depend on final-answer supervision, limiting error diagnosis in intermediate
steps.

Problem decomposition and program-aided reasoning. Approaches like Program-of-
Thoughts Chen et al. [2022], PAL Gao et al. [2022], and verifier-based pipelines Lightman et al.
[2023] decompose reasoning into symbolic programs or use self-correction. While effective for
arithmetic and robustness, they lack principled ways to diagnose failures at specific reasoning steps,
especially in multimodal contexts.
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3 Methodology

Building on these insights, we introduce TRACE a framework that structures and scrutinizes the
intermediate reasoning steps of multimodal models. TRACE moves beyond conventional black-
box mapping, where a model directly maps VLM(Question, Image) to a final answer. Instead, it
introduces an intermediate Auxiliary Reasoning Set (ARS),

S = {(qi, ai)}ni=1,

consisting of sub-question–answer pairs that explicitly capture intermediate reasoning steps. An ARS
is defined such that each sub-question qi paired with an answer ai satisfies three properties:

• Completeness: The sub-questions collectively provide all information needed to solve the
problem, with no redundancy. The ARS also extracts any required information from the
image, so that the main question can be answered without directly referencing the figure.

• Independence: Each sub-question depends only on raw inputs or explicitly specified
predecessors.

• Soundness: Sub-questions are answerable, non-overlapping, and do not leak the final
answer.

The model then uses this structured set to produce its final answer, making the reasoning process
transparent and enabling fine-grained evaluation of reasoning behavior.

Example. Consider a geometry problem illustrated in Figure 1, where the vertices of triangle ABC
lie on a square grid and the task is to compute tanA. The ARS decomposes the problem into
sub-questions such as identifying the coordinates of points A, B, and C, and computing the slopes of
lines AB and AC. This decomposition allows TRACE to analyze the model’s reasoning process, track
how intermediate answers propagate, and provide a structured view of the entire solution pathway.

Construction. ARS are generated using two complementary strategies:

• Exploration: Given the original question and a specialized prompt, the model generates
diverse sub-questions along with their dependencies.

• Exploitation: Sub-questions are generated from candidate reasoning chains in two steps:
1. Step 1: Given the question and image, the model produces a step-by-step reasoning

answer.
2. Step 2: Using the original question, the generated reasoning answer, and a prompt, the

model generates sub-questions and their dependencies, ensuring the ARS captures the
critical steps necessary to solve the problem.

Reasoning Graph. Each sub-question is annotated with metadata specifying its dependencies on
other questions, text, or image inputs. Together, these dependencies form a directed acyclic reasoning
graph (DAG) that encodes the structure of the reasoning process and defines the order in which
the model answers sub-questions. Intermediate answers propagate forward through the DAG, and
the final answer is computed based on these intermediate results. This structured execution allows
TRACE to pinpoint exactly which reasoning steps lead to errors, enabling transparent analysis of the
model’s reasoning process.

3.1 Evaluation Metrics

TRACE assesses reasoning performance at both the final-answer and intermediate-step levels, provid-
ing a multi-faceted evaluation of model behavior. We adopt the following key metrics:

Consistency Score: Measures stability by checking whether the model produces identical answers to
the same sub-question across multiple reasoning paths. We introduce a family of consistency-
based metrics (Appendix A) that capture finer-grained stability at both path and question
levels:

• Path mean, deviation, and z-score consistency capture stability within a reasoning
trajectory.

• Global mean consistency captures stability across all paths for a question.
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• Consistency gap compares path-level stability against the global question-level baseline.
First Failure Step (FFS): We define the First Failure Step (FFS) as the earliest sub-question in a

reasoning path that ultimately yields an incorrect final answer (or one that deviates from
the majority outcome when no gold answer is available), at which the path’s response first
diverges from the consensus established by other consistent paths. The FFS marks the
initiation of a reasoning trajectory that leads away from the reliable solution, providing a
diagnostic signal for how local deviations accumulate into final errors.

Together, these metrics provide a fine-grained and interpretable evaluation of reasoning behavior,
enabling analysis of both the reliability and robustness of VLM reasoning at intermediate steps and at
the final-answer level.

4 Experiments and Results

We evaluate TRACE on two challenging STEM benchmarks: the multimodal MMMUPro dataset
(covering Physics, Math, and Chemistry) and a verifiable subset of the TIGER-Lab/ViRL39K
dataset (500 Questions). Both datasets require multi-step reasoning grounded in visual or symbolic
information, making them ideal for assessing robustness. For each question, we generate ARS sub-
questions using Llama-4-Maverick-17B-128E-Instruct and sample multiple reasoning paths
for each ARS set across different models, enabling TRACE to systematically analyze the consistency
and propagation of intermediate reasoning steps within the structured ARS framework.

Our results confirm that consistency scores are correlated with correctness, enabling us to dis-
tinguish reliable from unreliable reasoning paths. Figure 2 presents scatter plots of path mean
consistency versus global mean consistency for MMMUPro, highlighting a clearly defined “red
zone” of low-consistency trajectories. This red zone comprises 4.5% of paths for GPT-4.1, 5.3%
for Llama-4-Maverick, and 9.7% for Qwen2.5-VL-72B, yet accounts for the vast majority of
incorrect predictions (87.9%, 76.9%, and 77.5%, respectively). A similar pattern is observed for
Llama-4-Maverick on the TIGER-Lab/ViRL39K dataset, confirming the consistency of this signal
across domains. Applying the First Failure Step (FFS) analysis further pinpoints the sub-question
where reasoning first diverges, illustrating how small local mistakes can cascade into globally incor-
rect outcomes. A few examples are provided in Appendix A.4. Together, these findings establish
TRACE as a diagnostic tool that not only predicts confidence but also localizes sources of error,
offering actionable insights to improve the trustworthiness of model reasoning. Detailed results and
breakdown analyses are provided in Appendix A.

Figure 2: Scatter plots showing the relationship between path mean consistency and global (total)
mean consistency for different models for the MMMUPro dataset. The red-shaded regions highlight
low-consistency zones where a high fraction of paths result in incorrect answers.

5 Conclusion and Future Work

We introduced TRACE, a framework for transparent reasoning in multimodal models, which de-
composes complex problems into stepwise reasoning traces. As part of TRACE, we provide a
rigorously curated benchmark that evaluates models beyond final-answer accuracy, enabling fine-
grained analysis of reasoning failures. Future work includes (i) training models to autonomously
generate reliable reasoning traces, (ii) extending the benchmark to a broader set of multimodal tasks,
and (iii) leveraging reasoning traces as structured rewards in RL methods such as GRPO to reduce
reward hacking.
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A Consistency Metrics for Reasoning Paths

To evaluate the reliability of the reasoning process in TRACE, we introduce a set of consistency-based
metrics that quantify the stability of reasoning paths across sub-questions and across sampled paths.
These metrics help us understand whether correct answers are associated with more stable and
coherent reasoning.

A.1 Definitions and Notation

Let a question be decomposed into an Auxiliary Reasoning Set (ARS):

S = {(qi, ai)}ni=1,

where each qi is a sub-question and ai is the corresponding answer. For each question, we sample K
reasoning paths, each independently answering all sub-questions and producing a final answer.

Let:

• Ai,j : Answer to sub-question qi in reasoning path j

• Ci,j : Agreement count for Ai,j (i.e., how many paths gave the same answer to qi as path j)
• Pj : The j-th reasoning path

We define the following metrics:

• Path Mean Consistency (path_mean_consistencyj): The average agreement across all
sub-questions in path Pj :

path_mean_consistencyj =
1

n

n∑
i=1

Ci,j
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• Path Deviation Consistency (path_deviation_consistencyj): The standard deviation
of agreement scores across sub-questions in path Pj :

path_deviation_consistencyj =

√√√√ 1

n

n∑
i=1

(Ci,j − path_mean_consistencyj)2

• Path Z-score Consistency (path_zscore_consistencyj): A normalized version of the
path consistency:

path_zscore_consistencyj = log

(∑n
i=1 Ci,j − path_mean_consistencyj + ϵ

path_deviation_consistencyj + ϵ

)
• Global (Total) Mean Consistency (total_mean_consistency): The average agreement

across all sub-questions and all paths for a given question:

total_mean_consistency =
1

nK

n∑
i=1

K∑
j=1

Ci,j

• Consistency Gap (consistency_gapj): The difference between a path’s consistency and
the global average:

consistency_gapj = path_mean_consistencyj − total_mean_consistency

A.2 Running Example

Consider the following question:

The object on the left is x grams, and the object on the right is 50 grams. Represent
the following quantitative relationship with an inequality.

The ARS for this question includes the following sub-questions:

• Q1: Is the scale balanced?
• Q2: Which side of the scale is lower?
• Q3: What is the mass of the object on the right side of the scale?
• Q4: What inequality represents the relationship? (Main question)

Suppose we sample K = 5 reasoning paths. For each sub-question, we compute how many paths
gave the same answer. This gives us a consistency matrix C ∈ Rn×K .

Let’s say for path P3, the agreement counts across sub-questions are:

C·,3 = [4, 5, 5, 4]

Then:
path_mean_consistency3 =

4 + 5 + 5 + 4

4
= 4.5

Assume the global mean consistency for this question is:

total_mean_consistency = 4.2

Then the consistency gap for path P3 is:

consistency_gap3 = 4.5− 4.2 = +0.3

This means that path P3 is more consistent than the average path for this question.

A.3 Empirical Results

We analyze the relationship between consistency metrics and correctness.
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Model Dataset Path Mean Consistency Path Z-score Consistency Final Correctness

Llama-4-Maverick-
17B-128E-Instruct

TIGER-
Lab/ViRL39K

0.79 3.83 Incorrect
0.92 5.83 Correct

GPT-4.1 MMMUPro 0.787 3.77 Incorrect
0.907 5.73 Correct

Qwen2.5-VL-72B-
Instruct MMMUPro 0.772 3.98 Incorrect

0.853 4.88 Correct

Llama-4-Maverick-
17B-128E-Instruct MMMUPro 0.806 4.38 Incorrect

0.903 5.62 Correct

Table 1: Comparison of models on path consistency metrics and final answer correctness across
datasets. Each row pair shows the performance split by answer correctness.

Correctness vs. Path Consistency. Our results show a clear correlation between consistency and
correctness. Reasoning paths that ultimately produce the correct final answer exhibit substantially
higher stability across sub-questions. In particular, correct paths achieve both higher mean consistency
and higher z-score consistency compared to incorrect ones:

These differences show that agreement across sub-questions carries predictive value, with more
consistent trajectories being substantially more likely to yield correct outcomes. This finding supports
our central claim that focusing solely on final answers overlooks important indicators of reliability,
whereas sub-question consistency provides a complementary lens for assessing reasoning quality.
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Figure 3: Path consistency metrics by final answer correctness, Llama-4-Maverick-17B-128E-Instruct
results on Tiger dataset. Correct trajectories show markedly higher consistency, highlighting its
predictive value for reasoning reliability.

We further investigate whether path-level consistency can serve as a confidence signal. Focusing on
the TIGER-Lab/ViRL39K dataset with the Llama-4-Maverick model, we observe that mean path
consistency is positively correlated with final answer correctness (r = 0.362, p = 3.22 × 10−76).
By thresholding on mean path consistency, the accuracy of retained paths increases monotonically
with the threshold: paths with perfect consistency (≥ 1.0) achieve 71% accuracy, compared to 50%
overall. Similar patterns hold on the MMMUPro dataset across all evaluated models, indicating that
consistency is a robust predictor of reasoning reliability and can guide the selection or reranking of
reasoning paths.

We further examine the relationship between path-level and question-level consistency on the TIGER-
Lab/ViRL39K dataset using Llama-4-Maverick. Figure 4 shows a scatter plot of path mean
consistency versus global (total) mean consistency, with points colored by final answer correctness.
Correct paths (blue) cluster in the top-right region of the plot, where both path-level and global
consistency are high. However, some incorrect paths (red) also appear in this region, indicating that
high consistency alone does not guarantee correctness. In contrast, incorrect paths are concentrated in
the bottom-left, where both local and global consistency are low, while the middle region contains a
mix of correct and incorrect paths. These patterns suggest that consistency provides a useful, though
imperfect, confidence signal. Similar trends are observed on the MMMUPro dataset across all other
evaluated models (see Figure 2), supporting the hypothesis that higher consistency, both within a path
and across paths for a question, is associated with an increased likelihood of correctness.
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Figure 4: Scatter plot of path mean consistency versus global (total) mean consistency, colored by
final answer correctness.
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Figure 5: Distribution of consistency gap by correctness. Correct paths are slightly skewed to the
right of zero, incorrect paths to the left.

Figure 5 shows the distribution of consistency gaps, defined as the difference between path-level and
question-level mean consistency for TIGER-Lab/ViRL39K dataset using Llama-4-Maverick. Cor-
rect paths are concentrated around slightly positive gaps, indicating higher-than-average consistency,
whereas incorrect paths are more dispersed and often fall below the question mean. This suggests
that relative path consistency provides informative cues about the correctness of the final answer.

Figure 5 shows the distribution of consistency gaps, defined as the difference between path-level and
question-level mean consistency. Positive gaps indicate that a path is more internally consistent than
the average path for the same question, whereas negative gaps indicate lower relative consistency.
Correct paths are concentrated around slightly positive gaps, suggesting that they tend to exhibit
above-average stability across sub-questions compared to other paths for the same question. Incorrect
paths, in contrast, are more widely dispersed and frequently fall below the question mean, reflecting
less reliable reasoning trajectories. Overall, these results highlight systematic differences in relative
consistency between correct and incorrect reasoning paths, providing a descriptive view of path-level
behavior in the context of each question.
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A.4 Example of First Failure Step (FFS) - First Case

We present an example of a First Failure Step (FFS) case, where the model’s reasoning path diverges
from the majority of correct paths at a specific sub-question. This example illustrates how FFS
can pinpoint the earliest failure in a reasoning trajectory, enabling fine-grained analysis of error
propagation. Final answer is incorrect and the first incorrect sub-question index is Q5.

Main Question:

As shown in the diagram, from point C on circle O, draw
a tangent to circle O, intersecting the extension of the
diameter AB at point D. If angle D equals 40 degrees,
what is the measure of angle A?

Figure 6: Diagram associated with the main
question.

Sub-question + Main Question Path Answer / Majority Answer
Q1: What is the measure of ∠D? 40 / 40
Q2: Is CD a tangent to circle O? Yes / Yes
Q3: What is the measure of ∠OCD? 90 / 90
Q4: What is the measure of ∠COD? 50 / 50
Q5: What is the measure of ∠AOC? 130 / 80 (First Incorrect)
Main Question: What is the measure of ∠A? 65 / 25

First Failure Step (FFS): FFS identifies the earliest sub-question in a reasoning path where the
model’s answer diverges from the majority among correct paths, for paths that ultimately yield an
incorrect final answer. In this example, the model’s answer to Q5 (∠AOC = 130◦) deviates from the
correct majority answer (80◦), marking the first point of failure in the reasoning chain. This allows us
to isolate the exact step where the model’s reasoning breaks down, providing actionable insights for
debugging and improving multi-step reasoning systems.

Why Knowing ∠AOC Helps in Finding ∠A

In this example, the sub-question “What is the measure of ∠AOC?” is critical for answering “What is the
measure of ∠A?” due to the Inscribed Angle Theorem.

Geometric Relationship:

• ∠AOC is a central angle that subtends arc ÂC.

• ∠A is an inscribed angle that subtends the same arc.

• By the Inscribed Angle Theorem:

∠A =
1

2
∠AOC

Example: If ∠AOC = 80◦, then:

∠A =
1

2
× 80◦ = 40◦

ARS Dependency Justification: This justifies a dependency in the ARS structure:

"Main Question": {
"question": "What is the measure of angle A?",
"depends_on_sub_question": ["Q5"],
...

}

This illustrates how sub-question dependencies reflect valid geometric reasoning steps.
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A.5 Example of First Failure Step (FFS) – Second Case

We present another First Failure Step (FFS) case, where the model deviates from the majority
reasoning at an early sub-question. In this example, the final answer is incorrect, and the first incorrect
sub-question index is Q2.

Main Question:
In the Cartesian coordinate system xOy, a circle cen-
tered at the origin O passes through the point A(13, 0).
The line y = kx − 3k + 4 intersects the circle ⊙O at
points B and C. The minimum length of the chord BC
is ___.

Figure 7: Diagram associated with the sec-
ond FFS case.

Sub-question + Main Question Path Answer / Majority Answer
Q1: What is the radius of the circle centered at O? 13 / 13
Q2: What is the distance from O to the line y = kx− 3k + 4? 4 / 5 (First Incorrect)
Main Question: What is the minimum length of chord BC? 6

√
17 / 24

First Failure Step (FFS): Here, the earliest deviation occurs at Q2, where the model incorrectly
computed the perpendicular distance from the origin to the line (4 instead of 5). This error propagated
forward, affecting both Q4 and the final answer. By identifying Q2 as the FFS, we can see how a
local geometric miscalculation cascaded into a globally incorrect solution.

Why the Distance to the Line Matters

The correct computation of the distance from O to the line y = kx−3k+4 (Q2) is crucial, since it directly
determines the length of chord BC.

Geometric Relationship:
• The perpendicular distance d from O to the line influences the chord length.

• If the circle radius is r, then the chord length is given by:

|BC| = 2
√

r2 − d2

• Using r = 13 and d = 5, the minimum chord length becomes:

|BC| = 2
√

132 − 52 = 2
√
169− 25 = 2

√
144 = 24

ARS Dependency Justification: This shows why Q2 is critical for answering the main question, as an
incorrect distance estimate directly leads to the wrong chord length.

A.6 Example of First Failure Step (FFS) – Third Case

We present another First Failure Step (FFS) case, where the model’s reasoning deviates at a
geometric ratio step. The final answer is incorrect, and the first incorrect sub-question index is Q3.
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Main Question:
As shown in the figure, in △ABC, E is the midpoint
of AC, and point D is a point on BC such that BD :
CD = 2 : 3. Lines AD and BE intersect at point O.
If S△AOE − S△BOD = 1, then the area of △ABC is
___.

Figure 8: Diagram of △ABC with mid-
points and ratios.

Sub-question + Main Question Path Answer / Majority Answer
Q1: What is the ratio of BD to CD? 2/3 / 2/3
Q2: Is E the midpoint of AC? Yes / Yes
Q3: What is the ratio of the areas of △AOE and △BOD? 4 / 5/4 (First Incorrect)
Q6: What is the area of △ABD? 56/9 / 4
Q5: What is the area of △ABE? 6 / 5
Main Question: What is the area of △ABC? 140/9 / 10

First Failure Step (FFS): The earliest failure occurs at Q3, where the model incorrectly computed
the ratio of areas between △AOE and △BOD. The correct majority answer is 5/4, but the model
gave 4. This miscalculation distorted subsequent area computations, ultimately leading to an incorrect
total area for △ABC.

Why the Ratio of Areas Determines the Final Answer

The ratio
S△AOE

S△BOD
is a key step in linking the given condition

S△AOE − S△BOD = 1

to the absolute area of △ABC.

Geometric Relationship:
• The intersection of cevians AD and BE defines proportional sub-triangles.

• Correct computation of the ratio 5
4

allows us to solve for the absolute areas of both △AOE and
△BOD.

• From these, one can scale up to the entire △ABC, yielding:

S△ABC = 10

ARS Dependency Justification: Since the main condition involves the difference of two sub-triangle areas,
Q3 directly governs the chain of reasoning. An incorrect ratio propagates to all later computations.

A.7 Example of First Failure Step (FFS) – Fourth Case

We present another First Failure Step (FFS) case, where the model’s reasoning diverges at the
coordinate computation of a key point. The final answer is incorrect, and the first incorrect sub-
question index is Q5.
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Main Question:
As shown in the figure, the sides OA and OC of rect-
angle OABC lie on the x-axis and y-axis, respectively,
and the coordinates of point B are (3, 2). Points D
and E are on sides AB and BC, respectively, with
BD = BE = 1. When △BDE is folded along line
DE, point B lands at point B′. What are the coordi-
nates of B′?

Figure 9: Diagram of rectangle OABC and
folding construction.

Sub-question + Main Question Path Answer / Majority Answer
Q1: What are the coordinates of point B? (3, 2) / (3, 2)
Q2: What is the length of BD? 1 / 1
Q3: What is the length of BE? 1 / 1
Q4: What are the coordinates of point D? (3, 1) / (3, 1)
Q5: What are the coordinates of point E? (3, 1) / (2, 2) (First Incorrect)
Q6: What is the slope of line DE? Undefined / −1
Q7: What is the equation of line DE? x = 3 / y = −x+ 4
Main Question: What are the coordinates of point B′? (3, 0) / (2, 1)

First Failure Step (FFS): The earliest failure occurs at Q5, where the model incorrectly placed
point E at (3, 1) instead of (2, 2). This mistake propagated to Q6 and Q7 (incorrect slope and line
equation), ultimately yielding the wrong folded position of B′. Identifying Q5 as the FFS shows how
a single misstep in coordinate placement cascades into a completely wrong construction.

Why Correct Placement of E is Critical

Point E lies on side BC, one unit away from B(3, 2). Correct placement gives E(2, 2), not (3, 1).

Key Consequences:
• With E(2, 2) and D(3, 1), line DE has slope −1 and equation y = −x+ 4.

• Folding across DE maps B(3, 2) to its reflection B′(2, 1).

• Thus, the correct answer is:
B′ = (2, 1)

ARS Dependency Justification: Since E defines line DE, an incorrect coordinate at Q5 propagates to the
slope, line equation, and ultimately the reflection point B′. This demonstrates how a local coordinate error
derails the entire reasoning path.
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