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Abstract
The Area Under the ROC Curve (AUC) is a key
metric for classification, especially under class
imbalance, with growing research focus on opti-
mizing AUC over accuracy in applications like
medical image analysis and deepfake detection.
This leads to fairness in AUC optimization becom-
ing crucial as biases can impact protected groups.
While various fairness mitigation techniques ex-
ist, fairness considerations in AUC optimization
remain in their early stages, with most research
focusing on improving AUC fairness under the
assumption of clean protected groups. However,
these studies often overlook the impact of noisy
protected groups, leading to fairness violations
in practice. To address this, we propose the first
robust AUC fairness approach under noisy pro-
tected groups with fairness theoretical guarantees
using distributionally robust optimization. Exten-
sive experiments on tabular and image datasets
show that our method outperforms state-of-the-art
approaches in preserving AUC fairness. The code
is in https://github.com/Purdue-M2/
AUC_Fairness_with_Noisy_Groups.

1. Introduction
The Area Under the ROC Curve (AUC) (Hanley & McNeil,
1982) is one of the most widely used performance metrics in
classification tasks, particularly when addressing challenges
such as class imbalance or uncertain relative costs of false
positives and false negatives. It provides a measure of a
classifier’s ability to distinguish between classes across all
possible decision thresholds, making it especially relevant in
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domains like information retrieval (Cortes & Mohri, 2003),
medical image analysis (Yuan et al., 2021), and deepfake
detection (Pu et al., 2022). In particular, in deepfake de-
tection, misclassifying fake content as real can lead to the
widespread dissemination of misinformation, potentially un-
dermining public trust, manipulating discourse, or enabling
fraud. AUC is thus preferred over fixed-threshold metrics,
as it captures model performance comprehensively across
varying operational settings.

This has motivated numerous studies (Yang, 2021; Kumagai
et al.; Guo et al., 2022; Zhang et al., 2023) focusing on
training AI models to maximize AUC rather than relying on
traditional loss functions (e.g., cross-entropy loss), as this
approach directly optimizes a metric better aligned with the
desired application outcomes. By doing so, models achieve
improved performance in scenarios where distinguishing
between classes with high sensitivity and specificity is es-
sential.

The optimization of AUC in machine learning models ne-
cessitates a focus on fairness, particularly in light of grow-
ing concerns that algorithmic decisions often exacerbate
inequities faced by vulnerable groups defined by sensitive
attributes such as gender and race, also known as protected
groups. Recent studies (Caton & Haas, 2024; Kenfack et al.,
2024) have highlighted how machine learning models, if left
unchecked, can perpetuate or worsen biases in allocation
decisions, leading to unfavorable outcomes for these groups.
To address this, a range of bias mitigation techniques (Hu
& Chen, 2024; Lin et al., 2024; Tian et al., 2025; Kollias
et al., 2024; Ju et al., 2024) has been developed, including
methods that focus on statistical fairness metrics derived
from confusion matrices. However, fairness considerations
in AUC optimization (Yang et al., 2023; Yao et al., 2023)
remain an early stage of exploration despite its significance
in many applications and most of them focus on the group-
level AUC fairness.

The group-level fairness for AUC leads to three categories
of metrics, each addressing different aspects of disparate
impacts. First, intra-group AUC (Beutel et al., 2019; Yao
et al., 2023) focuses constraining both positive and negative
examples to the same group. Second, inter-group AUC
(Beutel et al., 2019; Kallus & Zhou, 2019; Yao et al., 2023)
considers ranking fairness between groups, evaluating the
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Figure 1. Illustrative inter-/intra-group AUC dicrepancy examples of existing MinimaxFairAUC method (Yang et al., 2023) (dashed curves)
and our method (solid curves) on Default (Yeh & Lien, 2009) dataset with noisy levels 0 and 0.3, respectively. Notations are defined in
Section 4. In general, our method is better than MinimaxFairAUC in preserving AUC fairness, demonstrating robustness to noisy groups.

metric by comparing positive examples from one group to
negative examples from another. Lastly, a few works (Yang
et al., 2023; Yao et al., 2023) have sought to considering
both intra-group and inter-group AUC fairness during the
learning process.

Nevertheless, existing AUC fairness studies often overlook
the reliability of protected group information. This raises a
crucial question: Can AUC fairness notions be accurately
measured or effectively enforced when the protected group
data is noisy or unreliable? Noisy protected group labels
are prevalent in many scenarios. For instance, survey par-
ticipants may intentionally obfuscate their responses due
to concerns about privacy, fear of disclosure, or potential
discrimination, leading to response biases (Krumpal, 2013).
Similarly, in deepfake datasets, demographic annotations
are often inferred using deep learning models (Lin et al.,
2025). However, the accuracy of these annotations is inher-
ently limited, as the true demographic information cannot
be verified or tracked when the faces are AI-generated. Our
practical evaluation (see Fig. 1) reveals that training with
traditional AUC fairness under noisy protected group labels
can result in significant group AUC gap in model deploy-
ment. This highlights the critical need for designing a robust
approach to ensure reliable AUC fairness.

In this work, we propose the first robust AUC fairness ap-
proach for learning under noisy protected groups, providing
theoretical fairness guarantees. We begin by conducting ex-
periments to illustrate the adverse effects of noisy protected
group labels on existing AUC fairness methods. Next, we
introduce a novel and general AUC fairness metric that ac-
counts for both intra-group and inter-group AUC. Based on
this metric, we formulate a new learning objective for AUC
fairness using a distributionally robust optimization (DRO)
framework (Duchi & Namkoong, 2021), which bounds the
Total Variation (TV) distance between clean and noisy group
distributions. We also provide a theoretical analysis demon-
strating that our approach ensures fairness even under noisy
protected group labels. To estimate the TV distance bound,
we reformulate it in terms of noisy label ratios and pro-

pose an empirical estimation method leveraging pre-trained
multi-modal foundation models. Finally, we design an effi-
cient stochastic gradient descent-ascent (SGDA) algorithm
to optimize the proposed learning objective, enhancing both
AUC fairness and the model’s generalization capabilities in
deployment scenarios. Our key contributions are:

1. We present the first experimental analysis of the impact
of noisy protected group labels on the existing AUC
fairness learning method.

2. We introduce a novel AUC fairness metric and propose
the first approach to preserve AUC fairness under noisy
protected groups with theoretical guarantees.

3. Extensive experiments on tabular and image datasets
show that our method surpasses state-of-the-art ap-
proaches across applications like socioeconomic anal-
ysis and deepfake detection.

2. Related Work
AUC-based Fairness. A pioneering effort by Dixon et al.
(2018) introduced the Pinned AUC metric for text classifica-
tion tasks, which involves resampling the data so that each
of the two groups constitutes half of the dataset, followed
by calculating the AUC difference on the resampled data.
Building on this foundation, Beutel et al. (2019) proposed
intra-group and inter-group AUC metrics for recommender
systems, assessing whether clicked items are ranked above
unclicked items both within and across protected groups.
Their method also incorporated a regularization term to
reduce ranking unfairness. To address disparities across
groups, Kallus & Zhou (2019) developed the cross-AUC
(xAUC) metric, which identifies systematic biases where
positive instances from one group may be ranked below
negative instances from another.

In the context of general pairwise ranking, Narasimhan
et al. (2020) proposed maximizing AUC under fairness con-
straints, further advancing the exploration of cross-group
AUC fairness. Other works, such as Vogel et al. (2021),
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focused on fairness defined directly in terms of the ROC
curve, employing regularization to balance overall AUC
performance with group-level fairness requirements. More
recently, Yang et al. (2023) introduced a minimax fairness
framework that simultaneously addresses intra-group and
inter-group AUC disparities using a Rawlsian approach, sup-
ported by an efficient optimization algorithm with proven
convergence guarantees. Similarly, Yao et al. (2023) pro-
posed a scalable and efficient stochastic optimization frame-
work for AUC-based fairness constraints, demonstrating its
ability to balance classification performance and fairness
in both online and offline learning scenarios. However, all
of the aforementioned works assume clean and accurately
labeled protected groups, disregarding the impact of noisy
group labels that are common in real-world datasets. Ad-
dressing this limitation is the central focus of our paper.

Fairness with Noisy Protected Groups. Group fairness
methods typically assume accurate knowledge of protected
group labels, but in practice, these labels are often noisy
or unreliable. Enforcing fairness constraints based on such
noisy labels fails to guarantee fairness with respect to the
clean labels (Gupta et al., 2018). To address this issue,
Lahoti et al. (2020) proposed an adversarial reweighting
approach that leverages correlations between non-protected
features, task labels, and potentially unobserved group mem-
bership, demonstrating improved fairness under label uncer-
tainty in tabular datasets. However, extending this approach
to image data poses significant challenges.

Under the more conservative assumption of no protected
group information, Hashimoto et al. (2018) applied distribu-
tionally robust optimization (DRO) to enforce what Lahoti
et al. (2020) termed Rawlsian Max-Min fairness. Although
DRO-based methods can achieve reasonable fairness results
without explicit protected group labels, they are often less
effective than approaches that incorporate such information.
Building on Hashimoto et al. (2018), Wang et al. (2020)
introduced a maximum total variation distance bound in
the DRO procedure, offering the first fairness framework
with guarantees under noisy protected-group labels. Further
advancements include the work of Celis et al. (2021), who
proposed an optimization framework with provable guar-
antees on both accuracy and fairness for classifiers trained
with noisy protected attributes. Similarly, Mehrotra & Vish-
noi (2022) introduced a novel method for improving fair
rankings in the presence of noisy group labels. Additionally,
Ghazimatin et al. (2022) and Ghosh et al. (2023) conducted
empirical evaluations of fairness approaches under noisy
sensitive information. However, the aforementioned ap-
proaches are either not generalizable or are unsuitable for
direct application to pairwise ranking optimization prob-
lems. These limitations leave AUC fairness largely unex-
plored in these contexts.

Figure 2. Impact of noisy protected group labels on AUC fairness
violation (lower values indicate better AUC fairness) in two sce-
narios: (a) Socioeconomic Analysis and (b) Deepfake Detection.
Mean value is shown in black line. The standard deviation is shown
in blue background, where three random runs for each noise level.

3. Motivation
To demonstrate the impact of noisy protected group levels
on AUC fairness, we conduct experiments on the tabular
Adult dataset (for socioeconomic analysis) (Asuncion et al.,
2007) and the image-based FF++ dataset (for deepfake de-
tection) (Rossler et al., 2019; Lin et al., 2024). Noise is
introduced by flipping a portion (ranging from 0 to 50%) of
the protected group labels (e.g., gender) in the training sets.
For the Adult dataset, we evaluate the performance of the
latest AUC fairness method, MinimaxFairAUC (Yang et al.,
2023), while for the FF++ dataset, we assess the state-of-
the-art fairness approach, DAW-FDD (Ju et al., 2024). All
experiments follow the original settings specified in these
methods. We use AUC fairness violation as the evaluation
metric, which quantifies the maximum gap between group-
level (intra-group or inter-group) AUC and the overall AUC.
Then, we present the mean and standard deviation scores on
the test sets over three random runs for each noise setting.

As shown in Fig. 2, AUC fairness violation increases sig-
nificantly as the accuracy of protected group annotations
declines across all three scenarios. Specifically, Fig. 2(a)
demonstrates that conventional AUC fairness enhancement
method is highly sensitive to noisy protected group labels
in the training data. Similarly, while DAW-FDD is designed
to improve general fairness, Fig. 2(b) reveals it struggles
in maintaining AUC fairness under noisy group conditions.
These findings underscore the critical need for robust AUC
fairness approaches capable of tolerating noisy groups.

4. Methodology
In this section, we introduce a novel robust AUC fairness
approach to address the challenges discussed in the previous
section. Let X ∈ X ⊆ Rd represent the random variable
for input features, Y ∈ Y = {±1} denote the binary label,
and Z ∈ Z = {1, . . . ,m} represent the random protected
group, where m is the total number of protected groups. We
define a scoring function ϕθ : X → R, parameterized by
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θ ∈ Θ, which maps the input features to a real-valued score.

4.1. AUC Fairness

Overall AUC: The overall AUC quantifies the probability
that a model correctly ranks a positive example (e.g., X)
higher than a negative example (e.g., X ′). It is formally
defined as:

AUC(θ) = E[I[ϕθ(X)>ϕθ(X′)] | Y = 1, Y ′ = −1], (1)

where I[a] is the indicator function, which equals 1 if a
is true and 0 otherwise. To optimize the AUC score, it is
common practice to minimize the complementary AUC risk
(Hanley & McNeil, 1982), given by:

LAUC(θ) = 1−AUC(θ)

= E[I[ϕθ(X)≤ϕθ(X′)] | Y = 1, Y ′ = −1].
(2)

Group-level AUC. Following (Yang et al., 2023), the group-
level AUC is defined as:

AUCz,z′(θ)

= E[I[ϕθ(X)>ϕθ(X′)]|Y = 1, Y ′ = −1, Z = z, Z ′ = z′].
(3)

This metric captures the AUC score for comparisons be-
tween positive examples from group z and negative exam-
ples from group z′, reflecting a pairwise dependence with
respect to the groups Z,Z ′ ∈ Z . When z = z′, we refer to it
as intra-group AUC, which measures ranking performance
within a single group. Conversely, when z ̸= z′, it is termed
inter-group AUC, assessing the ranking performance across
different groups.

AUC Fairness Metric. Then, we propose the target AUC
fairness metric as follows:

h(θ) =I[ϕθ(X)>ϕθ(X′)]I[Y=1]I[Y ′=−1]

− E[I[ϕθ(X)>ϕθ(X′)]I[Y=1]I[Y ′=−1]].
(4)

Building on this, we define the group-level AUC fairness
functions as:

gz,z′(θ) = E[h(θ)|Z = z, Z ′ = z′]

= AUCz,z′(θ)−AUC(θ), ∀z, z′ ∈ Z.
(5)

The above formulation quantifies the gap (|gz,z′(θ)|) be-
tween any group-level AUC score and the overall AUC
score. To achieve AUC fairness, it suffices to enforce the
constraint gz,z′(θ) ≤ 0 ∀z, z′ ∈ Z , ensuring that all group-
level AUCs are close to the overall AUC. This, in turn, re-
duces disparities among group-level AUCs, fostering a more
equitable model performance across groups. This formula-
tion also establishes meaningful connections with several
existing fairness measures. For instance, when z = z′, it
generalizes to intra-group pairwise fairness, as studied in

Beutel et al. (2019); Yao et al. (2023). Conversely, when
z ̸= z′, it aligns with inter-group pairwise fairness, as ex-
plored in Beutel et al. (2019); Kallus & Zhou (2019); Yao
et al. (2023). Furthermore, our AUC fairness function is
closely related to the Rawlsian principle of justice (Rawls,
2001), particularly the Rawlsian AUC fairness framework
proposed by Yang et al. (2023). Specifically, if we focus
solely on maximizing the smallest group-level AUC among
all groups, without considering the second term (i.e., the
overall AUC) in Eq. (5).

However, solely emphasizing and enforcing the fairness con-
straint can lead to a trivial solution where AUCz,z′(θ) =
AUC(θ) = 0.5, which reflects no discriminatory power
in the model. To prevent this, it is necessary to simultane-
ously maximize the overall AUC score while ensuring AUC
fairness. It is worth noting that AUC is not only a fairness-
related metric but also a key performance measure for eval-
uating trained models. Consequently, directly optimizing
AUC can enhance model performance, as demonstrated in
various domains, including medical image analysis (Yuan
et al., 2021) and deepfake detection (Pu et al., 2022). In-
stead of maximizing the overall AUC, we minimize its cor-
responding AUC risk directly. This leads us to formulate
the following constrained AUC fairness problem:

min
θ

LAUC(θ), s.t. gz,z′(θ) ≤ 0,∀z, z′ ∈ Z. (6)

4.2. Robust AUC Fairness

While minimizing Eq. (6) can achieve AUC fairness under
clean protected groups, it does not guarantee fairness when
the protected groups are noisy. To address this, we propose
a robust AUC fairness learning objective by leveraging a
distributionally robust optimization (DRO) approach (Duchi
& Namkoong, 2021), inspired by Wang et al. (2020).

Formulation. Specifically, let Ẑ ∈ Z be the random vari-
able representing the noisy protected group associated with
X . The learning objective can then be reformulated as:

min
θ

LAUC(θ), s.t. ĝz,z′(θ) ≤ 0,∀z, z′ ∈ Z, (7)

where ĝz,z′(θ) = E[h(θ)|Ẑ = z, Ẑ ′ = z′]. Next, we an-
alyze how far a model trained with noisy protected group
labels using Eq. (7) deviates from satisfying the fairness con-
straints defined for clean protected groups. Let p represent
the distribution of pairwise data ((X,Y ), (X ′, Y ′)) ∼ p,
where Y = 1 and Y ′ = −1. Define pz,z′ as the distribution
of pairwise data conditioned on the clean groups Z = z
and Z ′ = z′, such that ((X,Y ), (X ′, Y ′)) | (Z = z, Z ′ =
z′) ∼ pz,z′ . Similarly, let p̂z,z′ represent the distribution of
((X,Y ), (X ′, Y ′)) conditioned on the noisy groups Ẑ = z

and Ẑ ′ = z′, such that ((X,Y ), (X ′, Y ′)) | (Ẑ = z, Ẑ ′ =
z′) ∼ p̂z,z′ . To quantify the difference between pz,z′ and
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p̂z,z′ , we use the Total Variation (TV) distance (Duchi &
Namkoong, 2021), denoted as TV (pz,z′ , p̂z,z′). Based on
this measure, we establish the following theoretical results
(the proof is provided in Appendix A.1).

Theorem 4.1. Suppose a model is trained using Eq. (7) with
noisy groups and satisfies ĝz,z′(θ) ≤ 0 ∀z, z′ ∈ Z . Let γz,z′

be an upper bound on the TV distance, such that γz,z′ ≥
TV (pz,z′ , p̂z,z′) ∀z, z′ ∈ Z . Then, the fairness measure for
the clean groups will be satisfied within a slack of γz,z′ for
each pairwise group, ensuring gz,z′(θ) ≤ γz,z′ ∀z, z′ ∈ Z .

Relaxation. While Theorem 4.1 provides an upper bound
for AUC fairness on the clean groups, our goal is to ensure
that gz,z′(θ) ≤ 0,∀z, z′ ∈ Z . To achieve this, inspired by
Wang et al. (2020), we employ a DRO approach. Specif-
ically, any feasible solution to the following constrained
optimization problem is guaranteed to satisfy the fairness
constraints for the clean groups:

min
θ

LAUC(θ),

s.t. max
p̃z,z′ :TV (p̃z,z′ ,p̂z,z′ )≤γz,z′

p̃z,z′≪pz,z′

g̃z,z′(θ) ≤ 0,∀z, z′ ∈ Z, (8)

where g̃z,z′(θ) = E((X,Y ),(X′,Y ′))∼p̃z,z′
[h(θ)] and p̃z,z′ ≪

pz,z′ indicates that p̃z,z′ is absolutely continuous w.r.t. pz,z′ .

Reformulation. To simplify the constrained optimization
problem in Eq. (8) and demonstrate its practical applica-
tion when the true distributions are unknown, we refor-
mulate it as a minimax problem using a Lagrangian for-
mulation. Additionally, we replace all expectations with
those over the empirical distribution derived from a dataset
S := {(Xi, Yi, Ẑi)}ni=1 of n samples. For convenience,
we denote Xi as X+

i or X−
i if it has a positive or neg-

ative label, respectively. Let n+ = |{X+
i | i ∈ [n]}|

and n− = |{X−
i | i ∈ [n]}| represent the total num-

ber of positive and negative samples, respectively, where
[n] = {1, . . . , n}. Similarly, we denote Xi as Xz+

i or
Xz−

i if it belongs to group z with a positive or negative
label, respectively. Let nz+ and nz− represent the total
number of positive and negative samples from group z, re-
spectively. In practice, we let the empirical distribution
p̂z,z′ ∈ Rn+×n−

be a matrix where the (i, j)-th entry is
given by: p̂i,jz,z′ = 1

nz+nz′− if the i-th positive sample be-
longs to group z and the j-th negative sample belongs to
group z′; otherwise, it is set to 0.

The TV distance constraint can then be reformulated to iden-
tify an empirical distribution p̃z,z′ ∈ Rn+×n−

within a ball

defined by: Bγz,z′ (p̂z,z′) := {p̃z,z′ :
∑n+

i=1

∑n−

j=1 |p̃
i,j
z,z′ −

p̂i,jz,z′ | ≤ 2γz,z′ ,
∑n+

i=1

∑n−

j=1 p̃
i,j
z,z′ = 1, p̃i,jz,z′ ≥ 0 ∀i ∈

[n+], j ∈ [n−]}. Denote λz,z′ as the Lagrangian multiplier
associated with the pair z, z′ ∈ Z . Then, the empirical

version of Eq. (8) can be rewritten as:

min
θ

max
λz,z′≥0,p̃i,j

z,z′≥0
LAUC(θ) +

m∑
z=1

m∑
z′=1

λz,z′gz,z′(θ),

s.t. ∥p̃z,z′ − p̂z,z′∥1,1 ≤ 2γz,z′ , ∥p̃z,z′∥1,1 = 1,∀z, z′ ∈ Z,
(9)

where LAUC(θ) = 1
n+n−

∑n+

i=1

∑n−

j=1 I[ϕθ(X
+
i )≤ϕθ(X

−
j )]

is the empirical form of LAUC(θ),
gz,z′(θ) =

∑n+

i=1

∑n−

j=1 p̃
i,j
z,z′I[ϕθ(X

+
i )>ϕθ(X

−
j )] −

1
n+n−

∑n+

i=1

∑n−

j=1 I[ϕθ(X
+
i )>ϕθ(X

−
j )] is the empirical

form of g̃z,z′(θ), and ∥ · ∥1,1 is the L1,1-norm. In practice,
the non-differentiable indicator function I can be replaced
with a (sub)-differentiable and non-increasing surrogate
loss function ℓ. For instance, in our experiments, we replace
I[a≤0] with the logistic loss log(1 + exp(−a)).

4.3. Noisy Ratio Estimation

Theoretical Estimation. The learning objective in Eq. (9)
relies on the upper bound γz,z′ of the TV distance between
pz,z′ and p̂z,z′ , as demonstrated in Theorem 4.1. However,
in practice, pz,z′ is typically unknown. To address this, we
present a theoretical result to facilitate the estimation of
γz,z′ , as detailed below (proof provided in Appendix A.2):
Lemma 4.2. Given a positive-negative pair group (z, z′),
suppose the prior pairwise clean group probability
Pr[(z, z′)] unaffected by the noise, i.e., Pr[(Z = z, Z ′ =

z′)] = Pr[(Ẑ = z, Ẑ ′ = z′)]. Then TV (pz,z′ , p̂z,z′) ≤
Pr[(Z,Z ′) ̸= (Ẑ, Ẑ ′)|(Ẑ = z, Ẑ ′ = z′)].

According to the above Lemma, the estimation of γz,z′

can be reduced to estimating the probability Pr[(Z,Z ′) ̸=
(Ẑ, Ẑ ′) | (Z = z, Z ′ = z′)]. In robust machine learning,
various methods can be employed for this estimation. For
example, an auxiliary network can be trained from scratch to
estimate this probability (Jiang et al., 2018; Yu et al., 2019),
or an auxiliary clean dataset can be utilized for estimation
(Kallus et al., 2022; Wang et al., 2020). However, training
an auxiliary network introduces additional complexity to the
target model, potentially reducing its generalizability across
diverse scenarios. Furthermore, many existing approaches
rely on a single data modality (e.g., images) for estimation,
which can limit accuracy and effectiveness. Additionally,
obtaining auxiliary datasets that are well-suited to the target
problem can be challenging in practice.

Empirical Estimation. To address these challenges, we
leverage the capabilities of pre-trained multi-modal founda-
tion models (Li et al., 2024; Gardner et al., 2024) to con-
struct a noisy label detector, drawing inspiration from recent
works (Hu et al., 2023; Wei et al., 2024), without requiring
additional training. While we use image data as an illustra-
tive example, our method can be easily adapted to other data
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modalities, such as tabular data, which we leave as future
work. Specifically, for each image, we utilize its protected
group label to design a pair of label-specific prompts: a pos-
itive prompt (P) and a negative prompt (N ). For example,
P is designed as “a photo of a {group name}” and N as
“a photo without a {group name},” where {group name}
corresponds to the protected group label (Ẑ) of the im-
age. These prompts are fed into the text encoder of the
CLIP model (Radford et al., 2021) to generate text fea-
ture representations TP and TN . Simultaneously, the im-
age is processed through CLIP’s visual encoder to extract
its visual feature representation V . We then compute the
cosine similarity between the visual features and the text
features, resulting in sim(V, TP) and sim(V, TN ). Fi-
nally, we regard the group label of the test image as clean if
sim(V, TP) > sim(V, TN ), and noisy otherwise.

We stress that CLIP is not used for relabeling, classifica-
tion, or decision-making. Instead, its strong representational
power is utilized to estimate the mismatch rate between
protected group labels and corresponding semantic features.
This design avoids additional training (e.g., adding MLP
heads), thereby maintaining the theoretical guarantees of
our fairness framework. Since CLIP predictions are not
perfectly reliable, using them for classification would under-
mine the provable robustness that our method offers. Based
on this estimation, we approximate γz,z′ as follows:

Pr[(Z,Z ′) ̸= (Ẑ, Ẑ ′)|(Ẑ = z, Ẑ ′ = z′)] ≈(∣∣∣{(i, j)∣∣ Ẑi=z,sim(V+
i ,T+P

i )>sim(V+
i ,T+N

i ),

Ẑ′
j=z′,sim(V−

j ,T−P
j )≤sim(V−

j ,T−N
j )

}∣∣∣
+
∣∣∣{(i, j)∣∣ Ẑi=z,sim(V+

i ,T+P
i )≤sim(V+

i ,T+N
i ),

Ẑ′
j=z′,sim(V−

j ,T−P
j )>sim(V−

j ,T−N
j )

}∣∣∣
+
∣∣∣{(i, j)∣∣ Ẑi=z,sim(V+

i ,T+P
i )≤sim(V+

i ,T+N
i ),

Ẑ′
j=z′,sim(V−

j ,T−P
j )≤sim(V−

j ,T−N
j )

}∣∣∣)/
|{(i, j)|Ẑi = z, Ẑ ′

j = z′}|.

(10)

Here, i ∈ [n+] and j ∈ [n−], with V+
i and V−

j as visual
feature representations, and T +

i and T −
j as text feature rep-

resentations for positive and negative samples, respectively.

4.4. Optimization

Finally, we develop a stochastic gradient descent-ascent
(SGDA) method to solve the minimax optimization prob-
lem in Eq. (9). To avoid the model becoming stuck in
sharp and narrow minima during training, we incorporate
the sharpness-aware minimization (SAM) technique (Foret
et al., 2020) to flatten the loss landscape. This flattening is
achieved by finding the optimal perturbation ϵ∗ to the model

Algorithm 1 Robust AUC Fairness
1: Input: A training dataset S of size n, number of itera-

tions T , batch size b, learning rates ηθ; ηλ; ηp, and γz,z′

estimated by Eq. (10)
2: Initialize: θ(1), λ(1)

z,z′ , p̃
(1)
z,z′ for all pairs (z, z′)

3: for t = 1 to T do
4: B = Sampler(S, b)
5: Compute ϵ∗ based on Eq. (11)
6: Compute perturbed parameters: θ

(t)
= θ(t) + ϵ∗

7: Update θ: θ(t+1) ← θ(t) − ηθ∇θL|θ(t)

8: for each (z, z′) ∈ {(1, 1), (1, 2), . . . , (m,m)} do
9: Update λz,z′ : λ(t+1)

z,z′ ← λ
(t)
z,z′ + ηλgz,z′(θ

(t)
)

10: Update p̃z,z′ :

p̃
(t+1)
z,z′ ← p̃

(t)
z,z′ + ηpλ

(t)
z,z′∇p̃z,z′ gz,z′(θ

(t)
)

11: Project p̃
(t+1)
z,z′ onto ℓ1,1-norm constraints:

∥p̃(t+1)
z,z′ − p̂z,z′∥1,1 ≤ 2γz,z′ , ∥p̃(t+1)

z,z′ ∥1,1 = 1
12: end for
13: end for
14: return θ(t

∗), where t∗ is the best iterate satisfying the
constraints in Eq. (9) with the lowest objective.

parameters θ, which maximizes the loss. The process is:

ϵ∗ = arg max
∥ϵ∥2≤ν

(
LAUC +

m∑
z=1

m∑
z′=1

λz,z′gz,z′

)
︸ ︷︷ ︸

L

(θ + ϵ)

≈ arg max
∥ϵ∥2≤ν

ϵ⊤∇θL = ν
∇θL
||∇θL||2

,

(11)
Here, ν controls the perturbation magnitude, and the ap-
proximation is derived using a first-order Taylor expansion,
assuming ϵ is small. The final equation is obtained by solv-
ing a dual norm problem, where sign represents the sign
function, and ∇θL is the gradient of L with respect to θ.
Consequently, the model weights are updated by solving the
following optimization problem: minθ L(θ + ϵ∗). The intu-
ition is that perturbing the model parameters in the direction
of the gradient norm maximizes the loss value, which in
turn encourages the model to explore a flatter loss landscape,
enhancing its generalizability.

To ensure each mini-batch contains both positive and nega-
tive samples from all possible groups, we follow Yang et al.
(2023) and design a sampling operator (i.e., Sampler(·, ·))
that randomly selects a mini-batch of size b by stratifying
the training set S based on the label and group attribute. The
details of the sampling operator are outlined in Appendix B.

The overall optimization procedure is as follows: we first
initialize the model parameters θ, λz,z′ , and p̃z,z′ , and use
the approach developed in the previous section with Eq.
(10) to estimate γz,z′ for all possible positive-negative group
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pairs (z, z′). Next, we randomly select a mini-batch B using
our Sampler operator and perform the following steps for
each iteration on B (For more details, refer to Algorithm 1):

• Compute ϵ∗ based on Eq. (11).

• Update θ based on the gradient descent: θ ← θ −
ηθ∇θL|θ+ϵ∗ , where ηθ is the learning rate.

• For each (z, z′) ∈ {(1, 1), (1, 2), ..., (m,m)}, use
gradient ascent to update λz,z′ : λz,z′ ← λz,z′ +
ηλgz,z′(θ + ϵ∗) and p̃z,z′ : p̃z,z′ ← p̃z,z′ +
ηpλz,z′∇p̃z,z′ gz,z′(θ+ ϵ∗), where ηλ and ηp are learn-
ing rates. Next, we project p̃z,z′ onto ℓ1,1-norm con-
straints: ∥p̃z,z′ − p̂z,z′∥1,1 ≤ 2γz,z′ , ∥p̃z,z′∥1,1 = 1.

The project can be done efficiently with Duchi et al. (2008).

5. Experiments
5.1. Settings

Datasets. In experiments, we train models with different
methods on both tabular and image datasets. For tabular
data, we conduct socioeconomic analysis on three widely
used datasets in fair machine learning research (Donini et al.,
2018): Adult (protected attribute: gender), Bank (protected
attribute: age), and Default (protected attribute: gender).
Each dataset is randomly split into training, validation, and
test sets in a 60%/20%/20% ratio. For image data, we focus
on the deepfake detection task using datasets from Lin et al.
(2024). Specifically, we train models on the FF++ (Rossler
et al., 2019) training set (protected attribute: gender) and
evaluate them on the test sets of FF++, DFDC (dee), DFD
(Google & Jigsaw, 2019), and Celeb-DF (Li et al., 2020).
Further details are provided in Appendix C.

Evaluation Metrics. For utility, we use overall AUC as the
primary model performance metric. For fairness, we mea-
sure AUC fairness violation (‘Violation’, lower is better),
defined as the maximum absolute difference between any
group-level AUC score the overall AUC score. Additionally,
following Yang et al. (2023), we use the Min/Max fairness
metric (higher is better), defined as the ratio of the minimum
to the maximum group-level AUC score. Their formulations
can be found in Appendix D.

Baselines. For socioeconomic analysis, we compare our
method against AUCMax (without fairness constraint)
(Yang et al., 2023), InterFairAUC (Vogel et al., 2021), and
MinimaxFairAUC (Yang et al., 2023). For deepfake detec-
tion, we compare our method with the latest fairness meth-
ods, including DAG-FDD, DAW-FDD (Ju et al., 2024), and
PG-FDD (Lin et al., 2024). The comparison also includes
‘Original’ (a backbone with cross-entropy loss). More de-
tails can be found in Appendix E.

Implementation Details. All experiments are implemented
in PyTorch and trained on an NVIDIA RTX A6000. For
training, we set the batch size to 10,000 for socioeconomic
analysis and 32 for deepfake detection, with 1,000 and
100 training epochs, respectively. We use the SGD opti-
mizer. For socioeconomic analysis, we use 3-layer multi-
layer perceptron (MLP) as the model. γ is selected from
{0.1, 0.2, 0.3, 0.4, 0.5}. For deepfake detection, we use
noisy group labels, which are common in datasets like FF++
where demographic attributes are inferred. Evaluating fair-
ness under label noise is practical and follows prior work
(Celis et al., 2021; Mehrotra & Vishnoi, 2022). We use
Xception (Chollet, 2017) and EfficientNet-B4 (Tan & Le,
2019) as the detector backbones. γ = 0.02 is estimated
using Eq. (10). See Appendix F.1 for details.

5.2. Results

Performance on Tabluar Data. For each of the three tab-
ular datasets, we introduce noise into the protected group
labels by randomly selecting a fraction γ of data points
and flipping their labels to another group. We evaluate the
performance of each method under different noise levels,
conducting three random runs per dataset and reporting the
mean and standard deviation in Table 1. It is clear that
our approach consistently achieves the lowest AUC fair-
ness violation and the highest Min/Max AUC score across
all datasets and noise levels, demonstrating its effective-
ness in preserving fairness under noisy protected group
labels. For instance, at a noise level of 0.5 on the Adult
dataset, our method achieves a fairness violation of 0.0316,
significantly lower than AUCMax (0.0766), InterFairAUC
(0.0374), and MinimaxFairAUC (0.0375). While AUCMax
attains a higher overall AUC due to the absence of fair-
ness constraints, its fairness violation remains substantially
higher. Similarly, at a noise level of 0.1 on the Default
dataset, our method achieves 0.0187 fairness violation, re-
ducing it by 5.14% compared to AUCMax. Moreover, as
the noise level increases, baseline methods exhibit wors-
ening fairness violations, whereas our approach maintains
superior fairness performance, underscoring its robustness
in handling noisy protected group labels.

Performance on Image Data. Deepfake detection datasets
are inherently noisy due to inaccuracies in demographic an-
notations, as the protected groups of generated faces cannot
be verified in practice. Thus, our proposed noisy estima-
tion method is well-suited for estimating the noise ratio,
which we determine to be 0.02 in our experiments. We
fix this value for subsequent experiments and report the
results in Table 2. From the table, we find our method
achieves the lowest group AUC fairness violation across
all datasets, demonstrating superior fairness preservation
under noisy protected groups. For instance, on FF++ (Xcep-
tion backbone), our method achieves a fairness violation of
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Noise
Level Method Adult Bank Default

AUC↑ Violation↓ Min/Max↑ AUC↑ Violation↓ Min/Max↑ AUC↑ Violation↓ Min/Max↑

0.1

AUCMax 0.9159±0.0001 0.0787±0.0018 0.9115±0.0012 0.9288±0.0003 0.1565±0.0016 0.8559±0.0014 0.7762±0.0008 0.0701±0.0009 0.9076±0.0011
InterFairAUC 0.9031±0.0002 0.0380±0.0013 0.9479±0.0007 0.9068±0.0005 0.0975±0.0025 0.9048±0.0022 0.7399±0.0031 0.0242±0.0003 0.9649±0.0009

MinimaxFairAUC 0.9059±0.0002 0.0350±0.0003 0.9513±0.0006 0.9148±0.0006 0.1246±0.0035 0.8795±0.0034 0.7536±0.0037 0.0302±0.0080 0.9520±0.0098
Ours 0.9060±0.0002 0.0332±0.0007 0.9536±0.0005 0.9039±0.0007 0.0876±0.0033 0.9143±0.0029 0.7645±0.0017 0.0187±0.0012 0.9691±0.0019

0.2

AUCMax 0.9112±0.0002 0.0885±0.0011 0.9051±0.0008 0.9264±0.0003 0.1592±0.0026 0.8543±0.0022 0.7890±0.0005 0.0565±0.0011 0.9254±0.0013
InterFairAUC 0.9035±0.0004 0.0377±0.0003 0.9477±0.0005 0.9037±0.0003 0.1071±0.0028 0.8960±0.0024 0.7527±0.0037 0.0256±0.0026 0.9560±0.0062

MinimaxFairAUC 0.9045±0.0003 0.0369±0.0003 0.9489±0.0005 0.9142±0.0006 0.1226±0.0046 0.8814±0.0044 0.7526±0.0039 0.0267±0.0057 0.9558±0.0093
Ours 0.9039±0.0004 0.0328±0.0008 0.9539±0.0011 0.9163±0.0005 0.1053±0.0026 0.8988±0.0024 0.7624±0.0016 0.0206±0.0014 0.9660±0.0022

0.3

AUCMax 0.9150±0.0001 0.0800±0.0005 0.9117±0.0004 0.9293±0.0005 0.1565±0.0026 0.8559±0.0023 0.7768±0.0005 0.0679±0.0013 0.9100±0.0015
InterFairAUC 0.8990±0.0008 0.0379±0.0012 0.9482±0.0032 0.9078±0.0005 0.0994±0.0020 0.9031±0.0018 0.7405±0.0027 0.0217±0.0009 0.9684±0.0019

MinimaxFairAUC 0.8977±0.0006 0.0367±0.0013 0.9490±0.0025 0.9142±0.0006 0.1207±0.0050 0.8833±0.0049 0.7533±0.0036 0.0290±0.0077 0.9526±0.0097
Ours 0.9059±0.0005 0.0356±0.0006 0.9513±0.0007 0.9093±0.0004 0.0949±0.0026 0.9080±0.0024 0.7687±0.0011 0.0129±0.0011 0.9785±0.0014

0.4

AUCMax 0.9131±0.0002 0.0783±0.0007 0.9123±0.0006 0.9275±0.0005 0.1655±0.0025 0.8465±0.0023 0.7795±0.0005 0.0717±0.0007 0.9057±0.0008
InterFairAUC 0.8987±0.0008 0.0367±0.0022 0.9488±0.0042 0.9060±0.0005 0.0944±0.0030 0.9078±0.0029 0.7524±0.0035 0.0256±0.0039 0.9559±0.0068

MinimaxFairAUC 0.9056±0.0002 0.0373±0.0007 0.9492±0.0003 0.9146±0.0005 0.1246±0.0036 0.8795±0.0035 0.7538±0.0036 0.0301±0.0080 0.9520±0.0098
Ours 0.9008±0.0002 0.0341±0.0005 0.9530±0.0004 0.9054±0.0004 0.0937±0.0034 0.9086±0.0028 0.7552±0.0024 0.0246±0.0036 0.9580±0.0066

0.5

AUCMax 0.9127±0.0003 0.0766±0.0009 0.9141±0.0008 0.9290±0.0003 0.1572±0.0017 0.8553±0.0014 0.7767±0.0007 0.0715±0.0015 0.9061±0.0017
InterFairAUC 0.9012±0.0012 0.0374±0.0013 0.9482±0.0026 0.9067±0.0005 0.0947±0.0017 0.9076±0.0016 0.7488±0.0037 0.0278±0.0026 0.9562±0.0047

MinimaxFairAUC 0.9012±0.0008 0.0375±0.0016 0.9482±0.0030 0.9145±0.0006 0.1229±0.0042 0.8811±0.0046 0.7526±0.0037 0.0271±0.0069 0.9553±0.0098
Ours 0.8984±0.0006 0.0316±0.0002 0.9554±0.0004 0.9044±0.0004 0.0876±0.0020 0.9145±0.0015 0.7447±0.0047 0.0243±0.0014 0.9571±0.0010

Table 1. Performance comparison across different noise levels (0.1–0.5). The numbers are reported as ‘Mean ± Standard Deviation.’
↑ means higher is better and ↓ means lower is better. The best results are shown in Bold.

FF++ DFDC DFD Celeb-DFBackbone Method AUC↑ Violation↓ Min/Max↑ AUC↑ Violation↓ Min/Max↑ AUC↑ Violation↓ Min/Max↑ AUC↑ Violation↓ Min/Max↑
Original 0.9384 0.0303 0.9652 0.5953 0.0319 0.9492 0.7574 0.0326 0.9529 0.6660 0.1479 0.8101

DAG-FDD 0.9628 0.0147 0.9776 0.6058 0.0229 0.9608 0.7770 0.0216 0.9633 0.7059 0.1730 0.7906
DAW-FDD 0.9650 0.0288 0.9702 0.6037 0.0201 0.9684 0.7825 0.0312 0.9479 0.7092 0.1818 0.7792
PG-FDD 0.9708 0.0111 0.9714 0.6207 0.0184 0.9594 0.8025 0.0113 0.9846 0.7214 0.1412 0.8350

Xception

Ours 0.9644 0.0090 0.9857 0.6086 0.0048 0.9930 0.7847 0.0069 0.9881 0.7108 0.0729 0.9117
Original 0.9332 0.0209 0.9684 0.5982 0.0306 0.9320 0.7593 0.0445 0.9382 0.6692 0.2453 0.6962

DAG-FDD 0.9563 0.0100 0.9869 0.6030 0.0372 0.9210 0.7706 0.0216 0.9626 0.7102 0.2196 0.7415
DAW-FDD 0.9694 0.0169 0.9764 0.5941 0.0254 0.9449 0.7756 0.0380 0.9440 0.7345 0.2873 0.6792
PG-FDD 0.9721 0.0144 0.9784 0.6043 0.0235 0.9476 0.8033 0.0260 0.9650 0.7366 0.1356 0.8373

EfficientNet
-B4

Ours 0.9766 0.0061 0.9907 0.6172 0.0136 0.9771 0.8184 0.0135 0.9760 0.7351 0.0928 0.8876

Table 2. Performance comparison on deepfake detection task. ↑ means higher is better and ↓ means lower is better.

0.0090, significantly lower than PG-FDD (0.0111), DAW-
FDD (0.0288), and DAG-FDD (0.0147). Similarly, in the
DFDC cross-domain scenario, our method attains a violation
of 0.0048, reducing fairness violation by 1.36% compared
to PG-FDD. This trend persists across DFD and Celeb-DF,
where our method consistently maintains the lowest fairness
violation. While PG-FDD achieves higher AUC as it is the
state-of-the-art method for fairness generalization in deep-
fake detection, its fairness violation remains higher than ours
across all datasets. Overall, our results demonstrate superior
fairness preservation under noisy groups across different
datasets and model backbones, indicating the robustness of
our method in real-world image analysis applications.

5.3. Sensitivity Analysis

Inter-/Intra- Group Performance Gap. We examine
the inter-group and intra-group AUC gaps across multiple
datasets to assess the capability of our method in preserving
fairness under noisy groups. As shown in the left of Fig. 3,
our method reduces the intra-group AUC gap by 3.40%
compared to MinimaxFairAUC on the Bank dataset and
by 1.70% compared to PG-FDD on the Celeb-DF dataset.
These results demonstrate that our method effectively mit-
igates both intra-group and inter-group AUC disparities
simultaneously in the presence of noisy labels, as evidenced

by its performance across both tabular and image datasets.

Correctness of Noise Ratio Estimation. To evaluate
the accuracy of noise ratio estimation in the image-data
scenario, we experiment with multiple noise levels (γ ∈
{0.01, 0.02, 0.03, 0.04, 0.05}), as the exact noise ratio is
unknown. We apply our method to train deepfake detectors
using an EfficientNet-B4 backbone and test on the FF++
dataset. As shown in Fig. 3 (Right), our method achieves
the lowest fairness violation at γ = 0.02, which aligns with
the estimated γ derived from Eq. (10). This consistency
validates the correctness of our noise ratio estimation.

5.4. Ablation Study

With vs. Without SAM. We conduct experiments on im-
age datasets using the EfficientNet-B4 backbone without
applying SAM during training and report the results in Ta-
ble 3. The results show a performance decline (e.g., 0.9656
Min/Max on DFDC) compared to our full method (e.g.,
0.9771), yet it still outperforms the baseline approaches in
Table 2. This highlights the importance of SAM in enhanc-
ing AUC fairness generalization in our approach.

Robust vs. Non-robust. Under the same experimental
setting, we compare our full method with a version that
excludes robustness by using Eq. (6). As shown in Table
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Group 
AUC Gap

0.075Ours: 

MinimaxFairAUC: 0.095

Group 
AUC Gap

0.089Ours: 

MinimaxFairAUC: 0.123😔

😀

😔

😀

Group 
AUC Gap

0.083Ours: 

PG-FDD: 0.144

Group 
AUC Gap

0.060Ours: 

PG-FDD: 0.077 😔

😀

😔

😀

Figure 3. (Left) Comparison of AUC gap on inter-group and intra-group across different datasets. For the tabular dataset, we compare
our method with MinimaxFairAUC on the Bank dataset under a noise level of 0.1. For the image dataset, we compare ours with PG-FDD
on Celeb-DF. (Right) AUC fairness violation across different γ values. γ has been set manually from {0.01, 0.02, 0.03, 0.04, 0.05}.

Backbone Method DFDC DFD
Robust SAM AUC↑ Violation↓ Min/Max↑ AUC↑ Violation↓ Min/Max↑

EfficientNet
-B4

✓ 0.6099 0.0155 0.9656 0.7965 0.0148 0.9721
✓ 0.6090 0.0168 0.9636 0.8058 0.0289 0.9611

✓ ✓ 0.6172 0.0136 0.9771 0.8184 0.0135 0.9760

Table 3. Performance comparison between with and without SAM
on our method. ↑ means higher is better and ↓ means lower is
better. The best results are shown in Bold.

2, the absence of robustness leads to a significant perfor-
mance drop. For instance, on the DFDC dataset, the fairness
violation increases by approximately 0.32%, highlighting
the effectiveness of our proposed robust approach. More
experiments are in Appendix F.2.

6. Conclusion
Existing methods for enhancing AUC fairness perform well
with clean protected groups but fail under noisy groups. To
address this, we propose a novel DRO-based approach with
theoretical fairness guarantees, achieved by bounding the
TV distance between clean and noisy group distributions.
We estimate this bound through theoretical analysis and
then develop an empirical method leveraging pre-trained
multi-modal foundation models. Finally, we design an ef-
ficient SGDA algorithm to optimize the proposed learning
objective, improving both AUC fairness and model general-
ization. Experimental results in diverse datasets highlight
the superior AUC fairness maintenance capabilities of our
method in three application scenarios.

Limitation. Although our approach guarantees AUC fair-
ness, ensuring both utility and fairness simultaneously when
training with noisy groups remains an open challenge. Addi-
tionally, while we use CLIP as an example of a multi-modal
foundation model for noise estimation in image data, we
do not imply that CLIP is directly applicable to tabular
data. Rather, our statement refers to the potential to leverage
domain-specific foundation models, such as those for tabu-
lar data, for analogous noise estimation tasks. Since we do
not instantiate this component for tabular data in our current
experiments, we acknowledge the lack of a concrete noise
estimation strategy for tabular modalities as a limitation of
this work and leave its exploration to future research.

Future work. In addition to addressing the aforementioned

limitation, we aim to extend our approach to other pairwise
ranking metrics (Yang, 2022) (e.g., partial AUC, average
precision) to enhance their group-level fairness.
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proposing the first theoretically grounded, DRO framework
tailored to AUC fairness under noisy protected groups, our
research expands the practical reliability and applicability
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The potential societal benefits are substantial. In domains
like healthcare, finance, and digital media, where both per-
formance and fairness are paramount, our method offers a
robust solution that can help prevent algorithmic discrimi-
nation, especially under imperfect data labeling conditions.
For example, it can reduce harm in risk-sensitive applica-
tions such as medical image analysis or deepfake detection
by ensuring more equitable outcomes across groups.

Ethically, our approach prioritizes fairness even when data
quality is compromised, an important step toward respon-
sible AI. However, the broader implications of deploying
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A. Proofs
A.1. Proof of Theorem 4.1

Our proof is inspired by Wang et al. (2020); however, the key distinction lies in the focus. While Wang et al. (2020) addresses
non-ranking-based fairness measures, we derive results specifically for pairwise ranking-based AUC fairness measures.
First, we define TV distance between pz,z′ and p̂z,z′ as follows,

Definition A.1. Let m(x, y) = Ix ̸=y be a metric, and let π represent a coupling between the probability distribu-
tions pz,z′ and p̂z,z′ . The TV distance is defined as TV (pz,z′ , p̂z,z′) = infπ EX,Y∼π[m(X,Y )] s.t.

∫
π(x, y)dy =

pz,z′(x),
∫
π(x, y)dx = p̂z,z′(y).

Then, we introduce a Lemma as follows,

Lemma A.2. (Edwards, 2011). A function h is called Lipschitz with respect to m if |h(x)− h(y)| ≤ m(x, y) for all x, y,
and letH(m) denote the space of such functions. If m is a metric, the Wasserstein distance can be expressed as:

Wc(pz,z′ , p̂z,z′) = sup
h∈H(m)

EX∼pz,z′ [h(X)]− EX∼p̂z,z′
[h(X)].

Now, let m(x, y) = Ix ̸=y . In this case, the Total Variation (TV) distance becomes:

TV (pz,z′ , p̂z,z′) = sup
h:X→[0,1]

EX∼pz,z′ [h(X)]− EX∼p̂z,z′
[h(X)].

Finally, we prove Theorem 4.1 as follows,

Proof. For any pairwise group labels z, z′,

gz,z′(θ) = gz,z′(θ)− ĝz,z′(θ) + ĝz,z′(θ) ≤ |gz,z′(θ)− ĝz,z′(θ)|+ ĝz,z′(θ).

By Lemma A.2, we have the following result.

|gz,z′(θ)− ĝz,z′(θ)| =
∣∣E[h(θ)|Z = z, Z ′ = z′]− E[h(θ)|Ẑ = z, Ẑ ′ = z′]

∣∣ ≤ TV (pz,z′ , p̂z,z′).

Given the assumption that θ satisfies the fairness constraints with respect to the noisy groups, ĝz,z′(θ) ≤ 0. Therefore, we
derive the desired result:

gz,z′(θ) ≤ TV (pz,z′ , p̂z,z′) ≤ γz,z′ .

A.2. Proof of Lemma 4.2

Proof. The Total Variation (TV) distance between the probability measures pz,z′ and p̂z,z′ is defined as:

TV (pz,z′ , p̂z,z′) = sup{|pz,z′(A)− p̂z,z′(A)| : A is a measurable event}.

Let A be any measurable event under both pz,z′ and p̂z,z′ . By the definition of pz,z′ , we have pz,z′(A) = Pr[A | (Z,Z ′) =
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Algorithm 2 Sampler(Dataset: S, batch size: b)
1: for z ∈ Z and Y ∈ Y do
2: Uniformly sample without replacement BzY from SzY with size bzY = ⌈b · (|SzY |/|S|)⌉
3: end for
4: return B = ∪z,Y BzY

(z, z′)]. In the context of the pairwise problem between pz,z′ and p̂z,z′ , it follows that:

|pz,z′(A)− p̂z,z′(A)|

= |Pr[A | (Z,Z ′) = (z, z′)]− Pr[A | (Ẑ, Ẑ ′) = (z, z′)]|

= |Pr[A | (Z,Z ′) = (z, z′), (Ẑ, Ẑ ′) = (z, z′)]Pr[(Ẑ, Ẑ ′) = (z, z′) | (Z,Z ′) = (z, z′)]

+ Pr[A | (Z,Z ′) = (z, z′), (Ẑ, Ẑ ′) ̸= (z, z′)]Pr[((Ẑ, Ẑ ′) ̸= (z, z′) | (Z,Z ′) = (z, z′)]

− Pr[A | (Ẑ, Ẑ ′) = (z, z′), (Z,Z ′) = (z, z′)]Pr[(Z,Z ′) = (z, z′) | (Ẑ, Ẑ ′) = (z, z′)]

− Pr[A | (Ẑ, Ẑ ′) = (z, z′), (Z,Z ′) ̸= (z, z′)]Pr[(Z,Z ′) ̸= (z, z′) | (Ẑ, Ẑ ′) = (z, z′)]|

= |Pr[A | (Z,Z ′) = (z, z′), (Ẑ, Ẑ ′) = (z, z′)]·(
Pr[(Ẑ, Ẑ ′) = (z, z′) | (Z,Z ′) = (z, z′)]− Pr[(Z,Z ′) = (z, z′) | (Ẑ, Ẑ ′) = (z, z′)]

)
− Pr[(Ẑ, Ẑ ′) ̸= (Z,Z ′) | (Z,Z ′) = (z, z′)]·(

Pr[A | (Z,Z ′) = (z, z′), (Ẑ, Ẑ ′) ̸= (z, z′)]− Pr[A | (Ẑ, Ẑ ′) = (z, z′), (Z,Z ′) ̸= (z, z′)]
)
|

= |0− Pr[(Ẑ, Ẑ ′) ̸= (Z,Z ′) | (Z,Z ′) = (z, z′)]·(
Pr[A | (Z,Z ′) = (z, z′), (Ẑ, Ẑ ′) ̸= (z, z′)]− Pr[A | (Ẑ, Ẑ ′) = (z, z′), (Z,Z ′) ̸= (z, z′)]

)
|

≤ Pr[(Ẑ, Ẑ ′) ̸= (Z,Z ′) | (Z,Z ′) = (z, z′)] = Pr[(Z,Z ′) ̸= (Ẑ, Ẑ ′) | (Ẑ, Ẑ ′) = (z, z′)].

The second equality follows from the law of total probability. The third and the fourth equalities follow from the assumption
that Pr[(Z,Z ′) = (z, z′)] = Pr[(Ẑ, Ẑ ′) = (z, z′)], which implies that Pr[(Ẑ, Ẑ ′) = (Z,Z ′) | (Z,Z ′) = (z, z′)] =

Pr[(Z,Z ′) = (Ẑ, Ẑ ′) | (Ẑ, Ẑ ′) = (z, z′)] since

Pr[(Ẑ, Ẑ ′) = (Z,Z ′) | (Z,Z ′) = (z, z′)] =
Pr[(Ẑ, Ẑ ′) = (Z,Z ′); (Z,Z ′) = (z, z′)]

Pr[(Z,Z ′) = (z, z′)]

=
Pr[(Ẑ, Ẑ ′) = (Z,Z ′); (Ẑ, Ẑ ′) = (z, z′)]

Pr[(Ẑ, Ẑ ′) = (z, z′)]

= Pr[(Ẑ, Ẑ ′) = (Z,Z ′) | (Ẑ, Ẑ ′) = (z, z′)]

This further implies that Pr[(Ẑ, Ẑ ′) ̸= (Z,Z ′) | (Z,Z ′) = (z, z′)] = Pr[(Ẑ, Ẑ ′) ̸= (Z,Z ′) | (Ẑ, Ẑ ′) = (z, z′)], which is
the reason why the last equation holds.

B. Sampling Method
We denote strata of data as SzY , where z ∈ Z and Y ∈ Y . Then, the sampling algorithm is shown in Algorithm 2.

C. Datasets Details
For tabular datasets, we do socioeconomic analysis on three datasets that have been commonly used in the fair machine
learning literature (Donini et al., 2018). In Adult dataset, the sensitive attribute is the gender of the individual, i.e. female
(Z = a) or male (Z = b). In Bank dataset , the sensitive attribute is the age of the individual: Z = a when the age is less
than 25 or over 60 and Z = b otherwise. In Default dataset (Yeh & Lien, 2009) , the sensitive attribute is the gender of
the individual, i.e. female (Z = a) or male (Z = b).

For image datasets, we do deepfake detection on the most widely used benchmark FaceForensics++(FF++) (Rossler et al.,
2019). DFDC (dee), DFD (Google & Jigsaw, 2019), and Celeb-DF (Li et al., 2020). We only used the test set of the later
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Type Name # Instances Group ratio Class ratio

Tabular
Adult 48,842 0.48:1 3.03:1
Bank 41,188 0.05:1 7.55:1

Default 30,000 1.52:1 3.52:1

Image

FF++ 76,139 1.27:1 1:4.89
DFDC 22,857 1.05:1 1.80:1
DFD 9,386 1.22:1 1:2.04

Celeb-DF 28,458 8.79:1 1:3.98

Table 4. Dataset Statistics. The group ratio is given by the protective attribute Z = a vs. Z = b. The class ratio is given by negative vs.
positive class.

three deepfake dataset. Since the original datasets do not have the demographic information of each video or image, we
follow Ju et al. (2024) for data processing and data annotation. The sensitive attribute is the gender of the individual, i.e.
female (Z = a) or male (Z = b). The summary statistics of the datasets are given in Table 4.

D. Fairness Metrics
For fairness, we measure AUC fairness violation (‘Violation’, lower is better), defined as the maximum absolute difference
between any group-level AUC score the overall AUC score:

max
z,z′∈Z

|gz,z′(θ)|.

Additionally, following Yang et al. (2023), we use the Min/Max fairness metric (higher is better), defined as the ratio of the
minimum to the maximum group-level AUC score:

min
z,z′∈Z

AUCz,z′(θ)/ max
z,z′∈Z

AUCz,z′(θ).

E. Baselines
• The AUCMax algorithm maximizes AUC across the entire dataset without distinguishing between groups. It updates

the model parameters using mini-batch SGD.

• We select the method by Vogel et al. (2021) as a representative since they considered the same datasets. Their approach,
which we refer to as InterFairAUC, ensures fair AUC scores by regularizing the difference between inter-group AUCs.

• MinimaxFairAUC introduced by Yang et al. (2023) is a minimax fairness framework that simultaneously addresses
intra-group and inter-group AUC disparities using a Rawlsian approach, sup- ported by an efficient optimization
algorithm with proven convergence guarantees.

• DAG-FDD (Ju et al., 2024), a demographic-aware Fair Deepfake Detection (DAW-FDD) method leverages demographic
information and employs an existing fairness risk measure (Williamson & Menon, 2019). At a high level, DAW-FDD
aims to ensure that the losses achieved by different user-specified groups of interest (e.g., different races or genders) are
similar to each other (so that the AI face detector is not more accurate on one group vs another) and, moreover, that the
losses across all groups are low. Specifically, DAW-FDD uses a CVaR (Levy et al., 2020; Rockafellar et al., 2000) loss
function across groups (to address imbalance in demographic groups) and, per group, DAW-FDD uses another CVaR
loss function (to address imbalance in real vs AI-generated training examples).

• DAW-FDD (Ju et al., 2024), a demographic-agnostic Fair Deepfake Detection (DAG-FDD) method, which is based on
the distributionally robust optimization (DRO) (Hashimoto et al., 2018; Duchi & Namkoong, 2021). To use DAG-FDD,
the user does not have to specify which attributes to treat as sensitive such as race and gender, only need to specify a
probability threshold for a minority group without explicitly identifying all possible groups.

• PG-FDD (Lin et al., 2024) (Preserving Generalization Fair Deepfake Detection) employs disentanglement learning to
extract demographic and domain-agnostic forgery features, promoting fair learning across a flattened loss landscape.
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Noise
Level Method Adult Bank Default

AUC↑ Violation↓ Min/Max↑ AUC↑ Violation↓ Min/Max↑ AUC↑ Violation↓ Min/Max↑

0.1 Ours(Non-robust) 0.9064±0.0008 0.0370±0.0006 0.9535±0.0006 0.9059±0.0001 0.0920±0.0029 0.9102±0.0025 0.7538±0.0024 0.0212±0.0016 0.9650±0.0019
Ours (Robust) 0.9060±0.0002 0.0332±0.0007 0.9536±0.0005 0.9039±0.0007 0.0876±0.0033 0.9143±0.0029 0.7645±0.0017 0.0187±0.0012 0.9691±0.0019

0.2 Ours(Non-robust) 0.9108±0.0009 0.0388±0.0006 0.9532±0.0004 0.9107±0.0008 0.0868±0.0029 0.9111±0.0024 0.7511±0.0016 0.0230±0.0018 0.9626±0.0019
Ours (Robust) 0.9039±0.0004 0.0328±0.0008 0.9539±0.0011 0.9163±0.0005 0.1053±0.0026 0.8988±0.0024 0.7624±0.0016 0.0206±0.0014 0.9660±0.0022

0.3 Ours(Non-robust) 0.8971±0.0072 0.0370±0.0037 0.9569±0.0007 0.9060±0.0012 0.0973±0.0026 0.9053±0.0025 0.7540±0.0025 0.0213±0.0015 0.9647±0.0019
Ours (Robust) 0.9059±0.0005 0.0356±0.0006 0.9513±0.0007 0.9093±0.0004 0.0949±0.0026 0.9080±0.0024 0.7687±0.0011 0.0129±0.0011 0.9785±0.0014

0.4 Ours(Non-robust) 0.9075±0.0012 0.0377±0.0006 0.9522±0.0001 0.9109±0.0011 0.0943±0.0010 0.9085±0.0008 0.7429±0.0018 0.0263±0.0007 0.9594±0.0015
Ours (Robust) 0.9008±0.0002 0.0341±0.0005 0.9530±0.0004 0.9054±0.0004 0.0937±0.0034 0.9086±0.0028 0.7552±0.0024 0.0246±0.0036 0.9580±0.0066

0.5 Ours(Non-robust) 0.8989±0.0011 0.0372±0.0007 0.9553±0.0002 0.9108±0.0012 0.0895±0.0029 0.9126±0.0024 0.7505±0.0014 0.0261±0.0001 0.9564±0.0001
Ours (Robust) 0.8984±0.0006 0.0316±0.0002 0.9554±0.0004 0.9044±0.0004 0.0876±0.0020 0.9145±0.0015 0.7447±0.0047 0.0243±0.0014 0.9571±0.0010

Table 5. Performance comparison across different noise levels (0.1–0.5) between robust and non-robust method of ours. The numbers are
reported as ‘Mean ± Standard Deviation.’ ↑ means higher is better and ↓ means lower is better.

FF++ DFDC DFD Celeb-DFBackbone Method AUC↑ Violation↓ Min/Max↑ AUC↑ Violation↓ Min/Max↑ AUC↑ Violation↓ Min/Max↑ AUC↑ Violation↓ Min/Max↑
Ours(Non-robust) 0.9546 0.0103 0.9842 0.6014 0.0191 0.9573 0.7826 0.0098 0.9863 0.7105 0.0994 0.8807Xception Ours 0.9644 0.0090 0.9857 0.6086 0.0048 0.9930 0.7847 0.0069 0.9881 0.7108 0.0729 0.9117
Ours(Non-robust) 0.9729 0.0100 0.9842 0.6090 0.0168 0.9636 0.8058 0.0289 0.9611 0.7330 0.1046 0.8715EfficientNet-B4 Ours 0.9766 0.0061 0.9907 0.6172 0.0136 0.9771 0.8184 0.0135 0.9760 0.7351 0.0928 0.8876

Table 6. Performance comparison of Ours (Non-robust) and Ours on deepfake detection task. ↑ means higher is better and ↓ means lower
is better.

Its framework combines disentanglement learning, fairness learning, and optimization modules. The disentanglement
module introduces a loss to expose demographic and domain-agnostic features that enhance fairness generalization.
The fairness learning module combines these features to promote fair learning, guided by generalization principles.
The optimization module flattens the loss landscape, helping the model escape suboptimal solutions and strengthen
fairness generalization.

F. More Implementation Details and results
F.1. Additional experimental setup details

In Algorithm 1, we explored the following hyperparameters:

• Tabular data:

1. ηθ ∈ {0.001, 0.01, 0.1}
2. ηλ ∈ {0.001, 0.25, 0.5}
3. ηp ∈ {0.001, 0.01, 0.1}
4. ν in Eq. (11) is selected from {0.0005, 0.001, 0.005}

• Image data:

1. ηθ ∈ {0.0001, 0.0005, 0.001}
2. ηλ ∈ {0.0001, 0.0005, 0.005}
3. ηp ∈ {0.0001, 0.0005, 0.001}
4. ν in Eq. (11) is selected from {0.7, 0.5, 0.3}

F.2. Additional experimental results

Table 5 and table 6 show the results between robust and non-robust methods of ours. In general, our method with using
robust approach shows more robust performance than our method without the robust approach.

Label setting. In Table 1, fairness metrics use underlying group labels. In Table 2, we use noisy group labels, which are
common in datasets like FF++ where demographic attributes are inferred. Evaluating fairness under label noise is practical
and follows prior work ((Celis et al., 2021; Mehrotra & Vishnoi, 2022)). We also test the model on a human-corrected FF++
test set from the Lin et al. (2025), which contains relatively clean labels. As shown in Table 7, our method still maintains the
best performance across all fairness metrics.
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Backbone Method FF++ clean
AUC↑ Violation↓ Min/Max↓

Xception

Ori 0.9384 0.0289 0.9691
DAG-FDD 0.9628 0.0128 0.9808
DAW-FDD 0.965 0.0256 0.9751
PG-FDD 0.9708 0.0105 0.9840

Ours 0.9644 0.0070 0.9894

Table 7. Performance comparison on clean version of FF++ using Xception backbone. ↑ means higher is better and ↓ means lower is
better.

Backbone Method Training Time per Epoch (minutes)

Xception

Original 8
DAG-FDD 6
DAW-FDD 9
PG-FDD 28

Ours 15

Table 8. Training time comparison on deepfake detection task on FF++ dataset.

Computational overhead. To evaluate the practicality of our approach at scale, we benchmarked training time on the
FaceForensics++ dataset, a widely used, large-scale benchmark for deepfake detection. As shown in table 8, our method
introduces moderate overhead compared to some baselines but remains significantly more efficient than others, such as PG-
FDD. Specifically, our method requires 15 minutes per epoch, which is faster than PG-FDD (28 min) and reasonably close
to other baselines like DAW-FDD and the Original model. This demonstrates that our approach remains computationally
feasible and scalable in practice, even for large image datasets and backbone models like Xception.

Experiments with extreme settings. As Table 9 shows, even in extremely high noise levels (60%, 70%, 80%, and 90%), our
method consistently achieves the lowest AUC fairness violation and the highest Min/Max AUC score. These results strongly
align with our claims in the paper, demonstrating that our approach maintains robust fairness guarantees and balanced group
performance in highly noisy settings.

Results on more groups. We add one more experiment about evaluating our method on a dataset with more than two
protected groups. Specifically, in Table 10, we present results on the FaceForensics++ (FF++) dataset, where we consider
race as the protected attribute, comprising four groups: White, Black, Asian, and Other. This multi-group setting is more
challenging than the binary group setting commonly seen in fairness literature. Nonetheless, our method achieves the
lowest fairness violation (0.0161) and the highest Min/Max AUC score (0.9850) among all baselines, demonstrating its
effectiveness in ensuring AUC fairness across multiple protected groups. These results confirm that our approach generalizes
well to settings involving complex, non-binary group structures, such as race.

CLIP for label prediction. We added experiments with one more baseline to address your concern. Specifically, as shown
in Table 11, we include a baseline called Ours (CLIP-labeled), where we directly use CLIP to predict the protected group
labels and then train the model based on those labels. In contrast, our full method, Ours (robust), uses CLIP only to estimate
the group label noise level, not for prediction or relabeling. It is clear that Ours (robust) outperforms Ours (CLIP-labeled) in
all metrics, achieving higher AUC (0.9766 vs. 0.9725), lower violation (0.0061 vs. 0.0089), and better Min/Max fairness
(0.9907 vs. 0.9858). This indicates that directly using CLIP-predicted labels to mitigate the impact of noise during training
does not yield optimal performance. More importantly, this baseline approach does not guarantee fairness under the noisy
label setting.

Additional Visualizations. To better communicate the fairness–performance tradeoff across all methods in Table 1, we
include two efficiency frontier plots in Fig 4 and Fig 5. We used the results in Table 1, which include performance on three
tabular datasets: Adult, Bank, and Default. For each fairness-enhanced method, we compute the average AUC, average
fairness violation, and average Min/Max AUC ratio across the three datasets for each noise level (0.1–0.3). This gives three
points per method, each representing the average values across datasets at a given noise level. Fig 4 visualizes Average AUC
vs. Average Fairness Violation, demonstrating the tradeoff of performance and fairness. Our method (”Ours”) consistently
occupies the top-left region, achieving lower violation than all baselines while maintaining competitive or superior AUC. Fig
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Noise
Level Method Default

AUC↑ Violation↓ Min/Max↑

0.6

AUCMax 0.7771±0.0005 0.0672±0.0004 0.9108±0.0005
InterFairAUC 0.7548±0.0022 0.0238±0.0039 0.9586±0.0062

MinimaxFairAUC 0.7550±0.0021 0.0249±0.0054 0.9577±0.0078
Ours 0.7540±0.0024 0.0186±0.0027 0.9676±0.0045

0.7

AUCMax 0.7788±0.0007 0.0696±0.0010 0.9081±0.0012
InterFairAUC 0.7532±0.0020 0.0239±0.0018 0.9594±0.0052

MinimaxFairAUC 0.7545±0.0021 0.0265±0.0062 0.9557±0.0079
Ours 0.7541±0.0024 0.0183±0.0033 0.9687±0.0052

0.8

AUCMax 0.7760±0.0006 0.0687±0.0014 0.9092±0.0017
InterFairAUC 0.7548±0.0022 0.0251±0.0043 0.9566±0.0062

MinimaxFairAUC 0.7532±0.0021 0.0246±0.0039 0.9588±0.0072
Ours 0.7546±0.0025 0.0183±0.0035 0.9688±0.0057

0.9

AUCMax 0.7795±0.0006 0.0675±0.0007 0.9108±0.0008
InterFairAUC 0.7545±0.0022 0.0252±0.0045 0.9567±0.0062

MinimaxFairAUC 0.7544±0.0022 0.0267±0.0061 0.9555±0.0078
Ours 0.7527±0.0022 0.0201±0.0031 0.9661±0.0049

Table 9. Performance comparison across high noise levels (0.6–0.9). The numbers are reported as ‘Mean ± Standard Deviation.’ ↑ means
higher is better and ↓ means lower is better. The best results are shown in Bold.

Backbone Method FF++
AUC↑ Violation↓ Min/Max↓

Xception

Ori 0.9445 0.0335 0.9633
DAG-FDD 0.9647 0.0226 0.9798
DAW-FDD 0.9670 0.0215 0.9753
PG-FDD 0.9751 0.0172 0.9837

Ours 0.9625 0.0161 0.9850

Table 10. Performance comparison on the FF++ dataset with race as the protected attribute. ↑ means higher is better and ↓ means lower
is better.

5 shows Average AUC vs. Average Min/Max AUC Ratio, highlighting group-wise fairness consistency. Our method ranks
in the top-right region, attains the best Min/Max ratio with strong AUC, reflecting better fairness stability across groups.

To complement the tabular results in Table 2, we include two efficiency frontier plots based on the average values across all
four benchmark datasets (FF++, DFDC, DFD, and Celeb-DF). Fig 6 reveals the trade-off between detection performance
and fairness violation. Our method (”Ours”) achieves the lowest average violation while maintaining a higher AUC than all
other methods on both Xception and EfficientNet-B4 backbones. These results position our method at the top-left corner,
indicating Pareto efficiency and demonstrating strong performance–fairness trade-offs. Fig 7 captures performance versus
group-wise fairness consistency. Our method again ranks at the top-right region, with both the highest min/max ratio
and competitive or superior AUC. This confirms that our method not only performs well but also offers greater fairness
stability across demographic groups. We note that while the table provides fine-grained per-dataset results, these plots offer
a complementary view by highlighting global efficiency across multiple objectives. The strong position of our method in
both plots further supports its overall effectiveness.
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Backbone Method FF++
AUC↑ Violation↓ Min/Max↓

EfficientNet-B4

Ori 0.9332 0.0209 0.9684
DAG-FDD 0.9563 0.0100 0.9869
DAW-FDD 0.9694 0.0169 0.9764
PG-FDD 0.9721 0.0144 0.9784

Ours(CLIP-labeled) 0.9725 0.0089 0.9858
Ours(robust) 0.9766 0.0061 0.9907

Table 11. Performance comparison on FF++ using EfficientNet-B4 backbone. ↑ means higher is better and ↓ means lower is better.

Figure 4. Efficiency frontier showing the trade-off between Average AUC and Average Fairness Violation across three tabular datasets
(Adult, Bank, Default) at varying noise levels (0.1–0.3).
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Figure 5. Efficiency frontier showing the trade-off between Average AUC and Average Min/Max AUC across three tabular datasets (Adult,
Bank, Default) at varying noise levels (0.1–0.3).
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Figure 6. Efficiency frontier showing the trade-off between detection performance (AUC) and fairness violation across four benchmark
datasets (FF++, DFDC, DFD, Celeb-DF).
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Figure 7. Efficiency frontier showing the trade-off between detection performance (AUC) and Min/Max AUC across four benchmark
datasets (FF++, DFDC, DFD, Celeb-DF).
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