

000 001 002 003 004 005 LESS IS MORE: CLUSTERED CROSS-COVARIANCE CON- 006 TROL FOR OFFLINE RL 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 A fundamental challenge in offline reinforcement learning is distributional shift.
028 Scarce data or datasets dominated by out-of-distribution (OOD) areas exacerbate
029 this issue. Our theoretical analysis and experiments show that the standard squared
030 error objective induces a harmful TD cross covariance. This effect amplifies in
031 OOD areas, biasing optimization and degrading policy learning. To counteract this
032 mechanism, we develop two complementary strategies: partitioned buffer sampling
033 that restricts updates to localized replay partitions, attenuates irregular covariance
034 effects, and aligns update directions, yielding a scheme that is easy to integrate
035 with existing implementations, namely Clustered Cross-Covariance Control for TD
(C^4). We also introduce an explicit gradient-based corrective penalty that cancels
036 the covariance induced bias within each update. We prove that buffer partitioning
037 preserves the lower bound property of the maximization objective, and that these
038 constraints mitigate excessive conservatism in extreme OOD areas without altering
039 the core behavior of policy constrained offline reinforcement learning. Empirically,
040 our method showcases higher stability and up to 30% improvement in returns over
041 prior methods, especially with small datasets and splits that emphasize OOD areas.
042

1 INTRODUCTION

043 Offline reinforcement learning learns policies from fixed datasets without further interaction, which is
044 essential when exploration is risky or expensive (Sutton & Barto, 2018). Although large benchmarks
045 with millions of transitions report strong performance (Agarwal et al., 2019; Fujimoto & Gu, 2021;
046 Kumar et al., 2020a; Chen et al., 2023), real deployments usually offer much smaller datasets with
047 narrow state and action coverage (Nguyen-Tang & Arora, 2023; Cheng et al., 2023). Limited coverage
048 enlarges out-of-distribution (OOD) areas and stresses standard training pipelines (Tkachuk et al.,
049 2024; Foster et al., 2021; Jia et al., 2024).

050 To mitigate distribution shift and provide safety margins, conservative objectives have been widely
051 adopted (Fujimoto & Gu, 2021; An et al., 2021; Lyu et al., 2022; Kostrikov et al., 2021b; Peng et al.,
052 2019). These methods implicitly assume that the dataset covers the relevant parts of the space (Kumar
053 et al., 2020a; Chen et al., 2024). Under weak coverage they can become overly cautious exactly
054 where improvement is needed, and in extreme cases, this overconservatism can destabilize policy
055 learning (Cheng et al., 2023; Li et al., 2023b).

056 A second and less analyzed failure mode arises from the value fitting objective itself. Under distribution
057 shift and limited data, the procedure of temporal difference (TD) learning induces detrimental
058 bias and feature co-adaptation that can culminate in training collapse, as noted by prior work (Kumar
059 et al., 2022; Yue et al., 2023b). We identify the core cause: TD learning that minimizes the second
060 moment of the residual, $\mathbb{E}[\delta^2]$, generates a *harmful* cross-time covariance of gradient features, which
061 becomes dominant under severe OOD area. Specifically, our theory and experiments show that in
062 OOD areas, TD updates induce three implicit regularizers. Two are beneficial for generalization,
063 akin to the beneficial implicit regularization produced by noise in supervised learning (Mulayoff &
064 Michaeli, 2020; Damian et al., 2021). The third is a cross-time covariance of gradient features, and
065 acts against the intended optimization objective and, under severe OOD, causes pronounced gradient
066 interference and instability.

067 We address this challenge with two complementary strategies that operate locally on the geometry
068 of the replay data. First, we partition the buffer by gradient features and train with single-cluster
069

054 mini-batches, which removes the between-partition mean covariance. Second, we add an explicit
 055 gradient-based corrective penalty with a tunable coefficient that mitigates the covariance-driven bias
 056 within each update. To prevent conservative objectives from becoming over-restrictive in extreme out-
 057 of-distribution areas, we include a lightweight divergence-based term that is neutral on distribution
 058 and activates only in OOD areas, which reduces unnecessary suppression while preserving the core
 059 behavior of existing conservative methods.

060 Putting these pieces together, our contributions are threefold. First, we identify a data-limited
 061 failure mode in which the squared TD objective induces a harmful implicit regularizer that degrades
 062 generalization and can trigger training collapse. Second, we propose C^4 , which constrains cross-
 063 region covariance to significantly curb this effect, and we introduce a gradient-based corrective penalty
 064 that further cancels within-cluster covariance. Third, while C^4 calls for small adjustments to sampling
 065 and loss in practice, it remains effectively “plug-and-play” for numerous offline RL algorithms with
 066 the optimization goals preserved. In experiments on small datasets and OOD-emphasized splits, C^4
 067 delivers substantial and stable gains, with improvements exceeding 30% on several benchmarks.

068 2 RELATED WORK

071 **Reinforcement learning with small static datasets.** Traditional RL suffers from poor sample
 072 efficiency, and offline RL aims to address this issue by learning policies from fixed, pre-collected
 073 datasets without any interaction with the environment (Lillicrap et al., 2015; Lu et al., 2022). Under
 074 this offline learning paradigm, conventional off-policy RL approaches are prone to substantial value
 075 overestimation when there is a large deviation between the policy and data distributions (Kumar
 076 et al., 2020b; Qiao et al., 2025). Existing offline RL methods address this issue by following several
 077 directions, such as constraining the learned policy to be “close” to the behavior policy (Fujimoto et al.,
 078 2019; Kumar et al., 2019; Fujimoto & Gu, 2021), regularizing value function on OOD samples (Kumar
 079 et al., 2020a; Kostrikov et al., 2021a), enforcing strict in-sample learning (Brandfonbrener et al.,
 080 2021; Kostrikov et al., 2022), and performing pessimistic policy learning with uncertainty-based
 081 reward or value penalties (Yu et al., 2020; An et al., 2021). Most existing offline RL methods adopt
 082 the pessimism principle and avoid policy evaluation on OOD samples (Fujimoto et al., 2019; Yu
 083 et al., 2021a). This approach curbs error accumulation, but on small or weakly covered datasets, it
 084 can become overly conservative and cause large performance drops (Li et al., 2023b). This suggests a
 085 renewed bottleneck in sample efficiency. Recent work, such as DOGE and TSRL, mitigates the issue
 086 by admitting carefully chosen out-of-distribution samples, for example, those within a convex hull or
 087 those that are dynamics-explainable (Li et al., 2023b; Cheng et al., 2023). However, these methods
 088 operate at the level of data selection rather than RL itself.

089 **Implicit regularization in deep reinforcement learning.** Deep RL, driven by the deadly triad,
 090 often exhibits overestimation, out of distribution representation coupling, and value divergence,
 091 effects that intensify when data are scarce and noisy (Sutton & Barto, 2018; Baird, 1995; Tsitsiklis &
 092 Van Roy, 1996; Van Hasselt et al., 2018; Yue et al., 2023a; Li et al., 2023b). Classical stabilizers such
 093 as target networks, Double Q, TD3, and normalization, together with linear and dynamical analyses,
 094 mostly mitigate symptoms without addressing the mechanism that fuels self excitation and OOD
 095 coupling (Mnih et al., 2015; Hasselt, 2010; Fujimoto et al., 2018; Bhatt et al., 2019; Ioffe & Szegedy,
 096 2015; Achiam et al., 2019). In the offline regime, policy constraint and pessimistic approaches
 097 regulate what is learned to reduce OOD evaluation errors and error accumulation (Fujimoto et al.,
 098 2019; Kumar et al., 2019; Fujimoto & Gu, 2021; Peng et al., 2019; Kumar et al., 2020b; An et al.,
 099 2021). DR3 instead acts on feature geometry by penalizing the inner product over two features,
 100 which reveals and counters an implicit regularizer implicated in these instabilities (Nikulin et al.,
 101 2022; Kang et al., 2023; Kumar et al., 2023; 2022). LayerNorm provides consistent stabilization with
 102 NTK and spectral contraction explanations and with scale decoupling that further weakens this effect,
 103 aligning with observations on representation stability and implicit bias (Ghosh & Bellemare, 2020;
 104 Kumar et al., 2021; Durugkar & Stone, 2018; Yue et al., 2023b). Current work has not yet recognized
 105 that this effect can also be suppressed at the sampling level.

106 **Clustering-based reinforcement learning** Some recent work partitions heterogeneous offline
 107 datasets into interpretable behavior clusters to enable stable learning in local in-distribution regions
 (Mao et al., 2024; Wang et al., 2024; Hu et al., 2025; Wang et al., 2022). SORL alternates trajectory

108 clustering and policy updates in an expectation maximization manner to reveal diverse high-quality
 109 behaviors (Mao et al., 2024). Behavior-aware deep clustering extracts near single-peaked subsets and
 110 improves stability and returns (Wang et al., 2024). Probabilistic approaches model latent behavior
 111 policies with Gaussian mixtures and derive closed-form improvement operators for the implicit
 112 clustering (Li et al., 2023a). Diffusion QL fits multi-peaked behavior policy distributions with
 113 diffusion models and mitigates mode mixing bias (Wang et al., 2023). Online skill discovery shows
 114 the value of learning separable skills in a latent space and informs the design of clustering offline
 115 (Achiam et al., 2018). However, most recent efforts focus on diverse policy training and have not yet
 116 connected to offline reinforcement learning under small datasets.

117

118 3 PRELIMINARY

119

120 **Offline reinforcement learning.** We consider the standard Markov decision process (MDP) $\mathcal{M} =$
 121 $(\mathcal{S}, \mathcal{A}, T, r, d_0, \gamma)$, with state space \mathcal{S} , action space \mathcal{A} , transition dynamics $T : \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{P}(\mathcal{S})$, reward
 122 function $R : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$, and initial state distribution $\mu : \mathcal{S} \rightarrow \mathcal{P}(\mathcal{S})$, where $\mathcal{P}(\mathcal{S})$ represents
 123 the set of distributions over \mathcal{S} . Subsequently, a policy $\pi(\mathbf{a} \mid \mathbf{s})$ induces the discounted occupancy
 124 $d^\pi(\mathbf{s}, \mathbf{a}) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \Pr(\mathbf{s}_t = \mathbf{s}, \mathbf{a}_t = \mathbf{a} \mid \pi)$ and maximizes the return $\mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t)]$
 125 with $\mathbf{s}_{t+1} \sim T(\cdot \mid \mathbf{s}_t, \mathbf{a}_t)$. In the offline setting a fixed dataset $\mathcal{D} = \{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}', \mathbf{a}')\}_{i=1}^{|\mathcal{D}|}$ is collected
 126 by a behavior policy π_β . Its empirical distribution \hat{d}_β approximates d^{π_β} and serves as the notion of
 127 data support. The key challenge is extrapolation error which tends to assign spuriously high values
 128 to actions outside the support of \hat{d}_β . This motivates us to design both policy evaluation and policy
 129 improvement to remain near the behavior distribution.

130

131 **Policy evaluation in offline reinforcement learning.** In offline RL, value functions are estimated
 132 from a fixed dataset. The $Q_\phi(\mathbf{s}, \mathbf{a})$ is obtained by solving the temporal-difference regression problem

$$134 \min_{\phi} \mathcal{L}_{\text{TD}}(\phi) = \mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}') \sim \mathcal{D}} \left(Q_\phi(\mathbf{s}, \mathbf{a}) - [r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{a}' \sim \pi(\cdot | \mathbf{s}')} Q_{\phi'}(\mathbf{s}', \mathbf{a}')] \right)^2. \quad (1)$$

133

135 where $Q_{\phi'}$ denotes the target critic corresponding to Q_ϕ . We have the temporal difference residual
 136 $\delta \equiv r(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{a}' \sim \pi(\cdot | \mathbf{s}')} Q_{\phi'}(\mathbf{s}', \mathbf{a}') - Q_\phi(\mathbf{s}, \mathbf{a})$. Thus, the Problem (1) is equivalent to minimizing
 137 the second moment of the temporal difference residual δ under the dataset distribution, *i.e.* $\min \mathbb{E}[\delta^2]$.
 138 To make the evaluation robust near the dataset support, we reason about small perturbations of the
 139 critic through its layer features. For a unit direction \mathbf{w} and a small magnitude $k \geq 0$, the first order
 140 expansion of the head gives

141

$$142 Q_\psi(x + k\mathbf{w}) \approx Q_\psi(x) + k \langle \mathbf{w}, \nabla_x Q_\psi(x) \rangle \quad \text{for } \psi \in \{\phi, \phi'\}. \quad (2)$$

143

144

145 **Policy improvement in offline reinforcement learning.** Offline RL improves the ac-
 146 tor on the dataset states by maximizing expected value under the learned critic,
 147 $\max_{\pi} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}} \mathbb{E}_{\mathbf{a} \sim \pi(\cdot | \mathbf{s})} [Q_\phi(\mathbf{s}, \mathbf{a})]$. To mitigate extrapolation error, we add an explicit proximity
 148 regularizer that keeps action selection close to the behavior policy, which yields the generic objective

149

150

$$151 \max_{\pi} \mathbb{E}_{\mathbf{s} \sim \mathcal{D}} \left[\mathbb{E}_{\mathbf{a} \sim \pi(\cdot | \mathbf{s})} Q_\phi(\mathbf{s}, \mathbf{a}) - \alpha D(\pi(\cdot | \mathbf{s}), \pi_\beta(\cdot | \mathbf{s})) \right], \quad (3)$$

152

153

154 where $\alpha > 0$ controls the regularization strength and $D(\cdot, \cdot)$ measures divergence or distance between
 155 action distributions. Different algorithms instantiate D with KL or Rényi divergences and use MSE
 156 or MMD as practical proximity surrogates (Wu et al., 2019; Jaques et al., 2019; Metelli et al., 2020;
 157 Fujimoto & Gu, 2021; Kumar et al., 2019). In addition, some methods adopt implicit behavior
 158 regularization (Kumar et al., 2020b; Yu et al., 2021b; Lyu et al., 2022; An et al., 2021). We provide
 159 details of these behavior regularizers in the Appendix A.

160

161

162 4 CROSS COVARIANCE EFFECTS IN THE TD SECOND MOMENT

163

164

165 In this section, we turn our attention to a conventional technique from reinforcement learning,
 166 temporal difference learning, and analyze how its second moment changes when the evaluation point
 167 moves slightly in the feature space toward the OOD area, following two observations.

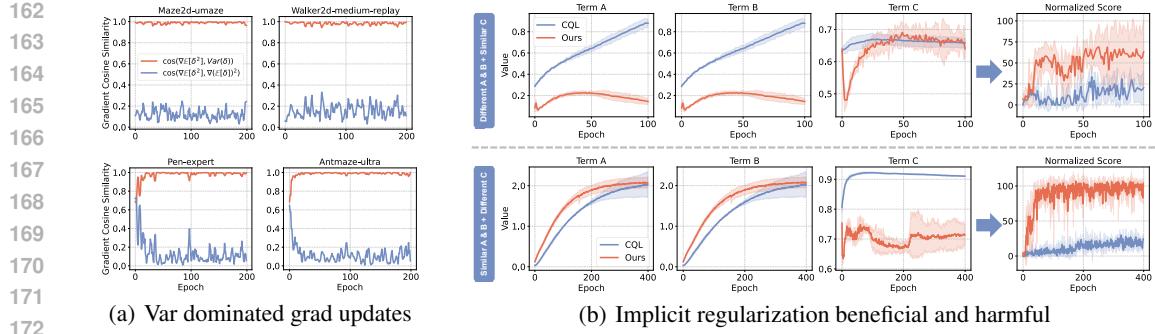


Figure 1: Left four panels report cosine similarities between $\nabla\mathbb{E}[\delta^2]$ and $\nabla\text{Var}[\delta]$ versus $\nabla(\mathbb{E}[\delta])^2$ under $\mathbb{E}[\delta^2] = (\mathbb{E}[\delta])^2 + \text{Var}[\delta]$, showing that the variance term dominates across benchmarks. Right four panels track $\text{Var}[\delta] \approx \gamma^2(k')^2 A + k^2 B - 2kk'C$ and the score, where larger A, B and smaller C correlate with better performance, indicating A and B act as beneficial implicit regularizers while C is harmful.

Observation 1: Variance of TD residual plays an important role in Problem (1).

To connect the TD loss in (1) with a feature space view, we start from the identity

$$\mathbb{E}[\delta^2] = (\mathbb{E}[\delta])^2 + \text{Var}[\delta], \quad (4)$$

which reduces the task to understanding how the variance changes under small displacements. As indicated by the left four panels of Fig. 1(a), our analysis focuses on how $\text{Var}[\delta]$ responds to small perturbations in feature space. To probe out of distribution directions while keeping the input domain of Q_ϕ fixed, we consider directional displacements $x \mapsto x + k\mathbf{w}$, which sets up the subsequent Taylor analysis. To probe out of distribution directions without changing the input domain of Q_ϕ , we evaluate the heads at displaced features $x + k\mathbf{w}$. Then, using the first-order Taylor approximation, the sample variance of the Q-values at an OOD area, along \mathbf{w} can be represented as

$$\begin{aligned} \text{Var}(Q_\psi(x + k\mathbf{w})) &\approx \text{Var}(Q_\psi(x) + k\langle \mathbf{w}, \nabla_x Q_\psi(x) \rangle) \\ &= \text{Var}(Q(x) + k\langle \mathbf{w}, \nabla_x Q_\psi(x) \rangle) \\ &= k^2 \text{Var}(\langle \mathbf{w}, \nabla_x Q_\psi(x) \rangle). \end{aligned} \quad (5)$$

Similarly, we have $\text{Var}(Q_{\phi'}(\mathbf{s}', \pi(\mathbf{s}')) = (k')^2 \text{Var}(\langle \mathbf{w}', \nabla_{x'} Q_{\phi'}(x') \rangle)$ where $x' = (\mathbf{s}', \mathbf{a}')$ denotes the next state action pairs of $x = (\mathbf{s}, \mathbf{a})$ come from the dataset (detailed proof in Appendix B). This keeps the analysis attached to the empirical support while we probe into support behavior virtually.

Observation 2: Implicit regularization of covariance should be well controlled.

We now state the main result that decomposes the variance change into a supervised style part and a term that is unique to temporal difference learning.

Theorem 1. All expectations, variances, and covariances below are taken over $k, k', \mathbf{w}, \mathbf{w}'$. With the first order approximation for Q_ϕ in feature space, the variance satisfies

$$\begin{aligned} \text{Var}[\delta] &\approx \underbrace{\gamma^2(k')^2 \text{Var}(\langle \mathbf{w}', \nabla_{x'} Q_{\phi'}(x') \rangle)}_{\text{implicit regularizer in noisy supervised learning, denote as Term(A) and Term (B)}} + k^2 \text{Var}(\langle \mathbf{w}, \nabla_x Q_\phi(x) \rangle) \\ &\quad - \underbrace{2\gamma kk' \text{Cov}(\langle \mathbf{w}', \nabla_{x'} Q_{\phi'}(x') \rangle, \langle \mathbf{w}, \nabla_x Q_\phi(x) \rangle)}_{\text{additional cross term unique to TD learning, denote as Term(C)}}. \end{aligned} \quad (6)$$

where x and x' are drawn from \mathcal{D} , with x' being the next state action pair that follows x . By (4), this variance decomposition directly controls the TD second moment minimized by (1).

Sketch of proof. Expand $Q_{\phi'}$ at x' and Q_ϕ at x using the first order rule in feature space, separate the zero displacement part and the linear part, apply variance rules and bilinearity of covariance, then drop higher order terms. Full details are given in the Appendix B.

Equation (6) has a natural interpretation. The first bracket penalizes large feature gradients and recovers the implicit regularizer from noisy supervised learning, which reduces $\text{Var}[Q]$ in out-of-distribution regions per Eq. (5) and improves generalization. Same as supervised learning, noise induces beneficial implicit regularization, and our effect is analogous (Mulayoff & Michaeli, 2020;

Damian et al., 2021). The second bracket is TD-specific because it couples feature gradients across a transition. This cross-term is misaligned with optimization and, since it enters (6) with a negative sign while the TD loss is minimized, updates tend to increase it, turning it into a harmful implicit regularizer that can drive collapse in pronounced OOD regimes. Fig. 1(b) corroborates this by showing that the first two terms act beneficially while the cross term grows under TD minimization, with A , B , and C approximated by traces of denoised gradient covariance.

Although (6) may look close to the conclusion of (Kumar et al., 2022; Yue et al., 2023b), our analysis and takeaways are different. We derive the result directly from the TD loss and the second moment identity rather than from Lyapunov style or gradient stability arguments, and we do not assume optimizer specific behavior or noise alignment. Our decomposition retains two next state contributions that are missing in prior work, namely $\text{Var}(\langle \mathbf{w}', \nabla_{x'} Q_\phi(x') \rangle)$ and its scaling by $\gamma^2 k'^2$, which clarify when sensitivity to the future head dominates even if current state terms are controlled. We also pair (x, x') from the dataset instead of policy rollouts so the analysis stays on empirical support while out of distribution effects are introduced by virtual feature displacements inside the head. In experiments, this pairing choice and the explicit treatment of the next state variance and the TD cross covariance improve stability and returns.

5 C^4 : CLUSTERED CROSS-COVARIANCE CONTROL FOR TD

This section turns the TD-variance model into two control objectives and develops an EM-style procedure that clusters gradient pairs and samples within a single cluster per update. Subsection 5.1 derives a matrix target from TD variance and sets the size and sign control objectives. Subsection 5.2 introduces clustering of stacked gradient pairs and shows why single-cluster sampling removes the between-cluster driver while within-cluster alignment controls the sign. Subsection 5.3 specifies a mixture-regularized objective, minibatch estimators, and the overall training procedure. All formal proofs are deferred to Appendix C.

5.1 PROBLEM FORMULATION: FROM TD VARIANCE TO A MATRIX TARGET

For a transition with feature-space gradients $g' = \nabla_{x'} Q_\phi(x')$ and $g = \nabla_{x_i} Q_\phi(x)$, the one-step variance admits

$$\text{Var}[\delta_i] \approx \underbrace{\gamma^2 k'^2 \text{Var}(\langle \mathbf{w}', g' \rangle) + k^2 \text{Var}(\langle \mathbf{w}, g \rangle)}_{\text{implicit regularizer as in noisy supervised learning}} - \underbrace{2\gamma k k' \text{Cov}(\langle \mathbf{w}', g' \rangle, \langle \mathbf{w}, g \rangle)}_{\text{TD cross term}}, \quad (7)$$

and, under a minibatch sampling law,

$$\text{Cov}(\langle \mathbf{w}', g' \rangle, \langle \mathbf{w}, g \rangle) \leq \|C\|_2 \leq \|C\|_F, \quad C = \text{Cov}(g', g) \in \mathbb{R}^{m \times m}, \quad (8)$$

Thus, to make the TD cross term harmless, we (i) shrink a size proxy of C (trace/spectral norm). , and (ii) adding a penalty to offset the covariance $-2\gamma k k' \text{Cov}(\langle \mathbf{w}', g' \rangle, \langle \mathbf{w}, g \rangle)$.

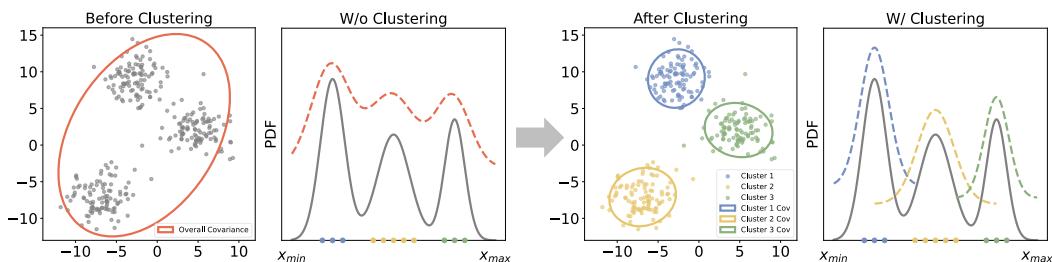


Figure 2: Intuition behind clustering and TD covariance. The left panel shows that without clustering, the overall covariance ellipse mixes within-cluster spread and between-cluster offsets, so the TD cross term couples unrelated modes and its sign can drift. Right panel clusters the stacked gradients $y = [g', g]$ and samples each minibatch from a single cluster, which removes the between-cluster driver and leaves updates governed by local within-cluster covariance C_z . The result is more local TD updates, weaker spurious coupling across modes, and improved stability in OOD directions.

270 5.2 CLUSTERING THE STACKED GRADIENT PAIRS
271

272 Building on the matrix–target formulation in Section 5.1, where the TD variance decomposes as
273 in Eq. (7) and the cross term is controlled by the matrix C via Eq. (8), Fig. 2 shows that treating
274 the whole dataset as a single cloud mixes within–cluster spread and between–cluster offsets, which
275 makes the TD cross term unstable. This motivates clustering the stacked gradient pairs and sampling
276 single–cluster minibatches so that updates are governed by local within–cluster statistics.

277 Let $y_i = [g', g] \in \mathbb{R}^{2m}$ and partition the dataset into K clusters in y -space. For cluster z , define
278 means μ'_z, μ_z , variances Σ'_z, Σ_z , and cross covariance $C_z = \text{Cov}(g', g | Z = z)$.

279 **Theorem 2** (Single-cluster sampling removes the between-cluster driver). *With cluster label Z , the
280 cross covariance decomposes as*

$$281 \quad C = \mathbb{E}[C_Z] + \text{Cov}(\mu'_Z, \mu_Z). \quad (9)$$

283 *If each minibatch is drawn from a single cluster z , the between-cluster term in Eq. (9) vanishes in
284 that batch and, for any unit \mathbf{w}', \mathbf{w} ,*

$$285 \quad | -2\gamma kk' \text{Cov}(\langle \mathbf{w}', g' \rangle, \langle \mathbf{w}, g \rangle) | \leq 2\gamma kk' \|C_z\|_2 \leq 2\gamma kk' \sqrt{\text{tr } \Sigma'_z} \sqrt{\text{tr } \Sigma_z}. \quad (10)$$

287 *Sketch of proof.* Apply the law of total covariance to obtain Eq. (9). Then use $|a^\top Mb| \leq \|M\|_2$ and
288 the operator Cauchy–Schwarz inequality.

290 The theorem splits the source of the cross covariance into a within–cluster component and a be-
291 tween–cluster component. If each minibatch is drawn from a single cluster, the between–cluster
292 term vanishes in that update, so the TD cross term is fully determined by the within–cluster statistics
293 C_z . This yields the batch–level bound $2\gamma kk' \|C_z\|_2 \leq 2\gamma kk' \sqrt{\text{tr } \Sigma'_z} \sqrt{\text{tr } \Sigma_z}$. Thus single–cluster
294 sampling together with a penalty on $\|C_z\|$ stabilizes TD updates by suppressing the harmful cross
295 term to a scale controlled by within–cluster variances.

296 5.3 MIXTURE-REGULARIZED OBJECTIVE AND TRAINING PROCEDURE
297

298 We fit a K –component Gaussian mixture on $\{y_i\}$ with parameters

$$300 \quad p(y) = \sum_{z=1}^K p_z \mathcal{N}(y | \mu_z, \Omega_z), \quad \mu_z = \begin{bmatrix} \mu'_z \\ \mu_z \end{bmatrix}, \quad \Omega_z = \begin{bmatrix} \Sigma'_z & C_z \\ C_z^\top & \Sigma_z \end{bmatrix}. \quad (11)$$

303 Coupling TD fitting with a spectral proxy gives

$$305 \quad \min_{\phi, \{p_z, \mu_z, \Omega_z\}} \mathcal{L}_{\text{TD}}(\phi) + \lambda \sum_{z=1}^K p_z \|C_z\|_F^2 \quad \text{s.t.} \quad p_z \geq 0, \sum_z p_z = 1, \Omega_z \succ 0, \quad (12)$$

308 where $\|C_z\|_F^2 = \text{tr}(C_z C_z^\top)$ upper bounds $\|C_z\|_2^2$ and is easy to estimate per minibatch.

309 Given a single-cluster minibatch $B \subset z$, we estimate

$$311 \quad \widehat{C}_z(B) = \text{Cov}_B(g', g), \quad \widehat{\mathcal{R}}_{\text{cross}}(B) = \|\widehat{C}_z(B)\|_F^2 + \beta (\text{tr } \widehat{C}_z(B))^2, \quad (13)$$

$$312 \quad \mathcal{J}(\phi, B) = \mathcal{L}_{\text{TD}}(\phi, B) + \lambda \widehat{\mathcal{R}}_{\text{cross}}(B), \quad (14)$$

314 which implements Eq. (12) stochastically and, by Eq. (10), controls the harmful term in each update.

315 C^4 repeatedly clusters stacked gradient pairs to estimate within-cluster cross covariance C_z and then
316 performs critic updates using single–cluster minibatches. Each update minimizes the TD loss plus a
317 Frobenius-style penalty on \widehat{C}_z . By Theorem 2, this bounds the harmful cross-term batch-wise. The
318 result is a minibatch distribution tailored to reduce $\|C\|$ and stabilize TD in OOD directions.

320 6 TRAINING ON CLUSTERED BUFFERS
321

323 The last section examines periodic dataset clustering to control cross-covariance. The clustering
design remains an open challenge. In offline RL, TD updates occur during evaluation, and policy

324 **Algorithm 1** C^4 : Single-Cluster Offline Update for TD (EM-style)

325 **Input** offline dataset \mathcal{D} , number of clusters K , regularizers λ, β , iterations T .

326 **Initialize** mixture $\{p_z, \mu_z, \Omega_z\}_{z=1}^K$, critic ϕ .

327 **for** $t = 1, \dots, T$ **do**

328 **Compute gradients:** for each sample i , form g' , g and stack $y_i = [g', g]$.

329 **E-step:** $r_{iz} \propto p_z \mathcal{N}(y_i | \mu_z, \Omega_z)$, normalize $\sum_z r_{iz} = 1$.

330 **M-step:** $p_z \leftarrow \frac{1}{n} \sum_i r_{iz}$, $\mu_z \leftarrow \frac{1}{N_z} \sum_i r_{iz} y_i$, $\Omega_z \leftarrow \frac{1}{N_z} \sum_i r_{iz} (y_i - \mu_z)(y_i - \mu_z)^\top + \epsilon I$, extract C_z .

331 **Critic minibatch:** sample cluster $z \sim \text{Cat}(\{p_z\})$, draw minibatch B with weights r_{iz} .

332 **Penalty and update:** compute $\hat{C}_z(B) = \text{Cov}_B(g', g)$, minimize batch loss $\mathcal{J}(\phi, B)$ in Eq. (14).

333 **end for**

334 **Output** trained critic ϕ and mixture $\{p_z, \mu_z, \Omega_z\}$.

335

336 improvement imposes policy constraints. Periodic clustering can reshape data geometry and shift
 337 support across clusters, which may compromise these constraints during improvement. Designing
 338 clustering that preserves them is an important direction.

339 To this end, this section explains why training with *clustered buffers* (single-cluster minibatches as in
 340 Algorithm 1) has limited impact on the policy improvement objective and, in fact, provably *optimizes*
 341 *a computable lower bound* of the canonical mixture objective. We specialize the discussion to the
 342 CQL-style improvement surrogate and connect each step to Appendix D.

343 **CQL improvement target and a global lower bound.** For a policy π and state s , consider the
 344 transformed CQL target

$$\mathcal{U}_{\text{CQL}}(\pi; s) := V^\pi(s) - \alpha ((I - \gamma P^\pi)^{-1} \chi^2(\pi \| \pi_\beta))(s), \quad (15)$$

345 where χ^2 is the Pearson divergence (Definition 1). Lemma 2 in the Appendix implies the *statewise*
 346 lower bound

$$\mathcal{U}_{\text{CQL}}(\pi; s) \geq \mathbb{E}_\pi[Q(s, a)] - \bar{\rho} \alpha \sup_{s'} \chi^2(\pi \| \pi_\beta)(s'), \quad \bar{\rho} = \frac{1}{1 - \gamma}, \quad (16)$$

347 and the same form holds when a KL penalty or its nonnegative combination is used. Thus, within
 348 a short local window where V^π is linearized by $\mathbb{E}_\pi[Q]$, policy updates that increase the r.h.s. of
 349 Eq. (16) improve a *global* lower bound to Eq. (15). This shows that replacing the long-horizon
 350 transformed penalty by a tractable per-state divergence primarily tightens the bound and does not
 351 qualitatively alter the improvement direction.

352 **Mixtures, clustering, and why per-cluster training is safe.** Let the behavior be a mixture $\nu =$
 353 $\sum_{m=1}^M w_m \nu_m$ (e.g., a Gaussian mixture induced by clustered replay). Lemma 3 in the Appendix
 354 shows f -divergences are convex in the *second* argument:

$$D_f(\pi \| \nu) \leq \sum_{m=1}^M w_m D_f(\pi \| \nu_m), \quad (17)$$

355 with the two special cases (Pearson, KL) holding verbatim. Plugging Eq. (17) into Eq. (16) yields the
 356 *cluster-decomposed* lower bound

$$\mathbb{E}_\pi[Q(s, a)] - \bar{\rho} \left(\alpha \sum_m w_m \chi^2(\pi \| \nu_m)(s) + \beta \sum_m w_m \text{KL}(\pi \| \nu_m)(s) \right) \quad (18)$$

357 for any nonnegative combination of Pearson and KL. Consequently, optimizing the per-cluster
 358 surrogate

$$\mathcal{J}_z(\pi) := \mathbb{E}_\pi[Q(s, a)] - \bar{\rho} (\alpha \chi^2(\pi \| \nu_z)(s) + \beta \text{KL}(\pi \| \nu_z)(s)) \quad (19)$$

359 and sampling $z \sim w$ gives an *unbiased* stochastic gradient of the weighted sum $\sum_m w_m \mathcal{J}_m(\pi)$
 360 (Lemma 3 in Appendix), which is a computable lower bound to the mixture objective with ν inside
 361 each divergence. Thus, *partitioning the buffer and training per cluster does not bias the direction*: it
 362 maximizes a principled lower bound to the original improvement target, with the gap controlled by
 363 divergence convexity. Additionally, the f -divergence case is illustrative rather than exclusive. Any
 364 policy constraint satisfying $D(\pi \| \sum_z w_z \nu_z) \leq \sum_z w_z D(\pi \| \nu_z)$ can be used in our algorithm. See
 365 Appendix A for admissible D choices.

378 **Stability from adding KL and quantitative caps.** Proposition 3 in the Appendix proves that
 379 adding a KL term yields strong concavity of the local surrogate and quantitative step caps:
 380

$$381 \quad \text{near } \theta_\beta : \quad \text{strong concavity } \geq m\beta\bar{\rho}, \quad \|\theta^* - \theta_\beta\| \leq \frac{\|\nabla_\theta \mathbb{E}_\pi[Q]\|_{\theta_\beta}}{m\beta\bar{\rho}}. \quad (20)$$

383 For the Gaussian-mean case,

$$385 \quad \mu^* = \mu_\beta + \kappa^* \Sigma_\beta g, \quad (2\alpha\bar{\rho} e^{\kappa^{*2} R} + \beta\bar{\rho}) \kappa^* = 1, \quad \kappa^* \leq \frac{1}{\beta\bar{\rho}} = \frac{1-\gamma}{\beta}, \quad (21)$$

387 and Pearson inflation is bounded by $\chi^2(\pi_{\mu^*} \| \pi_\beta) \leq \beta/(2\alpha) - 1$ when $\alpha > 0$. By convexity in the
 388 second argument (Lemma 3), the same caps hold *per cluster* and therefore under cluster sampling in
 389 expectation. This shows that partitioning the buffer *does not* compromise the known CQL stabilizing
 390 effects. If anything, it makes the constants local and often tighter.

392 **Takeaway for practice.** Equations (16)–(18) show that training with clustered buffers maximizes
 393 a certified lower bound to the original mixture objective (mixture placed inside the divergence), with
 394 unbiased gradients under random cluster selection. KL caps Eq. (20)–(21) carry over per cluster, so
 395 the induced change to the policy improvement direction is small (same direction, cluster-adaptive
 396 step). In the CQL special case, the $\bar{\rho}$ -weighted divergence still upper-bounds the propagated penalty,
 397 and convexity guarantees let us replace the mixture by a sum over cluster penalties without loosening
 398 control. Therefore, splitting the buffer into clusters has a limited effect on the improvement rule while
 399 *improving* its computability and stability, exactly the properties exploited by C^4 in Algorithm 1.

400 **Pointers to Appendix.** Formal statements and proofs are in Appendix D: Lemma 2 (global operator
 401 freeze), Lemma 3 (convexity in the second argument and unbiased cluster gradients), Proposition 2
 402 (isotropic penalties and local update direction), and Proposition 3 (KL stabilization and caps).
 403 Remark 2 quantifies poor-coverage regimes and explains why adding KL prevents runaway steps.
 404 The same reasoning applies per cluster.

406 7 EXPERIMENTAL RESULTS

408 In this section, we empirically evaluate our proposed method C^4 . The experiments are organized to
 409 address the following questions:
 410

- 411 Q1. How does it perform on offline RL relative to existing approaches across standard bench-
 412 marks, particularly under reduced-data regimes?
- 413 Q2. How is performance influenced by factors such as the number of initial clusters and the
 414 quality of the data?
- 415 Q3. Can the plug-and-play method C^4 adapt to different types of algorithms?

417 7.1 IMPLEMENT

419 For a fair and comprehensive evaluation, we compare our method against Behavior Cloning (BC)
 420 and a broad set of state-of-the-art offline reinforcement learning algorithms. For standard offline RL
 421 backbones, we include CQL (Kumar et al., 2020a), TD3+BC (or TD3BC) (Fujimoto & Gu, 2021),
 422 and IQL (Kostrikov et al., 2022). To directly probe performance in reduced-data regimes (Q1), we
 423 further consider data-efficient algorithms such as DOGE (Li et al., 2023b) and TSRL (Cheng et al.,
 424 2023). DOGE is selected for its strong out-of-distribution generalization through state-conditioned
 425 distance functions, while TSRL exploits temporal symmetry in system dynamics to improve sample
 426 efficiency. In addition, we include recent high-performing methods, BPPO (Zhuang et al., 2023),
 427 which leverages PPO-style clipping for monotonic improvement, and A2PR (Liu et al., 2024), which
 428 employs adaptive regularization with a VAE-augmented policy.

429 We further study the plug-and-play nature of C^4 and its relation to other regularization techniques
 430 by comparing against methods that act as generic regularizers or share similar design principles. In
 431 particular, to mitigate gradient collapse in sparse data regimes, we evaluate DR3 (Kumar et al., 2022)
 432 and LN (Yue et al., 2023b). We additionally consider SORL (Mao et al., 2024), which is closely

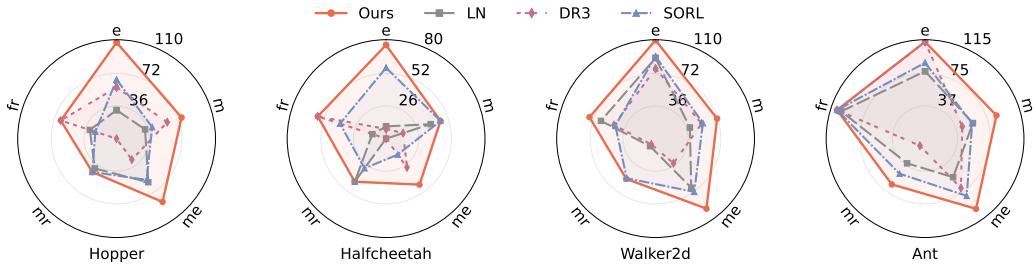
432
433 Table 1: Normalized scores on MuJoCo locomotion tasks using reduced-size datasets (10k samples). Abbreviations fr, mr, and me denote full-replay, medium-replay, and medium-expert, respectively.
434

Task	TD3+BC	CQL	IQL	DOGE	BPPO	TSRL	A2PR	Ours
Ant-me	52.0±18.2	74.0±25.0	66.0±10.5	82.0±16.4	85.5±13.7	83.6±12.4	66.7±10.2	100.9±5.0
Ant-m	46.0±17.4	62.0±22.1	56.0±9.3	69.0±15.2	78.0±11.9	72.2±10.6	64.0±9.3	84.5±6.1
Ant-mr	31.0±15.5	36.0±16.3	41.0±10.8	46.0±12.9	52.0±10.8	49.4±13.1	44.0±9.1	65.8±6.9
Ant-e	72.0±25.0	94.0±29.4	82.0±15.0	98.0±20.3	103.0±11.2	100.7±12.6	88.0±10.6	109.6±2.7
Ant-fr	70.0±24.0	92.0±26.5	80.0±15.0	96.0±20.0	102.0±11.7	99.8±12.0	86.0±10.4	107.6±3.2
Hopper-m	30.7±13.2	50.1±22.3	61.0±6.2	55.6±8.3	55.0±7.8	60.9±4.1	55.9±8.4	69.2±12.7
Hopper-mr	11.3±4.7	13.2±2.0	16.2±3.0	19.1±3.3	45.1±8.7	23.5±8.8	12.5±5.9	45.9±8.4
Hopper-me	22.6±13.9	43.2±6.9	51.7±7.0	36.8±34.5	27.9±15.2	56.6±13.9	49.7±10.7	81.3±6.0
Hopper-e	53.6±17.1	56.1±26.4	60.9±9.6	62.2±21.7	85.0±17.9	76.7±20.4	80.0±16.8	107.0±2.8
Hopper-fr	32.0±13.5	45.0±22.0	56.0±6.3	54.0±8.4	60.0±9.7	53.4±11.3	55.0±8.9	65.3±9.4
Walker2d-m	11.2±19.2	54.1±15.5	34.2±5.2	53.7±12.6	54.7±11.4	47.3±10.1	5.9±5.2	65.9±7.8
Walker2d-mr	9.3±6.6	13.8±5.3	17.7±8.9	15.5±9.2	29.5±8.7	27.6±12.4	34.4±8.9	55.4±5.9
Walker2d-me	12.4±15.7	26.0±14.0	38.0±12.2	42.5±11.4	61.3±12.2	50.9±26.4	56.5±11.5	96.3±10.4
Walker2d-e	29.5±23.5	56.0±29.4	16.2±3.2	81.2±18.6	102.0±9.7	104.9±10.6	98.0±7.9	109.5±0.3
Walker2d-fr	14.2±19.5	55.0±16.0	36.0±5.6	55.5±12.3	52.0±10.9	44.3±10.4	48.0±9.6	77.3±7.1
Halfcheetah-m	25.9±8.4	41.7±2.2	35.6±2.9	42.8±2.9	28.5±3.2	43.3±2.8	37.1±2.7	46.3±3.1
Halfcheetah-mr	29.1±8.3	16.3±4.9	34.1±6.3	26.3±3.1	34.4±4.2	27.7±3.8	23.6±4.7	43.1±5.3
Halfcheetah-me	23.5±13.6	39.7±6.4	14.3±7.3	33.1±8.8	22.3±9.6	37.2±14.9	32.4±8.3	46.0±3.5
Halfcheetah-e	26.4±4.2	5.8±1.3	-1.1±3.8	1.4±3.1	6.5±3.4	42.0±26.4	36.0±7.8	75.8±5.2
Halfcheetah-fr	28.0±8.6	45.0±2.4	33.0±3.0	43.0±3.1	37.0±3.6	41.0±3.0	39.0±4.1	58.1±3.4
Locomotion-Avg.	31.5	46.0	41.4	50.7	56.1	57.2	50.6	75.7
AntMaze-Avg.	6.3	10.7	21.4	20.5	16.5	22.0	16.2	27.0
Maze2D-Avg.	49.7	57.4	103.6	106.1	120.6	115.7	111.4	126.9
Adroit-Avg.	1.4	7.3	15.2	8.4	23.1	15.7	-0.1	21.6

456 related in motivation as it performs data clustering, but does so at the trajectory level rather than in
457 the gradient space as C^4 does. Across all comparisons, C^4 is instantiated as a plug-in module on top
458 of existing backbones, allowing us to isolate its effect on performance.

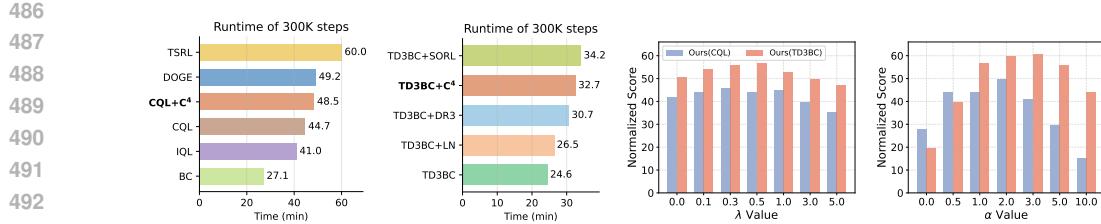
460 7.2 MAIN RESULTS

461 To answer Q1, we focus our primary evaluation on a *data-scarce regime*. Specifically, we restrict
462 each D4RL MuJoCo locomotion task to only **10k** state-action pairs (approximately 1% of the full
463 dataset). This setting places all methods in a challenging low-data regime, thereby highlighting their
464 generalization capabilities. As summarized in Table 1, we benchmark a wide spectrum of algorithms,
465 including standard backbones (TD3+BC, CQL, IQL), data-efficient methods (DOGE, TSRL), and
466 stronger OOD-aware baselines (BPPO, A2PR). Table 1 primarily reports the normalized scores on the
467 locomotion benchmarks and summarizes the main results on AntMaze, Maze2D, and Adroit, while
468 detailed per-task results for these three domains are deferred to Tables 3, 4, and 5 in Appendix E. To
469 complement the tabular comparison, Figure 3 provides a holistic visualization by plotting normalized
470 scores across tasks. On the MuJoCo locomotion benchmarks, despite the extreme data sparsity, our
471 approach recovers nearly 75% of expert performance on average and consistently outperforms all
472 competing baselines, achieving an average improvement of more than **30%** over the best alternative.
473 This demonstrates that C^4 substantially enhances data efficiency in offline RL.



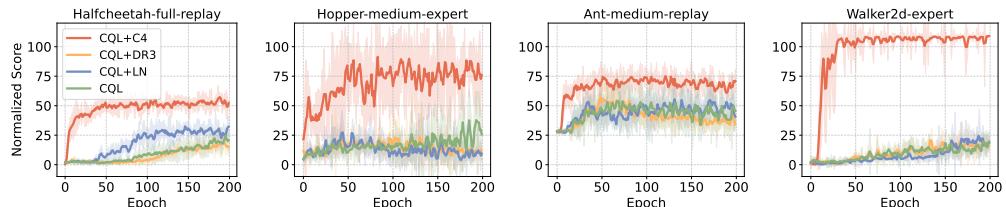
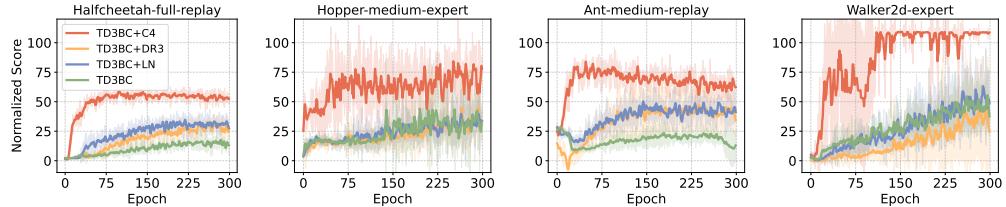
483 Figure 3: Radar charts comparing normalized scores on D4RL MuJoCo locomotion tasks (10k samples).

484 To examine Q2, we move beyond raw performance and analyze computational efficiency and
485 sensitivity to key hyperparameters. Figure 4 reports wall-clock training time over 300K optimization
486 steps, comparing both full algorithms and plug-in regularizers. Incorporating C^4 into standard

Figure 4: Wall-clock runtime comparisons, and performance sensitivity to hyperparameters λ and α .

backbones such as CQL and TD3+BC introduces only moderate overhead, yielding a runtime profile comparable to other lightweight regularizers (LN, DR3, SORL) and substantially more efficient than complex data-efficient baselines such as TSRL and DOGE. We also study the sensitivity of C^4 to its regularization strength λ and the base algorithm coefficient α . Performance remains stable over a broad range of these values, indicating that C^4 does not require delicate tuning. Additional ablations in Appendix E further show that reasonable variations in the number of initial clusters and the quality/coverage of the dataset lead to smooth changes in performance, supporting the robustness of the gradient-space clustering mechanism.

Finally, to directly address Q3 regarding the plug-and-play property of C^4 , we evaluate it as an add-on regularizer for both CQL and TD3+BC. Using identical training protocols, we compare each backbone to its variants augmented with LN, DR3, and C^4 (Figures 5 and 6). Across both algorithm families, incorporating C^4 yields the most consistent and substantial improvements throughout training, whereas LN and DR3 provide only moderate or task-dependent gains. This indicates that C^4 effectively targets the variance components in gradient space that limit offline RL performance, while preserving the inductive biases of the underlying algorithm. In practice, C^4 can therefore be treated as a drop-in module that robustly enhances a variety of existing offline RL methods.

Figure 5: Performance comparison on CQL vs. (+LN), (+DR3) and (+ C^4).Figure 6: Performance comparison on TD3BC vs. (+LN), (+DR3) and (+ C^4).

Additionally, extended implementation, benchmark descriptions, experimental details, complete results, and ablations are provided in Appendix E due to space constraints.

8 CONCLUSION

This work identifies harmful TD cross covariance as a key driver of instability under weak coverage in offline RL. C^4 counters this effect with partitioned buffer sampling that localizes updates and with an explicit gradient-based penalty that offsets bias while preserving the objective’s lower bound. The method reduces excessive conservatism, improves stability, and integrates with standard pipelines without heavy tuning. Experiments on small data and splits that emphasize out-of-distribution states show consistent gains in return, with improvements up to about 30% and smoother learning dynamics. These results indicate that clustered cross-covariance control for TD is a practical and effective approach for achieving robust offline RL under weak coverage.

540 **9 REPRODUCIBILITY STATEMENT**
541542 We release the full codebase in supplementary files and https://anonymous.4open.543 science/r/C4_2025. The repository contains scripts for end-to-end runs, environment setup
544 instructions, and exact configurations. The paper and appendix provide the algorithm pseudo-code
545 and a complete list of hyperparameters. We will include data preparation steps, evaluation scripts,
546 random seed control, and instructions to regenerate all main tables and figures.
547548 **10 ETHICS STATEMENT**
549550 This work targets decision-making under distribution shift in offline reinforcement learning. The
551 method can improve reliability, yet misuse may create harm. Potential risks include job displacement,
552 unsafe behaviors in autonomous systems, privacy exposure when training on sensitive data, and
553 misleading outputs from generative components. We recommend careful auditing, limited deployment
554 in controlled settings, and human oversight. Use should focus on supporting decisions rather than
555 replacing human judgment. Privacy protection, transparency, continuous monitoring, and rollback
556 procedures are necessary. We will provide a usage checklist to encourage responsible application.
557558 **REFERENCES**
559560 Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
561 algorithms. *arXiv preprint arXiv:1807.10299*, 2018.562 Joshua Achiam, Ethan Knight, and Pieter Abbeel. Towards characterizing divergence in deep
563 q-learning. *arXiv preprint arXiv:1903.08894*, 2019.565 Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
566 algorithms. *CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep*, 32:96, 2019.568 Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
569 reinforcement learning with diversified q-ensemble. *Advances in neural information processing
570 systems*, 34:7436–7447, 2021.571 Leemon C. Baird. Residual algorithms: Reinforcement learning with function approximation. In
572 Armand Prieditis and Stuart J. Russell (eds.), *Proceedings of the Twelfth International Conference
573 on Machine Learning (ICML 1995)*, pp. 30–37, Tahoe City, California, USA, 1995. Morgan
574 Kaufmann. ISBN 1-55860-377-8. doi: 10.1016/B978-1-55860-377-6.50013-X.
575576 Aditya Bhatt, Max Argus, Artemij Amiranashvili, and Thomas Brox. Crossnorm: Normalization for
577 off-policy td reinforcement learning. *arXiv preprint arXiv:1902.05605*, 2019.578 Christopher M Bishop and Nasser M Nasrabadi. *Pattern recognition and machine learning*, volume 4.
579 Springer, 2006.581 David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-policy
582 evaluation. *Advances in Neural Information Processing Systems*, 34:4933–4946, 2021.584 Jiayu Chen, Bhargav Ganguly, Yang Xu, Yongsheng Mei, Tian Lan, and Vaneet Aggarwal. Deep
585 generative models for offline policy learning: Tutorial, survey, and perspectives on future directions.
586 *arXiv preprint arXiv:2402.13777*, 2024.587 Liting Chen, Jie Yan, Zhengdao Shao, Lu Wang, Qingwei Lin, Saravan Rajmohan, Thomas Mosci-
588 broda, and Dongmei Zhang. Conservative state value estimation for offline reinforcement learn-
589 ing. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL
590 <https://openreview.net/forum?id=8GSCaoFot9>.
591592 Peng Cheng, Xianyuan Zhan, Wenjia Zhang, Youfang Lin, Han Wang, Li Jiang, et al. Look beneath
593 the surface: Exploiting fundamental symmetry for sample-efficient offline rl. *Advances in Neural
Information Processing Systems*, 36:7612–7631, 2023.

594 Alex Damian, Tengyu Ma, and Jason Lee. Label noise sgd provably prefers flat global minimizers.
 595 *arXiv preprint arXiv:2106.06530*, 2021.
 596

597 Ishan Durugkar and Peter Stone. TD learning with constrained gradients, 2018. URL <https://openreview.net/forum?id=Bk-ofQZRb>.
 598

599 Dylan J Foster, Akshay Krishnamurthy, David Simchi-Levi, and Yunzong Xu. Offline reinforcement
 600 learning: Fundamental barriers for value function approximation. *arXiv preprint arXiv:2111.10919*,
 601 2021.
 602

603 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
 604 data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020.
 605

606 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
 607 *Advances in neural information processing systems*, 34:20132–20145, 2021.
 608

609 Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
 610 critic methods. In *ICML*, 2018.
 611

612 Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
 613 exploration. In *International Conference on Machine Learning*, pp. 2052–2062. PMLR, 2019.
 614

615 Dibya Ghosh and Marc G Bellemare. Representations for stable off-policy reinforcement learning.
 616 *arXiv preprint arXiv:2007.05520*, 2020.
 617

618 Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J Cree. Regularisation of neural networks
 619 by enforcing lipschitz continuity. *Machine Learning*, 110(2):393–416, 2021.
 620

621 Hado Hasselt. Double q-learning. *NIPS*, 2010.
 622

623 Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
 624 against adversarial manipulation. In *Advances in Neural Information Processing Systems*,
 625 volume 30, pp. 2266–2276. Curran Associates, Inc., 2017.
 626

627 Hao Hu, Xinqi Wang, and Simon Shaolei Du. Policy-based trajectory clustering in offline reinforcement
 628 learning. *arXiv preprint arXiv:2506.09202*, 2025.
 629

630 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
 631 reducing internal covariate shift. In *ICML*, 2015.
 632

633 Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
 634 Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
 635 implicit human preferences in dialog. *arXiv preprint arXiv:1907.00456*, 2019.
 636

637 Zeyu Jia, Alexander Raklin, Ayush Sekhari, and Chen-Yu Wei. Offline reinforcement learning: Role
 638 of state aggregation and trajectory data. In *The Thirty Seventh Annual Conference on Learning
 639 Theory*, pp. 2644–2719. PMLR, 2024.
 640

641 Bingyi Kang, Xiao Ma, Yirui Wang, Yang Yue, and Shuicheng Yan. Improving and benchmarking
 642 offline reinforcement learning algorithms, 2023.
 643

644 Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
 645 with fisher divergence critic regularization. In *International Conference on Machine Learning*, pp.
 646 5774–5783. PMLR, 2021a.
 647

648 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
 649 q-learning. *arXiv preprint arXiv:2110.06169*, 2021b.
 650

651 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
 652 q-learning. In *International Conference on Learning Representations*, 2022.
 653

654 Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
 655 q-learning via bootstrapping error reduction. In *Advances in Neural Information Processing
 656 Systems*, pp. 11761–11771, 2019.
 657

648 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 649 reinforcement learning. *Advances in Neural Information Processing Systems*, 33:1179–1191,
 650 2020a.

651 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 652 reinforcement learning. In *Advances in Neural Information Processing Systems*, volume 33, pp.
 653 1179–1191, 2020b.

654 Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
 655 inhibits data-efficient deep reinforcement learning. In *International Conference on Learning
 656 Representations*, 2021. URL <https://openreview.net/forum?id=O9bnihsFfXU>.

657 Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and Sergey Levine.
 658 DR3: Value-based deep reinforcement learning requires explicit regularization. In *International
 659 Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=POvMvLi91f>.

660 Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
 661 learning on diverse multi-task data both scales and generalizes. In *ICLR*, 2023.

662 Jiachen Li, Edwin Zhang, Ming Yin, Qinxun Bai, Yu-Xiang Wang, and William Yang Wang. Offline
 663 reinforcement learning with closed-form policy improvement operators, 2023a. URL <https://arxiv.org/abs/2211.15956>.

664 Jianxiong Li, Xianyuan Zhan, Haoran Xu, Xiangyu Zhu, Jingjing Liu, and Ya-Qin Zhang. When
 665 data geometry meets deep function: Generalizing offline reinforcement learning. In *The Eleventh
 666 International Conference on Learning Representations*, 2023b. URL <https://openreview.net/forum?id=1M07TC7cuuh>.

667 Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
 668 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *arXiv
 669 preprint arXiv:1509.02971*, 2015.

670 Tenglong Liu, Yang Li, Yixing Lan, Hao Gao, Wei Pan, and Xin Xu. Adaptive advantage-guided
 671 policy regularization for offline reinforcement learning. In *Forty-first International Conference on
 672 Machine Learning*, 2024. URL <https://openreview.net/forum?id=FV3kY9FBW6>.

673 Rui Lu, Andrew Zhao, Simon S. Du, and Gao Huang. Provable general function class representation
 674 learning in multitask bandits and mdps. In *NIPS*, 2022.

675 Jiafei Lyu, Xiaoteng Ma, Xiu Li, and Zongqing Lu. Mildly conservative q-learning for offline
 676 reinforcement learning. *Advances in Neural Information Processing Systems*, 35:1711–1724, 2022.

677 Yihuan Mao, Chengjie Wu, Xi Chen, Hao Hu, Ji Jiang, Tianze Zhou, Tangjie Lv, Changjie Fan,
 678 Zhipeng Hu, Yi Wu, et al. Stylized offline reinforcement learning: Extracting diverse high-quality
 679 behaviors from heterogeneous datasets. In *The Twelfth International Conference on Learning
 680 Representations*, 2024.

681 Alberto Maria Metelli, Matteo Papini, Nico Montali, and Marcello Restelli. Importance sampling
 682 techniques for policy optimization. *Journal of Machine Learning Research*, 21(141):1–75, 2020.

683 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
 684 generative adversarial networks. *arXiv preprint arXiv:1802.05957*, 2018.

685 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
 686 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
 687 through deep reinforcement learning. *nature*, 2015.

688 Rotem Mulayoff and Tomer Michaeli. Unique properties of flat minima in deep networks. In
 689 *International Conference on Machine Learning*, pp. 7108–7118. PMLR, 2020.

690 Thanh Nguyen-Tang and Raman Arora. On sample-efficient offline reinforcement learning: Data
 691 diversity, posterior sampling and beyond. *Advances in neural information processing systems*, 36:
 692 61115–61157, 2023.

702 Alexander Nikulin, Vladislav Kurenkov, Denis Tarasov, Dmitry Akimov, and Sergey Kolesnikov.
 703 Q-ensemble for offline rl: Don't scale the ensemble, scale the batch size. *arXiv preprint*
 704 *arXiv:2211.11092*, 2022.

705 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
 706 Simple and scalable off-policy reinforcement learning. *arXiv preprint arXiv:1910.00177*, 2019.

708 Nan Qiao, Sheng Yue, Ju Ren, and Yaoxue Zhang. Fova: Offline federated reinforcement learning
 709 with mixed-quality data, 2025. URL <https://arxiv.org/abs/2512.02350>.

710 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. MIT press, 2018.

712 Volodymyr Tkachuk, Gellért Weisz, and Csaba Szepesvari. Trajectory data suffices for statistically
 713 efficient learning in offline RL with linear q^π -realizability and concentrability. In *The Thirty-*
 714 *eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=TusuJSbRxm>.

716 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 717 In *IEEE/RSJ international conference on intelligent robots and systems*, pp. 5026–5033, 2012.

718 JN Tsitsiklis and B Van Roy. An analysis of temporal-difference learning with function approxima-
 719 tiontechnical. 1996.

721 Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph
 722 Modayil. Deep reinforcement learning and the deadly triad. *arXiv preprint arXiv:1812.02648*,
 723 2018.

724 Qiang Wang, Yixin Deng, Francisco Roldan Sanchez, Keru Wang, Kevin McGuinness, Noel
 725 O'Connor, and Stephen J. Redmond. Dataset clustering for improved offline policy learning,
 726 2024. URL <https://arxiv.org/abs/2402.09550>.

728 Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
 729 class for offline reinforcement learning. *arXiv preprint arXiv:2208.06193*, 2022.

730 Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
 731 class for offline reinforcement learning. In *ICLR*, 2023.

733 Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
 734 *arXiv preprint arXiv:1911.11361*, 2019.

735 Ming Yin, Mengdi Wang, and Yu-Xiang Wang. Offline reinforcement learning with differentiable
 736 function approximation is provably efficient. *arXiv preprint arXiv:2210.00750*, 2022.

738 Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn, and
 739 Tengyu Ma. Mopo: Model-based offline policy optimization. In *Neural Information Processing
 740 Systems (NeurIPS)*, 2020.

741 Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey Levine, and Chelsea Finn.
 742 Conservative data sharing for multi-task offline reinforcement learning. *Advances in Neural
 743 Information Processing Systems*, 34:11501–11516, 2021a.

744 Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
 745 Combo: Conservative offline model-based policy optimization. *Advances in neural information
 746 processing systems*, 34:28954–28967, 2021b.

748 Yang Yue, Bingyi Kang, Zhongwen Xu, Gao Huang, and Shuicheng Yan. Value-consistent represen-
 749 tation learning for data-efficient reinforcement learning. In *AAAI*, 2023a.

750 Yang Yue, Rui Lu, Bingyi Kang, Shiji Song, and Gao Huang. Understanding, predicting and better
 751 resolving q-value divergence in offline-rl. *Advances in Neural Information Processing Systems*, 36:
 752 60247–60277, 2023b.

754 Zifeng Zhuang, Kun LEI, Jinxin Liu, Donglin Wang, and Yilang Guo. Behavior proximal policy
 755 optimization. In *The Eleventh International Conference on Learning Representations*, 2023. URL
<https://openreview.net/forum?id=3c13LptpIph>.

OUTLINE

756	1
757	
758	
759	1
760	
761	2
762	
763	3
764	
765	3
766	
767	
768	5
769	5.1 Problem formulation: from TD variance to a matrix target
770	5
771	5.2 Clustering the stacked gradient pairs
772	6
773	5.3 Mixture-regularized objective and training procedure
774	6
775	
776	6
777	
778	8
779	7.1 Implement
780	8
781	7.2 Main Results
782	9
783	
784	10
785	
786	11
787	
788	11
789	
790	16
791	
792	17
793	
794	18
795	
796	19
797	
798	22
799	E.1 Extended implementation
800	22
801	E.2 Benchmark
802	22
803	E.3 Evaluation on more benchmarks with reduced data
804	22
805	E.4 Generalization and compatibility with SOTA offline RL methods
806	23
807	E.5 Scalability and consistency
808	24
809	E.6 Covariance control under C^4
	26
	E.7 Robustness and efficiency
	26
	33
	F
	Use of Large Language Models

810 A COMMON POLICY PROXIMITY CONSTRAINTS IN OFFLINE RL 811

812 In this section, we measure per-state proximity between the learned policy π and the behavior policy
813 π_β and average over the dataset state distribution ρ_D , and the global constraint is
814

$$815 \mathcal{C}(\pi\|\pi_\beta) = \mathbb{E}_{s\sim\rho_D} [D(\pi(\cdot|s), \|\cdot, \pi_\beta(\cdot|s))]. \quad (22)$$

816 Furthermore, the mixture upper bound we will check is $D\left(\pi\left\|\sum_i w_i \pi_{\beta_i}\right)\right) \leq \sum_i w_i D(\pi\|\pi_{\beta_i})$, $w_i \geq$
817 0 , $\sum_i w_i = 1$ in Corollary 1.
818

819 **KL.** The Kullback–Leibler divergence is
820

$$821 D_{\text{KL}}(\pi\|\pi_\beta) = \int_{\mathcal{A}} \pi(a|s) \log \frac{\pi(a|s)}{\pi_\beta(a|s)} da, \quad (23)$$

823 finite only when $\text{supp}(\pi) \subseteq \text{supp}(\pi_\beta)$, and the reverse form $D_{\text{KL}}(\pi_\beta\|\pi)$ is behavior–sample
824 estimable, and as an f –divergence KL is convex in the second argument, hence it satisfies
825 $D_{\text{KL}}\left(\pi\left\|\sum_i w_i \pi_{\beta_i}\right)\right) \leq \sum_i w_i D_{\text{KL}}(\pi\|\pi_{\beta_i})$.
826

827 **Rényi.** The Rényi divergence of order $\alpha > 0$, $\alpha \neq 1$ is
828

$$829 D_\alpha^{\text{R}}(\pi\|\pi_\beta) = \frac{1}{\alpha-1} \log \int_{\mathcal{A}} \pi(a|s)^\alpha \pi_\beta(a|s)^{1-\alpha} da, \quad (24)$$

831 and $D_\alpha^{\text{R}} \rightarrow D_{\text{KL}}$ as $\alpha \rightarrow 1$, and for $\alpha \in (0, 1]$ it is convex in the second argument and obeys
832 $D_\alpha^{\text{R}}\left(\pi\left\|\sum_i w_i \pi_{\beta_i}\right)\right) \leq \sum_i w_i D_\alpha^{\text{R}}(\pi\|\pi_{\beta_i})$, $\alpha \in (0, 1]$, while for $\alpha > 1$ this inequality is not
833 generally guaranteed.
834

835 **χ -div.** The χ –divergence family generated by a convex χ with $\chi(1) = 0$ is
836

$$837 D_\chi(\pi\|\pi_\beta) = \int \chi\left(\frac{\pi(a|s)}{\pi_\beta(a|s)}\right) \pi_\beta(a|s) dx, \quad (25)$$

839 with the Pearson chi–square special case
840

$$841 D_{\chi^2}(\pi\|\pi_\beta) = \mathbb{E}_{x\sim Q} \left[\left(\frac{\pi(a|s)}{\pi_\beta(a|s)} - 1 \right)^2 \right], \quad (26)$$

844 as f –divergences they are convex in the second argument and satisfy $D_\chi\left(\pi\left\|\sum_i w_i \pi_{\beta_i}\right)\right) \leq$
845 $\sum_i w_i D_\chi(\pi\|\pi_{\beta_i})$.
846

847 **JSD.** The Jensen–Shannon divergence is
848

$$848 \text{JSD}(\pi\|\pi_\beta) = \frac{1}{2} D_{\text{KL}}(\pi) + \frac{1}{2} D_{\text{KL}}(\pi_\beta\|\pi'), \quad \pi' = \frac{1}{2}(\pi + \pi_\beta), \quad (27)$$

849 symmetric and bounded in $[0, \log 2]$, and being an f –divergence it is convex in each argument and
850 thus $\text{JSD}\left(\pi\left\|\sum_i w_i \pi_{\beta_i}\right)\right) \leq \sum_i w_i \text{JSD}(\pi\|\pi_{\beta_i})$.
851

852 **W1.** The 1–Wasserstein distance admits the Kantorovich–Rubinstein dual
853

$$854 W_1(\pi, \pi_\beta) = \sup_{|f|_{\text{Lip}} \leq 1} \left(\mathbb{E}_{x\sim P}[f(x)] - \mathbb{E}_{y\sim Q}[f(y)] \right), \quad (28)$$

856 which is a supremum of affine functionals and hence convex in each argument, and therefore it obeys
857 $W_1(\pi, \sum_i w_i \pi_{\beta_i}) \leq \sum_i w_i W_1(\pi, \pi_{\beta_i})$.
858

859 **MSE.** A practical surrogate for discrete actions is the mean squared error between probability vectors
860

$$860 \text{MSE}(\pi, \pi_\beta) = \frac{1}{|\mathcal{A}|} \sum_{a\in\mathcal{A}} (\pi(a|s) - \pi_\beta(a|s))^2, \quad (29)$$

863 or parameter–space MSE for Gaussian policies in continuous actions, and since $\pi_\beta \mapsto \|\pi - \pi_\beta\|_2^2$ is
864 convex we have $\text{MSE}(\pi, \sum_i w_i \pi_{\beta_i}) \leq \sum_i w_i \text{MSE}(\pi, \pi_{\beta_i})$.
865

864 **MMD.** With a positive-definite kernel k and feature map ϕ in the associated RKHS, the maximum
 865 mean discrepancy is
 866

$$867 \quad \text{MMD}^2(\pi, \pi_\beta) = \|\mu_\pi - \mu_{\pi_\beta}\|_{\mathcal{H}}^2, \quad \mu_\pi = \mathbb{E}_{x \sim \pi}[\phi(x)], \quad (30)$$

868 and because the kernel mean embedding is linear while the squared norm is convex, it satisfies
 869 $\text{MMD}^2(\pi, \sum_i w_i \pi_{\beta_i}) \leq \sum_i w_i \text{MMD}^2(\pi, \pi_{\beta_i})$.
 870

871 **Corollary 1.** *The mixture upper bound is valid for KL, all X-divergences including JSD, W_1 , MSE
 872 and MMD, and for Rényi only when $\alpha \in (0, 1]$, and it is not generally valid for Rényi with $\alpha > 1$.*
 873

B APPENDIX: PROOF DETAILS FOR THEOREM 1

877 **Assumption 1 (Local Smoothness).** *Let \mathcal{D} denote the dataset support. There exist constants $L, \rho > 0$
 878 such that for any $x \in \mathcal{D}$ and perturbation k with $|k| \leq \rho$, the critic Q_ψ is differentiable (almost
 879 everywhere) and has an L -Lipschitz gradient. Under this assumption, Taylor's theorem gives*

$$880 \quad |Q_\psi(x + k\mathbf{w}) - Q_\psi(x) - k\langle \mathbf{w}, \nabla_x Q_\psi(x) \rangle| \leq \frac{L}{2}k^2.$$

882 Thus, the expansion in Eq. (2) is a standard first-order approximation with a controlled $\mathcal{O}(k^2)$
 883 remainder.¹ Similar local differentiability assumptions are common in recent theoretical work on
 884 standard offline RL (Yin et al., 2022; Li et al., 2023a).

885 *Proof of Theorem 1.* Fix a dataset pair (x, x') . All expectations, variances, and covariances in this
 886 proof are taken with respect to the perturbation proposal $u = (k, k', \mathbf{w}, \mathbf{w}')$, while (x, x') is held
 887 fixed. The perturbed error is

$$888 \quad \delta = r + \gamma Q_{\phi'}(x' + k'\mathbf{w}') - Q_\phi(x + k\mathbf{w}). \quad (31)$$

890 Apply the first-order expansion in feature space and discard $\mathcal{O}(k^2 + k'^2)$ terms:

$$891 \quad Q_{\phi'}(x' + k'_2 \mathbf{w}'_2) \approx Q_{\phi'}(x') + k'_2 \langle \mathbf{w}'_2, \nabla_{x'} Q_{\phi'}(x') \rangle, \quad (32)$$

$$893 \quad Q_\phi(x + k\mathbf{w}) \approx Q_\phi(x) + k \langle \mathbf{w}, \nabla_x Q_\phi(x) \rangle. \quad (33)$$

894 Suppose $k'_1 \mathbf{w}'_1$ is OOD action (same as (An et al., 2021)) and $(\mathbf{s}', \mathbf{a}') \sim \mathcal{D}$, we plugging $(\mathbf{s}', \pi(\mathbf{s}')) =$
 895 $(\mathbf{s}', \mathbf{a}') + k'_1 \mathbf{w}'_1$ into above:

$$896 \quad Q_{\phi'}((\mathbf{s}', \pi(\mathbf{s}')) + k'_1 \mathbf{w}'_1) = Q_{\phi'}((\mathbf{s}', \mathbf{a}') + k'_1 \mathbf{w}'_1 + k'_2 \mathbf{w}'_2) \approx Q_{\phi'}(x') + k' \langle \mathbf{w}', \nabla_{x'} Q_{\phi'}(x') \rangle$$

898 where $k'_1 \mathbf{w}'_1 + k'_2 \mathbf{w}'_2 = k' \mathbf{w}'$ and $x' = (\mathbf{s}', \mathbf{a}')$ denotes the next state action pairs of $x = (\mathbf{s}, \mathbf{a})$ come
 899 from the dataset. Thus, we have

$$900 \quad \delta \approx \underbrace{r + \gamma Q_{\phi'}(x') - Q_\phi(x)}_{\delta_{\text{base}}} + \underbrace{\gamma k' \langle \mathbf{w}', \nabla_{x'} Q_{\phi'}(x') \rangle - k \langle \mathbf{w}, \nabla_x Q_\phi(x) \rangle}_{\delta_{\text{lin}}(u)}. \quad (34)$$

903 To show this, we suppose the Q-value predictions for the in-distribution state-action pairs coincide,
 904 i.e. $Q_\psi(x)$, $\psi \sim \{\phi, \phi'\}$, which is common used in RL (An et al., 2021). That is, the base term δ_{base}
 905 is a constant. Therefore $\text{Var}(\delta_{\text{base}}) = 0$ and $\text{Cov}(\delta_{\text{base}}, \delta_{\text{lin}}) = 0$, so

$$906 \quad \text{Var}[\delta] \approx \text{Var}(\delta_{\text{lin}}(u)). \quad (35)$$

908 Expanding the variance and using bilinearity of covariance yields

$$909 \quad \text{Var}[\delta] = \gamma^2 \text{Var}\left(k' \langle \mathbf{w}', \nabla_{x'} Q_{\phi'}(x') \rangle\right) + \text{Var}\left(k \langle \mathbf{w}, \nabla_x Q_\phi(x) \rangle\right) \\ 910 \quad - 2\gamma \text{Cov}\left(k' \langle \mathbf{w}', \nabla_{x'} Q_{\phi'}(x') \rangle, k \langle \mathbf{w}, \nabla_x Q_\phi(x) \rangle\right). \quad (36)$$

913 When k, k' are treated as fixed scalars inside the proposal, Eq. (36) reduces exactly to the three terms
 914 in the main text's Eq. (6), with moments taken over $(\mathbf{w}, \mathbf{w}')$. By the identity $\mathbb{E}[\delta^2] = (\mathbb{E}[\delta])^2 + \text{Var}[\delta]$,
 915 the corresponding second-moment statement follows. \square

916 ¹While deep ReLU networks are not globally smooth, they are locally Lipschitz almost everywhere (Hein
 917 & Andriushchenko, 2017). Our theoretical model captures the dominant first-order effects of cross-covariance
 918 within this local trust region, which aligns with our empirical observations of instability.

918 **Remark 1** (on the base term and the vanishing covariance). *In the per-sample proof above the*
 919 *randomness is only over the perturbation $u = (k, k', \mathbf{w}, \mathbf{w}')$ while (x, x') is fixed, so the base term*
 920

$$921 \quad \delta_{\text{base}} = r + \gamma Q_{\phi'}(x') - Q_{\phi}(x)$$

922 *is a constant and therefore $\text{Var}(\delta_{\text{base}}) = 0$ and $\text{Cov}(\delta_{\text{base}}, \delta_{\text{lin}}) = 0$ exactly. When viewing Eq. (4)*
 923 *at the dataset level (averaging over $(x, x') \sim \mathcal{D}$), within the short locality window used in the main*
 924 *text on-support predictions are already accurate and conditional reward noise is negligible; hence*
 925 *δ_{base} is approximately constant over \mathcal{D} . In that case the k -dependent covariance term vanishes to*
 926 *first order, and all displacement dependence arises from $\text{Var}(\delta_{\text{lin}})$.*

927 **Proposition 1** (block form under perturbation randomness). *Let*

$$928 \quad S_2 = \text{Cov}(k' \mathbf{w}'), \quad S_1 = \text{Cov}(k \mathbf{w}), \quad N = \text{Cov}(k' \mathbf{w}', k \mathbf{w}), \quad (37)$$

930 *where all covariances are with respect to the perturbation proposal. Then the variance contribution*
 931 *in Eq. (36) admits the quadratic form*

$$932 \quad \text{Var}[\delta] = \gamma^2 \langle \nabla_{x'} Q_{\phi'}(x'), S_2 \nabla_{x'} Q_{\phi'}(x') \rangle + \langle \nabla_x Q_{\phi}(x), S_1 \nabla_x Q_{\phi}(x) \rangle
 933 \quad - 2\gamma \langle \nabla_{x'} Q_{\phi'}(x'), N \nabla_x Q_{\phi}(x) \rangle. \quad (38)$$

935 **Corollary 2** (equal-direction simplification). *If $k = k' = k$ and $\mathbf{w} = \mathbf{w}' = \mathbf{w}$, and $\Omega = \text{Cov}(\mathbf{w})$,*
 936 *then*

$$938 \quad \text{Var}[\delta] = k^2 \langle \gamma \nabla_{x'} Q_{\phi'}(x') - \nabla_x Q_{\phi}(x), \Omega (\gamma \nabla_{x'} Q_{\phi'}(x') - \nabla_x Q_{\phi}(x)) \rangle. \quad (39)$$

939 *In particular, if \mathbf{w} is isotropic on \mathbb{S}^{m-1} so that $\Omega = \frac{1}{m} I$, then*

$$941 \quad \text{Var}[\delta] = \frac{k^2}{m} \|\gamma \nabla_{x'} Q_{\phi'}(x') - \nabla_x Q_{\phi}(x)\|_2^2. \quad (40)$$

944 C APPENDIX: PROOFS FOR SECTION 5

948 *Proof of Theorem 2.* Let $C = \text{Cov}(g', g)$. With cluster label $Z \in \{1, \dots, K\}$,

$$950 \quad \text{Cov}(g', g) = \mathbb{E}[(g' - \mathbb{E}g')(g - \mathbb{E}g)^\top] = \mathbb{E}\left[\mathbb{E}[(g' - \mathbb{E}g')(g - \mathbb{E}g)^\top | Z]\right] \\ 951 \quad = \mathbb{E}\left[\mathbb{E}[(g' - \mu'_Z + \mu'_Z - \mathbb{E}g')(g - \mu_Z + \mu_Z - \mathbb{E}g)^\top | Z]\right] \\ 952 \quad = \mathbb{E}[\text{Cov}(g', g | Z)] + \text{Cov}(\mu'_Z, \mu_Z), \quad (41)$$

955 which is Eq. (9). If a minibatch is drawn from a fixed z , then the effective covariance is C_z . For
 956 any unit \mathbf{w}', \mathbf{w} , $|\mathbf{w}'^\top C_z \mathbf{w}| \leq \|C_z\|_2$ by the definition of the operator norm. Moreover, $\|C_z\|_2 \leq$
 957 $\|\Sigma_z\|_2^{1/2} \|\Sigma_z\|_2^{1/2}$ by the operator Cauchy-Schwarz inequality, and $\|\Sigma\|_2 \leq \text{tr}(\Sigma)$ for PSD Σ , yielding
 958 Eq. (10). \square

959 **Lemma 1** (Alignment inside a cluster controls sign and magnitude). *Let the SVD of C_z be $C_z =$
 960 $U \Sigma V^\top$ with singular values $\sigma_1 \geq \sigma_2 \geq \dots \geq 0$. For unit \mathbf{w}', \mathbf{w} ,*

$$962 \quad \mathbf{w}'^\top C_z \mathbf{w} \geq \sigma_1 \cos \theta' \cos \theta - \sigma_2 \sin \theta' \sin \theta, \quad (42) \\ 963 \quad \theta' = \angle(\mathbf{w}', u_1), \quad \theta = \angle(\mathbf{w}, v_1).$$

965 *Choosing $\mathbf{w}' = u_1$ and $\mathbf{w} = v_1$ yields $\mathbf{w}'^\top C_z \mathbf{w} = \sigma_1 \geq 0$. The cross term in Eq. (8) is then*
 966 *nonpositive. Sketch of proof. Expand in the singular bases and bound the residual with σ_2 via*
 967 *Cauchy-Schwarz.*

968 *Proof.* Let $C_z = U \Sigma V^\top$ with $\Sigma = \text{diag}(\sigma_1, \sigma_2, \dots)$. For unit \mathbf{w}', \mathbf{w} ,

$$970 \quad \mathbf{w}'^\top C_z \mathbf{w} = (U^\top \mathbf{w}')^\top \Sigma (V^\top \mathbf{w}) = \sum_j \sigma_j (u_j^\top \mathbf{w}') (v_j^\top \mathbf{w}). \quad (43)$$

972 Let $\cos \theta' = u_1^\top \mathbf{w}'$ and $\cos \theta = v_1^\top \mathbf{w}$. By Cauchy-Schwarz and $\sum_{j \geq 2} (u_j^\top \mathbf{w}')^2 = \sin^2 \theta'$,
 973 $\sum_{j \geq 2} (v_j^\top \mathbf{w})^2 = \sin^2 \theta$, we obtain
 974

$$975 \sum_{j \geq 2} \sigma_j (u_j^\top \mathbf{w}') (v_j^\top \mathbf{w}) \geq -\sigma_2 \sqrt{\sum_{j \geq 2} (u_j^\top \mathbf{w}')^2} \sqrt{\sum_{j \geq 2} (v_j^\top \mathbf{w})^2} = -\sigma_2 \sin \theta' \sin \theta. \quad (44)$$

978 Combining Eq. (43) and Eq. (44) gives Eq. (42). Choosing $\mathbf{w}' = u_1$, $\mathbf{w} = v_1$ yields $\mathbf{w}'^\top C_z \mathbf{w} =$
 979 $\sigma_1 \geq 0$. Thus, the proof is completed. \square
 980

981 D MIXTURE OF POLICIES

983 **Definition 1** (f divergence and special cases). *Let $f : (0, \infty) \rightarrow \mathbb{R}$ be a proper lower semicontinuous
 984 convex function with $f(1) = 0$. Let π and ν be probability measures on the action space that admit
 985 densities with respect to a common reference measure. Assume $\pi \ll \nu$ so that $\frac{\pi}{\nu}$ is well defined ν
 986 almost everywhere. The f divergence is*

$$987 D_f(\pi \|\nu) = \int \nu(a) f\left(\frac{\pi(a)}{\nu(a)}\right) da.$$

990 It satisfies $D_f(\pi \|\nu) \geq 0$ and $D_f(\pi \|\nu) = 0$ if and only if $\pi = \nu$ almost everywhere whenever f is
 991 strictly convex at 1. Special cases: are

$$992 \chi^2(\pi \|\nu) = D_{(t-1)^2}(\pi \|\nu) = \int \frac{\pi(a)^2}{\nu(a)} da - 1$$

995 and

$$996 \text{KL}(\pi \|\nu) = D_{t \log t}(\pi \|\nu) = \int \pi(a) \log \frac{\pi(a)}{\nu(a)} da.$$

998 **Lemma 2** (Global operator freeze and lower bound). *For any nonnegative measurable function h
 999 and any policy π ,*

$$1000 (I - \gamma P^\pi)^{-1} h = \sum_{t=0}^{\infty} \gamma^t (P^\pi)^t h \leq \frac{1}{1 - \gamma} \|h\|_\infty.$$

1002 Let $\bar{\rho} := \frac{1}{1-\gamma}$. For the transformed CQL improvement target at a state s

$$1004 V^\pi(s) - \alpha((I - \gamma P^\pi)^{-1} \chi^2(\pi \|\pi_\beta))(s)$$

1005 one has the global statewise lower bound

$$1007 V^\pi(s) - \alpha((I - \gamma P^\pi)^{-1} \chi^2(\pi \|\pi_\beta))(s) \geq \mathbb{E}_\pi [Q(s, a)] - \alpha \bar{\rho} \sup_{s'} \chi^2(\pi \|\pi_\beta)(s').$$

1008 The same bound holds with KL or any nonnegative combination of χ^2 and KL.

1010 *Proof.* Monotonicity and the geometric series bound yield

$$1012 (I - \gamma P^\pi)^{-1} h \leq \sum_{t=0}^{\infty} \gamma^t \|h\|_\infty = \frac{1}{1 - \gamma} \|h\|_\infty.$$

1015 Set $h(\cdot) = \chi^2(\pi \|\pi_\beta)(\cdot)$, then linearize $V^\pi(s)$ to $\mathbb{E}_\pi [Q(s, a)]$ at the working point. Both penalties
 1016 are nonnegative, hence the inequality is preserved. \square

1017 **Lemma 3** (Convexity in the second argument and clusterwise training). *Let f satisfy the definition
 1018 above. Let $\nu = \sum_{m=1}^M w_m \nu_m$ with $w_m \geq 0$ and $\sum_m w_m = 1$. Assume $\pi \ll \nu_m$ for every m with
 1019 $w_m > 0$. Then*

$$1020 D_f(\pi \|\nu) \leq \sum_{m=1}^M w_m D_f(\pi \|\nu_m).$$

1023 Consequently the surrogate

$$1024 1025 \mathcal{J}(\pi) = \mathbb{E}_\pi [Q] - \bar{\rho} \left(\alpha \sum_m w_m \chi^2(\pi \|\nu_m) + \beta \sum_m w_m \text{KL}(\pi \|\nu_m) \right)$$

1026 is a computable lower bound to the same expression with the mixture ν placed inside each divergence.
 1027 Sampling a cluster index $M \sim w$ and updating with the per cluster objective

$$1028 \quad \mathbb{E}_\pi[Q] - \bar{\rho} (\alpha \chi^2(\pi \| \nu_M) + \beta \text{KL}(\pi \| \nu_M))$$

1029 gives an unbiased estimator of $\nabla \mathcal{J}(\pi)$.

1030 *Special cases:* For Pearson and for Kullback Leibler the same inequality holds, therefore the same
 1031 lower bound and the same stochastic cluster training rule apply when ν_m are Gaussian components
 1032 of a mixture.

1033 *Proof.* Define the perspective $g(u, v) = v f(u/v)$ for $u > 0$ and $v > 0$. Since f is convex, g is
 1034 jointly convex. For each a ,

$$1035 \quad g\left(\pi(a), \sum_m w_m \nu_m(a)\right) \leq \sum_m w_m g(\pi(a), \nu_m(a)).$$

1036 Integrate over a to obtain

$$1037 \quad D_f(\pi \| \nu) \leq \sum_m w_m D_f(\pi \| \nu_m).$$

1038 Taking expectation with respect to $M \sim w$ proves that the per cluster gradient is an unbiased estimator
 1039 of the gradient of the weighted sum objective. \square

1040 **Proposition 2** (General isotropic penalty and update direction). Fix a state s and let the policy class
 1041 be π_μ with a mean parameter μ . Let Σ be positive definite and assume the penalty has the isotropic
 1042 form

$$1043 \quad \Psi(\mu - \mu_\beta) = \psi((\mu - \mu_\beta)^\top \Sigma^{-1}(\mu - \mu_\beta))$$

1044 with ψ differentiable and strictly increasing on $[0, \infty)$. Let $Q(s, a)$ be linearized at $a = \mu_\beta$ with
 1045 gradient $g(s)$. Consider

$$1046 \quad \max_{\mu} \quad \lambda := \bar{\rho} c, \quad c \geq 0.$$

1047 Any maximizer satisfies

$$1048 \quad \mu^*(s) = \mu_\beta + \kappa^*(s) \Sigma g(s)$$

1049 where $\kappa^*(s) > 0$ is the unique solution of

$$1050 \quad 2\lambda \psi'(\kappa^2 R) \kappa = 1, \quad R := g(s)^\top \Sigma g(s).$$

1051 *Special cases:* If $\psi(r) = e^r - 1$ which corresponds to Pearson under equal covariances then

$$1052 \quad \kappa^*(s) = \sqrt{\frac{1}{2R} W\left(\frac{R}{2\lambda^2}\right)}$$

1053 where W is the Lambert function given by $W(z)e^{W(z)} = z$. The argument $R/(2\lambda^2)$ is positive when
 1054 $R > 0$ and $\lambda > 0$, therefore the principal branch gives a positive κ^* . If $\psi(r) = \frac{r}{2}$ which corresponds
 1055 to Kullback Leibler under equal covariances then

$$1056 \quad \kappa^*(s) = \frac{1}{\lambda}.$$

1057 For a Gaussian mixture behavior one applies the convexity lemma to replace the mixture penalty by
 1058 the weighted sum of per cluster penalties and solves the same scalar equation per cluster with the
 1059 corresponding Σ and μ_β .

1060 *Proof.* Let $\Delta := \mu - \mu_\beta$ and define

$$1061 \quad F(\Delta) = \Delta^\top g - \lambda \psi(\Delta^\top \Sigma^{-1} \Delta).$$

1062 The first order stationarity condition is

$$1063 \quad \nabla_\Delta F(\Delta) = g - 2\lambda \psi'(\Delta^\top \Sigma^{-1} \Delta) \Sigma^{-1} \Delta = 0.$$

1064 Therefore Δ is colinear with Σg . Let $\Delta = \kappa \Sigma g$ and $R = g^\top \Sigma g$. Then

$$1065 \quad 2\lambda \psi'(\kappa^2 R) \kappa = 1.$$

1080 Strict increase of ψ' implies a unique positive root. Substituting $\psi(r) = e^r - 1$ gives the Lambert
 1081 equation

$$1082 \quad \kappa e^{\kappa^2 R} = \frac{1}{2\lambda}$$

1083 which reduces to the stated form by $y = \kappa^2 R$ and $ye^{2y} = R/(2\lambda^2)$. Substituting $\psi(r) = r/2$ gives
 1084 $\kappa = 1/\lambda$. \square

1085 **Proposition 3** (Adding KL gives stabilization and quantitative bounds in Gaussian cases). *Consider
 1086 for a fixed state s the surrogate*

$$1087 \quad \mathbb{E}_\pi[Q(s, a)] - \bar{\rho} \left(\alpha \chi^2(\pi \| \pi_\beta) + \beta \text{KL}(\pi \| \pi_\beta) \right), \quad \alpha \geq 0, \beta > 0.$$

1088 Assume the policy class admits a local quadratic lower bound on KL around a reference parameter
 1089 θ_β

$$1090 \quad \text{KL}(\pi_\theta \| \pi_{\theta_\beta}) \geq \frac{m}{2} \|\theta - \theta_\beta\|^2$$

1091 for some constant $m > 0$. Then near θ_β the surrogate is $m\beta\bar{\rho}$ strongly concave in θ and the unique
 1092 maximizer satisfies

$$1093 \quad \|\theta^* - \theta_\beta\| \leq \frac{\|\nabla_\theta \mathbb{E}_\pi[Q]\|_{\theta_\beta}}{m\beta\bar{\rho}}.$$

1094 Special cases: If π_μ and π_β are Gaussians with equal covariance Σ_β and parameter $\theta = \mu$, then the
 1095 maximizer has the form

$$1096 \quad \mu^* = \mu_\beta + \kappa^* \Sigma_\beta g, \quad (2\alpha\bar{\rho} e^{\kappa^{*2} R} + \beta\bar{\rho}) \kappa^* = 1, \quad R = g^\top \Sigma_\beta g.$$

1097 This implies the step size cap

$$1098 \quad \kappa^* \leq \frac{1}{\beta\bar{\rho}} = \frac{1-\gamma}{\beta}$$

1099 and if $\alpha > 0$ one also has

$$1100 \quad \chi^2(\pi_{\mu^*} \| \pi_\beta) = e^{\kappa^{*2} R} - 1 \leq \frac{\beta}{2\alpha} - 1.$$

1101 For a Gaussian mixture behavior policy the convexity lemma yields

$$1102 \quad \text{KL}\left(\pi \left\| \sum_m w_m \nu_m \right.\right) \leq \sum_m w_m \text{KL}(\pi \| \nu_m), \quad \chi^2\left(\pi \left\| \sum_m w_m \nu_m \right.\right) \leq \sum_m w_m \chi^2(\pi \| \nu_m),$$

1103 So the same lower bound structure and per-cluster step control apply.

1104

1105 *Proof.* The local quadratic lower bound on KL implies that subtracting $\beta\bar{\rho}$ KL adds curvature at least
 1106 $m\beta\bar{\rho}$, which gives strong concavity and uniqueness near θ_β . The parameter step bound follows from
 1107 the basic inequality for the maximization of a strongly concave function. In the Gaussian mean case

$$1108 \quad \text{KL}(\mathcal{N}(\mu, \Sigma_\beta) \| \mathcal{N}(\mu_\beta, \Sigma_\beta)) = \frac{1}{2}(\mu - \mu_\beta)^\top \Sigma_\beta^{-1}(\mu - \mu_\beta)$$

1109 and the stationarity condition becomes

$$1110 \quad g - 2\alpha\bar{\rho}e^{\Delta^\top \Sigma_\beta^{-1} \Delta} \Sigma_\beta^{-1} \Delta - \beta\bar{\rho}\Sigma_\beta^{-1} \Delta = 0.$$

1111 With $\Delta = \kappa\Sigma_\beta g$ this reduces to the scalar equation in κ and yields the stated bounds. For mixtures,
 1112 apply convexity in the second argument to both divergences and optimize per cluster. \square

1113

1114 **Remark 2** (Effect under poor coverage and relation to mixture training). *If a measurable set A
 1115 satisfies $\int_A \pi(a | s) da = \delta > 0$ while $\varepsilon_A = \int_A \pi_\beta(a | s) da$ is small, then*

$$1116 \quad \chi^2(\pi \| \pi_\beta) \geq \frac{\delta^2}{\varepsilon_A} - 1.$$

1117

1118 This shows the sensitivity of a pure Pearson penalty when coverage is poor. Adding the KL term
 1119 enforces curvature and gives the cap

$$1120 \quad \kappa^* \leq \frac{1-\gamma}{\beta}, \quad \chi^2(\pi_{\mu^*} \| \pi_\beta) \leq \frac{\beta}{2\alpha} - 1,$$

1121

1122 which stabilizes the update in low density regions. When the behavior policy is a Gaussian mixture,
 1123 convexity in the second argument of both divergences yields additive upper bounds that justify training
 1124 by data clusters with random cluster selection while increasing a computable lower bound to the true
 1125 mixture objective.

1134
1135

E EXPERIMENT DETAILS

1136
1137

E.1 EXTENDED IMPLEMENTATION

1138
1139
1140
1141
1142
1143
1144
1145
1146
1147

Our method is designed to be plug-and-play and can be readily incorporated into numerous existing offline RL frameworks. In the experiments, we instantiate it on top of both CQL and TD3+BC. Unless explicitly stated, CQL serves as the base algorithm, and our method is indicated with the notation "*Ours*". We implement all experiments in PyTorch 2.1.2 on Ubuntu 20.04.4 LTS with four NVIDIA GeForce RTX 3090 GPUs. The actor and critic are ReLU multilayer perceptrons with four hidden layers of width 256. We train with Adam using batch size 256, learning rate 1×10^{-4} for the actor, learning rate 3×10^{-4} for the critic, and discount factor $\gamma = 0.99$. Unless stated otherwise, we use default hyperparameters α following CQL (Kumar et al., 2020a). In addition, we use the network's penultimate layer (the learned features) as a computationally tractable surrogate for $\nabla_x Q_\psi(x)$.²

³ We follow the D4RL protocol for normalized scores. Given a task score and the corresponding random and expert scores (as reported in Table 15), the normalized score is defined as

$$\text{normalized score} = 100 \times \frac{\text{score} - \text{random score}}{\text{expert score} - \text{random score}}.$$

1150

Unless noted, we report the mean normalized score over 3 to 5 repetitions per setting.

1151

E.2 BENCHMARK

1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167

We evaluate our method on the widely recognized offline RL benchmark D4RL (Fu et al., 2020; Todorov et al., 2012), which encompasses several domains, including Locomotion, Maze2D, AntMaze, Adroit, and Kitchen as illustrated in Figure 7. The locomotion domain includes four continuous robotic control tasks ("HalfCheetah", "Hopper", "Walker2d", and "Ant"), each providing four dataset quality levels (expert, medium-expert, medium, and medium-replay). The Maze2D domain requires a 2D agent to navigate to fixed goal positions across three maze sizes ("umaze", "medium", and "large"), featuring both dense and sparse reward variants. In addition, we consider the Adroit suite of high-dimensional robotic manipulation tasks ("pen", "door", "relocate", and "hammer"), using both "human" and "cloned" datasets. We further include the AntMaze benchmark for long-horizon navigation with sparse rewards, covering eight maze configurations ("umaze", "umaze-diverse", "medium-play", "medium-diverse", "large-play", "large-diverse", "ultra-play", and "ultra-diverse"). Finally, we evaluate on the Franka Kitchen environment, a 9-DoF multi-task manipulation benchmark, using the "mixed", "partial", and "complete" settings, which require the agent to accomplish multiple goal-conditioned sub-tasks within a single episode.

1168

Subsequently, we evaluate C^4 by addressing the following key questions:

1169

1. **Evaluation on more benchmarks with reduced data:** How does C^4 compare against recent state-of-the-art offline RL, particularly within the challenging 10k-sample setting?
2. **Generalization:** How does our method perform across a broader suite of datasets, especially in extremely small data regimes?
3. **Scalability and consistency:** Is there a performance trade-off on large datasets, and does our method consistently outperform baselines across the entire spectrum of data regimes?
4. **Covariance control under C^4 :** Under the C^4 intervention, can the covariance be effectively maintained at a low level?
5. **Robustness and efficiency:** How sensitive is the method to initialization? What do ablation studies reveal, and does C^4 introduce additional computational overhead?

1170

1171

1172
1173

1174

1175

1176

1177

1178
1179

1180

1181

E.3 EVALUATION ON MORE BENCHMARKS WITH REDUCED DATA

1182

1183

1184
1185
1186
1187

To rigorously evaluate performance in the small-data regime, the primary motivation for our approach, Table 2 reports normalized D4RL scores across all tasks containing at most 10k transitions. This

²To avoid expensive double backpropagation, we use the feature layer as a proxy. This controls input sensitivity via the chain rule, akin to layer-wise Lipschitz constraints (Miyato et al., 2018; Gouk et al., 2021).

³We treat this as a practical engineering approximation. Our code provides both versions, and we recommend the exact $\nabla_x Q$ -based implementation for theoretical rigor.

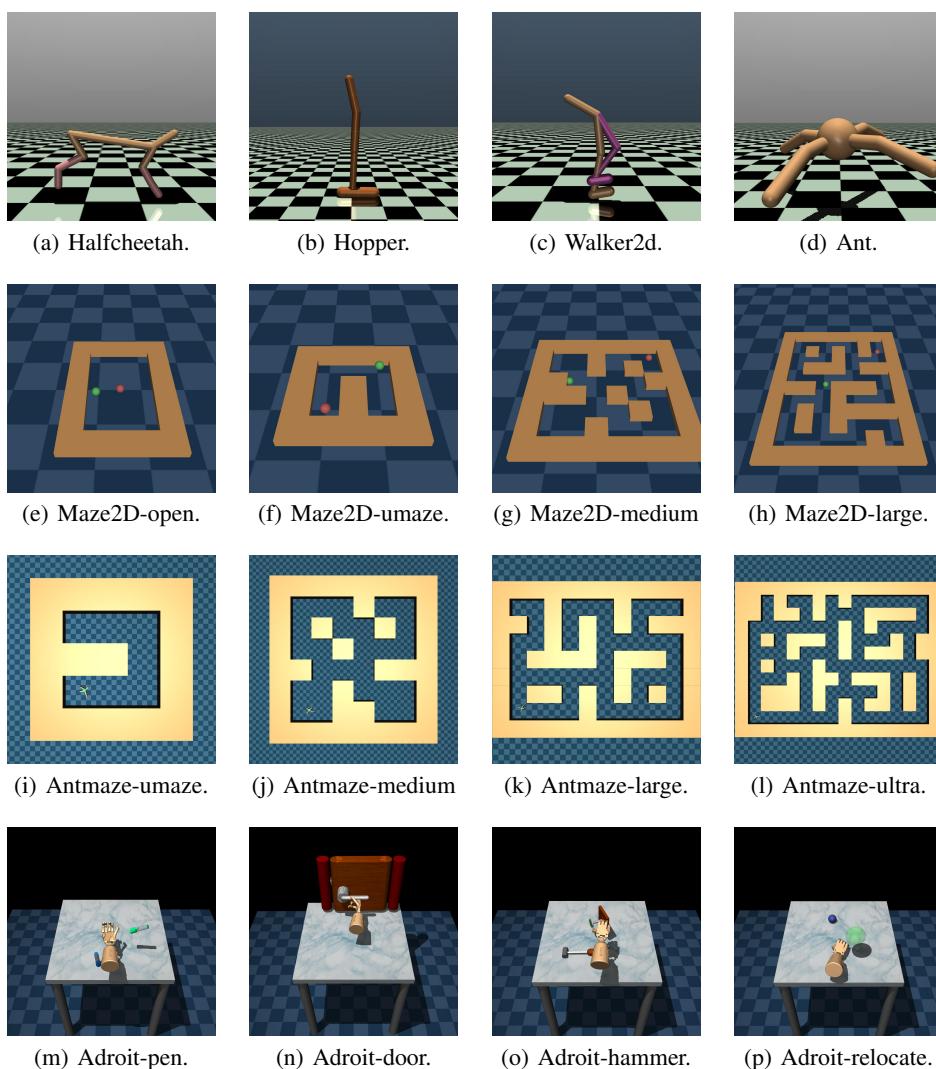


Figure 7: Locomotion, Maze2D, AntMaze and Adroit tasks.

selection encompasses the sample-reduced locomotion tasks (Hopper, HalfCheetah, Walker2d) as well as naturally sparse datasets: Kitchen-complete, Pen-human, and Door-human. Our method demonstrates superior generalization, achieving the highest average score of **58.1** and consistently outperforming strong baselines like BPPO and TSRL in these strictly data-constrained environments.

Furthermore, we evaluated additional D4RL datasets beyond locomotion, including Adroit, AntMaze, and Maze2D, with results reported in Fig. 8 and Tables 3, 4, and 5. The results show that our method delivers consistently strong performance across these diverse benchmarks and achieves remarkable gains in the vast majority of small data regimes.

E.4 GENERALIZATION AND COMPATIBILITY WITH SOTA OFFLINE RL METHODS

Improvements on standard baselines. We first examine the generalization capability of C^4 as a plug-in module for established baselines. Table 6 compares CQL with and without the C^4 module on the full D4RL locomotion datasets. Rather than degrading performance, C^4 increases the total normalized score from 695.5 to 742.1. In tasks where the base algorithm already performs strongly (e.g., Hopper-medium-expert), C^4 maintains competitive performance, while in more challenging

1242
1243 Table 2: Normalized D4RL scores on tasks with $\leq 10k$ samples per dataset. We compare performance
1244 on reduced-sample locomotion tasks and inherently small datasets (Kitchen, Pen, Door).

Task ($\leq 10k$)	BC	TD3BC	CQL	IQL	DOGE	BPPO	TSRL	A2PR	Ours
Hopper-m	28.8	30.7	50.1	61.0	55.6	55.0	60.9	55.9	69.2
Hopper-mr	19.7	11.3	13.2	16.2	19.1	45.1	23.5	12.5	45.9
Hopper-me	38.2	22.6	43.2	51.7	36.8	27.9	56.6	49.7	81.3
Halfcheetah-m	40.2	25.9	41.7	35.6	42.8	28.5	43.3	37.1	46.3
Halfcheetah-mr	25.2	29.1	16.3	34.1	26.3	34.4	27.7	23.6	43.1
Halfcheetah-me	33.7	23.5	39.7	14.3	33.1	22.3	37.2	32.4	46.9
Walker2d-m	25.4	11.2	54.1	34.2	53.7	54.7	47.3	5.9	65.9
Walker2d-mr	2.5	9.3	13.8	17.7	15.5	29.5	27.6	34.4	55.4
Walker2d-me	35.1	12.4	26.0	38.0	42.5	61.3	50.9	56.5	96.3
Kitchen-c	33.8	0.0	31.3	51.0	10.2	91.5	5.7	8.3	55.5
Pen-h	9.5	9.5	41.2	71.5	35.8	117.8	85.7	-0.1	85.3
Door-h	0.6	0.6	10.7	4.3	-1.1	25.9	0.3	-0.3	5.8
Average	24.4	15.5	31.8	35.8	30.9	49.5	38.9	26.3	58.1

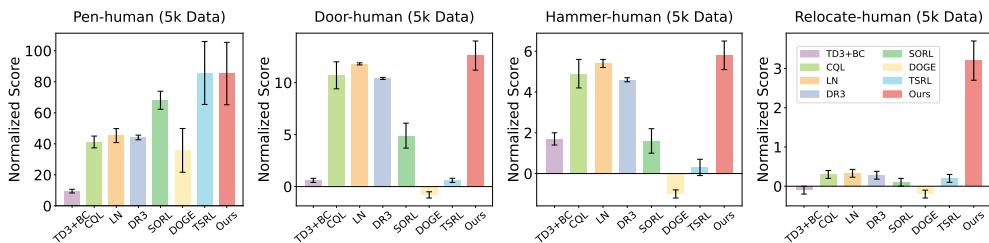


Figure 8: Comparison on Adroit tasks over different data sizes.

1265
1266
1267
1268 settings (e.g., Hopper-medium, Walker2d-medium-replay) it yields notable gains. These observations
1269 suggest that as data density increases, the gradient distribution becomes more stable and the C^4
1270 penalty naturally adjusts, avoiding over-regularization and retaining the strengths of the underlying
1271 algorithm.

1272
1273
1274 **Compatibility with stronger offline RL methods.** Beyond standard baselines, we investigate
1275 whether C^4 can further enhance recent state-of-the-art (SOTA) algorithms, specifically BPPO (Zhuang
1276 et al., 2023) and A2PR (Liu et al., 2024). While these methods achieve strong performance on standard
1277 benchmarks, they remain susceptible to overfitting in strictly limited data regimes (e.g., the 10k-
1278 sample setting). Theoretically, both algorithms rely on temporal-difference (TD) learning for value
1279 estimation: A2PR utilizes Q-learning updates, while BPPO employs a SARSA-style value warm-up.
1280 Consequently, they inherit the vulnerability to high cross-covariance terms in the TD error when
1281 data is scarce. We postulate that C^4 serves as a complementary regularizer to these approaches by
1282 explicitly controlling the covariance induced by TD updates. To test this, we integrate C^4 into BPPO
1283 and A2PR without altering their core mechanisms.

1284 The results, summarized in Tables 7 and 8, indicate substantial performance gains. For **BPPO**
1285 (Table 7), adding C^4 consistently improves performance across diverse tasks, raising the average
1286 normalized score from 38.3 to 53.5—a relative improvement of 39.6%. For **A2PR** (Table 8), the
1287 effect is even more pronounced: the method achieves an average score of 57.6 compared to the
1288 baseline of 31.0, corresponding to an 85.9% relative gain. These findings suggest that uncontrolled
1289 cross-covariance is a fundamental bottleneck even for advanced offline RL methods, and C^4 provides
1290 a robust, algorithm-agnostic solution to mitigate this issue in small-data regimes.

E.5 SCALABILITY AND CONSISTENCY

1291
1292 A central question for any regularization technique designed for data scarcity is whether it hinders
1293 learning when data is abundant. In this subsection, we examine whether our method imposes a
1294 performance trade-off on large datasets and how consistently it scales across varying data budgets.

1296 Table 3: Average normalized score on D4RL Adroit tasks with reduced-size datasets ($\leq 10k$ samples).
1297

Task	Size	TD3BC	CQL	IQL	LN	DR3	SORL	DOGE	BPPO	TSRL	A2PR	Ours
Pen-human	5k	9.5	41.2	71.5	45.3	44.1	68.1	35.8	117.8	85.7	-0.1	85.3
Hammer-human	5k	1.7	4.9	4.3	5.4	4.6	1.6	-1.0	2.4	0.3	-0.3	5.8
Door-human	5k	0.6	10.7	2.9	11.8	10.4	4.9	-0.8	25.9	0.6	-0.2	12.6
Relocate-human	5k	-0.1	0.3	1.5	0.33	0.28	0.1	-0.2	-0.1	0.2	0.1	3.2
Pen-cloned	10k	-0.2	1.8	35.9	32.5	2.0	30.1	33.5	30.4	38.4	-0.1	58.2
Hammer-cloned	10k	0.0	0.5	1.5	0.6	0.4	0.7	-0.2	8.4	0.4	-0.3	3.5
Door-cloned	10k	-0.3	-0.6	2.6	-0.2	-0.3	-0.6	0.0	-0.1	0.1	-0.3	2.8
Relocate-cloned	10k	-0.2	-0.3	1.4	-0.2	-0.1	-0.3	0.0	0.2	-0.2	0.2	1.4
Average	-	1.4	7.3	15.2	12.0	7.7	13.1	8.4	23.1	15.7	-0.1	21.6

1309 Table 4: Average score on D4RL Maze2D tasks with reduced-size datasets (10k samples).
1310

Task	TD3BC	CQL	IQL	LN	DR3	SORL	DOGE	BPPO	TSRL	A2PR	Ours
Maze2D-open	12.3	52.3	63.6	22.1	37.0	58.0	70.1	75.4	57.0	35.7	83.0
Maze2D-umaze-dense	104.5	74.1	103.6	86.5	117.6	63.4	115.1	51.4	138.0	125.5	130.3
Maze2D-umaze	13.5	35.9	68.6	17.9	76.9	72.5	52.8	58.9	76.9	100.6	87.8
Maze2D-medium-dense	20.8	38.0	100.1	68.8	85.7	119.4	100.9	81.2	119.9	108.7	145.9
Maze2D-medium	76.6	80.1	104.4	107.3	93.2	96.4	127.7	132.0	118.0	156.0	122.3
Maze2D-large-dense	91.9	78.5	181.7	105.8	133.5	115.4	149.3	217.2	160.0	155.9	166.1
Maze2D-large	28.5	42.7	103.2	115.4	82.2	58.3	126.5	228.1	140.0	97.3	152.9
Average	49.7	57.4	103.6	74.8	89.4	83.3	106.1	120.6	115.7	111.4	126.9

1326 **Adaptation to large-scale benchmarks.** To address the first question, we assess how our plug-in
1327 approach compares against state-of-the-art methods specifically tuned for general offline RL bench-
1328 marks using full replay buffers (containing millions of transitions). Table 9 reports the normalized
1329 scores on locomotion tasks. CQL+ C^4 demonstrates robust performance, surpassing standard base-
1330 lines like IQL and TD3BC, and remaining highly competitive with recent strong methods such as
1331 BPPO and A2PR. While our primary contribution lies in solving the small-sample dilemma, these
1332 results confirm that C^4 is a safe and versatile plug-in: it significantly boosts data efficiency in sparse
1333 regimes while automatically adapting to large-scale datasets without requiring manual tuning or
1334 deactivation.

1335
1336
1337 **Consistency across varying data budgets.** To scrutinize the scaling behavior more granularly, we
1338 visualize the performance trends as the training set size grows. First, we benchmark eight offline RL
1339 algorithms on the challenging Adroit tasks (Pen, Hammer, Door, and Relocate) under cloned regimes,
1340 as shown in Fig. 10. Each curve traces the performance across budgets of $\{1, 5, 10, 100, 500\}$
1341 thousand state-action pairs. Our method attains the highest returns on most manipulation tasks and
1342 scales favorably with data availability, pointing to strong robustness and transfer capability under
1343 contact-rich dynamics.

1344 Separately, we assess seven offline RL algorithms on the standard Gym domains (HalfCheetah,
1345 Hopper, Walker2d, and Ant) across diverse dataset qualities (medium-expert, expert, medium,
1346 medium-replay, and full-replay), as shown in Fig. 9. These curves utilize budgets of $\{3, 5, 10, 50, 100\}$
1347 thousand pairs. While all baselines naturally benefit from larger datasets, our approach consistently
1348 achieves the top trajectories and exhibits the clearest gains on replay datasets. This suggests that
1349 C^4 not only adapts to scale but also generalizes better to varied dynamics and distribution shifts
throughout the learning spectrum.

1350 Table 5: Normalized score on D4RL AntMaze tasks with reduced-size datasets (10k samples).
1351

Task	TD3BC	CQL	IQL	LN	DR3	SORL	DOGE	BPPO	TSRL	A2PR	Ours
AntMaze-umaze	20.9	21.1	69.8	48.1	41.1	65.3	78.9	53.3	74.3	69.2	68.7
AntMaze-umaze-diverse	16.8	43.3	58.1	29.7	0.5	39.1	43.8	45.1	57.6	27.5	65.9
AntMaze-medium-diverse	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	7.2
AntMaze-medium-play	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.3	2.9
AntMaze-large-diverse	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.8
AntMaze-large-play	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	7.3
Average	6.3	10.7	21.4	13.0	6.9	17.4	20.5	16.5	22.0	16.2	27.0

1361 Table 6: Comparison of CQL with and without C^4 on full-size (see Table 15) D4RL locomotion
1362 datasets. The module improves the total score without inducing performance degradation.
1363

Method	Hop.-m	Hop.-mr	Hop.-me	Half.-m	Half.-mr	Half.-me	Wal.-m	Wal.-mr	Wal.-me
CQL	58.5	95.0	105.4	41.0	45.5	91.6	72.5	77.2	108.8
CQL + C^4	85.9	100.7	89.4	48.5	44.7	91.6	81.8	90.9	108.6

1364 E.6 COVARIANCE CONTROL UNDER C^4

1365 We monitor the cross covariance between current and next-state input gradients throughout training.
1366 For a mini-batch \mathcal{B} , define $g_i = \nabla_x Q_\phi(x_i)$, $g'_i = \nabla_{x'} Q_{\phi'}(x'_i)$. The empirical cross covariance matrix
1367 is $\Sigma_{\mathcal{B}} = \frac{1}{|\mathcal{B}| - 1} \sum_{i \in \mathcal{B}} (g'_i - \bar{g})(g_i - \bar{g})^\top$. We report the dimension-normalized trace $\text{tr}_n(\Sigma_{\mathcal{B}}) =$
1368 $\frac{1}{m} \text{tr}(\Sigma_{\mathcal{B}})$, which targets the harmful TD component in the variance decomposition $\text{Var}[\delta] \approx A +$
1369 $B - C$, $C = 2\gamma kk' \text{Cov}(\langle \mathbf{w}', \nabla_{x'} Q_{\phi'}(x') \rangle, \langle \mathbf{w}, \nabla_x Q_\phi(x) \rangle)$. In Fig. 11 we visualize $\text{tr}_n(\Sigma_{\mathcal{B}})$ over
1370 training. Across Locomotion tasks, C^4 keeps $\text{tr}_n(\Sigma_{\mathcal{B}})$ substantially lower than LN, CQL, and DR3
1371 during most of training, with the gap most pronounced on replay datasets. This indicates that C^4
1372 suppresses the cross covariance while preserving stable learning.
1373

1374 E.7 ROBUSTNESS AND EFFICIENCY

1375 In this subsection, we empirically study the robustness of our method to key hyperparameters through
1376 ablation studies and analyze its computational efficiency. We also provide visual insights into the
1377 clustering mechanism.
1378

1379 **Cluster Visualization.** To intuitively understand the learned representations, we visualize the
1380 clustering structure for CQL+ C^4 and TD3BC+ C^4 in Fig. 12 and Fig. 13, respectively. For each
1381 method, we sample snapshots across the full training process and plot the stacked gradient pairs after
1382 t-SNE reduction to two dimensions, with points colored by their mixture assignments. The figures
1383 demonstrate that our method effectively separates distinct gradient modes throughout representative
1384 stages of training.
1385

1386 **Sensitivity to the number of clusters K .** We first investigate the impact of the number of clusters
1387 K on performance. Table 10 reports a sensitivity analysis on 10k-sample D4RL tasks. We observe
1388 that performance improves rapidly as K increases from 1 and quickly plateaus around $K = 3\text{--}5$.
1389 Performance remains stable even when K is as large as 20, indicating that the method is not overly
1390 sensitive to this choice. Based on these results, we recommend $K = 5$ as a robust default for small,
1391 low-coverage datasets.
1392

1393 For larger sample regimes, we further examine the *effective* number of clusters used by the algorithm
1394 when initialized with $K = 20$. As shown in Table 11, only a handful of clusters are effectively
1395 occupied, and this number decreases as the dataset becomes denser (from 10^4 to $\sim 10^6$ samples).
1396 This suggests that for large or high-coverage datasets, K can be safely reduced without sacrificing
1397 performance.
1398

1404
1405 Table 7: Performance of BPPO with and without C^4 on 10k-sample datasets (normalized scores).
1406
1407

Method	Ant	Halfcheetah	Hopper	Walker2d	AntMaze	Pen	Door	Kitchen	Avg.
BPPO	85.5	22.3	27.9	61.3	63.4	30.4	-0.1	15.9	38.3
BPPO + C^4	87.1	36.1	56.0	85.2	66.2	74.5	-0.1	23.1	53.5 (+39.6%)

1409 Table 8: Performance of A2PR with and without C^4 on 10k-sample datasets.
1410
1411

Method	Ant	Halfcheetah	Hopper	Walker2d	AntMaze	Pen	Door	Kitchen	Avg.
A2PR	66.7	32.4	49.7	56.5	42.5	-0.1	-0.3	0.3	31.0
A2PR + C^4	92.6	49.0	83.6	101.3	75.8	47.9	0.1	10.2	57.6 (+85.9%)

1414
1415
1416
1417 **Sensitivity to the penalty weight λ .** We next study the effect of the penalty weight λ in the
1418 cross-covariance regularizer. Table 12 summarizes the results across medium (“-m”), medium-replay
1419 (“-mr”), and medium-expert (“-me”) D4RL tasks. We find that the optimal λ depends on dataset
1420 quality and the dispersion of the feature space. For high-quality datasets (e.g., medium-expert),
1421 trajectories tend to form locally dense clusters with small within-cluster covariance, and a relatively
1422 small penalty ($\lambda \in [0.05, 0.1]$) suffices. In contrast, replay-style datasets or those with pronounced
1423 distribution shift exhibit more scattered features and larger cross-covariances, benefiting from larger
1424 penalties (e.g., $\lambda \in [0.3, 0.5]$). A practical heuristic is to choose λ such that the weighted penalty
1425 term is on the same order of magnitude as the temporal-difference loss.

1426 **Computational efficiency of clustering.** We now analyze the computational profile of the gradient-
1427 space clustering procedure. Theoretically, we implement clustering via an Expectation–Maximization
1428 algorithm with complexity $O(KNm)$ for N samples, K clusters, feature dimension m , and number of
1429 EM iterations t (Bishop & Nasrabadi, 2006). Importantly, we do *not* re-cluster at every gradient step:
1430 we subsample representative points from the replay buffer and perform clustering only periodically.
1431 Once clusters are formed, computing the localized covariance penalty during each critic update is
1432 linear in the batch size and adds negligible overhead.

1433 Empirically, Table 13 reports the proportion of total training time spent in clustering across tasks and
1434 dataset scales. For our primary target regime of scarce data (e.g., 10^3 – 10^4 samples), the overhead is
1435 about 1% of the total training time, which is effectively negligible. On larger, million-scale datasets,
1436 the overhead increases to roughly 15–20%, which we consider a reasonable trade-off given the
1437 substantial stability and performance improvements (up to $\sim 30\%$ gains in return) observed in our
1438 main results. Overall, the cost of C^4 remains comparable to that of commonly used regularizers.

1439 **Clustering update frequency.** Finally, we examine how often clusters need to be updated. Table 14
1440 reports the performance of CQL+ C^4 when varying the clustering frequency, defined as the number
1441 of critic updates between two clustering runs. We observe a clear “sweet spot” around 100–200
1442 updates: updating too frequently (e.g., every 20 steps) can destabilize the critic by introducing rapidly
1443 changing group assignments, while updating too infrequently (e.g., every 1000 steps) leads to stale
1444 cluster statistics and degraded performance.

1445 Consequently, we adopt a moderate default frequency of 200 critic updates, which captures distribu-
1446 tional shifts in the replay buffer while maintaining stable learning. Importantly, this robustness to
1447 update frequency directly supports our efficiency claims: because optimal performance is achieved
1448 with intermittent rather than per-step clustering, the clustering cost can be heavily amortized over
1449 many critic updates, keeping the overall runtime overhead low (cf. Table 13).

1450 Overall, these analyses show that C^4 is robust to reasonable choices of K , λ , and clustering fre-
1451 quency, and that it introduces only modest computational overhead even on large-scale offline RL
1452 benchmarks.

1453
1454
1455
1456
1457

1458
1459Table 9: Normalized scores on locomotion tasks with full datasets ($\sim 10^6$ samples).

Task	BC	TD3BC	IQL	DOGE	TSRL	BPPO	A2PR	CQL	CQL+C ⁴
Hopper-m	52.9	59.3	66.3	98.6	86.7	93.9	100.8	58.5	85.9 (+27.4)
Hopper-mr	18.1	60.9	94.7	76.2	78.7	92.5	101.5	95.0	100.7 (+5.7)
Hopper-me	52.5	98.0	91.5	102.7	95.9	112.8	112.1	105.4	89.4 (-16.0)
Hopper-e	108.0	100.1	99.3	107.4	110.0	113.2	115.0	98.4	110.1 (+11.7)
Halfcheetah-m	42.6	48.3	47.4	40.6	48.2	44.0	68.6	41.0	48.5 (+7.5)
Halfcheetah-mr	55.2	44.6	44.0	42.8	42.2	41.0	56.6	45.5	44.7 (-0.8)
Halfcheetah-me	55.2	90.7	86.7	78.7	92.0	92.5	98.3	91.6	91.6 (+0.0)
Halfcheetah-e	92.2	82.1	88.9	93.5	94.3	95.3	103.2	95.6	93.2 (-2.4)
Walker2d-m	75.3	83.7	78.3	86.8	77.5	83.6	89.7	72.5	81.8 (+9.3)
Walker2d-mr	26.0	81.8	73.9	87.3	66.1	77.6	94.4	77.2	90.9 (+13.7)
Walker2d-me	107.5	110.1	109.6	110.4	106.4	113.1	114.7	108.8	108.6 (-0.2)
Walker2d-e	107.9	108.2	109.7	107.3	110.2	113.8	114.2	110.3	109.7 (-0.6)
Average	66.1	80.7	82.5	86.1	84.0	89.4	97.4	83.3	87.9 (+4.6)

1475

1476

Table 10: Sensitivity of CQL+C⁴ to the number of clusters K on 10k-sample D4RL tasks.

Method	K	Ant	Halfcheetah	Hopper	Walker2d	AntMaze	Pen	Kitchen
CQL	—	21.0	39.7	43.2	26.0	21.1	1.8	0.6
CQL+C ⁴	1	59.3	41.3	68.3	51.2	55.1	29.8	11.7
CQL+C ⁴	2	66.5	48.2	75.8	82.6	62.9	36.0	17.1
CQL+C ⁴	3	70.6	47.5	90.8	87.8	67.3	51.3	19.5
CQL+C ⁴	5	71.3	46.0	85.3	96.3	68.7	58.2	20.9
CQL+C ⁴	7	69.6	46.4	82.1	94.9	72.4	58.0	19.3
CQL+C ⁴	10	68.5	46.3	78.6	90.6	68.5	52.4	18.0
CQL+C ⁴	20	69.0	44.9	73.3	87.3	62.8	54.0	19.8

1487

1488

Table 11: Average number of effective clusters for CQL+C⁴ when initialized with $K = 20$.

Samples	Ant	Halfcheetah	Hopper	Walker2d	AntMaze	Pen	Kitchen
10k	6	4	4	5	5	5	6
$\sim 10^6$ samples	3	2	2	3	4	3	3

1493

1494

Table 12: Sensitivity of CQL+C⁴ to the penalty weight λ .

Task name	$\lambda = 0.0$	$\lambda = 0.05$	$\lambda = 0.1$	$\lambda = 0.3$	$\lambda = 0.5$	$\lambda = 1.0$
Halfcheetah-m	30.1	38.9	44.1	46.3	45.0	40.3
Hopper-m	55.6	68.6	75.0	69.2	69.6	62.8
Walker2d-m	55.3	57.9	61.1	65.9	65.2	63.7
Halfcheetah-mr	33.6	32.3	37.8	35.6	43.1	36.6
Hopper-mr	25.0	35.5	49.6	51.0	45.9	50.2
Walker2d-mr	20.1	35.3	38.1	44.7	55.4	39.0
Halfcheetah-me	39.9	52.2	46.9	42.1	27.4	27.0
Hopper-me	65.0	74.2	81.3	70.8	67.6	63.5
Walker2d-me	63.6	95.9	96.3	89.9	87.9	79.2

1506

1507

Table 13: Proportion of total training time spent in gradient-space clustering for CQL+C⁴.

Samples	Ant	HalfCheetah	Hopper	Walker2d	AntMaze	Pen	Door	Kitchen
10^3	1.0%	0.9%	1.2%	1.2%	2.9%	1.7%	1.5%	2.0%
$\sim 10^6$	18.7%	15.3%	14.4%	13.8%	22.6%	17.9%	15.1%	16.4%

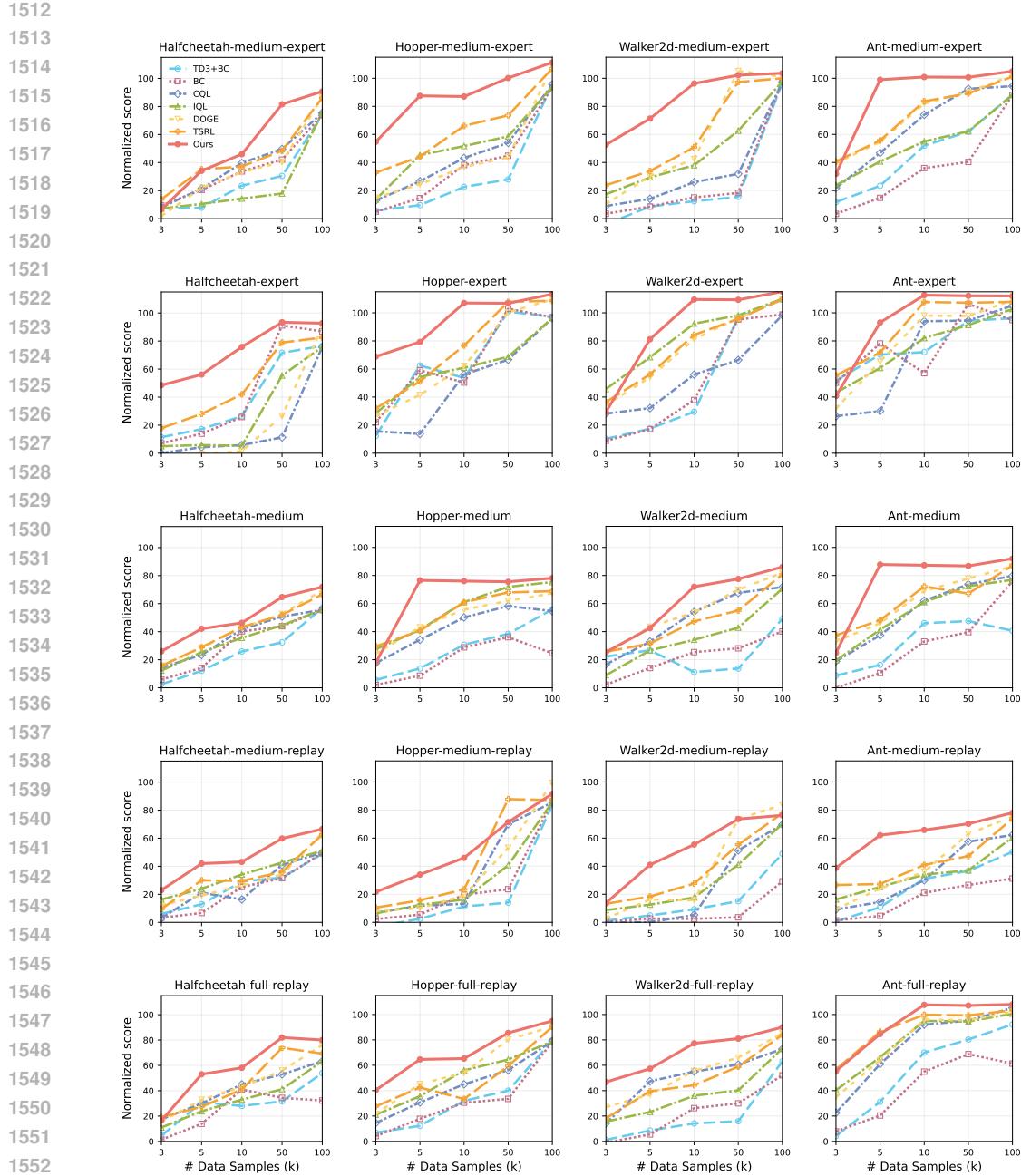


Figure 9: Comparison on Locomotion tasks over different data size.

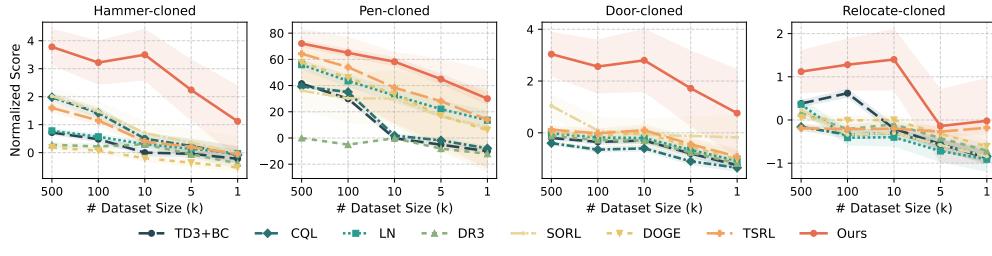


Figure 10: Comparison of Adroit tasks over different data sizes.

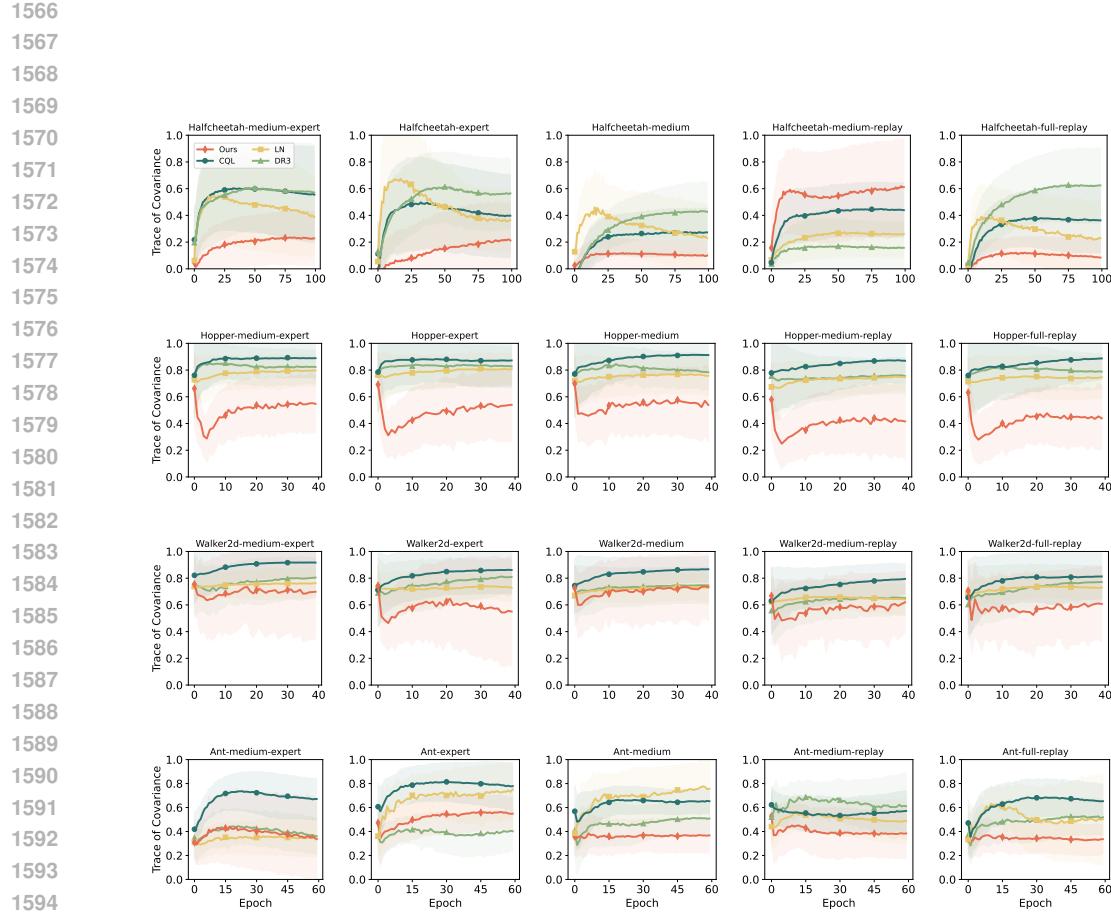


Figure 11: Trace of cross covariance during training on MuJoCo locomotion. Tasks HalfCheetah Hopper Walker2d Ant. Dataset regimes: medium-expert, expert, medium, medium-replay, full-replay. The x-axis is epoch. The y axis is the trace of the empirical cross covariance, lower is better. Methods include Ours (CQL+ C^4), LN (CQL+LN), CQL, and DR3 (CQL+DR3).

Table 14: Sensitivity of CQL+ C^4 to clustering frequency (number of updates between clustering).

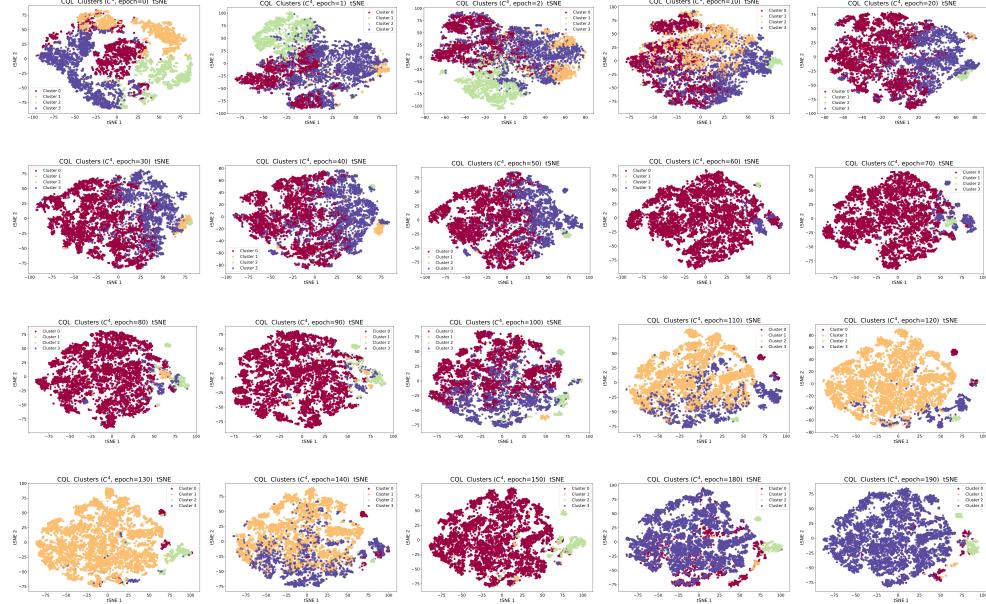
Task name	Freq. = 20	Freq. = 50	Freq. = 100	Freq. = 200	Freq. = 500	Freq. = 1000
Halfcheetah-m	39.1	36.7	41.0	46.3	36.6	22.7
Hopper-m	66.9	65.0	64.7	69.2	60.8	61.4
Walker2d-m	58.9	64.1	66.5	65.9	57.8	46.5
Halfcheetah-mr	29.4	29.1	38.5	43.1	37.2	36.9
Hopper-mr	51.8	54.0	54.6	45.9	36.1	37.7
Walker2d-mr	43.5	52.9	55.2	55.4	35.9	22.3
Halfcheetah-me	27.6	55.0	63.6	46.9	44.3	23.9
Hopper-me	45.5	79.7	87.7	81.3	73.0	61.6
Walker2d-me	69.3	74.1	91.7	96.3	75.1	74.9

1620

1621

1622

1623

Figure 12: Clustering visualization for CQL+C⁴.

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

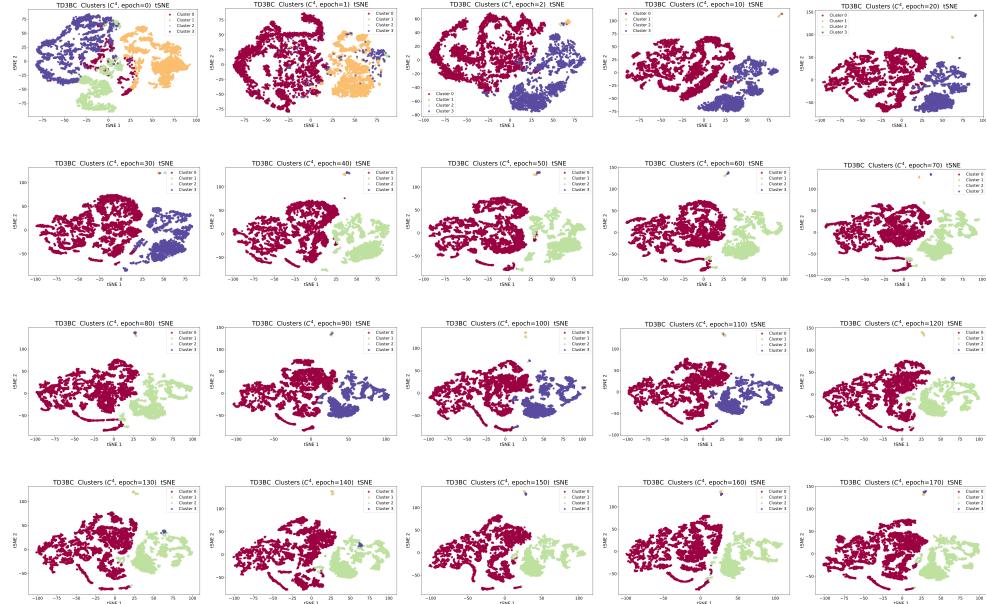
1646

1647

1648

1649

1650

Figure 13: Clustering visualization for TD3BC+C⁴.

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

Table 15: Datasets overview.

Task Name	# Samples	# Traj	random	expert
<i>Maze2D</i>				
maze2d-open	10^6	22148	0.01	20.7
maze2d-umaze	10^6	12460	23.9	161.9
maze2d-medium	2×10^6	11889	13.1	277.4
maze2d-large	4×10^6	16727	6.7	274.0
<i>AntMaze</i>				
antmaze-umaze	10^6	10154	0.0	1.0
antmaze-umaze-diverse	10^6	1035	0.0	1.0
antmaze-medium-play	10^6	10767	0.0	1.0
antmaze-medium-diverse	10^6	2958	0.0	1.0
antmaze-large-play	10^6	13516	0.0	1.0
antmaze-large-diverse	10^6	7188	0.0	1.0
antmaze-ultra-play	10^6	10536	0.0	1.0
antmaze-ultra-diverse	10^6	6076	0.0	1.0
<i>Gym-MuJoCo</i>				
hopper-expert	10^6	1028	-20.3	3234.3
hopper-medium	10^6	2187	-20.3	3234.3
hopper-medium-replay	402000	2041	-20.3	3234.3
hopper-medium-expert	1999906	3214	-20.3	3234.3
hopper-full-replay	10^6	3515	-20.3	3234.3
halfcheetah-expert	10^6	1000	-280.2	12135.0
halfcheetah-medium	10^6	1000	-280.2	12135.0
halfcheetah-medium-replay	202000	202	-280.2	12135.0
halfcheetah-medium-expert	2×10^6	2000	-280.2	12135.0
halfcheetah-full-replay	10^6	1000	-280.2	12135.0
walker2d-expert	10^6	1001	1.6	4592.3
walker2d-medium	10^6	1191	1.6	4592.3
walker2d-medium-replay	302000	1093	1.6	4592.3
walker2d-medium-expert	1999995	2191	1.6	4592.3
walker2d-full-replay	10^6	1888	1.6	4592.3
ant-expert	10^6	1035	-325.6	3879.7
ant-medium	10^6	1203	-325.6	3879.7
ant-medium-replay	302000	485	-325.6	3879.7
ant-medium-expert	1999946	2237	-325.6	3879.7
ant-full-replay	10^6	1319	-325.6	3879.7
<i>Adroit</i>				
pen-human	5000	25	96.3	3076.8
pen-cloned	5×10^5	3755	96.3	3076.8
pen-expert	499206	5000	96.3	3076.8
hammer-human	11310	25	-274.9	12794.1
hammer-cloned	10^6	3606	-274.9	12794.1
hammer-expert	10^6	5000	-274.9	12794.1
door-human	6729	25	-56.5	2880.6
door-cloned	10^6	4358	-56.5	2880.6
door-expert	10^6	5000	-56.5	2880.6
relocate-human	9942	25	-6.4	4233.9
relocate-cloned	10^6	3758	-6.4	4233.9
relocate-expert	10^6	5000	-6.4	4233.9

1728 F USE OF LARGE LANGUAGE MODELS
17291730 In this manuscript, the authors make limited use of large language models, including OpenAI's GPT-5
1731 and DeepSeek, mainly for proofreading, language polishing, improving textual clarity, and reviewing
1732 the logical flow of arguments. In addition, Anthropic's Claude is used as an auxiliary tool to assist
1733 with coding tasks during the research process. The use of these models is restricted to supportive roles
1734 in writing and technical implementation; they do not contribute to research design, data collection,
1735 data analysis, or the formulation of scientific claims. All substantive content and conclusions remain
1736 entirely the responsibility of the authors.

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781