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ABSTRACT

In problem-solving, we humans tend to come up with different novel solutions
to the same problem. However, conventional reinforcement learning algorithms
ignore such a feat and only aim at producing a set of monotonous policies that
maximize the cumulative reward. The resulting policies usually lack diversity
and novelty. In this work, we aim at enabling the learning algorithms with the
capacity of solving the task with multiple solutions through a practical novel policy
generation workflow that can generate a set of diverse and well-performing policies.
Specifically, we begin by introducing a new metric to evaluate the difference
between policies. On top of this well-defined novelty metric, we propose to
rethink the novelty-seeking problem through the lens of constrained optimization,
to address the dilemma between the task performance and the behavioral novelty in
existing multi-objective optimization approaches, we then propose a practical novel
policy seeking algorithm, Interior Policy Differentiation (IPD), which is derived
from the interior point method commonly known in the constrained optimization
literature. Experimental comparisons on benchmark environments show IPD can
achieve a substantial improvement over previous novelty-seeking methods in terms
of both the novelty of generated policies and their performances in the primal
task.1.

1 INTRODUCTION

In the sense of learning through interactions with the environment, the scheme of reinforcement
learning (RL) is conceptually similar to the emergence of intelligence (Sutton et al., 1998): an agent
explores and exploits information of a given environment, learns to master some certain skills through
trials and errors to gain as much reward as possible. When solving a problem, we humans could be
creative to come up with multiple different solutions and gain insights from searching for diverse
solutions. e.g., a self-containing example is the various approaches in RL research.

While the state-of-the-art algorithms have achieved superhuman performance in a variety of chal-
lenging tasks (Vinyals et al., 2019; Akkaya et al., 2019; Berner et al., 2019; Badia et al., 2020;
Elbarbari et al., 2021), the task of encouraging individualized diversity 2 of learned agents, on the
other hand, is relatively under-explored. Different from conventional RL agents that are only learned
through interactions with the external environment, novel policy generation is a task considering the
differentiation among individual policies. The differentiation among policies can be explained as
the social influence (Rogoff, 1990; Ryan & Deci, 2000; van Schaik & Burkart, 2011; Henrich, 2017;
Harari, 2014) in social science literature. Although many works have been proposed applying social
motivation to Multi-Agent Reinforcement Learning (MARL) settings (Jaques et al., 2019; Hughes
et al., 2018; Sequeira et al., 2011; Peysakhovich & Lerer, 2017), how to motivate a single RL agent
to perform differently against existing agents is still an open question.

In previous attempts for novel policy generation, there are three main challenges: (1) heuristically
defined metric for novelty estimation is computational expensive (Zhang et al., 2019), (2) defining
novelty reward for an entire episode yields additional challenge in credit assignment, and (3) solving

1Code is included in the supplemental material.
2Note that this is different from diversity-driven exploration. While the latter focuses on the inner-diversity

of a policy, in our work we focus on the inter-diversity between policies
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Figure 1: The comparison of the standard policy gradient method without novelty seeking (left),
multi-objective optimization method (middle), and our constrained optimization approach (right) for
generating novel policies. The standard policy gradient method does not try actively to find novel
solutions. The multi-objective optimization method may impede the learning procedure when the
novelty gradient is being applied all the time, e.g., a random initialized policy will be penalized
from getting closer to the previous policy due to the conflict of gradients, which limits the learning
efficiency and the final performance. On the contrary, the novelty gradient of our constrained
optimization approach will only be considered within a certain region to keep the policy being
optimized away from highly similar solutions. Such an approach is more flexible and makes the
multi-objective optimization method as its special case.

the problem under the formulation of multi-objective optimization leads to the performance decay
in the original task. Fig. 1 compares the policy gradients of three cases, namely the one without
novel policy seeking, novelty-seeking with multi-objective optimization, and novelty-seeking with
constrained optimization methods, respectively.

In this work we take into consideration not only the novelty of a set of learned policies but also the
performance of those novel policies in the primal task, when addressing the problem of novel-policy-
generation. Our contributions can be summarized as follows:

1. We introduce a lightweight metric to compute the difference between policies with instant
feedback at every timestep, to address the first two drawbacks of previous novel policy
seeking methods discussed above;

2. We propose a constrained optimization formulation for novel policy generation and design a
practical algorithm of IPD, resembling the interior point method in constrained optimization
literature;

3. The proposed method, IPD, is evaluated on several continuous control benchmarks, showing
the strengths of our constrained optimization solution for novelty-seeking can generate a
series of diverse and well-performing policies, compared to previous multi-objective novel
policy generation methods.

2 RELATED WORK

Intrinsic motivation methods. In previous work, different approaches are proposed to provide
intrinsic motivation or intrinsic reward as a supplementary to the primal task reward for better
exploration (Houthooft et al., 2016; Pathak et al., 2017; Burda et al., 2018a;b; Liu et al., 2019). All
those approaches use the weighted sum of two rewards, the primal rewards provided by environments
and the intrinsic rewards provided by different heuristics. On the other hand, the work of DIAYN
and DADS (Eysenbach et al., 2018; Sharma et al., 2019) learn diverse skills without extrinsic reward.
Those approaches focus on decomposing diverse skills of a single policy, while our work focuses on
learning diverse behaviors among a batch of policies for the same task.

Diverse policy generation methods. The work of Such et al. shows that different RL algorithms
may converge to different policies for the same task (Such et al., 2018). On the contrary, we are
interested in learning different policies through a single algorithm with the capability of avoiding local
optimum. The work of Pugh et al. establishes a standard framework for understanding and comparing
different approaches to search for quality diversity (QD) (Pugh et al., 2016). Conti et al. proposes a
solution which avoids local optima as well as achieves higher performance by adding novelty search
and QD to evolution strategies (Conti et al., 2018). The Task-Novelty Bisector (TNB) (Zhang et al.,
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2019) aims to solve novel policy generation problem by jointly optimize the extrinsic rewards and
novelty rewards defined by an auto-encoder. In this work, we first adopt TNB in the constrained
optimization framework, resulting in Contrained TNB, to demonstrate the dilemma between the task
performance and novelty pursuance.

Constrained Markov Decision Process. The Constrained Markov Decision Process (CMDP) (Alt-
man, 1999) considers the situation where an agent interacts with the environment under certain
constraints. Formally, the CMDP can be defined as a tuple (S,A, γ, r, c, C, P, s0), where S andA are
the state and action space; γ ∈ [0, 1) is a discount factor; r : S×A×S → R and c : S×A×S → R
denote the reward function and cost function; C ∈ R+ is the upper bound of permitted expected
cumulative cost; P (·|s, a) : S ×A → S denotes the transition dynamics, and s0 is the initial state.
Denote the Markovian policy class as Π, where Π = {π : S × A → [0, 1],

∑
a π(a|π) = 1} The

learning objective of a policy for CMDP is to find a π∗ ∈ Π, such that

π∗ = max
π∈Π

Eτ∼π,s′∼P [

∞∑
t=0

γtr(s, a, s′)], s.t. Eτ∼π,s′∼P [

∞∑
t=0

γtc(s, a, s′)] ≤ C, (1)

where τ indicates a trajectory (s0, a0, s1, ...) and τ ∼ π represents the distribution over trajectories
following policy π: at ∼ π(·|st), st+1 ∼ P (·|st, at); t = 0, 1, 2, .... Previous literature provide
several approaches to solve CMDP (Achiam et al., 2017; Chow et al., 2018; Ray et al., 2019; Sun
et al., 2021).

In Sec.2.1, we define a metric space that measures the difference between policies, which is the
fundamental element for the proposed methods. In Sec.2.2, we develop a practical estimation
method for this metric. Sec.2.3 describes the formulation of constrained optimization on novel policy
generation. The implementations of two practical algorithms are further introduced in Sec.2.4.

We denote the policies as {πθi ; θi ∈ Θ, i = 1, 2, ...}, wherein θi represents parameters of the i-th
policy, Θ denotes the whole parameter space. In this work, we focus on improving the behavioral
diversity of policies from PPO (Schulman et al., 2017), thus we use Θ to represent ΘPPO in this paper.
It is worth noting that the proposed methods can be easily extended to other RL algorithms (Schulman
et al., 2015; Lillicrap et al., 2015; Fujimoto et al., 2018; Haarnoja et al., 2018). To simplify the
notation, we omit π and denote a policy πθi as θi unless stated otherwise.

2.1 MEASURING THE DIFFERENCE BETWEEN POLICIES

We use the Wasserstein metric Wp (Rüschendorf, 1985; Villani, 2008; Arjovsky et al., 2017) to
measure the distance between policies. Concretely, we consider the Gaussian-parameterized policies,
where the Wp over two policies can be written in the closed form W 2

2 (N (m1,Σ1),N (m2,Σ2)) =

||m1 −m2||2 + tr[Σ1 + Σ2 − 2(Σ
1/2
1 Σ2Σ

1/2
1 )1/2] as p = 2, where m1,Σ1,m2,Σ2 are mean and

covariance metrics of the two normal distributions. In the following of this paper, we use DW to
denote the W2 and it is worth noting that for the deterministic policy class, the trace term disappears
and the only term involving the means remains, i.e., DW = |m1 − m2| for Dirac delta policies
located at points m1 and m2. This diversity metric satisfies the three properties of a metric, namely
identity, symmetry as well as triangle inequality.

Proposition 1 (Metric Space (Θ, D
q

W )). The expectation of DW (·, ·) of two policies over any state
distribution q(s):

D
q

W (θi, θj) := Es∼q(s)[DW (θi(a|s), θj(a|s))], (2)

is a metric on Θ, thus (Θ, D
q

W ) is a metric space.

The proof of Proposition 1 is straightforward. It is worth mentioning that although the KL-divergence
is commonly applied in measuring differences between policies (Schulman et al., 2015; 2017; Hong
et al., 2018). It can not be used directly as a metric for novelty quantification as the symmetric
property do not hold. In this sense, the Jensen Shannon divergence DJS and Total Variance Distance
DTV (Endres & Schindelin, 2003; Fuglede & Topsoe, 2004; Schulman et al., 2015) can be also used
as alternative choices, we choose DW in our work for that the Wasserstein metric better preserves the
continuity (Arjovsky et al., 2017).

On top of the metric space (Θ, D
q

W ), the novelty of a policy can be computed as follows,
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Definition 1 (Novelty of Policy). Given a reference policy set Θref such that Θref = {θrefi , i =
1, 2, ...},Θref ⊂ Θ, the novelty U(θ|Θref) of policy θ is the minimal difference between θ and all
policies in the reference policy set, i.e.,

U(θ|Θref) := min
θj∈Θref

D
q

W (θ, θj), (3)

Consequently, to encourage the discovery of novel policies discovery, typical novel policy generation
methods tend to directly maximize the novelty of a new policy, i.e., maxθ U(θ|Θref ), where Θref

includes all existing policies.

2.2 ESTIMATION OF D
q

W (θi, θj) AND THE SELECTION OF q(s)

In practice, the calculation of D
q

W (θi, θj) is based on Monte Carlo estimation where we need to
sample s from q(s). Although in Eq.(2) q(s) can be selected simply as a uniform distribution over the
state space, there remains two obstacles: first, in a finite state space we can get precise estimation after
establishing ergodicity, but problem arises when facing continuous state spaces due to the difficulty
of efficiently obtaining enough samples; second, when s is sampled from a uniform distribution q, we
can only get sparse episodic reward instead of dense online reward which is more useful in learning.
Therefore, we make an approximation here based on importance sampling.

Formally, we denote the domain of q(s) as Sq ⊂ S and assume q(s) to be a uniform distribution over
Sq , without loss of generality in later analysis. Notice Sq is closely related to the algorithm being used
in generating trajectories (Henderson et al., 2018). As we only care about the reachable regions of a
certain algorithm (in this work, PPO), the domain Sq can be decomposed by Sq = limN→∞

⋃N
i=1 Sθi ,

where Sθi denotes all the possible states a policy θi can visit given a starting state distribution.

In order to get online-reward, we estimate Eq.(2) with

D
q

W (θi, θj) = Es∼q(s)[DW (θi(a|s), θj(a|s))] = Es∼ρθi (s)[
q(s)

ρθi(s)
DW (θi(a|s), θj(a|s))], (4)

where we use ρθ(s) to denote the stationary state visitation frequency under policy θ, i.e., ρθ(s) =
P (s0 = s|θ) + P (s1 = s|θ) + ... + P (sT = s|θ) in finite horizon problems. We propose to use
the averaged stationary visitation frequency as q(s), e.g., for PPO, q(s) = ρ(s) = Eθ∼ΘPPO

[ρθ(s)].
Clearly, choosing q(s) = ρ(s) will be much better than choosing a uniform distribution as the
importance weight will be closer to 1. Such an importance sampling process requires a necessary
condition that ρθi(s) and q(s) have the same domain, which can be guaranteed by applying a sufficient
exploration noise on θ.

Another difficulty lies in the estimation of ρ(s), which is always intractable given a limited number
of trajectories. However, during training, θi is a policy to be optimized and θj ∈ Θref is a fixed
reference policy. The error introduced by approximating the importance weight as 1 will get larger
when θi becomes more distinct from normal policies, at least in terms of the state visitation frequency.
We may just regard increasing of the approximation error as the discovery of novel policies.
Proposition 2 (Unbiased Single Trajectory Estimation). The estimation of ρθ(s) using a single
trajectory τ is unbiased.

The Proposition 2 follows the usual trick in RL that uses a single trajectory to estimate the stationary
state visitation frequency, and indicates that with a sufficiently large number of trajectories, we are
able to access the exact value of novelty. Given the definition of novelty and a practically unbiased
sampling method, the next step is to develop an efficient learning algorithm.

2.3 CONSTRAINED OPTIMIZATION FORMULATION FOR NOVEL POLICY GENERATION

In the conventional RL paradigm, maximizing the expectation of cumulative rewards is commonly
used as the objective. i.e., maxθ∈Θ Eτ∼θ[g], where g =

∑
t=0 γ

trt and τ ∼ θ denotes a trajectory τ
sampled from the policy θ.

To improve the diversity of different agents’ behaviors, the learning objective must take both the
reward from the primal task and the policy novelty into consideration. Previous approaches (Houthooft
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et al., 2016; Pathak et al., 2017; Burda et al., 2018a;b; Liu et al., 2019) often directly use the weighted
sum of these two terms as the objective:

max
θ∈Θ

Eτ∼θ[gtotal] = max
θ∈Θ

Eτ∼θ[α · gtask + (1− α) · gint], (5)

where 0 < α < 1 is a weight hyper-parameter, gtask is the reward from the primary task, and
gint =

∑
t=0 γ

trint,t is the cumulative intrinsic reward of the intrinsic reward rint,t. In our case,

the intrinsic reward is the novelty reward rint = minθj∈Θref D
ρ

W (θ, θj). These methods can be
summarized as Weighted Sum Reward (WSR) methods. Such an objective is sensitive to the selection
of α as well as the formulation of rint. For example, in our case formulating the novelty reward rint as
minθj D

ρ

W (θ, θj), exp [minθj D
ρ

W (θ, θj)] and − exp [−minθj D
ρ

W (θ, θj)] will lead to significantly
different results as they determine the trade-offs in the two terms given α. Besides, dilemma also
arises in the selection of α: while a large α may undermine the contribution of intrinsic reward, a
small α could ignore the importance of the primal task, leading to the failure of an agent in solving
the task.

The crux of tackling such an issue is to deal with the conflict between different objectives. The work
of Zhang et al. proposes the TNB, where the task reward is regarded as the dominant one while the
novelty reward is regarded as subordinate. However, as TNB considers the novelty gradient all the
time, it may hinder the learning process. Intuitively, well-performing policies should be more similar
to each other than to random initialized policies. As a new random initialized policy is different
enough from previous policies, considering the novelty gradient at beginning of training will result in
a much slower learning process. We also observe such a problem in experiments that TNB not only
fails to find well-performing policies, but also fails in the novelty seeking as all policies are driven
away from original performance-pursuing-only policies.

In order to tackle the above problems and adjust the extent of novelty in new policies, we propose to
solve the novelty-seeking problem under the perspective of constrained optimization. The intuition is
as follows: while the task reward is considered as a learning objective, the novelty reward should
be considered as a bonus instead of another objective, thus should not impede the learning of the
primal task. Fig. 1 illustrates how novelty gradients impede the learning of a policy: at the beginning
of learning, a random initialized policy should learn to be more similar to a well-performing policy
rather than be different. The seeking of novelty should not be taken into consideration all the time
during learning. With such an insight, we update the multi-objective optimization problem in Eq.(5)
into a constrained optimization problem as:

max
θ∈Θ

f(θ) = Eτ∼θ[gtask], s.t. gt(θ) = rint,t − r0 ≥ 0,∀t = 1, 2, ..., T, (6)

where r0 is a threshold indicating minimal permitted novelty. In practice, we can use the averaged
diversity of a batch of agents trained with PPO as r0, motivating our diversity-seeking policies to
achieve a higher novelty, therefore, there is only a little need for a hyper-parameter tuning. rint,t

denotes a moving average of rint,t as we need not force every single action of a new agent to be
different from others. Instead, we care more about the long-term differences. Therefore, we use
cumulative novelty terms as constraints. Moreover, the constraints can be flexibly applied after the
first tS timesteps (e.g., tS = 20) for the consideration of similar starting sequences, so that the
constraints can be written as gt(θ) ≥ 0,∀t = tS , ..., T .

2.4 PRACTICAL NOVEL POLICY GENERATION METHODS

One thing to note is that WSR and TNB proposed in the prior work (Zhang et al., 2019) correspond
to different approaches in constrained optimization problems, yet some important ingredients are
missing. We in this section adopt TNB according to the Feasible Direction Method in constrained
optimization and then propose our method of Interior Policy Differentiation (IPD), according to
the Interior Point Method in constrained optimization literature. A detailed discussion on WSR is
provided in Appendix D.

TNB: Feasible Direction Method The Feasible Direction Method (FDM) (Ruszczyński, 1980;
Herskovits, 1998) solves the constrained optimization problem by finding a direction ~p where taking
gradient upon will lead to the increment of the objective function as well as constraints satisfaction,
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Algorithm 1 IPD (Ours)
1: Input: (1) a behavior policy
θold, (2) a set of previous poli-
cies {θj}Mj=1, (3) a novelty metric
U(θ, {θj}|ρ) = U(θ, {θj}|τ) =

minθj D
τ
W (θ, θj), (4) a novelty

threshold r0 and starting point tS .
2: Initialize θold.
3: for iteration = 1, 2, ... do
4: for t = 1, 2, ..., T do
5: Step the environment by tak-

ing action at ∼ θold and col-
lect transitions.

6: if U(θold, {θj}|τ) − r0 < 0
AND t > tS then

7: Break this episode.
8: end if
9: end for

10: Update policy parameters based
on sampled data.

11: end for

Algorithm 2 Constrained TNB (For Comparison)
1: Input: (1-4) same as IPD, (5) a value network for cost Vc.
2: Initialize θold.
3: for iteration = 1, 2, ... do
4: for t = 1, 2, ..., T do
5: Step the environment by taking action at ∼ θold and

collect transitions.
6: end for
7: Compute advantage of reward ˆAr,1, ..., ˆAr,T .
8: Compute advantage of cost ˆAc,1, ..., ˆAc,T .
9: Optimize objective for reward LCLIP

r , with gradient gr =
∇θLCLIP

r .
10: Optimize objective for cost LCLIP

c , with gradient gc =
−∇θLCLIP

c

11: if U(θold, {θj}|τ)− r0 < 0 then
12: Calculate ~p according to Eq.(7) with gr and gc
13: else
14: Calculate ~p with gr
15: end if
16: Update policy parameters
17: end for

i.e.,∇θfT · ~p > 0, if g > 0 and∇θgT · ~p > 0 otherwise. The TNB proposes to use a revised bisector
of gradients ∇θf and ∇θg as ~p,

~p =

{
∇θf + |∇θf |

|∇θg|∇θg, if cos (∇θf,∇θg) > 0

∇θf + |∇θf |
|∇θg|∇θg · cos (∇θf,∇θg), otherwise,

(7)

Clearly, Eq.(7) satisfies the constraints but it is more strict than it as the ∇θg term always exists
during the optimization of TNB. Based on TNB, we provide a revised approach, named Constrained
Task Novel Bisector (CTNB), which resembles better with FDM. Specifically, when g > 0, CTNB
will not apply∇θg on g. It is clear that TNB is a special case of CTNB when the novelty threshold r0

is set to infinity. We note that in both TNB and CTNB, the learning stride is fixed to be |∇θf |+|∇θg|2
and may lead to problem when∇θf → 0, where the final optimization result will rely heavily on the
selection of g, i.e., the shape of g is crucial for the success of this approach. We propose CTNB in our
work, as a constrained optimization vairant of TNB, to demonstrate the importance of the constrained
optimization perspective in novelty seeking, however, we do not in practice observe such a method
achieves satisfactory performance.

IPD: Interior Point Method The Interior Point Method (Potra & Wright, 2000; Dantzig & Thapa,
2006) is another approach used to solve the constrained optimization problem. Thus here we solve
Eq.(6) using the Interior Policy Differentiation (IPD), which can be regarded as an analogy of the
Interior Point Method. In the vanilla Interior Point Method, the constrained optimization problem in
Eq.(6) is solved by reforming it to an unconstrained form with an additional barrier term −α log g(θ)
in the objective as maxθ∈Θ f(θ)− α log g(θ), or more precisely in our problem with the formulation
with Eq.(6) we have maxθ∈Θ Eτ∼θ[gtask −

∑T
t=0 α log (rint,t − r0)], where α > 0 is the barrier

factor. Besides the log barrier term, there are other choices like α 1
g(θ) can be used and the objective

becomes maxθ∈Θ f(θ) + α 1
g(θ) . As α is small, the barrier term will introduce only minuscule

influence on the objective. On the other hand, when θ get closer to the barrier, the objective will
increase rapidly. The limits when α→ 0 then lead to the solution of Eq.(6). The convergence of such
methods are provided in previous works (Conn et al., 1997; Wright, 2001).

However, directly applying IPM is computationally expensive and numerically unstable. In this
work, we propose a simple yet novel heuristic method that resembles the idea of barrier methods:
we implicitly apply such barrier terms by providing termination signals in interactions with the
environments. Our method can be regarded as revising the primal task MDP into a new one in
which the behaviors of agents must satisfy novelty constraints. Specifically, in the RL paradigm, the
learning procedure of an agent is determined by the experiences collected during interactions with the
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Figure 2: Experimental results on the Four Reward Maze Problem. We generate 5 policies with
different novel policy generation methods. In each figure, 5 trajectories start from the +1 reward
point. Thresholds in CTNB and IPD are set as the averaged novelty of PPO policies.

environment and the sampling strategy used to filter experiences in the calculation of policy gradients.
Since the learning process is based on sampled transitions, a more natural way can thus be used to
perform the constrained optimization. We can simply bound the collected transitions in the feasible
region by permitting previously trained M policies θi ∈ Θref, i = 1, 2, ...,M sending termination
signals during the training process of new agents. In other words, we implicitly bound the feasible
region by terminating any new agent that steps outside it.

Consequently, during the training process, all valid samples we collected are inside the feasible
region, which means these samples are less likely to appear in previously trained policies. At the end
of the training, we obtain a new policy that has sufficient novelty. In this way, we no longer need to
consider the trade-off between intrinsic and extrinsic rewards deliberately. The learning process of
IPD is thus more robust and no longer suffers from the objective inconsistency.

Remark 1 (Reward-Shaping-Agnostic Novelty Seeking). IPD is a gradient-free method with regard
to the novelty reward.

Remark 1 is an important property that only IPD owns. For other approaches, including both multi-
objective approaches and constrained optimization approaches, an elaborated design of the novelty
reward function is needed, e.g., it can be any monotonic increasing function of D

ρ

W . While it is
well-known that reward shaping (Randløv & Alstrøm, 1998; Laud, 2004) is in general a non-trivial
work that requires domain knowledge (Vinyals et al., 2019; Akkaya et al., 2019; Berner et al., 2019;
Elbarbari et al., 2021), such an additional novelty-reward term further increases the burden of proper
reward design.

Differently, the seeking of novelty in IPD does not require any (policy) gradient information that
flows from the novelty reward, therefore, the selection of reward scaling function is agnostic to
the performance of IPD. IPD learns to become novel in a passive manner, i.e., an episode will be
terminated whenever the averaged step-wise novelty is lower than a given threshold. Searching in a
constant hyper-parameter space is at least tractable while searching in a monotonically increasing
functional reward shaping class (Zhang et al., 2019) is not – let alone IPD works well with a default
novelty threshold parameter r0 = averaged differences between PPO policies.

3 EXPERIMENTS

According to Proposition 2, the novelty reward rint in Eq.(6) under our novelty metric can be
unbiasedly approximated by rint = minθj∈Θref D

ρθ
W (θ(a|st), θj(aj |st)). We thus utilize this novelty

metric directly throughout our experiments. We apply different novel policy generation methods,
namely WSR, TNB, CTNB, and IPD, to the backbone RL algorithm PPO (Schulman et al., 2017).
The extension to other popular RL algorithms is straightforward. More implementation details are
depicted in Appendix E.

Experiments in the work of Henderson et al. (2018) show that one can simply change the random
seeds before training to get policies that perform differently. Therefore, we use PPO with varying
random seeds as a baseline method for novel policy generation and use the averaged differences
between policies learned by this baseline as the default threshold r0 in CTNB and IPD. Algorithm 1
and Algorithm 2 show the pseudo code of IPD and CTNB based on PPO, where the blue lines show
the additional code added to the standard PPO. Qualitative results can be found in Appendix G.
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Figure 3: The performance and novelty comparison of different methods in Hopper-v3, Walker2d-v3
and HalfCheetah-v3 environments. The value of novelty is normalized to relative novelty by regarding
the averaged novelty of PPO policies as the baseline. The results are from 10 policies of each method,
with the points showing their mean and lines showing their standard deviation.

3.1 THE FOUR REWARD MAZE PROBLEM

We first utilize a basic 2-D environment named Four Reward Maze as a diagnostic environment where
we can visualize learned policies directly. In this environment, four positive rewards of different
values (e.g., +5,+5,+10,+1 for top, down, left and right respectively) are assigned to four middle
points with radius 1 on each edge in a 2-D N ×N square map. We use N = 16 in our experiments.
The observation of a policy is the current position and the agent will receive a negative reward of
−0.01 at each timestep except stepping into the reward regions. Each episode starts from a randomly
initialized position and the action space is limited to [−1, 1]. The performance of each agent is
evaluated by the averaged performances over 100 trials.

Results are shown in Fig. 2, where the behaviors of the PPO agents are quite similar, suggesting the
diversity provided by random seeds is limited. WSR and TNB solve the novel policy generation
problem from the multi-objective optimization formulation, they thus suffer from the unbalance be-
tween performance and novelty. While WSR and TNB both provide sufficient novelty, performances
of agents learned by WSR decay significantly, so did TNB due to an encumbered learning process,
as we analyzed in Sec.2.3. Both CTNB and IPD, solving the task with novelty-seeking from the
constrained optimization formulation, provide evident behavior diversity and perform recognizably
better than TNB and WSR.

3.2 THE MUJOCO BENCHMARK

We evaluate our proposed method on three locomotion tasks (Brockman et al., 2016; Todorov et al.,
2012): the Hopper-v3 (11 observations and 3 actions), Walker2d-v3 (11 observations and 6 actions),
and HalfCheetah-v3 (17 observations and 6 actions). Although relaxing the healthy termination
thresholds in Hopper and Walker may permit more visible behavior diversity, all the environment
parameters are set as default values in our experiments to demonstrate the generality of our method.

3.2.1 COMPARISON ON NOVELTY AND PERFORMANCE

We implement WSR, TNB, CTNB, and IPD using the same hyper-parameter settings per environment.
And we also apply CPO (Achiam et al., 2017) as a baseline as a solution of CMDP. For each method,
we first train 10 policies using PPO with different random seeds. Those PPO policies are used as the
primal reference policies, and then we train 10 novel policies that try to be different from previous
reference policies. Concretely, in each method, the 1st novel policy is trained to be different from the
previous 10 PPO policies, and the 2nd should be different from the previous 11 policies, and so on.
More implementation details are depicted in Appendix E.

Fig. 3 shows the results in terms of novelty (the x-axis) and the performance (the y-axis). Policies
close to the upper right corner are the more novel ones with higher performance. In all environments,
the performance of CTNB, IPD and CPO outperforms WSR and TNB, showing the advantage of
constrained optimization approaches in novel policy generation. Specifically, the results of CTNB are
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Table 1: Reward and Success Rate of 10 Policies. IPD beat CTNB, CPO, TNB and WSR in all three
environments. Constrained optimization approaches outperforms multi-objective methods.

Reward Success Rate

Environment Hopper Walker2d HalfCheetah Hopper Walker2d HalfCheetah

PPO 1292± 650 2196± 200 1127± 308 0.5 0.5 0.5
WSR 1253± 591 1992± 380 1091± 469 0.6 0.3 0.3
TNB 1699± 573 1788± 214 887± 178 0.8 0.0 0.1
CPO 1681± 696 2082± 660 1194± 215 0.8 0.6 0.8

CTNB 1721± 765 2405± 177 1251± 473 0.8 0.9 0.5
IPD (Ours) 2536± 557 2282± 206 1875± 533 1.0 0.6 0.9

all better than their multi-objective counterparts from TNB, showing the superiority of generating
novel policies with constrained optimization. In all experiments we use a linear novelty reward
function, i.e., rint = minθj D

ρ

W (θ, θj). We attribute the failure of CPO, TNB and CTNB in Walker
and HalfCheetah in finding novel policies to that their convergence behavior is fully controlled by the
reward scaling function. Whereas in IPD, there is no novelty-gradient controlled by such a scaling
function. The IPD method consistently provides more novelty than CTNB and CPO, while the primal
task performances are still guaranteed.

Comparisons of the task-related rewards are carried out in Table 1, where among all the four methods,
IPD provides sufficient diversity with minimum loss of performance. Instead of performance decay,
we find IPD is able to find better policies in the environment of Hopper and HalfCheetah. Moreover, in
the Hopper environment, while the agents trained with PPO tend to fall into the same local minimum.
(e.g., they all jump as far as possible and then terminate this episode. On the contrary, PPO with IPD
keeps new agents away from falling into the same local minimum, because once an agent has reached
some local minimum, agents learned later will try to avoid this region due to the novelty constraints.
Such property shows that IPD can enhance the traditional RL schemes to tackle the local exploration
challenge (Tessler et al., 2019; Ciosek et al., 2019). A similar feature brings about reward growth in
the environment of HalfCheetah.

3.2.2 SUCCESS RATE OF EACH METHOD

In addition to averaged reward, we also use the success rate as another metric to compare the
performance of different approaches. Roughly speaking, the success rate evaluates the stability of
each method in terms of generating a policy that performs as good as the policies PPO generates.
In this work, we regard a policy successful when its performance achieves at least as good as the
median performance of policies trained with PPO. To be specific, we use the median of the final
performance of PPO as the baseline, and if a novel policy, which aims at performing differently
to solve the same task, surpasses the baseline during its training process, it will be regarded as a
successful policy. By definition, the success rate of PPO is 0.5 as a baseline for every environment.
Table 1 shows the success rate of all the methods. The results show that all constrained novel policy
generation methods (CTNB, IPD, CPO) can surpass the average baseline during training, while the
multi-objective optimization approaches normally can not. Thus the performance of constrained
novel policy generation methods can always be insured.

4 CONCLUSION

In this work, we rethink the novel policy seeking problem under the perspective of constrained
optimization. We first introduce a new metric to measure the distances between policies, on top of
which we define the novelty of a policy. Based on our formulation of constrained optimization, we
provide practical algorithms for constrained novel policy learning, we evaluate several constrained
policy optimization methods: namely the CPO, Constrained TNB, and the Interior Policy Differ-
entiation (IPD) proposed in this work. Our experimental results demonstrate IPD, as a novelty
(policy) gradient-free approach, can effectively learn various well-performing yet diverse policies,
outperforming previous multi-objective methods, as well as constrained optimization baselines.
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ETHICS STATEMENT

In this work, we study the problem of diverse policy generation. Although in this work we empirically
demonstrate the effectiveness of the proposed algorithm and learning framework on simulated rein-
forcement learning benchmarks, we believe there are lots of real-world applications of reinforcement
learning that can be potentially benefited from our research. To name some examples: first and
foremost, behavior diversity itself is precious in that it enables reinforcement learning agents to
have their characteristics, being able to generate various well-performing agents will improve the
interactive experience in games with both human and AI players. Moreover, as learning novel policies
can help to escape from local-optimal solutions, it can potentially benefit downstream tasks such as
cooperative exploration. Human society indeed needs individual diversity in cooperatively exploring
and exploiting knowledge. Last but not least, diversity helps species in evolution from the perspective
of survival of the fittest, therefore agents trained to finish the task with distinct behavior can potentially
benefit the robustness of the population under environmental changes.

REPRODUCIBILITY STATEMENT

We include our code in the supplementary materials. More implementation details of our experiments
are provided in Appendix E.
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APPENDIX

A METRIC SPACE

Definition 2. A metric space is an ordered pair (M,d) where M is a set and d is a metric on M ,
i.e., a function d : M ×M → R such that for any x, y, z ∈M , the following holds:
1. d(x, y) ≥ 0, d(x, y) = 0⇔ x = y,
2. d(x, y) = d(y, x),
3. d(x, z) ≤ d(x, y) + d(y, z).

B PROOF OF PROPOSITION 1

The first two properties are obviously guaranteed by D
ρ

W . As for the triangle inequality,
Es∼ρ(s)[DW (θi(s), θk(s)]

= Es∼ρ(s)[
|A|∑
l=1

|θi(s)− θk(s)|]

= Es∼ρ(s)[
|A|∑
l=1

|θi(s)− θj(s) + θj(s)− θk(s)|]

≤ Es∼ρ(s)[
(|A|∑
l=1

|θi(s)− θj(s)|+ |θj(s)− θk(s)|)]

= Es∼ρ(s)[
|A|∑
l=1

|θi(s)− θj(s)|] + Es∼ρ(s)[
|A|∑
l=1

|θj(s)− θk(s)|]

= Es∼ρ(s)[DW (θi(s), θj(s)] + Es∼ρ(s)[DW (θj(s), θk(s)]

C PROOF OF PROPOSITION 2

ρθ(s) = P (s0 = s|θ) + P (s1 = s|θ) + ...+ P (sT = s|θ)

L.L.N.
= lim

N→∞

∑N
i=1 I(s0 = s|τi)

N
+

∑N
i=1 I(s1 = s|τi)

N
+ ...+

∑N
i=1 I(sT = s|τi)

N

= lim
N→∞

∑T
j=0

∑N
i=1 I(sj = s|τi)
N

ρθ(s) =

N∑
i=1

T∑
j=0

I(sj = s|τi)
N

E[ρθ(s)− ρθ(s)] = 0

D MORE DETAILS ON WSR

WSR: Penalty Method The Penalty Method considers the constraints of Eq.(6) by putting con-
straint g(θ) into a penalty term, followed by solving the following unconstrained problem in an
iterative manner,

max
θ∈Θ

f(θ) +
1− α
α

min{g(θ), 0}, (8)

The limit of the above unconstrained problem when α→ 0 then leads to the solution of the original
constrained problem. As an approximation, WSR chooses a fixed weight α, and uses the gradient of
∇θf + 1−α

α ∇θg instead of ∇θf + 1−α
α ∇θ min{g(θ), 0}, thus the final solution will intensely rely

on the selection of α.
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Figure 4: The performance under different novelty thresholds in the Hopper, Walker and HalfCheetah
environments. The results are collected from 10 learned policies based on PPO. The box extends
from the lower to upper quartile values of the data, with a line at the median. The whiskers extend
from the box to show the range of the data. Flier points are those past the end of the whiskers.

E IMPLEMENTATION DETAILS

Calculation of DW We use deterministic part of policies in the calculation of DW , i.e., we remove
the Gaussian noise on the action space in PPO and use DW (a1, a2) = |a1 − a2|.

Network Structure We use MLP with 2 hidden layers as our actor models in PPO. The first hidden
layer is fixed to have 32 units. We choose to use 10, 64 and 256 hidden units for the three tasks
respectively in all of the main experiments, after taking the success rate, performance and computation
expense (i.e. the preference to use less unit when the other two factors are similar) into consideration.

Training Timesteps We fix the training timesteps in our experiments. The timesteps are fixed to
be 1M in Hopper-v3, 1.6M for Walker2d-v3 and 3M for HalfCheetah-v3.

Hardware and Training Time We experiment on a server with 8 TITAN X GPUs and 32 Intel(R)
E5-2640 CPUs. Experiments take 0.5 (the maze environment with 0.1M interactions) to 10 hours
(for the locomotion tasks) to run in generating each policy. As our diversity-seeking method based
on a sequential learning framework, new policies must be trained after previous policies are already
generated.

F ABLATION STUDY

Novel Policy Generation without Performance Decay Multi-objective formulation of novel pol-
icy generation has the risk of sacrificing the primal performance as the overall objective needs to
consider both novelty and primal task rewards. On the contrary, under the perspective of constrained
optimization, there will be no more trade-off between novelty and final reward as the only objective
is the task reward. Given a certain novelty threshold, the algorithms tend to find the optimal solution
in terms of task reward under constraints, thus the learning process becomes more controllable and
reliable, i.e., one can utilize the novelty threshold to control the degree of novelty.

The proper magnitude of the novelty threshold leads to more exploration among a population of
policies, thus the performance of latterly found policies may be better than or at least as good as those
trained without novelty seeking. However, when a larger magnitude of novelty threshold is applied,
the performance of found novel policies will decrease because finding a feasible solution will get
harder under more strict constraints. Fig. 4 shows experimental results on adjusting the thresholds,
which supports our intuition.

G VISUALIZE DIVERSITY

G.1 MUJOCO LOCOMOTION

In this section, we provide some qualitative results of IPD on the Mujoco locomotion tasks. In all
of our experiments we use the vanilla Mujoco locomotion benchmarks, with the default settings on
defining healthy states. Although otherwise the visualization of learned policies might become more

15



Under review as a conference paper at ICLR 2022

diverse (e.g., a Hopper agent may learn to stand-up after falling down while another agent may learn
to move forward on the ground if we set the z-axis healthy threshold as 0).

With the method of IPD, the Hopper policies (Figure 5) learns to jump further and avoids falling
down rather instead of just jumping and falling down (Figure 6). In the Walker2d environment, the
color of purple indicates the left leg is visible. It can be seen that the IPD policies (Figure 7) learn to
use both left and right legs in walking, while the PPO policies usually learn jumping. (Figure 8). In
HalfCheetah, the IPD policies (Figure 9) perform much better than the PPO policies (Figure 10). The
IPD policies leran to run with head-downward (Figure 9 line 1), head-upward (Figure 9 line 3), and
forward (Figure 9 line 5) while the PPO policies are always head-downward.

In Hopper and HalfCheetah, IPD is able to improve the primal task performance by avoiding always
getting trapped in some certain sub-optimal behaviors.

Figure 5: The visualization of policy behaviors of agents trained by our method in Hopper-v3
environment. Agents learn to jump with different strides.
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Figure 6: The visualization of policy behaviors of agents trained by PPO in Hopper-v3 environment.
Most agents learn a policy that can be described as Jump as far as possible and fall down, leading to
relative poor performance.

Figure 7: The visualization of policy behaviors of agents trained by our method in Walker2d-v3
environment. Instead of bouncing at the ground using both legs, our agents learns to use both legs to
step forward.
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Figure 8: The visualization of policy behaviors of agents trained by PPO in Walker2d-v3 environment.
Most of the PPO agents only learn to use their right leg to support the body and jump forward.

Figure 9: The visualization of policy behaviors of agents trained by our method in HalfCheetah-v3
environment. Our agents run much faster compared to PPO agents and at the mean time several
patterns of motion have emerged.
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Figure 10: The visualization of policy behaviors of agents trained by PPO in HalfCheetah-v3
environment. Since we only draw fixed number of frames in each line, in the limited time steps the
PPO agents can not run enough distance to leave the range of our drawing, which shows that our
agents run much faster.
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