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Abstract

This paper investigates approaches to enhance the reasoning capabilities of Large1

Language Model (LLM) agents using Reinforcement Learning (RL). Specifically,2

we focus on long-horizon multi-turn agent scenarios, which can be naturally mod-3

eled as Markov Decision Processes. Although popular RL algorithms such as4

Group Relative Policy Optimization (GRPO) and Proximal Policy Optimization5

(PPO) have been widely applied to train multi-turn LLM agents, they typically rely6

only on sparse final rewards and lack dense intermediate signals across multiple7

decision steps, limiting their performance on complex reasoning tasks. To address8

this, we introduce a fine-grained turn-level credit assignment strategy to enable9

more effective process-level supervision in multi-turn agent interactions. By in-10

corporating well-designed turn-level rewards, we extend GRPO and PPO to their11

multi-turn variants that better guide LLM agents at each round of interaction. Our12

case studies on multi-turn reasoning-augmented search tasks demonstrate that RL13

algorithms augmented with fine-grained credit assignment significantly improve14

the performance of LLM agents compared with baselines. Evaluated on diverse15

question-answering datasets with 7B models, the training and validation reward16

curves illustrate that our method achieves greater stability, faster convergence, and17

higher accuracy across multiple runs.18

1 Introduction19

Reinforcement Learning (RL) has recently emerged as a powerful approach for improving the20

reasoning capabilities of Large Language Models (LLMs), allowing them to explore and refine long21

Chains of Thought (CoT) (Wei et al., 2022) in complex decision-making tasks. Building on this22

paradigm, reasoning-based LLMs, such as OpenAI’s o1 (Jaech et al., 2024) and DeepSeek’s R1 (Guo23

et al., 2025a), demonstrate remarkable performance in textual reasoning tasks by learning analytical24

thinking and self-reflection.25

Despite these advancements, LLMs that rely solely on CoT textual reasoning remain limited in tasks26

that require precise and complex numerical computation, information retrieval from web pages or27

local databases, or code execution. Equipping LLMs as autonomous agents with access to external28

tools, such as search engines, scientific calculators, or code interpreters, can significantly extend their29

capabilities beyond pure text-based reasoning.30

However, training LLMs to operate as autonomous agents in interactive environments faces unique31

challenges. Agent settings often require models to make sequential, multi-turn decisions in complex32

reasoning tasks. Many existing approaches (Chen et al., 2025b; Jin et al., 2025b; Feng et al., 2025a)33

formulate these multi-turn interactive tasks as single-turn problems, relying solely on final outcome-34

level rewards such as answer correctness. Popular RL algorithms, including Group Relative Policy35

Optimization (GRPO) (Shao et al., 2024) and Proximal Policy Optimization (PPO) (Schulman et al.,36
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2017), are commonly used in this setting. However, such single-turn formulation is inadequate for37

long-horizon multi-turn reasoning as it treats the entire trajectory as a single decision step, ignoring38

the multi-turn structure of the tasks. In particular, it ignores turn-level rewards—intermediate signals39

that indicate whether individual steps are helpful or harmful. Without access to dense turn-level40

feedback, agents struggle to refine their behavior, making it difficult to interact effectively with41

dynamic environments over multiple steps. For example, in a search agent, selecting a good query42

early on is crucial for retrieving relevant information; without turn-level feedback, the agent cannot43

learn which queries contribute to correct answers.44

Recent studies (Li et al., 2025; Qian et al., 2025; Wang et al., 2025a; Labs, 2025; Wang et al.,45

2025b; Zhang et al., 2025; Singh et al., 2025; Jin et al., 2025a) formulate multi-turn agentic tasks46

as Markov Decision Processes (MDPs) and incorporate turn-level intermediate rewards like tool47

execution. However, these approaches still suffer from the credit assignment problem: they combine48

outcome- and turn-level rewards into a sparse trajectory-level signal. This makes advantage estimation49

inaccurate and prevents RL algorithms from providing fine-grained supervision across intermediate50

rounds of interaction.51

Process-level supervision enables the design of intermediate and final reward functions that guide52

strategic tool usage and deliver high-quality feedback, improving training stability. Motivated by this,53

we propose a fine-grained turn-level credit assignment strategy for multi-turn LLM agent training.54

Our key contributions are as follows:55

• We model multi-turn long-horizon reasoning tasks in LLM agents as MDPs, which naturally56

capture the sequential decision-making structure of such problems.57

• To train multi-turn LLM agents effectively under the MDP framework, we introduce a58

fine-grained turn-level credit assignment strategy. Specifically, we extend GRPO and PPO59

to their multi-turn variants by incorporating both final outcome rewards and intermediate60

turn-level rewards. While multi-turn GRPO requires exponential rollout samples to compute61

intermediate advantages, multi-turn PPO leverages a critic model, offering a more efficient62

and scalable solution.63

• To highlight the importance of the credit assignment mechanism, we perform a case study64

using a reasoning-augmented search agent that operates in multiple steps: reasoning, search,65

and answering, and carefully design the intermediate and final reward functions.66

• Our case studies on multi-turn reasoning-augmented search tasks show that incorporating67

fine-grained credit assignment enables RL algorithms to significantly outperform baseline68

methods. On both general and multi-hop question-answering datasets with Qwen2.5-7B69

models, our approach yields more stable training, faster convergence, and higher accuracy70

across five independent runs. Furthermore, our algorithm consistently avoids training crashes71

and reliably generates outputs in the correct format.72

2 Problem Formulation for LLM Agent Training73

2.1 Single-Turn Problem Formulation74

Traditional RL for LLMs is typically formulated in a single-turn setting. The objective is to maximize75

the expected final reward:76

max
πθ

Ex∼D, y∼πθ(·|x) [R(x, y)] (1)

where πθ denotes the policy model, x is the input prompt sampled from the dataset D, y is the output77

response generated by the LLM, and R(x, y) denotes the final outcome reward of a prompt–response78

pair. In this single-turn formulation, an entire generation y is treated as a single action, and only79

a final outcome reward R(x, y) is observed. Thus, Problem (1) can be interpreted as a contextual80

bandit problem.81

2.2 Multi-Turn Problem formulation: Turn-Level MDP82

LLM agents operate in interactive environments that unfold over multiple turns and involve stochastic83

feedback. To capture these dynamics, we formulate the multi-turn agent task as a turn-level MDP,84
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which is formally defined as85

M = {S,A,P,R}
Here, S denotes the state space, and A denotes the action space. A state s ∈ S typically corresponds86

to an interaction history, while an action a ∈ A often corresponds to a sequence of generated tokens,87

possibly interleaved with environment feedback. P represents the transition dynamics. R is the88

turn-level reward function.89

Assume the LLM agent interacts with the environment for K turns. At the k-th turn, conditioned on90

the current state sk, the agent makes an action ak according to the LLM policy πθ. The environment91

may provide feedback ok. The agent then receives a reward Rk, and transitions to the next state sk+1.92

We formalize this process as follows:193

sk+1 = [sk, ak], Rk = R(sk, ak)

This yields a full trajectory τ = {s1, a1, . . . , sK , aK}. Within the MDP framework, the objective94

can be expressed as maximizing the cumulative reward:95

max
πθ

Eτ∼πθ

[
R(τ) =

K∑
k=1

R(sk, ak)

]
, (2)

where R(τ) denotes the cumulative reward over the entire trajectory. When only an outcome reward96

is provided, the intermediate rewards are zero, i.e.,297

Rk = R(sk, ak) = 0, for k = 1, 2, . . . ,K − 1

RK = R(sK , aK) = R(x, y),

In this case, the MDP formulation in Eq. (2) reduces to Problem (1).98

3 Credit Assignment in GRPO for Multi-Turn Agentic Tasks99

3.1 GRPO for Single-Turn Settings100

Recently, the Group Relative Policy Optimization (GRPO) algorithm (Shao et al., 2024) has been101

widely used to enhance the reasoning capabilities of LLMs. GRPO estimates the advantage in a102

group-relative manner. Specifically, for each input question x, it samples a group of responses103

{y1, y2, . . . , yG} from the reference policy πref. To solve Problem (1), GRPO optimizes the policy104

by maximizing the following objective function:105

JGRPO(θ) = Ex∼D, {yi}G
i=1∼πold(·|x)

[
1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

min

(
πθ(yi,t | x, yi,<t)

πold(yi,t | x, yi,<t)
Ai,t,

clip
(

πθ(yi,t | x, yi,<t)

πold(yi,t | x, yi,<t)
, 1− ϵ, 1 + ϵ

)
Ai,t

)
− βDKL [πθ ∥πref]

]
, (3)

where πθ(yi,t|x,yi,<t)
πold(yi,t|x,yi,<t)

is the token-level importance sampling ratio between the current policy πθ and106

the previous policy πold, ϵ is the clipping parameter, and β is the KL divergence coefficient. Given a107

group of final outcome rewards {Ri}Gi=1, the advantage of the i-th response Ai,t is calculated by108

Ai,t =
Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
, Ri = R(x, yi). (4)

3.2 Limitations of GRPO in Multi-Turn Settings109

It is straightforward to observe that GRPO is well-suited for the single-turn problem. The advantage110

is computed by normalizing the final outcome rewards within the sampled group.111

1If the environment feedback ok exists, the process is given by sk+1 = [sk, ak, ok] and Rk = R(sk, ak, ok).
Here, we omit ok for notational simplicity.

2In this paper, we denote R(x, y) as the final outcome reward and R(s, a) as the general turn-level reward in
the multi-turn setting.
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In multi-turn tasks, intermediate signals are often available to guide the LLM agent. However, GRPO112

does not naturally incorporate such intermediate rewards into advantage estimation, making it difficult113

to leverage them effectively. A naive solution to Problem (2) is to merge the intermediate rewards114

and the final outcome reward as a single sparse trajectory-level reward, that is,115

Ai,t =
Ri − mean({Ri}Gi=1)

std({Ri}Gi=1)
, Ri =

K∑
k=1

Ri,k =

K∑
k=1

R(si,k, ai,k) (5)

where Ri,k = R(si,k, ai,k) denotes the intermediate reward given the state si,k and action ai,k in the116

k-th turn.117

For the two advantage estimation strategies in Eq. (4) and Eq. (5) used by GPRO, the advantage118

function Ai,t is computed at the trajectory level, i.e., Ai,1 = Ai,2 = · · · = Ai,t = · · · = Ai,|yi|.119

This means that the same advantage is assigned uniformly across the entire trajectory, without120

distinguishing the contributions of individual tokens. As a result, it leads to coarse credit assignment121

and fails to capture the effect of individual turns. For long-horizon multi-turn tasks, trajectory-level122

credit assignment often leads to unstable training and suboptimal performance.123

3.3 Turn-Level Credit Assignment for GRPO: A Simple Attempt124

To highlight the importance of fine-grained credit assignment in GRPO, we consider a simple two-turn125

agent setting. In this case, the agent receives a group of intermediate rewards {Ri,1}Gi=1 in the first126

turn and final rewards {Ri,2}Gi=1 in the second turn. Based on these signals, we propose our turn-level127

credit assignment strategy for GRPO. The resulting turn-level advantages in the first and second turns128

are given by:129

Āi,1 = Ai,1 +Ai,2, Āi,2 = Ai,2, (6)

where130

Ai,1 =
Ri,1 − mean({Ri,1}Gi=1)

std({Ri,1}Gi=1)
, Ai,2 =

Ri,2 − mean({Ri,2}Gi=1)

std({Ri,2}Gi=1)
(7)

We can see that the advantage in the first turn combines both the intermediate and final advantages,131

whereas the advantage in the second turn depends only on the final outcome. By leveraging intermedi-132

ate rewards, all tokens within a single turn share a unified advantage signal. We refer to this algorithm133

as multi-turn GRPO (MT-GRPO). A detailed derivation of MT-GRPO for the general multi-turn134

setting is provided in Appendix C.135

Case Study on the Two-Turn Agent Setting. We conduct experiments to illustrate the effectiveness136

of the proposed MT-GRPO method in the two-turn agent setting (see Appendix D for more details).137

Figure 1 shows the training reward curves for GRPO and MT-GRPO. We observe that MT-GRPO138

achieves higher accuracy and more stable tool usage, verifying the importance of fine-grained credit139

assignment for multi-turn agent tasks.140
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Figure 1: Curves for different training reward components during training with various algorithms
(MT-GRPO in Eq. (6), GRPO-OR in Eq. (4), and GRPO-MR in Eq. (5)). Each plot shows the training
reward score over training steps for Tool Execution and Exact Match. Dotted lines represent the
average reward across 10 runs, while solid lines show trends smoothed using the Exponential Moving
Average (EMA).
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Limitations of MT-GPRO. (1) In MT-GRPO, computing the intermediate advantages requires G141

rollout samples at each turn. Therefore, over a horizon of K turns, this results in GK−1 rollout142

trajectories in total. Such exponential growth in complexity makes the approach computationally143

prohibitive for long-horizon multi-turn tasks. (2) This strategy also assumes that all rollout samples in144

a group must contain the same number of turns, which requires enforcing this constraint in the system145

prompt and leads to a fixed-turn setting. Such a restriction limits the flexibility and applicability of146

GRPO in more diverse interaction settings.147

4 Credit Assignment in PPO for Multi-Turn Agentic Tasks148

In the previous section, we illustrated the importance of fine-grained turn-level credit assignment,149

which improves the performance of LLM agents in multi-turn interactions. However, the exponential150

computational cost and the rigidity in handling variable numbers of turns limit the applicability of151

MT-GRPO to general agent tasks. In this section, we present our credit assignment strategy for PPO,152

aiming to provide a more flexible, scalable, and efficient solution.153

PPO. Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a popular actor-critic RL154

algorithm commonly used for LLM training (Ouyang et al., 2022). To solve Problem (2), PPO155

updates the policy by maximizing the following objective:156

JPPO(θ) = Ex∼D, y∼πold(·|x) 1

|y|

|y|∑
t=1

min

(
πθ(yt | x, y<t)

πold(yt | x, y<t)
At, clip

(
πθ(yt | x, y<t)

πold(yt | x, y<t)
, 1− ϵ, 1 + ϵ

)
At

) , (8)

The advantage estimate At is computed using Generalized Advantage Estimation (GAE) (Schulman157

et al., 2015), based on rewards and a learned value function (critic model). Formally, for a trajectory158

of length T , the GAE At at time step t is computed as:159

At =

T−t−1∑
l=0

(γλ)lδt+l, δt = rt + γVt+1 − Vt (9)

where γ is the discount factor, λ ∈ [0, 1] is the GAE parameter, δt is the temporal-difference (TD)160

error, rt = r(x, y<t) is the token-level reward and Vt = V (x, y<t) is the token-level value for the161

entire trajectory. Through the mechanism of GAE, the token-level value function enables token-level162

advantage estimation.163

Turn-Level Rewards in PPO. Given both intermediate rewards RI and the final reward RF , the164

token-level reward rt is assigned as165

rt =


RF if t is the last token of the entire trajectory
RI if t is the last token of the current turn
0 otherwise

(10)

With explicit intermediate rewards, GAE provides fine-grained training signals at each turn. For166

clarity, we refer to PPO trained with both intermediate and final rewards as multi-turn PPO (MT-PPO),167

while PPO trained with only sparse trajectory-level rewards is simply referred to as PPO. Compared168

with MT-GRPO, which requires exponential rollout samples to compute intermediate advantages,169

MT-PPO leverages a critic model with GAE, offering a more efficient and scalable solution.170

Table 1: Comparison of granularity of advantage estimation and reward assignment across different
RL algorithms for multi-turn LLM agents.

RL Algorithm Granularity of Reward Assignment Granularity of Advantage Estimation

GRPO Trajectory-Level Trajectory-Level
MT-GRPO Turn-Level Turn-Level
PPO Trajectory-Level Token-Level
MT-PPO Turn-Level Token-Level
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5 Case Study: Multi-Turn Reasoning-Augmented Search Agent171

5.1 Task Formulation172

We study an LLM agent that performs multi-turn reasoning with search engine interactions. The task173

can be naturally formulated under the MDP framework, which involves multiple steps of reasoning,174

retrieval, and final answer generation for question answering. The goal is to improve the agent’s175

performance through effective integration of external search. Specifically, the agent learns to leverage176

a Wikipedia search engine to retrieve relevant information and generate an accurate answer. Without177

search calling, the agent must rely solely on its internal knowledge to answer questions, which can178

limit accuracy, especially for fact-based queries requiring up-to-date or domain-specific information.179

System Prompt

think search information

think search information

think search information

think answer

....

Intermediate
Reward

Final Reward

Turn 1

Turn 2

Turn 3

Turn K

Retrieval Existence Reward
Format Reward
Search Count Reward

Exact Match Reward
Format Reward

Figure 2: Overview of the multi-turn reasoning-augmented search agent pipeline.

Given a system prompt and a question, each iteration of the LLM-based search agent proceeds as180

follows: (1) The agent begins with reasoning, analyzing the current context to identify missing181

information. (2) It then formulates a search query to retrieve relevant information from an external182

database, which is integrated into the evolving context. (3) This cycle continues until the agent judges183

that the context is sufficient, at which point it performs a final round of reasoning to generate the184

answer. The overall interaction follows a multi-turn reasoning–search loop, as shown in Figure 2.185

These steps impose strict constraints, such as permitting only a single search step and requiring the186

use of specific XML-like tags to delineate each stage of the interaction. Following (Jin et al., 2025b),187

reasoning steps are enclosed within <think> </think>, search queries are wrapped in <search>188

</search>, retrieved information is inserted into <information> </information>, and the final189

answer is placed within <answer> </answer>.190

5.2 Reward Design191

To align with the environment of the aforementioned LLM-based search agent, we design two types192

of verifiable reward functions: final rewards RF and intermediate rewards RI .193

Final Verifiable Rewards: evaluate the model-generated responses in the last turn, focusing on both194

the correctness of the answer and the adherence to the required output format.195

• Final Exact Match Reward: evaluates whether the extracted answer (from the <answer> tag)196

exactly matches any accepted ground-truth answer after normalization (e.g., lowercasing197

and whitespace removal):198

RF
EM =

{
1.0 if the extracted answer exactly matches any ground truth,
0 otherwise.
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• Final Format Reward: ensures format correctness by verifying that: (1) only <think> and199

<answer> tags appear (no extra tags), (2) each tag appears exactly once, and (3) <think>200

precedes <answer>.201

RF
format =

{
0.2 if the format is correct,
−1.0 otherwise.

Intermediate Verifiable Rewards: guide the agent’s behavior in intermediate turns by evaluating202

the presence of ground-truth answers in retrieved content, enforcing proper format usage, and203

discouraging excessive search calls.204

• Intermediate Retrieval Existence Reward: evaluates whether any accepted answer appears205

in the one-round search result (from <information> tag), using case-insensitive matching.206

RI
retrieval =

{
0.3 if retrieved information contains a ground-truth answer,
0 otherwise.

• Intermediate Format Reward: ensures format correctness by verifying that: (1) only207

<think>, <search>, and <information> tags appear (no extra tags), (2) each tag ap-208

pears exactly once, and (3) <think> precedes <search> and <information>.209

RI
format =

{
0.1 if the format is correct,
−0.2 otherwise.

• Intermediate Search Count Reward: penalizes excessive search usage.210

RI
search = −0.1 · nsearch,

where nsearch denotes the cumulative number of search invocations from the first turn up to211

the current turn.212

Among these signals, retrieval and format correctness are assigned relatively smaller weights com-213

pared to answer correctness, which helps prevent reward hacking. A negative reward (penalty) is214

applied when the format is incorrect, ensuring that the agent adheres to the required structure. In215

addition, we introduce an intermediate search penalty, which discourages excessive or unnecessary216

search calls and prevents the agent from either avoiding the question answering or failing due to217

crashes. Here, both final rewards and intermediate rewards are defined as the summation of their218

respective component rewards.219

6 Experiments220

6.1 Experiment Setup221

In our experiments, we build our codebase upon the open-source project Search-R1 (Jin et al., 2025b),222

which trains LLM agents for multi-turn reasoning-augmented search tasks.223

Datasets. We train the LLM agent on two types of question answering datasets: (1) NQ (Karpukhin224

et al., 2020) for general question answering, and (2) HotpotQA (Yang et al., 2018) for multi-hop225

question answering. These datasets cover a diverse range of search and reasoning challenges,226

providing a comprehensive basis for evaluation.227

Evaluated Methods. We compare our proposed multi-turn PPO (MT-PPO) with vanilla PPO: (1)228

PPO (Jin et al., 2025b): original PPO with only final answer correctness rewards, and (2) MT-PPO229

(ours): PPO variant with both intermediate and final rewards, as described in Section 5.2.230

Evaluation Metrics. We evaluate model performance using three types of rewards during both231

training and validation: (1) answer correctness reward, (2) format correctness reward, and (3) retrieval232

correctness reward. Each reward is assigned a value of 1.0 if the criterion is satisfied and 0 otherwise.233

The detailed reward rules are provided in Appendix B.1.234

Training Details. We use Qwen2.5-7B (Yang et al., 2024) as the base model, E5 (Wang et al., 2022)235

as the retriever, and 2018 Wikipedia dump (Karpukhin et al., 2020) as the corpus. Following (Jin236

et al., 2025b), we enable policy loss masking for retrieved tokens. More details on experimental237

settings can be found in Appendix B.2.238
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6.2 Main Results239
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Figure 3: Curves of answer correctness reward during training and validation on the NQ and
HotpotQA datasets for PPO and MT-PPO algorithms, where shaded regions represent the range
between the maximum and minimum values across 5 runs.
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Figure 4: Curves of format correctness reward during training and validation on the NQ and
HotpotQA datasets for PPO and MT-PPO algorithms, where shaded regions represent the range
between the maximum and minimum values across 5 runs.

Figure 3 shows the answer correctness reward curves during training and validation for PPO and240

MT-PPO. We observe that MT-PPO achieves substantially more stable training compared to the PPO241

baseline. In particular, during the early training phase (first 100 steps), MT-PPO converges faster,242

suggesting that the incorporation of intermediate rewards provides the model with stronger guidance243
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Figure 5: Curves of retrieval correctness reward during training and validation on the NQ and
HotpotQA datasets for PPO and MT-PPO algorithms, where shaded regions represent the range
between the maximum and minimum values across 5 runs.

signals and accelerates learning. As training progresses, PPO exhibits significant variance and244

even degradation in performance, especially on the HotpotQA dataset, whereas MT-PPO maintains245

consistent improvement. Both the training and validation curves clearly demonstrate that MT-PPO246

attains higher average accuracy than PPO over 5 independent runs, highlighting the robustness of our247

approach.248

Figures 4 and 5 further examine the impact of credit assignment from the perspective of output format249

and retrieval quality. From the format reward curves, we see that MT-PPO consistently adheres to the250

correct output format, while PPO struggles—particularly on the more challenging HotpotQA dataset,251

where incorrect formatting severely hampers downstream evaluation. This suggests that intermediate252

turn-level rewards in MT-PPO not only stabilize optimization but also enforce structural correctness253

in model outputs. The retrieval reward curves further show that MT-PPO achieves higher and more254

consistent retrieval accuracy than PPO, demonstrating its ability to leverage intermediate signals to255

guide reasoning steps and support more reliable multi-turn interaction.256

7 Conclusion and Future Work257

In this paper, we investigated the credit assignment problem in multi-turn agent tasks. By incorpo-258

rating carefully designed intermediate rewards, we extended GRPO and PPO into their multi-turn259

variants, enabling LLM agents to receive more informative guidance at each round of interaction. Our260

experiments on multi-turn reasoning-augmented search agents demonstrate that this credit assignment261

mechanism significantly improves stability and accuracy across different RL algorithms.262

In future work, we plan to extend our approach in several directions. First, beyond fixed and verifiable263

reward designs, we will explore more flexible reward modeling approaches, including leveraging264

LLMs as judges to provide adaptive and context-aware reward signals. Second, beyond search-265

oriented tasks, we aim to apply multi-turn credit assignment to broader agent settings such as code266

execution, vision-based reasoning, and multimodal interactions.267
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A Related Work416

A.1 RL for LLMs417

RL has become a widely used method for improving the reasoning capabilities of LLMs (Ziegler et al.,418

2019; Stiennon et al., 2020; Ouyang et al., 2022). Among RL methods, PPO (Schulman et al., 2017)419

and its variants (Yuan et al., 2025b,a) are the most widely adopted, following an actor–critic paradigm420

that alternates between training a value function and using it to guide policy updates. However, PPO421

requires training both policy and value models, which demands substantial GPU resources. GRPO422

(Shao et al., 2024) eliminates the need for a value function by estimating advantages in a group-423

relative manner, significantly reducing GPU requirements. Subsequent studies (Liu et al., 2025; Yu424

et al., 2025) extend GRPO by addressing response-level length bias and question-level difficulty bias425

to further improve training efficiency and stability. Beyond GRPO, alternative advantage estimation426

strategies have been explored, including RLOO (Kool et al., 2019; Ahmadian et al., 2024) and ReMax427

(Li et al., 2023).428

The credit assignment problem (Pignatelli et al., 2023) has recently drawn increasing attention in429

LLM reasoning (Shao et al., 2024; Cui et al., 2025; Cheng et al., 2025; Feng et al., 2025b; Guo et al.,430

2025b). These studies focus on textual reasoning tasks such as math problem solving. Multi-turn431

interactive agent tasks provide a more natural setting to demonstrate the benefits of fine-grained credit432

assignment.433

A.2 RL for LLM Agents434

RL has been used to train long-horizon multi-turn LLM agents in diverse domains such as search435

(Chen et al., 2025b; Jin et al., 2025b,a), tool calling (Feng et al., 2025a; Li et al., 2025; Qian et al.,436

2025; Wang et al., 2025a; Labs, 2025; Zhang et al., 2025; Singh et al., 2025), text-based games437

(Yao et al., 2020; Carta et al., 2023; Zhai et al., 2024; Wang et al., 2025b), web shopping (Yao et al.,438

2022), day-to-day digital app interaction (Chen et al., 2025a) and mobile device control (Bai et al.,439

2024). Most closely related to our work are several studies (Jin et al., 2025a; Feng et al., 2025a; Li440

et al., 2025; Qian et al., 2025; Wang et al., 2025a; Labs, 2025; Zhang et al., 2025; Singh et al., 2025)441

that apply RL algorithms such as GRPO and PPO to train tool-calling LLM agents, including math442

calculators, code interpreters, and search engines, enabling LLM agents to learn to reason with tool443

use. However, they aggregate outcome and turn-level rewards into a single trajectory-level signal (Li444

et al., 2025; Qian et al., 2025; Wang et al., 2025a; Labs, 2025; Wang et al., 2025b; Zhang et al., 2025;445

Singh et al., 2025). None of these methods considers fine-grained turn-level credit assignment across446

multiple decision steps to enhance multi-turn reasoning in LLM agents.447

B PPO Experiments448

B.1 Evaluation Metrics449

For each trajectory, we evaluate the following metrics:450

Answer correctness. The answer correctness reward evaluates whether the extracted answer (from451

the <answer> tag) exactly matches any accepted ground-truth answer after normalization (e.g.,452

lowercasing and whitespace removal).453

Format correctness. The format correctness reward ensures structural validity by verifying that the454

outputs in both the final turn and all intermediate turns comply with the specifications described in455

Section 5.2.456

Retrieval correctness. The retrieval correctness reward evaluates whether any accepted answer457

appears in at least one search result (from the <information> tag), using case-insensitive string458

matching.459

Each reward is assigned a value of 1.0 if the criterion is satisfied and 0 otherwise.460

B.2 Implementation Details461

We follow most of the experimental settings in Search-R1 (Jin et al., 2025b).462
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Retrieval. We use E5 (Wang et al., 2022) as the retriever, and 2018 Wikipedia dump (Karpukhin463

et al., 2020) as the corpus. We set the number of retrieved passages to 3, and the maximum turns to 4.464

PPO Training. All experiments are conducted on 8 NVIDIA H100 GPUs. We enable gradient465

checkpointing and adopt Fully Sharded Data Parallel (FSDP) with CPU offloading. The learning466

rates of the policy and critic models are set to 1e−6 and 1e−5, respectively. Training is performed467

for 500 steps over 4 epochs, with warm-up ratios of 0.285 and 0.015 for the policy and critic models,468

respectively. The total batch size is 512, with a mini-batch size of 256 and a micro-batch size of 64469

for policy updates, and a micro-batch size of 8 for critic updates. We adopt GAE with λ = 1 and470

γ = 1. The maximum sequence length is set to 4,096 tokens, with a maximum response length of471

500 tokens and a maximum retrieved content length of 500 tokens. The KL-divergence regularization472

coefficient β and clipping ratio ϵ are set to 0.001 and 0.2, respectively.473

Rollout Generation. We use vLLM (Kwon et al., 2023) with a tensor parallel size of 4, a GPU474

memory utilization ratio of 0.6, a temperature of 1.0, and a top-p value of 1.0.475

System Prompt. We use the same system prompt in Search-R1 (Jin et al., 2025b).476

B.3 Rollout Exmaples477

Table 2: A rollout example of generating a response with a correct format for MT-PPO.

Question: who will take the throne after the queen dies?

<think>I need to find out who will take the throne after the queen dies.
I’ll search for it.</think>

<search> who will take the throne after the queen dies </search>

<information>Doc 1(Title: S̈uccession to the British throne)̈ Catholics
are eligible. Queen Elizabeth II is the sovereign, and her .. Doc
2(Title: M̈onarchy of the United Kingdom)̈ Monarchy of the United
Kingdom The monarchy of the United Kingdom, commonly referred to as ...
Doc 3(Title: D̈emise of the Crown)̈ the Crown. This erroneous meaning
is undermined by the principle in constitutional law of the continuity
...</information>
<think>I found out that after the queen dies, her heir apparent will
take the throne. I need to find out who the heir apparent is for Queen
Elizabeth II.</think>

<search> heir apparent for Queen Elizabeth II </search>

<information>Doc 1(Title: Ḧeir apparent)̈ rank behind her brothers
regardless of their ages or her age. Thus, normally, even an only
... Doc 2(Title: Ḧeir apparent)̈ to the 16 thrones of Elizabeth II
to absolute primogeniture, except for male heirs born ... Doc 3(Title:
Ḧeir presumptive)̈ or the senior member of a collateral line (if the
monarch is childless); the birth ...</information>
<think>I found out that the heir apparent for Queen Elizabeth II is
her eldest son, Charles, Prince of Wales. Now I can provide the
answer.</think>

<answer> Charles, Prince of Wales </answer>
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Table 3: A rollout example of generating a response with an incorrect format for PPO.
Question: in which sea pearl is found in india?

<think>I need to find out in which sea pearl is found in India. I’ll
search for it.</think>

<search> in which sea pearl is found in India </search>

<information>Doc 1(Title: Pearl) pearl: saltwater and freshwater
pearls come in ... Doc 2(Title: Pearl) is a particularly large one
weighing 14 lb (6.4 kg). The largest ... Doc 3(Title: "Pearl Fishery
Coast") Pearl Fishery Coast The Pearl Fishery Coast refers to a coastal
area ...</information>
<think>I found out that pearls are found in the Indian Ocean. Now I
need to find out in which sea pearls are found in India.</think>

<search> in which sea are pearls found in India </search>

<information>Doc 1(Title: Pearl) pearl: saltwater and freshwater
pearls come in many different ... Doc 2(Title: "Geography of
India") Great Nicobar Island); Rama’s Bridge, and Point Calimere. The
Arabian ... Doc 3(Title: "Bay of Bengal") the gems of Sri Lanka.
Garnet and other precious gems are also found in abundance in the
...</information>
<think>I found out that pearls are found in the Indian Ocean. Now I
need to find out in which sea pearls are found in India.</think>

<search> in which sea pearls are found in India </search>

<information>Doc 1(Title: Pearl) pearl: saltwater and freshwater
pearls come in many different colors. While white, and ... Doc
2(Title: Pearl) pearls". The correct definition of a South Sea pearl
– as described by CIBJO and GIA – is a pearl ... Doc 3(Title: Pearl)
is a particularly large one weighing 14 lb (6.4 kg). The largest known
pearl (also from ...</information>
<think>I found out that pearls are found in the Indian Ocean. Now I
need to find out in which sea pearls are found in India.</think>

<search> in which sea are pearls found in India </search>
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C Derivation of MT-GRPO for General Multi-Turn Settings478

We first define the intermediate turn-level advantage Ai,(k), computed by normalizing the intermediate479

rewards {Ri,(k)}Gi=1 across the sampling group:480

Ai,(k) =
Ri,(k) − mean({Ri,(k)}Gi=1)

std({Ri,(k)}Gi=1)
, Ri,(k) = R(sk, ai,k) (11)

where Ri,(k) = R(sk, ai,k) denotes the reward of the i-th sampled action ai,k given the state sk in the481

k-th turn. Notably, we require G rollout actions {ai,k}Gi=1 at the state sk to compute the intermediate482

advantage Ai,(k). Specifically, the final turn-level advantage in the last turn can be defined as483

Ai,(K) =
Ri,K − mean({Ri,K}Gi=1)

std({Ri,K}Gi=1)
, Ri,K = R(si,K , ai,K) = R(x, yi) (12)

which is identical to the trajectory-level definition in Eq. (4).484

We then define the cumulative turn-level advantage Āi,(k), which credits the current action by485

aggregating current and future advantages:486

Āi,(k) = Ai,(k) +

K∑
l=k+1

Ai,(l) (13)

To solve Problem (2), in our MT-GPRO algorithm, the cumulative turn-level advantage is used in the487

GRPO loss function in Eq. (3) to guide policy optimization. This advantage is assigned uniformly to488

all tokens generated within the k-th turn, i.e.,489

Ai,1 = · · · = Ai,t = Āi,(k)

where t indexes tokens within the k-th turn,490

Limitations of MT-GPRO. (1) In MT-GRPO, computing the intermediate advantages requires G491

rollout actions {ai,k}Gi=1 at each state sk from Eq. (11). The final advantages are computed based492

on Eq. (12) once all trajectories are collected. Therefore, over a horizon of K turns, this results493

in GK−1 rollout trajectories in total. Such exponential growth in complexity makes the approach494

computationally prohibitive for long-horizon multi-turn tasks. (2) This strategy also assumes that495

all rollout samples in a group must contain the same number of turns, which requires enforcing496

this constraint in the system prompt and leads to a fixed-turn setting. Such a restriction limits the497

flexibility and applicability of GRPO in more diverse interaction settings.498

D GRPO Experiments499

D.1 Task Formulation500

To emphasize the importance of fine-grained credit assignment in multi-turn agent interactions, we501

formulate the task under the MDP framework, involving multiple steps of reasoning, tool use, and502

answer summarization for question answering. Specifically, our tool-use environment is modeled on503

a Wikipedia search setup, where the agent learns to leverage a Wikipedia search engine to retrieve504

relevant information and generate accurate answers. The goal is to improve the agent’s performance505

through effective integration of external tool use. Without tool calling, the agent must rely solely506

on its internal knowledge to answer questions, which can limit accuracy, especially for fact-based507

queries requiring up-to-date or domain-specific information.508

To clearly illustrate the impact of credit assignment, we design a simplified two-turn tool-use
environment in which the LLM agent can interact with the search tool environment for a maximum of
two turns. In this setup, the agent is allowed to call the Wikipedia search engine at most once before
submitting an answer to the question. Figure 6 illustrates the pipeline of the multi-turn, tool-calling
LLM agent system. Given a system prompt and a question, the LLM agent first performs a reasoning
step and issues a tool call, specifying both the tool name and a query derived from its reasoning. The
external tool environment processes the query and returns a search result. Based on the retrieved
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Figure 6: Overview of the multi-turn LLM agent pipeline and comparison of different advantage
estimation methods. The agent interacts with the tool environment across multiple steps: reasoning,
tool use, and answer generation, receiving both turn-level and outcome-level rewards. GRPO is used
as a representative algorithm to illustrate the different advantage estimation strategies. GRPO-OR
and GRPO-MR serve as baselines with trajectory-level advantage estimation, while MT-GRPO is our
proposed variant with fine-grained turn-level advantage estimation.

result, the agent performs a second round of reasoning to summarize the information and generate
the final answer. The whole process can be summarized as

reasoning → search → result → reasoning → answer

These steps are explicitly outlined in the system prompt, which also enforces strict constraints,509

such as allowing only a single tool invocation and requiring the use of specific XML-like tags (e.g.,510

<reasoning>, <tool>, <result>, <answer>) to delineate each stage of the interaction. The full511

system prompt is provided in Appendix D.5. Table 5 presents an example rollout in which the512

agent successfully calls the search tool. If the tool name or argument format is incorrect, the tool513

environment returns an error message, indicated by the response beginning with “Error:”. If the514

agent fails to include a tool-calling command in the first reasoning step, the tool environment will not515

be invoked. If the XML format or tag usage is incorrect—for example, if tags are missing, nested516

improperly, or misnamed—the environment may fail to parse the agent’s response, resulting in an517

error or a skipped tool invocation. Additional rollout examples where the agent fails to call the tool518

correctly are provided in Appendix D.6.519

Moreover, following the reformulation strategy proposed in Seed-Thinking-v1.5 (Seed, 2025), which520

converts multiple-choice questions into fill-in-the-blank or short-answer formats to reduce guessing521

and better evaluate reasoning ability, we adopt a similar method. Specifically, we convert our tasks522

into short-answer form and evaluate the model’s responses based on exact match with the ground-truth523

answers.524

D.2 Reward Design525

Figure 6 illustrates the pipeline of the multi-turn, tool-calling LLM agent system. To align with the526

environment of the tool-calling LLM agent, we design two types of verifiable reward functions.527

Turn-Level Verifiable Rewards: These depend solely on the first turn performed by the LLM agent.528

To compute turn-level rewards, we incorporate verifiers related to tool execution and search results.529

These verifiers ensure that the search engine is correctly invoked and that the ground-truth answer530

appears in the retrieved results.531
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• Tool Execution Reward: Awards 0.2 if the tool is correctly executed, determined by the532

presence of properly formatted tool calls (<tool>...</tool>) and successful responses533

(i.e., the environment’s response does not begin with “Error:”).534

• Search Result Answer Presence: Awards 0.5 if any accepted answer appears in the search535

results returned by the tool (extracted from the <result>...</result> tag), using a536

case-insensitive comparison.537

Outcome-Based Verifiable Rewards: These evaluate the final model-generated responses. Specifi-538

cally, they assess both the correctness of the answer and its formatting, ensuring that the output aligns539

with the expected structure and content.540

• Final Answer Presence Reward: Awards 0.5 if any accepted answer is present in the model’s541

final response (extracted from the <answer>...</answer> tag).542

• Exact Match Reward: Awards 1.0 if the model’s answer (extracted from543

<answer>...</answer>) exactly matches any accepted answer after standard text prepro-544

cessing (i.e., lowercasing and stripping whitespace).545

• XML Format Reward: Evaluates the structural integrity of the model’s output based on the ex-546

pected schema: <reasoning>...</reasoning> followed by either <tool>...</tool>547

or <answer>...</answer>. See the agent’s pipeline in Figure 6. Checks include: (1) the548

presence of at least one expected field (<reasoning>, <tool>, <answer>), (2) correct spac-549

ing (no leading or trailing whitespace within tags), (3) message starting with <reasoning>,550

and (4) message ending with </tool> or </answer>. Partial credit is awarded based on551

these criteria (weighted: 40% field presence, 20% spacing, 20% correct starting tag, 20%552

correct ending tag), and the final score is scaled by 0.2.553

• XML Tag Usage Reward: Assesses the correct usage of XML tags for the defined fields. For554

each tag, the reward verifies that exactly one opening and one closing tag are present. The555

reward is the proportion of correctly used tags (normalized by the number of tags checked),556

scaled by 0.2.557

It is easy to observe that turn-level rewards evaluate only the performance of the agent’s first turn,558

whereas outcome-level rewards assess the quality of the entire trajectory. This distinction leads to559

several characteristic scenarios:560

• Tool Invocation with Poor Final Answer: The agent correctly invokes a tool in the first turn,561

satisfying the turn-level criteria, but fails to produce a correct or well-formatted final answer,562

resulting in turn-level rewards but little or no outcome-level reward.563

• Incorrect or Absent Tool Use with Valid Final Answer: The agent either skips tool usage564

or invokes a tool incorrectly (e.g., due to malformed syntax or an error response), yet still565

generates a correct and well-structured final answer. In this case, the agent receives partial566

or full outcome-level rewards despite earning no turn-level rewards.567

• Failure Across Both Levels: The agent neither invokes a tool correctly nor produces a valid568

final answer, resulting in zero rewards and a strong negative learning signal.569

D.3 Experiment Setup570

In our experiments, we build our codebase upon the open-source project verifiers (Brown, 2025),571

which trains LLM agents for multi-turn tool-use tasks, including math calculators, code interpreters,572

and search engines.573

Task & Dataset. We focus on the multi-turn reasoning and search-based tool-use task. We use the574

TriviaQA dataset (Joshi et al., 2017) to train the LLM agent for answering questions by interacting575

with a Wikipedia search engine. TriviaQA offers a diverse set of challenging questions, making it a576

suitable benchmark for evaluating multi-turn reasoning capabilities.577

Evaluated Methods We compare our proposed MT-GPRO with vanilla GRPO.578

• GRPO: original GRPO with trajectory-level advantage estimation579

– GRPO-OR: GRPO using only outcome rewards580
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– GRPO-MR: GRPO using merged outcome and turn-level rewards581

• MT-GRPO (ours): GPRO variant with turn-level advantage estimation using both outcome582

and turn-level rewards583

Training Details. We use Qwen2.5-7B (Yang et al., 2024) as the base model. Experiments are584

conducted on a node equipped with 8 NVIDIA H100 GPUs: one GPU is dedicated to rollout585

generation, while the remaining seven GPUs are used for model training. Rollout generation is586

handled by vLLM (Kwon et al., 2023). Model training is performed using the Huggingface TRL587

implementation of GRPO (von Werra et al., 2020).588

Hyperparameters. For all methods, the number of rollout generations is set to 21. The maximum589

completion length during generation is set to 1024 tokens. The KL divergence penalty is disabled by590

setting β = 0. The learning rate is fixed at 1× 10−6. We use a per-device batch size of 12 and set591

gradient accumulation steps to 4. Each batch undergoes two training iterations. The total number of592

training steps is set to 300.593

D.4 Main Results594

Figure 7 shows reward component curves during training across various algorithms. From the answer595

presence and exact match reward curves, it is evident that MT-GRPO outperform GRPO-OR and596

GRPO-MR, demonstrating that fine-grained credit assignment enhances the performance of multi-turn597

LLM agents.598

The turn-level rewards, including tool execution and search result answer presence rewards, reveal599

that MT-GPRO achieves 100% success in tool execution while GRPO-OR gradually stops calling600

search tools in question answering tasks and achieves worse final performance. This is because601

GRPO-OR does not incorporate turn-level rewards effectively in its advantage estimation, which602

indicates the importance of turn-level feedback in multi-turn interaction tasks.603

Figures 8, 9, and 10 illustrate reward component curves during training with different algorithms,604

where shaded regions represent the range between the maximum and minimum values across 10605

runs, showcasing the variability in learning performance. Notably, the proposed MT-GRPO method606

demonstrates lower variance during training, while GRPO-OR and GRPO-MR exhibit greater insta-607

bility. An interesting observation is that the tool execution curve of MT-GRPO temporarily drops608

sharply around step 230–250 but subsequently recovers and stabilizes. This demonstrates that even if609

the agent forgets to call search tools in the middle of the training, it eventually learns to incorporate610

them in the final stages. This finding further emphasizes the significance of credit assignment in our611

proposed algorithms, contributing to more stable training.612

Table 4 presents the validation reward scores across different models. MT-GRPO achieves the highest613

performance in all reward metrics. Compared to GRPO-MR, which reaches 0.3724 in final search614

answer and 0.3346 in exact match, MT-GRPO demonstrates clear improvements, especially in exact615

match with a margin of +0.1664. In contrast, GRPO-OR performs poorly across all metrics, scoring616

0 in turn-level rewards and only 0.04 in XML format. These results confirm that fine-grained credit617

assignment in MT-GRPO leads to better turn-level decision-making and more accurate final outcomes618

in multi-turn tasks.619
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Figure 7: Curves for different training reward components during training with various algorithms
(MT-GRPO, GRPO-OR, and GRPO-MR). Each plot shows the training reward score over training
steps for turn-level rewards (Tool Execution, Search Result Answer Presence) and outcome rewards
(XML Tag Usage, XML Format, Final Answer Presence, Exact Match). Dotted lines represent the
average reward across 10 runs, while solid lines show trends smoothed using the Exponential Moving
Average (EMA).
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Table 4: Performance comparison across different methods on reward scores evaluated on the
validation set. Values in parentheses indicate the reward range for each metric. Bold numbers indicate
the best performance for each reward type.

Model
Turn-Level Reward Outcome Reward

Tool Execution
(0-0.2)

Search Answer
(0-0.5)

XML Format
(0-0.2)

Exact Match
(0-1)

Qwen2.5-7B-Base 0.0559 0.0934 0.1562 0.0469

Qwen2.5-7B-Instruct 0.1626 0.2814 0.1982 0.1559

Qwen2.5-7B-Base + GRPO-OR 0 0 0.04 0

Qwen2.5-7B-Base + GRPO-MR 0.2 0.3724 0.1994 0.3346

Qwen2.5-7B-Base + MT-GRPO 0.2 0.3926 0.1996 0.5010

D.5 System Prompt620

System Prompt

You have access to the following tools to help solve problems:

{tool_descriptions}

Follow these steps exactly once:
1. Think through your reasoning inside <reasoning> tags
2. Use a tool by writing a JSON command inside <tool> tags with:

• "name": the tool to use
• "args": the arguments for the tool

3. You will see the tool’s output inside <result> tags
4. Think through the tool’s output inside <reasoning> tags
5. Based on your reasoning, provide your final answer inside <answer> tags

Important:
• Use the tool exactly once – DO NOT attempt to call the tool again even if the first

search isn’t helpful
• Work with both your prior knowledge and the single tool call
• If the tool result is unhelpful, rely on your prior knowledge
• Tools expect valid JSON – follow the examples carefully
• Do not invent tools or arguments that aren’t listed
• Analyze the result in a reasoning step before giving your answer
• Your answer should match the expected ground-truth

621

Wiki Search Tool Descriptions

wiki_search: Searches Wikipedia and returns the top matching article content.

Arguments:
- query

622

D.6 Rollout Examples623
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Table 5: A rollout example of successfully calling the search tool during training.

Question: What serial killer, who buried the remains of 26 of his victims in his Chicago crawl
space, was known as the “Killer Clown”?

<reasoning> To find out who was the serial killer known as the “Killer Clown,” we’ll use the
wiki_search tool to gather information about this specific individual. </reasoning>
<tool>

{
"name": "wiki_search",
"args": {

"query": "Killer Clown serial killer buried remains in Chicago crawl space"
}

}
</tool>
<result> John Wayne Gacy. John Wayne Gacy (March 17, 1942 – May 10, 1994) was an
American serial killer who raped, tortured, and murdered at least 33 teenage boys and young
men between 1972 and 1978 in Cook County, Illinois (a part of metropolitan Chicago). All of
Gacy’s known murders were committed inside his Norwood Park ranch house. . . </result>
<reasoning> From the information provided, John Wayne Gacy, referred to as the “Killer
Clown,” was a serial killer known for burying the remains of at least 26 of his victims in his
Chicago crawl space. He gained notoriety for using various methods to subdue his victims,
including deceiving young males into wearing handcuffs and using methods like garroting
and suffocation. His final confirmed victim was identified through DNA testing in 2011.
Investigations into potential accomplices and his connection to a sex trafficking ring also raise
questions about his broader involvement in criminal activity. </reasoning>

<answer> John Wayne Gacy </answer>

Table 6: A rollout example of failing to call the search tool and producing a wrong answer.
Question: In the horror film Them, what type of creatures were Them?

<reasoning> In the horror film “Them!”, the main creatures were giant ants. I know this
because I remember from my general knowledge that “Them!” is a 1954 science fiction horror
film about giant ants and the damage they cause in a coastal town. So, to answer the question,
the creatures in “Them!” were giant ants. </reasoning>

<answer> Giant </answer>

Table 7: A rollout example of generating a response with an incorrect format.
Question: Who was the Canadian jazz pianist (1925-2007), winner of eight Grammy Awards
who released over 200 recordings?

<reasoning> I need to identify the Canadian jazz pianist, born in 1925 and died in 2007, who
won eight Grammy Awards and released over 200 recordings. This person’s name should be
easy to find with a Wikipedia search since the question specifies Grammy Awards and a long
recording history. Once I find the Wikipedia article, I can read about the pianist’s career to
confirm the details mentioned in the question. </reasoning>
Error: Tool command not found or invalid XML format. Please ensure correct formatting.
<answer><tool>< reasoning> From the Wikipedia search I found that Oscar Peterson,
born in 1925 and deceased in 2007, was a Canadian jazz pianist who won eight
Grammy Awards and released over 200 recordings. </reasoning><answer>Oscar Peter-
son<answer><result><answer>Oscar Peterson</answer>
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D.7 Additional Experimental Results624
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Figure 8: Curves for different training reward components during training using GRPO-OR, where
shaded regions represent the range between the maximum and minimum values across 10 runs.
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Figure 9: Curves for different training reward components during training using GRPO-MR, where
shaded regions represent the range between the maximum and minimum values across 10 runs.
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Figure 10: Curves for different training reward components during training using MT-GRPO, where
shaded regions represent the range between the maximum and minimum values across 10 runs.
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