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ABSTRACT

Spiking Neural Networks (SNNs), with their biologically inspired spatio-temporal
dynamics and spike-driven processing, are emerging as a promising low-power
alternative to traditional Artificial Neural Networks (ANNs). However, the com-
plex neuronal dynamics and non-differentiable spike communication mechanisms
in SNNs present substantial challenges for efficient training. By analyzing the
membrane potentials in spiking neurons, we found that their distributions can in-
creasingly deviate from the firing threshold as time progresses, which tends to
cause diminished backpropagation gradients and unbalanced optimization. To ad-
dress these challenges, we propose Deep Temporal-Aligned Gradient Enhance-
ment (DeepTAGE), a novel approach that improves optimization gradients in
SNNs from both internal surrogate gradient functions and external supervision
methods. Our DeepTAGE dynamically adjusts surrogate gradients in accordance
with the membrane potential distribution across different time steps, enhancing
their respective gradients in a temporal-aligned manner that promotes balanced
training. Moreover, to mitigate issues of gradient vanishing or deviating during
backpropagation, DeepTAGE incorporates deep supervision at both spatial (net-
work stages) and temporal (time steps) levels to ensure more effective and robust
network optimization. Importantly, our method can be seamlessly integrated into
existing SNN architectures without imposing additional inference costs or requir-
ing extra control modules. We validate the efficacy of DeepTAGE through exten-
sive experiments on static benchmarks (CIFAR10, CIFAR100, and ImageNet-1k)
and a neuromorphic dataset (DVS-CIFAR10), demonstrating significant perfor-
mance improvements.

1 INTRODUCTION

Spiking Neural Networks (SNNs) are a biologically inspired computing paradigm designed with dy-
namic spatio-temporal connections and binary spike-driven communication mechanisms (Roy et al.,
2019; Schuman et al., 2022; Li et al., 2023). Unlike traditional Artificial Neural Networks (ANNs),
which rely on continuous activations, SNNs operate with discrete spikes, offering the potential for
more efficient and energy-saving computations, particularly in neuromorphic hardware implementa-
tions. The event-based nature of SNNs, where computations are triggered only upon the receipt of a
spike, provides inherent sparsity and lower power consumption, making them attractive for real-time
applications in energy-constrained environments (Pei et al., 2019; Davies et al., 2018; Merolla et al.,
2014; Frenkel et al., 2023).
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However, despite these advantages, the complex dynamics of SNNs pose significant challenges for
effective training. The simultaneous propagation of backpropagation gradients through both spa-
tial and temporal dimensions is complicated by the non-differentiable nature of the spike activation
function. As a result, training SNNs remains considerably more difficult than training ANNs. To
mitigate this issue, previous works have employed surrogate gradient methods to approximate gra-
dients during backpropagation by replacing the non-differentiable spike activation function with
smoother alternatives. This approach has achieved strong results in shallow networks but faces
challenges when scaling to deeper networks due to the vanishing gradient problem. While various
methods, including residual connections (He et al., 2016b;a; Fang et al., 2021a; Zheng et al., 2021;
Hu et al., 2024), normalization techniques (Kim & Panda, 2021), and attention mechanisms (Duan
et al., 2022; Yao et al., 2023c;a;b), have been adopted for improved SNN learning, they do not ade-
quately address the challenges of maintaining effective gradient propagation across both spatial and
temporal dimensions in SNNs.

In this work, we focus on optimizing SNNs by enhancing their backpropagation gradients across
spatial and temporal dimensions. Our analysis reveals that as the time step increases, the distri-
bution of membrane potentials in SNNs tends to shift away from the firing threshold, leading to
diminished gradient magnitudes and unbalanced training processes. This shift can further exacer-
bate the vanishing gradient problem, particularly during the backpropagation of gradients through
multiple network layers and time steps.

To address these challenges, we propose Deep Temporal-Aligned Gradient Enhancement (Deep-
TAGE), a novel method that enhances the optimization gradients of SNNs from both the internal
surrogate gradient functions and external supervision approaches. DeepTAGE introduces a tem-
poral alignment mechanism that dynamically adjusts the surrogate gradient functions based on the
membrane potential distribution at each time step, ensuring that neurons receive more effective
gradients when their membrane potentials diverge from the firing threshold. Additionally, we incor-
porate Spatio-Temporal Deep Supervision (STDS), which supplements deep supervision at multiple
network stages and time steps of SNNs, further enhancing gradient flow and reducing optimization
bottlenecks. Our gradient enhancement approach brings several key advantages: (1) improving spik-
ing activity across network layers and time steps, leading to enhanced representation capabilities;
(2) accelerating the training convergence of SNNs and ultimately achieving better performance; (3)
improving SNN optimization without the need to change the network architecture or add additional
control modules.

We validate the effectiveness of DeepTAGE through extensive experiments on both static and neu-
romorphic datasets, including CIFAR10 (Krizhevsky et al., 2010), CIFAR100 (Krizhevsky et al.,
2010), ImageNet-1k (Deng et al., 2009), and DVS-CIFAR10 (Li et al., 2017). Across these bench-
marks, our method consistently outperforms existing state-of-the-art methods, confirming its effi-
cacy in optimizing SNNs for various tasks. Our main contributions are threefold:

• Temporal-Aligned Gradient Enhancement. We propose a novel gradient enhancement tech-
nique that adapts the surrogate gradient function according to the distribution of membrane
potentials at each time step. This ensures more balanced and effective backpropagation
throughout the network.

• Spatio-Temporal Deep Supervision. We introduce an optimization paradigm that supple-
ments deep supervision into multiple network stages and time steps of SNNs, mitigating
gradient vanishing issues and enhancing the convergence of the network.

• We validate the effectiveness of our methods through extensive experiments and demon-
strate significant improvements over existing SNN methods on multiple benchmarks.

2 RELATED WORK

SNN optimization has progressed through two major avenues: ANN-to-SNN conversion and direct
training via surrogate gradients. The ANN-to-SNN conversion approach hinges on approximating
spiking neuron firing rates through ReLU activations in ANNs. Early work by Rueckauer et al.
(2017) explored methods to minimize conversion errors by adjusting activation functions and intro-
ducing techniques like SpikeNorm and threshold balancing to reduce accuracy loss during conver-
sion (Rueckauer et al., 2016; Cao et al., 2015; Sengupta et al., 2019). Despite these improvements,
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conversion methods tend to require large time steps, which increases latency (Bu et al., 2023; Jiang
et al., 2023).

Direct SNN training, on the other hand, utilizes surrogate gradients to handle the non-
differentiability of spike functions, as seen in the spatiotemporal backpropagation (STBP) method
introduced by Wu et al. (2018). This approach has achieved strong results in shallow networks but
faces challenges when scaling to deeper networks due to vanishing gradients. To address this, sev-
eral normalization techniques have been proposed, such as temporal batch normalization (BNTT)
(Kim & Panda, 2021) and threshold-dependent batch normalization (tdBN) (Zheng et al., 2021),
which improve gradient flow and convergence in deep SNNs.

Additionally, residual connections, inspired by ResNet architectures, have been adapted for SNNs.
Fang et al. (2021a) proposed the SEW-ResNet framework, which enables more efficient spike prop-
agation and helps maintain performance as network depth increases. Recent gradient optimization
techniques, like Temporal Efficient Training(TET) (Deng et al., 2022) and Spatial Learning Through
Time (SLTT) (Meng et al., 2023), further improve performance by refining backpropagation through
time, with SLTT demonstrating that focusing on spatial gradients can boost optimization efficiency.

Our work builds on these foundations by introducing Deep Temporal-Aligned Gradient Enhance-
ment (DeepTAGE), which adapts surrogate gradients according to the membrane potential distribu-
tion at each time step. This novel approach enhances training efficiency without adding computa-
tional complexity, improving SNN performance across various benchmarks.

3 METHOD

3.1 MOTIVATION

SNNs are characterized by their unique method of processing information through the temporal
dynamics of membrane potential updates and spike activations across multiple time steps. These
dynamics are crucial for understanding and optimizing the computational capabilities of SNNs. In
Figure 1 (a), we present histograms that depict the distribution of membrane potentials at each time
step within an inner layer of an SNN. These distributions evolve over time: they are sharply peaked
and closer to the threshold voltage vth at initial time steps, but become broader and drift away from
vth at later steps.
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Figure 1: Visualization of membrane potential dynamics and surrogate gradient function in the
spiking ResNet-19. (a) Histograms of membrane potentials at each time step from an inner layer
of the ResNet-19, showing sharper distributions close to the threshold voltage (vth) at earlier time
steps and flatter distributions further from vth at later time steps. (b) Curve of the surrogate gradient
function derived from the arctangent function, highlighting larger gradients near vth and smaller
gradients as inputs deviate from vth (vth = 1).

When training SNNs, due to the non-differentiable nature of the spike activation function for input
membrane potentials, surrogate gradient functions are utilized to approximate the gradients nec-
essary for effective backpropagation. Figure 1 (b) illustrates a commonly used surrogate gradient
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function, which is derived from the derivative of an arctangent function (with vth set to 1):

sg(x) =
1

1 + π2(x− vth)2
. (1)

This function produces larger gradients when input values are proximal to vth, with gradients de-
creasing as the values diverge from this threshold.

Considering the membrane potential distribution in Figure 1 (a), we can find that as time progresses,
an increasing proportion of membrane potentials settle into regions where the surrogate gradients
are negligible. This tends to result in an unbalanced optimization process for SNNs of multiple time
steps and hinders the convergence of the network. Moreover, the vanishing gradient issue may be
exacerbated as the network undergoes multiple layers of backpropagation, potentially impairing the
network’s spiking functionality and limiting its representational capabilities.

To tackle these challenges, we propose a novel approach called “Deep Temporal-Aligned Gradient
Enhancement” to optimize SNNs. This approach aims to refine the gradient computation process
and introduce deep supervision at both temporal and spatial levels. By balancing and enhancing the
gradients over different time steps and network stages, our approach is expected to not only stabilize
the learning process but also to amplify the representational power of SNNs by improving spike
generation capability.

3.2 TEMPORAL-ALIGNED GRADIENT ENHANCEMENT

Based on the above analysis, it is natural to expect that the surrogate gradient functions should be
varied at different time steps for better optimization of SNNs. In line with this, we propose a method
termed Temporal-Aligned Gradient Enhancement (TAGE), which dynamically adapts the surrogate
gradient function based on the distribution of input membrane potentials to balance gradient com-
putation across various time steps.

To this end, we first model the degree of deviation of the input membrane potentials xt from the
firing threshold vth at each time step t. We introduce a metric σt which quantifies this deviation as
the L2 norm of the difference between the potentials xt and threshold vth:

σt = ∥xt − vth∥2. (2)

A larger σt reflects that more membrane potentials at time step t are distributed away from the
threshold vth, often resulting in smaller gradients due to the properties of the surrogate gradient
function described by equation 1.

As delineated in Section 3.1, the distribution of membrane potentials progressively shifts away from
the threshold vth in subsequent time steps. This shift tends to cause unbalanced optimization and
potentially exacerbate the vanishing gradient problem—a significant challenge when training SNNs
over multiple time steps. To address this issue, we use σt as a vital measure for comparing the
distribution of membrane potentials across different time steps and adaptively modify the surrogate
gradient function to ensure more uniform and effective training. The adaptation involves a normal-
ization factor δ(σt), defined as follows:

δ(σt) = w · σt

σ1
+ (1− w), (3)

where w is a hyper-parameter that determines the impact of the distributional deviation ratio σt/σ1

between times steps t and 1, where δ(σt) = 1 when σt = σ1. This ratio ensures that the surrogate
gradient function remains responsive to the changing distribution of inputs across time steps.

This normalization factor δ(σt) is integrated into the surrogate gradient function as follows:

sgt(xt) =
1

1 + π2
(

xt−vth
δ(σt)

)2 . (4)

This formula essentially scales the membrane potentials xt centered on vth when computing the
surrogate gradients. The scaling does not change the size relationship between xt and vth, and
allows inputs with flatter distributions and farther away from vth to receive more effective gradients.
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Figure 2: The overall framework of our Deep Temporal-Aligned Gradient Enhancement method.
We propose to enhance gradient-based SNN optimization by adjusting the surrogate gradient func-
tions of different time steps according to their membrane potential distributions. Our method also
incorporates spatio-temporal deep supervision to further improve the gradient flow for SNN opti-
mization.

3.3 SPATIO-TEMPORAL DEEP SUPERVISION

The proposed Temporal-Aligned Gradient Enhancement (TAGE) optimizes SNNs by adapting the
surrogate gradient functions to the varying membrane potential distributions at different time steps.
However, due to the inherent dynamic temporal dependence and the non-differentiable nature of ac-
tivations within SNNs, gradients may vanish or deviate significantly as they back-propagate through
multiple layers and time steps, which impedes the convergence and overall performance of the net-
work. To tackle these challenges, we extend our approach to Deep Temporal-Aligned Gradient
Enhancement (DeepTAGE), which introduce Spatio-Temporal Deep Supervision (STDS) into the
network to enhance the gradient flow on the back-propagation path.

For an SNN with K network stages, we denote its final classification output for each time step
separately by {pt | t ∈ [1, T ]}. To supplement deep supervision into the SNN, as illustrated in
Figure 2, we introduce auxiliary classifier networks {gk(·) | k ∈ [1,K−1]} at all network stages
prior to the final K-th stage. Each classifier network consists of three convolution layers, followed
by a global average pooling layer and a fully connected layer to produce classification predictions.
Let {Ft

k | t ∈ [1, T ], k ∈ [1,K − 1]} denote the output feature maps of different time steps from
previous K−1 network stages within the SNN. We feed these feature maps to the auxiliary classifier
networks to produce extra classification predictions:

p1
1 = g1(F

1
1),p

1
2 = g2(F

1
2), . . . ,p

1
K−1 = gK−1(F

1
K−1)

p2
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2 = g2(F
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2), . . . ,p
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K−1 = gK−1(F
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. . .

pT
1 = g1(F

T
1 ),p

T
2 = g2(F

T
2 ), . . . ,p

T
K−1 = gK−1(F

T
K−1)

. (5)

We then apply the cross-entropy loss to all the classification predictions:

L =
1

K · T

(
K−1∑
k=1

T∑
t=1

LCE(p
t
k, y) +

T∑
t=1

LCE(p
t, y)

)
. (6)
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Table 1: Comparison results with different methods on CIFAR10 and CIFAR100.

Dataset Method Architecture T Train Method Accuracy (%)

SlipReLU (Jiang et al., 2023) ResNet-18 4 ANN-SNN 94.59
Dspike (Li et al., 2021) ResNet-18 6 SG 94.25
TET (Deng et al., 2022) ResNet-19 6 SG 94.50

SLTT (Meng et al., 2023) ResNet-18 6 SG 94.59
CIFAR10 PLIF (Fang et al., 2021b) 7-layer CNN 8 SG 93.50

TEBN (Duan et al., 2022) ResNet-19 6 SG 94.71
IM-Loss (Guo et al., 2022a) ResNet-19 6 SG 95.49

LSG (Lian et al., 2023) ResNet-19 4 SG 95.17
DeepTAGE (Ours) ResNet-18 4 SG 95.86

SlipReLU (Jiang et al., 2023) ResNet-18 128 ANN-SNN 78.55
Dspike (Li et al., 2021) ResNet-18 4 SG 73.35
TET (Deng et al., 2022) ResNet-19 4 SG 74.47

MPBN (Guo et al., 2023) VGG16 4 SG 74.74
CIFAR100 SLTT (Meng et al., 2023) ResNet-18 6 SG 74.67

STBP-tdBN (Zheng et al., 2021) ResNet-19 6 SG 71.12
Sew ResNet (Fang et al., 2021a) ResNet-34 4 SG 67.04

GLIF (Yao et al., 2022) ResNet-19 4 SG 77.05
TEBN (Duan et al., 2022) ResNet-19 4 SG 76.13

DeepTAGE (Ours) ResNet-19 4 SG 81.39

By implementing direct supervision at multiple endpoints within SNNs, our approach further en-
hances gradient flow on the backpropagation path along multiple network stages and time steps,
thereby facilitating the training process and improving performance. Additionally, the auxiliary
classification networks introduced can be removed after training without incurring extra computa-
tional overhead.

4 EXPERIMENTS

In this section, we conduct a thorough analysis and comparison of our approach against other state-
of-the-art SNNs using both static and neuromorphic datasets. Furthermore, we validate the effec-
tiveness of the proposed method through extensive ablation studies.

4.1 IMPLEMENTATION DETAILS

Datasets. We evaluate our models using both static and neuromorphic datasets: CIFAR-10, CIFAR-
100 and ImageNet-1k are static datasets, while DVS-CIFAR10 is a neuromorphic dataset. CIFAR-10
consists of 60,000 images of size 32×32, distributed evenly across 10 classes with 6,000 images per
class. CIFAR-100 has 100 classes, with 600 images per class, including 500 training images and 100
testing images. ImageNet-1k is a much larger dataset containing over 1.2 million training images
and 50,000 validation images. For static datasets, images are replicated across multiple time steps
as input frames. DVS-CIFAR10 is an event-stream dataset derived from CIFAR-10, which captures
pixel-level changes in brightness at high temporal resolutions, resulting in a stream of events rather
than static frames.

Training Setup. We train our SNN model using the Stochastic Gradient Descent (SGD) optimizer
with a momentum of 0.9. A cosine learning rate schedule is employed starting from 0.1 and grad-
ually decreasing to 0. The training process involves a batch size of 32 over 320 epochs. Our SNN
model employs Leaky Integrate-and-Fire (LIF) neurons, setting the threshold voltage at 1 and the
membrane potential decay constant at 2. We utilize an NVIDIA A100 GPU for training and infer-
ence on the CIFAR-100 and DVS-CIFAR10 datasets, while four NVIDIA A100 GPUs are used for
training on the ImageNet dataset.
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Table 2: Comparison results with different methods on ImageNet.

Dataset Method Architecture T Train Method Accuracy (%)

TET (Deng et al., 2022) ResNet-34 6 SG 64.79
MS-ResNet (Fang et al., 2021a) ResNet-18 6 SG 63.10

OTTT (Xiao et al., 2022) ResNet-34 6 SG 63.10
ImageNet Real Spike (Guo et al., 2022b) ResNet-18 4 SG 63.68

Sew ResNet (Fang et al., 2021a) ResNet-18 4 SG 63.18
MPBN (Guo et al., 2023) ResNet-18 4 SG 63.14

DeepTAGE (Ours) ResNet-18 4 SG 68.52

Table 3: Comparison results with different methods on DVS-CIFAR10.

Dataset Method Architecture T Train Method Accuracy (%)

OTTT (Xiao et al., 2022) VGG-11 10 SG 76.30
SLTT (Meng et al., 2023) VGG-11 10 SG 77.30

DVS-CIFAR10 STBP-tdBN (Zheng et al., 2021) ResNet-19 10 SG 67.80
MPBN (Guo et al., 2023) ResNet-19 10 SG 74.40
TEBN (Duan et al., 2022) 7-layer CNN 10 SG 75.10

LSG (Lian et al., 2023) ResNet-19 10 SG 77.90
DeepTAGE (Ours) VGG-11 10 SG 81.23

4.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

CIFAR10. Table 1 presents the comparative results of our method with the current state-of-the-
art methods on the CIFAR10 datasets. Our method achieves an accuracy of 95.86%, surpassing
TET’s 94.50% with fewer time steps required. Moreover, our method also demonstrates superior
performance compared to the leading ANN-SNN conversion method SlipReLU (Jiang et al., 2023).

CIFAR100. Table 1 also details our performance comparison with other methods on the CIFAR100
datasets. Utilizing a spiking ResNet-19 model trained over four time steps, our method attains an
accuracy of 81.39%, exceeding the Spatial Learning Through Time (SLTT) (Meng et al., 2023)
method by 6.72%. Notably, even the ANN-SNN conversion method SlipReLU (Jiang et al., 2023),
which achieves a competitive 78.55% accuracy using 128 time steps, is outperformed by our model
in a limited 4 time steps scenario. Additionally, our method surpasses recent advancements like the
GLIF (Yao et al., 2022) and TEBN (Duan et al., 2022) methods by significant margins of 4.34% and
5.26%, respectively.

ImageNet. Experimental results for the ImageNet dataset using a ResNet-18 backbone are detailed
in Table 2. Under direct training, our method surpasses the Sew ResNet (Fang et al., 2021a) by a
substantial margin of 5.34%. Furthermore, compared to Real Spike (Guo et al., 2022b) with the same
backbone and four time steps, our approach achieves a significant accuracy advantage, reaching
68.52% versus 63.68%. These results demonstrate that our method remains highly effective even in
larger-scale datasets and within well-established architectural frameworks.

DVS-CIFAR10. Performance evaluations on the DVS-CIFAR10 dataset, utilizing a VGG-11 back-
bone and spanning ten time steps, are shown in Table 3. Our method achieves an accuracy of
81.23%, significantly outperforming the LSG (Lian et al., 2023) and MPBN (Guo et al., 2023)
methods, which report accuracies of 77.90% and 74.40% respectively. These results demonstrate
the robustness and efficacy of our approach when applied to neuromorphic data.

4.3 ABLATION STUDY

Temporal-Decoupled Gradient Enhancement and Spatio-Temporal Deep Supervision. We con-
duct ablation studies on both static and neuromorphic datasets to evaluate the efficacy of Temporal-
Aligned Gradient Enhancement (TAGE) and Spatio-Temporal Deep Supervision (STDS) in our
method. In Table 4, we reimplement the Sew-ResNet (Fang et al., 2021a), TET (Deng et al., 2022),
and SLTT (Meng et al., 2023) as baselines to evaluate the effect of TAGE across various models. On
the CIFAR100 dataset, applying TAGE to the Sew ResNet base model yields an accuracy improve-
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Table 4: Ablation studies of TAGE on different methods.
Dataset Method T Accuracy(%)

CIFAR100

Sew ResNet (Fang et al., 2021a) 4 77.89
w/ TAGE 4 78.80

TET (Deng et al., 2022) 4 79.94
w/ TAGE 4 80.53

SLTTMeng et al. (2023) 4 74.46
w/ TAGE 4 76.36

DVS-CIFAR10

VGG-11 10 78.20
w/ TAGE 10 79.60

TET (Deng et al., 2022) 10 78.43
w/ TAGE 10 79.84

SLTT (Meng et al., 2023) 10 77.67
w/ TAGE 10 79.75

Table 5: Ablation studies of TAGE and STDS in our method.
Dataset Model TAGE STDS Accuracy(%)

CIFAR100 Sew ResNet ✓ 78.80
Sew ResNet ✓ ✓ 81.39

DVS-CIFAR10 VGG-11 ✓ 79.60
VGG-11 ✓ ✓ 81.23

ment of 0.91 percentage points. Similarly, implementing TAGE on the TET results in an accuracy
increase of 0.59 percentage points, while its application on the energy-efficient SLTT improves
performance by 1.9 percentage points. These improvements confirm the effectiveness of TAGE in
optimizing SNNs across various network architectures and designs. For the neuromorphic DVS-
CIFAR10 dataset, the introduction of TAGE into the VGG-11 baseline model raises classification
accuracy from 78.20% to 79.60%, demonstrating TAGE’s effectiveness for SNN optimization on
neuromorphic datasets with larger time steps. In Table 5, we further evaluate the effect of TAGE
and STDS in our method, respectively. The accuracy of Sew ResNet increases from 77.89% to
78.80% and then to 81.39%, with the integration of TAGE and then STDS. For the VGG-11 net-
work, the incorporation of TAGE and STDS results in an accuracy increase of 3.03% in total. These
results indicate that our TAGE and STDS methods can effectively improve the gradient-based SNN
optimization and hence the overall network performance.

Firing Rate Statistics. To better evaluate the effect of our Deep Temporal-Aligned Gradient En-
hancement (DeepTAGE), we further investigate its impact on the firing rate of SNNs. In Figure 3,
utilizing Sew ResNet19 as the backbone architecture, we analyze the firing rates at different layers
and time steps both with and without DeepTAGE (denoted as w/ DeepTAGE and w/o DeepTAGE,
respectively). As shown in Figure 3(a), DeepTAGE improves firing rates across nearly all network
layers, especially in the shallow layers, where improvements are more significant. Moreover, Fig-
ure 3(b) demonstrates that firing rates at different time steps have also improved and become more
balanced.

Feature/Class Activation Maps. In Figure 3(c), we compare the feature activation maps and class
activation maps before and after applying our methods (the feature maps of different channels are
tiled on a single map for visualization). Compared with the baseline Sew ResNet in the first row, the
introduction of TAGE and subsequent DeepTAGE progressively enhance the activations of feature
maps, which helps to improve their representational capabilities. Moreover, after using our gradient
enhancement methods, the class activation maps are better focused on the key semantic regions of
the input image, as shown in the last column of Figure 3(c).

Training Convergence. Figures 4 (a) and 4 (b) display the training loss and test accuracy curves
over training epochs, comparing scenarios with and without the DeepTAGE method. The train-
ing loss decreases more rapidly when applying DeepTAGE, while the test accurate shows a shaper
increase, demonsrating that our method significantly speed up training convergence.

The Hyperparameter w. We also conduct an ablation study on the hyperparameter w, which is
used to calculate the normalization factor in equation 3. Table 6 presents the test accuracies for
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Figure 3: Analysis of firing rates and feature activation maps using Sew ResNet19 as the backbone.
(a) Firing rates across different layers with and without DeepTAGE (denoted as w/ DeepTAGE and
w/o DeepTAGE). DeepTAGE significantly enhances firing rates, especially in the shallow layers.
(b) Comparison of firing rates across time steps, showing more balanced and improved firing rates
with DeepTAGE. (c) Visualization of feature activation maps and class activation maps before and
after applying TAGE and DeepTAGE.
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Figure 4: Comparing the loss and accuracy of models with and without DeepTAGE on the CI-
FAR100 dataset using the Sew ResNet19 backbone: (a) demonstrates that the model with Deep-
TAGE converges significantly faster across epochs compared to the one without. (b) illustrates that
the model equipped with DeepTAGE consistently achieves higher performance than its counterpart
without DeepTAGE.

Table 6: The ablation studies of w in equation 3.
Dataset hyper-parameter T Accuracy

CIFAR100

w = 1/2 4 80.96
w = 1/3 4 81.02
w = 1/4 4 81.39
w = 1/5 4 81.32
w = 1/6 4 81.17

DVS-CIFAR10

w = 1/2 10 80.05
w = 1/3 10 81.14
w = 1/4 10 81.23
w = 1/5 10 81.20
w = 1/6 10 81.21

CIFAR100 and DVS-CIFAR10 with different values of w. The optimal performance is achieved
when w = 1/4, which is also the default setting in our method.
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5 CONCLUSION

In this work, we present the Deep Temporal-Aligned Gradient Enhancement (DeepTAGE) method
to tackle critical challenges in optimizing Spiking Neural Networks (SNNs), specifically address-
ing membrane potential distribution imbalances and vanishing gradients. DeepTAGE dynamically
adjusts surrogate gradient functions based on the temporal distribution of membrane potentials,
enhancing spike firing efficiency and network convergence. Our approach also incorporates deep
supervision at multiple network stages and time steps to strengthen gradient flow, effectively allevi-
ating gradient vanishing issues and boosting overall performance. Extensive experiments on various
datasets, including CIFAR10, CIFAR100, ImageNet-1k, and DVS-CIFAR10, show that DeepTAGE
outperforms state-of-the-art SNN methods in accuracy without increasing computational costs or
adding extra modules. These results confirm the efficacy of DeepTAGE as a scalable and efficient
solution for SNN optimization.
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