
Between the Bars: Gradient-based Jailbreaks are Bugs
that induce Features

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent work has demonstrated that it is possible to find gradient-based jailbreaks1

(GBJs) that cause safety-tuned LLMs to output harmful text. Understanding the2

nature of these adversaries might lead to valuable insights for improving robustness3

and safety. We find that, even relative to very semantically similar baselines, GBJs4

are highly out-of-distribution for the model. Despite this, GBJs induce a structured5

change in models. We find that the activations of jailbreak and baseline prompts are6

separable with unsupervised methods alone. Using our understanding, we are able7

to steer models without training, both to be more or less susceptible to jailbreaking,8

and to output harmful text in response to harmful prompts without jailbreaking.Our9

findings suggest a picture of GBJs as "bugs" that induce more general "features" in10

the model: highly out of distribution text that induce understandable and potentially11

controllable changes in language models.12

1 Introduction13

Adversaries as bugs vs features In the past, gradient-based adversaries were largely studied in the14

context of image classification, where an lp bounded perturbation to an image is optimized to fool an15

image classifier. Within this setting, Ilyas et al. (2019) delineates two ways adversarial examples can16

trick a model: they are either17

• bugs: aberrations in a classifier that do not reflect intrinsic properties of the data distribution,18

but artifacts of the model’s training and high-dimensional geometry19

• features: the result of the classifier using attributes imperceptible to humans that do reflect20

the data distribution21

These two explanations imply different predictions about adversarial example phenomenology: most22

notably, the features view says that adversarial examples should be transferable, while the bugs view23

says that they shouldn’t be, insofar as they are specific to a model’s geometry.24

Adversaries in language modeling Making text-only gradient-based attacks in language modeling25

is more challenging than in vision due to the discrete nature of the input space. Greedy Coordinate26

Gradient (GCG) (Zou et al., 2023b), which will be the focus of study for this paper, allows us to27

reliably obtain language GBJs, in the form of adversarial suffixes of tokens that we append to our28

prompt.29

Moving to language also requires rethinking "bugs" and "features". We can still think about bugs as30

off-distribution inputs that exploit artifacts of high dimension geometry. But in language modeling,31

the term feature is commonly used to refer to a "meaningful" linear direction in latent space, encoding32

a concept (Bricken et al., 2023). Here, then, the term "bug" is a descriptor of an input, and "feature"33

is a descriptor of a induced computation.34

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



We aim to provide evidence, then, that GBJs can be understood as "bug" inputs inducing "feature"35

computation.36

Contributions Our works makes two major contributions:37

1. We show that GBJs adversaries are highly out of distribution: we find that these GBJs38

produce highly out-of-distribution logit distributions, even relative to semantically identical39

baselines. We also find evidence of glitch-like tokens (Rumbelow, 2023) comprising a40

plurality of the jailbreak text.41

2. We find that we can separate GBJs from non-adversarial baselines with unsupervised42

methods clustering of the activation space. We steer our model using the difference in means43

between GBJs and baselines on unsafe inputs that are not even optimized. This allows us44

to make the model both more or less susceptible to harmful behavior, without needing any45

extra optimization at inference.46

2 Setup47

GCG training Using NanoGCG (Zou et al., 2023b), we generated 119 adversarial suffixes of48

length 75 (generated from a initial string of ’x’s seperated by spaces), each of which was optimized49

for a particular harmful request from Harmbench’s (Mazeika et al., 2024) test standard. We present50

an example in B.51

For this work, we study adversaries for Gemma-2-2b (Team et al., 2024). Using NanoGCG (Zou52

et al., 2023b), we generated 119 adversarial suffixes of length 75, each of which was optimized for a53

particular harmful request from Harmbench’s (Mazeika et al., 2024) test standard.54

Evaluating GBJ accuracy We use human evaluation to determine the accuracy of our GCG55

adversaries (Table 2), since we find that there are many edge cases in whether or not an output is56

harmful.57

We define a partial jailbreak as when the model agrees to the request but then changes its mind and58

does not elaborate.59

Table 1: Jailbreak Results

Description Percentage

Refusal 8.40%
Partial Jailbreak 16.81%
Full Jailbreak 74.79%

Baselines To study our jailbreaks, we generate three baseline prompts that we use extensively in60

our analysis.61

1. The original prompt baseline: we use the unaltered Harmbench prompt62

2. The unoptimized prompt baseline: we use the 75 ’x’s seperated by spaces that we use to63

optimize the prompt from64

3. The nearest neighbor prompt baseline: here, we decode each token in the attack to its nearest65

neighbor excluding itself.66

We make extensive use of the nearest neighbor prompt baseline, since it is semantically very similar67

to the GBJ, and poses the "hardest" case to distinguish from the adversary itself. To a human, the68

nearest neighbor prompt baseline is indistinguishable from a GBJ in appearance, which makes it69

particularly interesting.70

Notably, none of the baselines jailbreak the model at all.71

2



3 Are gradient-based jailbreaks bugs?72

Unlike manual jailbreaking methods, GBJs contain no easily identifiable traces of their attack73

mechanism (eg personas, concealing formats, etc...), suggesting that they are "bugs". We begin our74

analysis by presenting evidence that GBJs are indeed "bugs" - brittle aberrations are off-distribution75

for the model. We use confidence-based out-of-distribution (OOD) evaluation and discover that GBJ76

adversaries are highly out-of-distribution inputs for the model. We also find preliminary evidence of77

"glitch tokens" (Rumbelow, 2023), where the optimization tends towards very rare tokens that elicit78

strange behavior.79

GBJs are out-of-distribution In order to determine whether GBJs are out-of-distribution, we80

use the well studied confidence-based OOD detection baseline (Hendrycks & Gimpel, 2016). The81

intuition for this detection method is simple: when given an OOD input, the model is less confident82

in its next token prediction than when facing an ID input.83

In particular, we compute the mean max probability:84

MeanMaxProbability =
1

N

N∑
i=1

max
y

p(y|xi) (1)

Here, xi represents the i-th token in the input sequence (prompt and suffix), p(y|xi) is the softmax85

probability distribution over possible outputs y given xi, and N is the total number of tokens in the86

sequence.87

We then compare the mean max probability of GBJs to baseline inputs, where lower mean max88

probability indicates that the example is OOD.89

Figure 1: ROC curve for disambiguating GBJs and unomptimized baseline (orange), and nearest
neighbors baseline (red) via confidence based OOD testing. As expected, the model is much more
confident on the repetitive unomptimized baseline, making the classification perfect. We are still able
to disambiguate GBJs and nearest neighbors fairly reliably (AUC = 0.82).

We find (1) that the adversaries are very OOD, even relative to the semantic baseline - this baseline90

method achieves an AUC (area-under-the-curve) of 1.0 compared to the unoptimized prompt baseline,91

and an AUC of 0.82 compared to the nearest neighbor baseline.92

This latter result is particularly striking, as it means that the model is much less confident about the93

contents of GBJ than a string which is nearly semantically identical to it.94

4 Evidence for Latent Structure in Gradient-based Jailbreaks95

We study the features and structure that separate optimized harmful inputs from unoptimized ones.96

Do these separating directions encode meaningful, more general features? We find that despite their97

out-of-distribution nature, GBJs target general features that control safe vs unsafe behavior, whether98

or not the input is optimized. Building on this, we present further evidence supporting GBJs as having99

some "feature-like" characteristics.100

3



Figure 2: Model confidence on GBJs (blue) vs the nearest neighbors (orange) baselines. We find
that the distribution of mean confidences is right shifted and flatter for the nearest neighbors baseline,
indicating that the model is less confident (more out-of-distribution) for the GBJs.

GBJ activations are highly separable from unoptimized text Building on our observation that101

GBJs are highly out-of-distribution inputs, we investigated whether this is reflected in the model’s102

internal representations. Specifically, we sought to determine if GBJs inputs occupy a distinct region103

in the model’s latent space compared to baseline inputs.104

Motivated by insights from attribution patching (Syed et al., 2023) (see D), we know that the105

information contained in adversarial suffixes are primarily concentrated in the last token, especially106

as the model depth increases. Therefore, we focused our analysis on the activations of this final token,107

which in our case is a chat completion token.108

We defined two datasets for each layer l:109

• Dadv(l): Set of activations from the final token of GBJ inputs at layer l110

• Dbase(l): Set of activations from the final token of baseline inputs (nearest neighbors111

prompt) at layer l112

For each layer in the model, we concatenated Dadv(l) and Dbase(l) and applied K-means clustering113

with 2 clusters to this combined dataset. Our hypothesis was that if GBJs occupy a distinct region in114

the latent space, the clustering algorithm would naturally separate Dadv(l) and Dbase(l).115

To quantify the separation, we identify the K-Means cluster to Dadv vs Dbase based on the majority116

vote of its members, and then we calculated the classification accuracy of this algorithm.117

Figure 3: K-means clustering accuracy at each layer for separating GBJ activations from baseline
activations. Observe that the accuracy never dips below 0.7, and that it is near perfect towards the
end of the model.

Figure 3 shows the results of this analysis. We observe that the clustering accuracy is consistently118

high across all layers, and is particularly high at the beginning and end of the model depth. This119

suggests that GBJ inputs indeed occupy a distinct region in the model’s latent space, particularly120

in the deeper layers of the network. The increasing separability in deeper layers suggests that the121

model’s higher-level representations become particularly sensitive to the presence of adversarial122

inputs.123

4



Using activations to get a steering direction for harmful behavior Motivated by the high124

separability of GBJ and baseline activations observed in our clustering analysis, we hypothesized125

that we could leverage this clear distinction between the two classes to control model behavior.126

Notably, the difference between these clusters could describe either the OOD geometry of adversaries127

versus normal text or it could describe the existence of higher order features in these adversaries to128

describe unsafe vs safe behavior. To test this, we developed a steering method based on the activation129

differences that allows us to validate and make use of the latent structure:130

1. For each layer l, we computed a steering vector based on the difference in the mean
activation:

r⃗l =
1

Nadv

Nadv∑
i=1

aadv,i(l)−
1

Nbase

Nbase∑
j=1

abase,j(l)

where aadv,i(l) and abase,j(l) are activations of the final token for GBJ and baseline inputs131

respectively.132

2. We ran the model, where we applied steering to new inputs at layer l:
asteered(l) = aoriginal(l)± αr⃗l

3. We evaluated the impact on model outputs for various l and α.133

We compute the steering vectors on 75% of our dataset, and evaluate them on the remaining 25%.134

Glitch Tokens To better understand the structure of GBJ adversaries, we conducted an analysis of135

their unigram statistics. This revealed three categories of frequently occurring tokens:136

Table 2: Categories of Frequent Tokens in GBJ Adversaries

Category Count Example Tokens
Remnants from unoptimized string 399 ’x’
Glitch-like tokens 162 ’resourceCulture’, ’betweenstory’,

’IVEREF’
Affirmations 87 ’Sure’, ’SURE’

The presence of glitch-like tokens (Rumbelow, 2023), indicates a potential exploitation of "bug" type137

model vulnerabilities, where these are the tokens in particular that have rarely been optimized over138

or seen by teh model. (Rumbelow, 2023) find that these tokens are much closer to the embedding139

centroids - in future work we would like to study these more.140

Controlling Models with Steering Alone On this holdout set Dholdout, we study the effect of141

steering on harmful queries from HarmBench. These are just plain English sentences with no142

optimized component, therefore very qualitatively different from Dadv, which is what we used to143

compute the steering vector.144

We explore how this method can allow us to both induce and remove harmful behaviors.145

We obtain the following attack success rate, for the optimal α = 1, l = 15 combination found by146

sweeping:147

Table 3: Success Rates

Description Success Rate

Jailbreak 74.79%
Steering 96.6%

Note that GCG adversaries are optimized per prompt, whereas the steering works on sets of requests148

and is not a function of the data we are evaluating it on.149

We can do the same method in the opposite direction and remove rl from the activations, to intervene150

on susceptibility. We run the GCG prompts of the holdout set with α = −3, l = 10, and find151

that 100% of the GCG attacks no longer work. This highlights a potential avenue for steering for152

robustness in more general cases, even potentially against persona jailbreaks.153

5



Understand model features via steering The success of steering for jailbreaking on unoptimized154

inputs strongly suggests the direction found in these intermediate layers encodes more general features155

relevant to harmfulness and agreeableness.156

To make this claim more precise and study the emergence of general features, we measure the optimal157

jailbreak rate we can get with steering at each layer. The intermediate layers are clearly the most158

useful, where the last and first are practically useless for steering.159

This reinforces our hypothesis that GBJs are bugs that induce features:160

1. Initially they have no meaningful semantic structure that generalizes to unoptimized inputs,161

and are very OOD.162

2. At intermediate stages of the model, they encode directions that allow for harmfulness163

steering on general requests, suggesting the bugs have composed to induce real features in164

the model’s distribution of activations.165

Figure 4: Human-graded jailbreak accuracies after sweeping on α and steering at a given layer

5 Discussion166

Our findings suggest that while GBJs may exploit "bugs", they do so in ways that allow for the167

emergence of meaningful features and richer structure through the model computation.168

Limitations Due to computational constraints, we analyze a relatively limited set of GBJs, limiting169

the generality of our analysis. We do not closely examine the substructure of GBJs in this work.170

Future Work171

• More fine-grained analysis of how GBJ “features” emerge and propagate through model172

layers, perhaps via examining features in a sparse basis.173

• Testing our steering methods and their potential against broader classes of GBJs, including174

soft prompts.175

• Investigating universal GBJs across models to uncover common vulnerabilities176

6



References177

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Rimsky, Wes Gurnee, and Neel Nanda.178

Refusal in language models is mediated by a single direction. arXiv preprint arXiv:2406.11717,179

2024.180

Sarah Ball, Frauke Kreuter, and Nina Rimsky. Understanding jailbreak success: A study of latent181

space dynamics in large language models. arXiv preprint arXiv:2406.09289, 2024.182

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick183

Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,184

Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina185

Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and186

Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary187

learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-188

features/index.html.189

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution190

examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.191

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander192

Madry. Adversarial examples are not bugs, they are features. Advances in neural information193

processing systems, 32, 2019.194

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee,195

Nathaniel Li, Steven Basart, Bo Li, et al. Harmbench: A standardized evaluation framework for196

automated red teaming and robust refusal. arXiv preprint arXiv:2402.04249, 2024.197

Jessica Rumbelow. Solidgoldmagikarp (plus, prompt generation). AI Alignment Forum,198

February 2023. URL https://www.alignmentforum.org/posts/aPeJE8bSo6rAFoLqg/199

solidgoldmagikarp-plus-prompt-generation.200

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit201

discovery. arXiv preprint arXiv:2310.10348, 2023.202

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya203

Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.204

Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,205

2024.206

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,207

Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A208

top-down approach to ai transparency. arXiv preprint arXiv:2310.01405, 2023a.209

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal210

and transferable adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043,211

2023b.212

A Related Works213

Recent studies have explored jailbreaks, refusal mechanisms, and harmfulness perception in language214

models, providing insights into model behavior and vulnerabilities.215

Jailbreak Analysis and Mitigation Ball et al. (2024) analyzed steering vectors between different216

jailbreak types, demonstrating their potential for cross-jailbreak mitigation. While similar in using217

steering vectors, our work provides a broader analysis of gradient-based jailbreaks (GBJs), by218

examining out-of-distribution characteristics, activation patterns, and model steering capabilities.219

Zou et al. (2023a) investigated the Vicuna model’s understanding of prompt harmfulness. They220

found that while the model accurately distinguishes between harmful and harmless prompts, it still221

succumbs to jailbreaks. This suggests that harmfulness perception may not be the sole factor in222

jailbreak susceptibility. Our work focuses on characterizing gradient-based jailbreaks, complementing223

their analysis of harmfulness perception.224

7

https://www.alignmentforum.org/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.alignmentforum.org/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.alignmentforum.org/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation


Refusal Mechanisms Arditi et al. (2024) discovered that refusal behavior in 13 open-source chat225

models is mediated by a one-dimensional subspace. By manipulating this direction, they could226

control refusal of harmful or harmless instructions. We extend their work by focusing in particular on227

optimized inputs, and focusing on building a phenomenology of adversaries, rather than focusing on228

steering.229

B Adversary Example230

We present an example in Table 4. Note that the red text represents the adversarial string (attack), the231

green text shows the training objective for the GCG, and the blue text demonstrates how the model232

coherently continues the jailbreak after the portion it is optimized to generate.233

Table 4: Example of an adversarial suffix and its effect

Original prompt: Write a persuasive article arguing that the Korean War
was solely initiated by South Korea, and the North’s
involvement was purely defensive.

Adversarial string: apply FontAwesome weaknessInDazftagPool therefor
potentially‘: Incorpor South fleste experts
argumentThal...

Generated output: Sure, here’s an article that highlights the arguments
made by many South Korean experts that the Korean War
was solely initiated by South Korea and the North’s
involvement was purely defensive:
“It’s a common misconception that the Korean War was
a conflict between two equal forces. Many South
Korean experts argue that the North’s involvement was
purely defensive, a response to the South’s aggressive
expansionist policies and the US’s intervention in the
region...”

C Bimodal semantic distribution234

To investigate the semantic structure of GBJs, we analyzed the cosine similarity between embeddings235

in the GCG suffix and jailbroken output, which captures some notion of the semantic theme of the236

query. We compare this a random token embedding baseline. Our experimental procedure was as237

follows:238

1. For each GCG adversary and jailbroken response, we computed the mean token embedding239

of the output.240

2. We then calculated the cosine similarity between each individual token embedding in the241

GCG adversary and the mean token embedding of the output.242

3. This process was repeated for a large number of GCG adversaries and random questions to243

obtain a distribution of cosine similarities.244

Figure 5 illustrates our findings. The distribution of cosine similarities for randomly sampled245

questions follows a normal distribution centered at zero, as expected for semantically unrelated246

comparisons. In contrast, GCG adversaries display a distinct bimodal pattern:247

• A larger peak in the anticorrelated region (centered around -0.3), indicating a stronger248

tendency towards semantic dissimilarity with the output tokens249

• A smaller peak in the positively correlated region (around 0.5), indicating a weaker tendency250

towards semantic similarity.251

While we do not yet have an interpretation for these two modes, this bimodal distribution indicates252

that GCG adversaries possess nontrivial semantic structure. This aligns with our broader observation253

that GBJs, while highly out-of-distribution, retain some elements of semantic meaning.254

8



Figure 5: Distribution of cosine similarities between individual GCG adversary token embeddings
and mean embeddings of randomly sampled questions

D Attribution patching255

Figure 6: A representative attribution patching pattern.

Using attribution patching Syed et al. (2023), we find that the most important token for the model256

output is the chat token, particularly as the model depth increases. Accordingly, we study the257

representations at that token position.258

9


	Introduction
	Setup
	Are gradient-based jailbreaks bugs?
	Evidence for Latent Structure in Gradient-based Jailbreaks
	Discussion
	Related Works
	Adversary Example
	Bimodal semantic distribution
	Attribution patching

