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Abstract

In this paper, we study the problem minx∈Rd,Nx=v

∑n
i=1 f((Ax− b)i) for a quasi-

self-concordant function f : R→ R, where A,N are n× d and m× d matrices,
b, v are vectors of length n and m with n ≥ d. We show an algorithm based on a
trust-region method with an oracle that can be implemented using Õ(d1/3) linear
system solves, improving the Õ(n1/3) oracle by [Adil-Bullins-Sachdeva, NeurIPS
2021]. Our implementation of the oracle relies on solving the overdetermined ℓ∞-
regression problem minx∈Rd,Nx=v ∥Ax−b∥∞. We provide an algorithm that finds
a (1+ ε)-approximate solution to this problem using O((d1/3/ε+1/ε2) log(n/ε))
linear system solves. This algorithm leverages ℓ∞ Lewis weight overestimates and
achieves this iteration complexity via a simple lightweight IRLS approach, inspired
by the work of [Ene-Vladu, ICML 2019]. Experimentally, we demonstrate that our
algorithm significantly improves the runtime of the standard CVX solver.

1 Introduction

Quasi-self-concordant (QSC) optimization encompasses a broad class of problems that have long
been central to convex optimization, numerical analysis, robust statistics, data fitting, and constrained
optimization [Bac10, KSJ18, MFBR19, STD19, CJJ+20, CHJ+22, Doi23]. Notable special cases
include logistic regression, softmax regression, and regularized ℓp regression, which have been widely
studied due to their broad range of applications in machine learning.

Due to their favorable properties, QSC functions have enjoyed efficient optimization methods which
require strictly weaker curvature assumptions than, for example, strong convexity. Yet, without strong
promises about the underlying model, QSC optimization is still a challenging problem for which
first order methods only provide low precision solution with poly(1/ε) convergence rate as opposed
to the desirable poly log(1/ε) rate, where ε is the sub-optimality gap, while typical second order
methods are computationally expensive. Thus significant challenges remain for the pursuit of more
efficient optimization algorithms for this class of functions.

In this work, we study the constrained QSC optimization problem

min
x∈Rd,Nx=v

h (x) :=

n∑
i=1

f ((Ax− b)i) , (1)

where f : R→ R is a QSC function, A ∈ Rn×d, N ∈ Rm×d are matrices, and b ∈ Rn, v ∈ Rm are
vectors. Each term f ((Ax− b)i) can be viewed as measuring the fit to a single datapoint. We focus
in particular on the overdetermined regime where the number of datapoints n is significantly larger
than the number of variables d. This setting is central to large-scale data analysis. In regression tasks,
standard techniques for managing large n include data sparsification [SS08, CLM+15], subspace
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embeddings [NN13], and tools from randomized numerical linear algebra [DM18]. However, for
QSC objectives, existing approaches typically exhibit iteration complexity that scales with n rather
than the intrinsic dimension d, which makes them poorly suited to modern high-sample regimes.
Thus, the central question to our work is:

Can we design an algorithm for Problem (1) with iteration complexity nearly independent of n?

We address this question by showing that QSC functions can be minimized to high precision
(poly log(1/ε) convergence rate) in Õ(d1/3) iterations, each of which makes a constant number
of calls to a linear system solver involving structured d × d matrices, thereby drastically improv-
ing efficiency and scalability of existing approaches. Our approach is based on a trust-region
method, for which we show a fast oracle implementation. Our oracle implementation relies on
solving ℓ∞ regression problems. Instead of leveraging data sparsification to reduce problem size
[CP15, JLLS23, JLLS24, WY24], which often entails high computational costs when n large, our
algorithm is inspired by the recent advances on general ℓp regression, such as the work of Jambulapati-
Liu-Sidford [JLS22]. We introduce a new approach that leverages ℓ∞ Lewis weights inside a simple,
lightweight Iteratively Reweighted Least Squares (IRLS) algorithm [EV19], which is of independent
interest. A simple modification of our algorithm can be used to solve QSC optimization problems in
the underdetermined regime n ≤ d as well, and it provides a much simpler and practical algorithm
with theoretical guarantees that mirror those of the state of the art algorithm of [ABS21] that currently
lacks a practical implementation.

1.1 Our contributions

We consider the QSC optimization problem (1), where f is a general C-QSC function (Definition 2.1),
potentially non-smooth and not strongly convex. Following the literature on regression algorithms
[APS19, AKPS19, JLS22] and the prior work by [ABS21], we focus on designing highly efficient
iterative algorithms that rely on (structured) linear system solvers. Throughout this paper, we define
one iteration as a single call to the linear system solver. Since the linear system solves dominate the
running time in all algorithms we discuss, the total runtime is essentially the product of the iteration
count and the cost of solving these systems.

Our first main contribution is a new trust-region method for affine-constrained C-QSC optimization
that achieves the following performance guarantee.
Theorem 1.1. Let f : R → R be a C-quasi-self-concordant function, let A ∈ Rn×d, N ∈ Rm×d,
b ∈ Rn and v ∈ Rm with n > d. Define the function h : Rd → R as h (x) =

∑n
i=1 f ((Ax− b)i) .

Let x(0) be an initial solution satisfying Nx(0) = v, and let R be any value such that
maxx∈{x:h(x)≤h(x(0))} ∥Ax−Ax∗∥∞ ≤ R. Suppose h is bounded from below, and let B be

any value satisfying h(x) ≥ B for all x ∈ Rd. Then there exists an algorithm that, given x(0), R,
and B as input, it computes an ε-additive approximation to the problem minx∈Rd,Nx=v h(x) by

solving O
(
CR log (CR) log2

(
h(x(0))−h(x∗)

ε

))
subproblems, each of which makes O

(
d1/3 log n

)
calls to a linear system solver with matrices of the form A⊤DA and N

(
A⊤DA

)+
N⊤, where D is

a positive diagonal matrix.

Comparison to prior works: Prior to our work, the algorithm with state of the art iteration com-
plexity for general (non-smooth) QSC optimization was given by [ABS21], which achieved iteration
complexity O

(
n1/3 logO(1) (n) · CR log (CR) log

(
h(x(0))−h(x∗)

ε

))
. Our algorithm improves this

to a dependence on d1/3, which is a substantial improvement in the overdetermined regime n≫ d.
Moreover, the algorithm of [ABS21] is complex and makes use of several parameters set to guarantee
the theoretical runtime. In practice, to obtain an efficient algorithm, these parameters need to be
carefully tuned and currently this algorithm of [ABS21] lacks a practical implementation for this
reason. On the other hand, our algorithm is significantly simpler and implementable in practice, with
an excellent empirical performance compared to CVX.

Our algorithm builds on a trust-region based algorithmic framework developed in prior work
[AZLOW17, CMTV17, CJJ+20, ABS21]. An important property of QSC functions shown by
[KSJ18] is that the Hessian at a point x is relatively stable in a region around x. Prior works such
as [CJJ+20, ABS21] build on this property and design algorithms that iteratively minimize a local
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second-order approximation of the function in a region where the Hessian is sufficiently stable. The
key difficulty in implementing this approach lies in designing efficient algorithms for solving the
resulting subproblems. One of our main contributions is a new efficient subroutine for solving the
resulting subproblems. We develop our subroutine by first designing a novel and simple algorithm
for solving ℓ∞ regression, which is of independent interest. Our subroutine algorithm then solves
ℓ2-regularized ℓ∞ regression problems, enjoying the simplicity and efficiency of our ℓ∞ regression
solver. The following theorem states the guarantees for our ℓ∞ regression algorithm.

Theorem 1.2. Let A ∈ Rn×d, N ∈ Rm×d, b ∈ Rn and v ∈ Rm, with n > d, and let ε > 0 be
a scalar. There exists an algorithm which provides a (1 + ε)-multiplicative approximation to the

ℓ∞ regression problem minx∈Rd,Nx=v ∥Ax− b∥∞ by solving O
(
log log(n)

ε

)
subproblems, each

of which makes O
((

d1/3

ε + 1
ε2

)
log n

ε

)
calls to a solver for structured linear systems involving

matrices of the form A⊤DA and N
(
A⊤DA

)+
N⊤, where D is a positive diagonal matrix.

Our algorithm for ℓ∞ regression achieves state of the art iteration complexity (in terms of dependence
on the dimension d) via an iteratively reweighted least squares (IRLS) approach that solves a weighted
least squares instance in each iteration, whose solution is provided by a single linear system solve.
IRLS algorithms are favored in practice due to their simplicity and ease of implementation. IRLS
algorithms were first introduced in pioneering work from the 1960s [Law61, RU68]. Subsequently,
there has been significant interest in developing IRLS methods with provable convergence guarantees
[SV16b, SV16a, EV19, APS19].

Comparison to prior works: Prior to our work, the state of the art IRLS algorithm for ℓ∞ regression
is the algorithm of [EV19]. The work [JLS22] gives a non-IRLS algorithm for ℓ∞ regression with
the state of the art iteration complexity Õ

(
d1/3/ε2/3

)
. We highlight the differences between our

algorithm and these works. The algorithm of [JLS22] works by leveraging ℓ∞ Lewis weights,
and uses a reduction to the Monteiro-Svaiter accelerated gradient descent algorithm by [CJJ+20].
Monteiro-Svaiter acceleration is a complex scheme, requiring to solve an implicit equation in each
iteration. While an implementation is later provided in [CHJ+22], the practicality of Monteiro-Svaiter
acceleration remains an open question [CHJ+22]. Our ℓ∞ regression algorithm also uses Lewis
weights, but from a completely different approach, based on an IRLS algorithm. The starting point
of our algorithm is the algorithmic framework by [EV19]. However the algorithm by [EV19] is
very specific to the uniform initialization of the solution and only achieves iteration complexity
Õ
(
n1/3/ε2/3

)
. The non-uniform initialization via ℓ∞ Lewis weights in our algorithm immediately

breaks the analysis by [EV19]. To overcome this barrier requires new insights. Our algorithm
also further improves the iteration complexity of [EV19]’s algorithm to Õ

(
d1/3/ε+ 1/ε2

)
while

retaining the simplicity and practicality of an IRLS method.

Underdetermined regime n ≤ d: A simple modification of our algorithm can be used in the regime
n ≤ d and it obtains a guarantee which is analogous to Theorem 1.1 but with an iteration complexity
that depends on the smaller dimension n. Our algorithm matches the iteration complexity of the state
of the art algorithm of [ABS21] up to poly-logarithmic factors, while being significantly simpler
and more practical. As discussed above, our algorithm is an IRLS based method where the main
computation in each iteration is a weighted least squares regression, which is beneficial in practice.

Further extensions: It is worth noting that while we followed the formulation from [ABS21], our
solver can handle more general functions provided that their Hessian is stable within any ℓ∞ box of
fixed radius. This allows, for example, to minimize functions of the form

∑
fi ((Ax− b)i) in both

the constrained and unconstrained settings, where each fi in the decomposition has a bounded third
derivative. The same framework applies to functions without the decomposable structure, provided
that a similar stability property holds.

1.2 Related work

The class of quasi-self-concordant (QSC) functions was introduced in [Bac10], extending the defini-
tion of standard self-concordant functions to logistic regression models. As QSC functions encompass
various other important models, such as softmax and ℓp regressions, they have been further explored
in a series of influential works [STD19, KSJ18, CJJ+20, ABS21, Doi23].
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Most of these studies rely on trust-region Newton methods, which inherently introduce a dependence
on the number of iterations dictated by the shape and size of the trust region. Typically, these regions
are ℓ2 balls centered at the current iterate, leading to convergence guarantees expressed in terms of the
ℓ2 diameter of the search region. Notably, [ABS21] applied the techniques of [AZLOW17, CMTV17]
to instead establish guarantees in terms of the ℓ∞ diameter of the search region by solving a sequence
of second-order subproblems with ℓ∞ constraints. Our algorithm for QSC optimization follows a
similar principle.

A significant contribution by [Doi23] introduced acceleration techniques to achieve an iteration
complexity of Õ((CR)2/3), where R denotes the ℓ2 diameter of the domain. However, since the
worst-case ratio between the ℓ2 and ℓ∞ diameters is

√
n, the iteration complexity may degrade by a

factor of n1/3 when measured under the ℓ∞ benchmark used in [ABS21] and in this work—while
still maintaining the desirable sublinear dependence on C and R. In comparison, our approach
incurs only a d1/3 factor, which represents a substantial improvement when n≫ d. Additionally we
note that accelerated algorithms typically require smoothness, and this is the case for those given
in [CJJ+20, Doi23]. However, both the algorithm from [ABS21] and ours manage to achieve an
improved iteration complexity, without resorting to smoothness or other additional properties. We
note that [KSJ18] provide an analysis for both the smooth and non-smooth settings, but they exhibit a
dependence on the ℓ2 diameter of the level set of the initialization point, which scales as n1/2 in the
worst case.

ℓ∞ regression is a classical optimization problem, but the first major breakthrough occurred in
the special case of max flow in [CKM+11], where the authors developed an algorithm requiring
Õ
(
n1/3

)
linear system solves, improving upon the standard Õ

(
n1/2

)
complexity. This result was

further refined and generalized in [CMMP13, EV19], both achieving Õ
(
n1/3

)
iteration complexity.

More recently, [JLS22] studied both ℓp regression for general p <∞ and ℓ∞ regression, presenting
algorithms whose iteration count depends on d rather than n, leveraging Lewis weights. Previously,
[LS14] devised an interior point method for tall LPs where the number of iterations depends on d rather
than n by employing Lewis weights. For the specific case of ℓ∞ regression, [JLS22] incorporated
Lewis weights into the accelerated second-order method of [CJJ+20], which approximates the ℓ∞
norm via the Hessian of a log-exp-sum function. In contrast, while we also draw on the Lewis weight
approach from [JLS22], we develop a simpler, lightweight IRLS method inspired by [EV19].

1.3 Overview of our approach

To establish our main result, we employ a trust-region method. While such methods have been
extensively studied, the distinguishing feature of our approach is that the convergence rate depends on
the ℓ∞ diameter of the level set that contains the initialization point, rather than its ℓ2 diameter, which
can be larger by up to a factor of

√
n. This yields both theoretical and practical improvements. Our

method is motivated by the box-constrained Newton method which was introduced by [CMTV17,
AZLOW17], and later adapted to quasi-self-concordant minimization [ABS21]. This perspective
allows us to reduce the optimization process to executing an outer loop of O

(
CR log h(x0)−h(x∗)

ε

)
iterations, where C is the QSC parameter of f and R = max{∥Ax − Ax∗∥∞ : h(x) ≤ h(x0)}
denotes the ℓ∞ diameter of the level set of the initialization point x0.

In each iteration of the outer loop, we compute the update by approximately minimizing a quadratic
approximation of h over the ℓ∞ ball of radius 1/C centered at the current iterate. This radius
constraint guarantees that the Hessian of h remains well approximated within the entire trust region.
Consequently, the approximate minimizer computed here achieves sufficient decrease in objective
value compared to the true minimizer of the region.

We then show that the required subproblem is of the form

max
∥A∆∥∞≤ 1

C

g⊤ (A∆)− 1

2
(A∆)

⊤
D (A∆) , (2)

where g ∈ Rm is a vector and D is a non-negative diagonal matrix and can be reduced to implementing
a residual solver which approximately maximizes a concave quadratic objective as in (2) subject to
ℓ∞ constraints. We describe this reduction in Section 4. To obtain an efficient residual solver, we
design an IRLS method whose convergence rate depends only on the smaller dimension d, requiring
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only Õ
(
d1/3

)
linear system solves. Finally, the extra factor log (CR) log

(
h(x(0))−h(x∗)

ε

)
comes

from a binary search procedure, detailed in Section 4.

2 Preliminaries

Notation. Throughout the paper, when it is clear from context, we use scalar operations between
vectors to denote the coordinate-wise application, e.g, for x ∈ Rd, x2 is an Rd vector with entry
x2
i in the i-th coordinate. For w ∈ Rd,we use diag (w) ∈ Rd×d to denote the diagonal matrix with

diagonal entries given by w. When it is clear from context, we also abuse the notation and use the
scalar a to denote the vector with all coordinates having value a, and the dimension will be inferred
from the context.

Quasi-self-concordant functions. We recall the definition of quasi-self-concordant functions.

Definition 2.1. A function f : R → R, is C-quasi-self-concordant for C > 0 if for all x ∈ R,
|f ′′′(x)| ≤ Cf ′′(x).

Lewis weights and computation. Our main algorithms rely on the use of ℓ∞ Lewis weight
overestimates. To start, we introduce leverage scores and ℓ∞ Lewis weights for a matrix A ∈ Rn×d.

Definition 2.2 (Leverage scores). For a matrix A, the leverage score of the i-th row of A is given by
σ (A) i = a⊤i

(
A⊤A

)−1ai where ai is the i-th row of A.

Definition 2.3 (ℓ∞ Lewis weights). The ℓ∞ Lewis weights of matrix A are the unique vector
w ∈ Rn

≥0 that satisfies wi = σ
(
diag(w)1/2A

)
i for all i ∈ [n].

While finding ℓ∞ Lewis weights is computationally expensive, for the purpose of our algorithms, we
only need to use ℓ∞ Lewis weight overestimates, a notion introduced by [JLS22].

Definition 2.4 (ℓ∞ Lewis weight overestimates). The ℓ∞ Lewis weight overestimates of matrix A
are a vector w ∈ Rn

≥0 that satisfies d ≤ ∥w∥1 ≤ 2d and wi ≥ σ
(
diag(w)1/2A

)
i for all i ∈ [n].

One can efficiently compute ℓ∞ Lewis weight overestimates of matrix A by the fixed point iterations
by [CCLY19], using Õ(1) linear system solves (see also [JLS22]).

Linear system solver. Our algorithms in the unconstrained setting assume access to an oracle
that solves problems of the form minx:g⊤x=−1⟨r, (Ax)2⟩. Finding the minimizer x is equivalent to
solving a linear system of the form A⊤DAx = g, for a diagonal matrix D. The problem has a closed
form solution x = − B−1g

g⊤B−1g
where B = A⊤diag(r)A.

Energy increase lower bounds. Our approach is based on the electrical flow interpretation of
the problem. Electrical flow interpretation was developed for flow problems on graph, and later
extended for problems involving general linear systems. For vector g ∈ Rd, matrix A ∈ Rn×d,
and vector r ∈ Rn

≥0 which we will refer to as resistances, we consider the following quantity
E(r) = minx:g⊤x=−1⟨r, (Ax)2⟩, which we will refer to as the electrical energy. E(r) has the nice
property of being monotone in r. The increase in the energy when the resistances increase is lower
bounded in the two lemmas A.1 and A.2 (provided in the appendix), which are both critical in the
design and analysis of our algorithms.

3 ℓ∞-Regression with Lewis Weights

As a warm up for the general QSC optimization algorithm, in this section, we solve the problem of
overdetermined ℓ∞-regression to a (1 + ε)-approximation, in the form

min
g⊤x=−1

∥Ax∥∞ (3)

where A ∈ Rn×d with n ≥ d. That is, we want to find a solution x to the above problem that satisfies
g⊤x = −1 and ∥Ax∥∞ ≤ (1 + ε)∥Ax∗∥∞, where we denote x∗ = argming⊤x=−1 ∥Ax∥∞. We
note that the commonly seen problem minx ∥Ax− b∥∞ can be transformed into the above form by
adding b as a column to A and considering x ∈ Rd+1, with the extra dimension having value −1.

5



Algorithm 1 ℓ∞-regression for ming⊤x=−1 ∥Ax∥∞
1: Input:A, g, ε
2: Output: Find x such that g⊤x = −1 and ∥Ax∥∞ ≤ (1 + ε)ming⊤x=−1 ∥Ax∥∞
3: Initialize x(0) = argming⊤x=−1 ∥Ax∥2; L = ⌊log1+ε

∥Ax(0)∥2

n1/2 ⌋; U = ⌊log1+ε ∥Ax(0)∥2⌋
4: while L < U :
5: P = ⌊L+U

2 ⌋; M = (1 + ε)P

6: if Subsolver(A, g, ε,M) is infeasible then L = P + 1
7: else let x(t) be the output of Subsolver(A, g, ε,M); U = P , t← t+ 1
8: return x(t)

Algorithm 2 ℓ∞-regression Subsolver(A, g, ε,M)

1: Output: Find x such that ∥Ax∥∞ ≤ (1 + ε)M or find r such that E(r)
∥r∥1

≥
(

M
1+ε

)2
2: Initialize: r(0) = w + d

n , where w is an ℓ∞ Lewis weight overestimate vector of A
3: t = 0, t′ = 0, s(t

′) = 0

4: while ∥r(t)∥1 ≤ ∥r(0)∥1

ε

5: x(t) = argminx:g⊤x=−1⟨r(t), (Ax)2⟩
6: if ⟨r(t),(Ax(t))2⟩

∥r(t)∥1
≥
(

M
1+ε

)2 then return r(t)

7: if ∥Ax(t)∥∞ ≤ (1 + ε)M then return x(t)

8: if ∥Ax(t)∥∞ > S = d
1
3M : ▷ Case 1

9: Let i be an index such that |(Ax(t))i| = ∥Ax(t)∥∞

10: r
(t+1)
j =

{
r
(t)
j j ̸= i

r
(t)
j + 1 j = i

11: else: ▷ Case 2
12: Let t′ = t′ + 1; s(t

′) = s(t
′−1) + x(t);

13: if ∥As(t
′)∥∞/t′ ≤ (1 + ε)M then return s(t

′)/t′

14: r
(t+1)
j =

{
r
(t)
j

(Ax(t))2j
M2 if (Ax(t))2j ≥ (1 + ε)M2

r
(t)
j otherwise

15: t = t+ 1
16: return r(t)

3.1 Algorithm

The main part of our algorithm is the subroutine shown in Algorithm 2 which takes as input a
guess for the optimal objective of Problem 3. To obtain a (1 + ε)-approximation for this value,
our main algorithm 1 proceeds by performing a binary search. Starting with an initial solution
x(0) = argming⊤x=−1 ∥Ax∥2, the algorithm performs a binary search on the (1 + ε)-grid between

∥Ax(0)∥2 and ∥Ax(0)∥2

n1/2 (which are an upper bound and a lower bound for ∥Ax∗∥∞). The number of

guesses is at most log
log(∥Ax(0)∥∞)−log(

∥Ax(0)∥2
n1/2

)

ε = O(log logn
ε ).

Our main focus in this section is then to demonstrate that Algorithm 2, given a guess M, outputs a
solution x with ∥Ax∥∞ ≤ (1 + ε)M , if any. For our convenience, we start with the dual formulation
of the problem with the squared objective

min
g⊤x=−1

∥Ax∥2∞ = min
g⊤x=−1

max
∥r∥1=1

〈
r, (Ax)2

〉
= max

∥r∥1=1
min

g⊤x=−1

〈
r, (Ax)2

〉
= max

r≥0

E(r)
∥r∥1

,

where we use E(r) to denote the objective ming⊤x=−1

〈
r, (Ax)2

〉
. For a guess M for the optimal

objective of Problem 3, the goal of our algorithm is to produce a primal solution x such that g⊤x = −1
and x satisfies ∥Ax∥∞ ≤ (1 + ε)M or certify that ming⊤x=−1 ∥Ax∥2∞ = maxr≥0

E(r)
∥r∥1

≥
(

M
1+ε

)2
,

in which case we need to increase M .
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The core idea of our algorithm is to maintain in each iteration t the following invariant

E(r(t+1))− E(r(t)) ≥M2(∥r(t+1)∥1 − ∥r(t)∥1). (4)

The telescoping property of this invariant guarantees that if the algorithm outputs a dual solution r(T )

with ∥r(T )∥1 significantly large compared to the initial ∥r(0)∥1, we will have E(r(T ))
∥r(T )∥1

≥ M2

(1+ε)2 .

We leverage the energy increase lower bound lemmas A.2 and A.1 to determine the update for the
dual solution r. First, the initial dual solution r(0) is set to w + d

n , where w is a ℓ∞ Lewis weight
overestimate vector for matrix A, which can be efficiently obtained using the fixed point iteration from
[CCLY19], which we revise in Section E of the appendix. The d

n component is added to guarantee
that the coordinates of the dual solution are not too small. With this initialization, subsequent update
r(t) always satisfies the condition of Lemma A.2 and thus we can apply it when necessary. To
update the dual solution, the novelty in our method is to distinguish between the two regimes. In the
high width regime (Case 1), ie, when the corresponding minimizer x(t) to ming⊤x=−1

〈
r, (Ax)2

〉
satisfies ∥Ax(t)∥∞ > S, where S is set to d

1
3M , we update a single coordinate i that achieves the

maximum value |(Ax(t))i| = ∥Ax(t)∥∞ by setting r
(t+1)
i = r

(t)
i + 1. Lemma A.2 will guarantee

that the invariant 4 holds, and at the same time, E
(
r(t)
)

increases fast. In the low width regime (Case
2), when ∥Ax(t)∥∞ ≤ S, we use the lower bound given by Lemma A.1. In order to maintain the

invariant A.2, we can guarantee for each coordinate j,
(Ax(t))2jr

(t)
j

(
1−

r
(t)
j

r
(t+1)
j

)
r
(t+1)
j −r

(t)
j

≥M2. From here, we

can derive the update rule as shown in Algorithm 2.

We give the full description in Algorithm 2.

3.2 Analysis

We show the full analysis of Algorithm 2 in Appendix B. To show Theorem 1.2, first, we can see that
the algorithm performs O

(
log

log(∥Ax0∥∞−∥Ax∗∥∞)

ε

)
binary search steps. Our analysis shows that,

in each step, the algorithm uses O
((

1
ε2 + d1/3

ε

)
log n

ε

)
calls to the solver for problems of the form

minx:g⊤x=−1⟨r, (Ax)2⟩. By combining these two facts, we immediately have Theorem 1.2.

4 Quasi-Self-Concordant Optimization

Algorithm 3 Algorithm for optimizing h(x) =
∑n

i=1 f((Ax− b)i)

1: Input: initial solution x0, lower bound B on h, diameter R of sub-level set L0.
2: Output: Find x such that h(x) ≤ h(x∗) + ε
3: Initialize: x(0) = x0

4: Let T = O
(
CR log

(
h(x(0))−B

ε

))
5: for (t = 0; t < T ; t← t+ 1): ▷ or terminate when h(x(t+1))− h(x(t)) ≤ O(ε/CR)
6: ∆← {∅} ▷ set of candidate updates
7: for

(
ν = h(x(t))−B; ν≥ε; ν ← 1

2ν
)
: ▷ halving after each step

8: for
(
M = e2ν;M ≥ ν

CR ;M ← 1
2M

)
: ▷ halving after each step

9: Let ∆ν,M be a primal solution output by ResidualSolver(x(t),M) if any
10: ∆←∆ ∪ {∆ν,M}
11: x(t+1) = x(t) − 1

e2∆
(t) where ∆(t) = argmin∆∈∆ h

(
x(t) − 1

e2∆
)

▷ update step
12:

To simplify exposition, we present an algorithm for solving the unconstrained problem

min
x

h(x) :=

n∑
i=1

f ((Ax− b)i) (5)
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Algorithm 4 ResidualSolver(x,M)

1: Initialize: r(0) = w + d
n , where w is an ℓ∞ Lewis weight overestimate vector of A

2: gi =
−1
M (A⊤∇f(x))i, si = f ′′((Ax)i), t = 0, t′ = 0, v(t

′) = 0

3: while ∥r(t)∥1 ≤ 2(∥w∥1 + d)

4: Let p(t) = 2(∥w∥1 + d)s+ MC2

2 r(t); ∆(t) = argmin∆:g⊤∆=−1

〈
p(t), (A∆)2

〉
5: if

〈
s+ MC2

2
r(t)

∥r(t)∥
1

, (A∆(t))2
〉
≥ 13M then return r(t)

6: if ∥A∆(t)∥∞ ≤ 11
C then return ∆(t)

7: if ∥A∆(t)∥∞ > S = 11d
1
3

C : ▷ Case 1
8: Let i be an index such that |(A∆(t))i| = ∥A∆(t)∥∞

9: r
(t+1)
j =

{
r
(t)
j j ̸= i

r
(t)
j + 1 j = i

10: else: ▷ Case 2
11: Let t′ = t′ + 1; v(t

′) = v(t
′−1) +∆(t)

12: if ∥Av(t
′)∥∞/t′ ≤ 11

C then return v(t
′)/t′

13: r
(t+1)
j =

{
1
52r

(t)
j (A∆(t))2jC

2 if (A∆(t))2j ≥ 100
C2

r
(t)
j otherwise

14: t = t+ 1
15: return r(t)

where f : R→ R is a C-quasi-self-concordant function defined in Definition 2.1, A ∈ Rn×d, and
b ∈ Rn with n ≥ d. In the appendix, we give an extension to the fully generalized constrained
problem minx:Nx=v

∑n
i=1 f ((Ax− b)i) as stated in Theorem 1.1.

Notation: We denote by x∗ the optimal solution to the problem and x(0) the initial solution used
by our algorithm. Also, let us write ∇f(x) = (f ′ ((Ax− b)1) , . . . , f

′ ((Ax− b)n))
⊤, ∇2f(x) =

diag (f ′′ ((Ax− b)1) , . . . , f
′′ ((Ax− b)n)). We then have ∇h(x) = A⊤∇f(x) and ∇2h(x) =

A⊤∇2f(x)A.

Assumptions: Our algorithm and its analysis require the following assumptions.

Assumption 1. We assume that there exists a finite value B such that h(x) ≥ B, for all x ∈ Rd.

Assumption 2. Let L0 = {x : h(x) ≤ h(x(0))}. We assume that there exists a finite value R such
that maxx∈L0 ∥Ax−Ax∗∥∞ ≤ R.

We note that Assumption 1 is standard in prior work (eg. by [ABS21]). Many commonly used
functions are non-negative and thus admit a trivial lower bound B = 0. Assumption 2 on the
boundedness of the diameter of the level set is also common in prior work on trust-region Newton
method, such as [KSJ18, Doi23]. Such dependencies are natural, and virtually all known algorithms
for QSC optimization have a dependency on the size and shape of the trust region, as well as on the
distance between the initial and the optimal point (e.g. [ABS21] define their distance parameter such
that ∥Ax∗∥∞ ≤ R and ∥Ax∗∥2 ≤ R).

Our approach: We follow a trust-region based template. In particular, our approach leverages the
box-constrained Newton method [CMTV17], which was used in the context of matrix scaling, a
special case of QSC minimization. A similar method was developed in parallel by [AZLOW17]
and was employed by [ABS21] for optimizing problem 5. The general idea behind these trust
region templates is that, if the Hessian of the objective is promised to not change by more than a
constant multiplicative factor within an ℓ∞ region centered around the current iterate, then minimizing
the local quadratic approximation within this region yields a new iterate which makes significant
progress in function value. In fact, this progress is comparable to the progress made by moving to
the best point within the ℓ∞ region. Hence the remaining challenge is to approximately solve the
quadratic minimization problem subject to an ℓ∞ constraint. Since the subproblem is very robust to
approximation, it suffices to obtain a constant factor approximation to a regularized ℓ2∞ + ℓ22 problem,
which we achieve via a new IRLS solver. Now we can provide formal statements.
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Quasi-self-concordance implies Hessian stability, which allows us to reduce Problem 5 to solving a
sequence of residual problems of the form

max
∥A∆∥∞≤ 1

C

resx(∆) := ∇f(x)⊤(A∆)− 1

e
(A∆)⊤∇2f(x)(A∆) (6)

We prove that an approximate solution to Problem 6 allows us to make significant progress in the
function value of h. The full proof can be found in Section C.
Lemma 4.1. Consider an iteration t of Algorithm 3, and let x = x(t) be the current iterate. Suppose
the ResidualSolver can compute ∆̃ such that resx(∆̃) ≥ κmax∥A∆∥∞≤ 1

C
resx(∆). Then we have

h
(
x− ∆̃

e2

)
− h(x∗) ≤

(
1− κ

e2CR

)
(h(x)− h(x∗)) .

Consequently, Algorithm 3 constructs a solution x(T ) such that h(x(T )) ≤ h(x∗) + ε using T =

O
(
RC
κ log h(x(0))−h(x∗)

ε

)
iterations of the outermost for loop.

To solve Problem 6, we recast it in a more amenable form, which is related to an ℓ∞-regression
problem, but with the key difference that it contains an additional quadratic term

〈
s, (A∆)2

〉
.

Specifically, given a guess M for the objective value, we define the minimization problem

min
g⊤∆=−1

〈
s, (A∆)2

〉
+

MC2

2
∥A∆∥2∞ , (7)

where gi = −1
M

(
A⊤∇f(x)

)
i

and si = f ′′ ((Ax)i) for all i. We show that algorithm ResidualSolver
satisfies the following invariant.
Invariant 1. The algorithm either outputs a solution ∆ such that g⊤∆ = −1, ∥A∆∥∞ ≤ 11

C , and〈
s, (A∆)2

〉
≤ ming⊤∆=−1

〈
s, (A∆)2

〉
+ MC2

2 ∥A∆∥2∞, or certifies that ming⊤∆=−1

〈
s, (A∆)2

〉
+

MC2

2 ∥A∆∥2∞ ≥ 13M .

The output of an algorithm satisfying Invariant 1 can be converted into a good approximate solution to
Problem 6. We prove this formally in Lemma C.7. At this point the major challenge is providing such
an algorithm. We show that we can achieve it by extending our approach for solving ℓ∞-regression
from Section 3. The key difference in this setting is the presence of an additional quadratic term,
which makes the extension non-trivial and limits us to achieving only a constant-factor approximation.
Nonetheless, this level of approximation suffices for our purposes.

The following lemma provides formal guarantees for the ResidualSolver, and its full proof can be
found in Section C.
Lemma 4.2. For an iterate x, let ∆∗ = argmax∥A∆∥∞≤1/C resx(∆) and OPT = resx(∆

∗). For
M such thatOPT ∈ (M2 ,M ], Algorithm 4 outputs ∆̂ such that ∥A∆̂∥∞ ≤ 1

C and resx(∆̂) ≥ OPT
20 ,

and makes O(d1/3 log n) calls to a linear system solver.

Having provided the description of the ResidualSolver and its guarantee, we can now describe
and analyze the main routine shown in Algorithm 3. The algorithm starts with a solution x(0) and
iteratively updates it. In each iteration, it performs a binary search for the objective of residual
problem 6 using the two for-loops in Line 7 and Line 8. With each guess for this objective, the
algorithm uses the ResidualSolver (Algorithm 4) to find a solution. Algorithm 3 finally uses the best
solution among the ones that are found to update the iterate. To analyze the algorithm, we first use
the following fact from [ABS21].
Lemma 4.3 (Lemma 4.3, 4.4 [ABS21]). If h(x(t)) − h(x∗) ∈ (ν2 , ν], then OPT ∈ ( ν

8CR , e2ν].
Further, if OPT ∈ (M2 ,M ] then (A∆∗)⊤∇2f(x)(A∆∗) ≤ eM .

This lemma guarantees that the steps executed in the two for-loops in Algorithm 3 are sufficient
to find a sufficiently close guess for the residual problem objective. In total, the number of steps
required to find M such that OPT ∈ (M2 ,M ] is O

(
log (CR) log

(
h(x(t))−B

ε

))
.

Finally, combining Lemma 4.1, Lemma 4.2 with the binary search procedure in Line 7-8 (Lemma
4.3), we can conclude that the total number iterations of Algorithm 3 to find an ε-additive solution
is O

(
CR log (CR) log2

(
h(x(0))−h(x∗)

ε

) )
, each of which uses O

(
d1/3 log n

)
linear system solves.

This concludes the proof for Theorem 1.1.
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Figure 1: Runtime (in seconds) on random matrices and three real-world datasets when p = 8 and
ε = 10−10. We run each each experiment 5 times and report the mean and standard deviation of the
runtime. The first row shows the absolute difference in the objectives returned by CVX and Newton’s
method against our algorithm on the log scale.

Table 1: Performance of our algorithm on the large instances. In the last row, we show the gap in the
objective value between Newton’s method and our algorithm.

Dataset Random
Matrices

Song Year
Prediction [BM11]

Consumption of
Power [HB06]

Protein Property
[Ran13]

Size 100000× 100 463811× 90 1844352× 11 41157× 9
Newton (s) 0.5 2.7 3.0 0.2

Ours (s) 1.3 7.5 6.5 0.3
Gap −3.6× 10−12 2.6× 10−9 4.5× 10−9 −7.1× 10−11

5 Experiments

We test our algorithm on ℓ2-regularized ℓp-regression problems: minx ∥Ax− b∥pp + µ ∥Ax− b∥22.
For p ≥ 3, the function |x|p + µx2 is C-QSC for C = pµ−1/(p−2).

Baseline. We compare our algorithm runtime against CVX and the Newton’s method in [KSJ18].
For the Newton’s method, we use a line search to set the step size in each iteration.

Problems and datasets. We study the ℓp + ℓ2 regression problem in two settings: 1) Random matrix
A, b: The entries of A, b are generated uniformly at random between 0 and 1, the second dimension
(d) of A is fixed to 100; 2) On real world datasets: we use for real-world datasets available for
regression tasks on UCI repository. The dataset sizes are reported in Table 1. Since CVX slows
down significantly on larger instances, we only randomly pick up to 2500 in each instance. For our
algorithm and the Newton’s method, we also measure the time they run on larger instances and the
entire datasets. In all experiments, we use p = 8 and precision ε = 10−10, µ = 1.

Correctness. To verify the correctness of our algorithms, we assume that CVX gives a solution
with high precision. We plot the absolute difference between the objectives outputted by CVX and
Newton’s method and the objective by our algorithm. In all cases, the difference is within the margin
of error (ε = 10−10), indicating that our algorithm outputs high-precision solutions.

Performance. Implementations were done on MATLAB 2024a on a MacBook Pro M2/16GB RAM.
The performance of all three algorithms is reported in Figure 1. On all small instances, our algorithm
and the Newton’s method have comparable runtime and are both significantly faster than CVX.

We further compare the performance of our algorithm and the Newton’s on large instances (reported
in Table 1). Both algorithms are efficient, and are even faster than the time CVX runs on small
instances. However, there is a gap in the runtime between our algorithm and Newton’s method.
We note that Newton’s method has been shown to perform very well in practice. Nevertheless, it
comes with a significantly weaker theoretical guarantee [BV04]. Our algorithm, on the other hand,
provides a stronger theoretical convergence rate and, as a proof of concept, gives a close comparable
performance.
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A Energy Lemmas

Lemma A.1. Given r, r′ ∈ Rn and r′ ≥ r. Let x = argminx:g⊤x=−1⟨r, (Ax)2⟩, then

E(r′)− E(r) ≥
n∑

i=1

(Ax)2i ri
(
1− ri

r′i

)
.

The proof for this lemma can be found in prior works such as [EV19] (for a special case) and [ABS21]
(Lemma C.1).

Via ℓ∞ Lewis weight overestimates, [JLS22] also show the following

Lemma A.2 (Lemma 3.6 [JLS22]). Let w be an ℓ∞ Lewis weight overestimates vector for matrix A.
For r ≥ w, let x = argminx:g⊤x=−1⟨r(t), (Ax)2⟩. Then for v ∈ Rn

≥0 such that ∥v∥1 ≤ 1

E(r + v)− E(r) ≥ 1

2

∑
vi(Ax)2i .

B Analysis of the ℓ∞-Regression Algorithm

In this section, we give the analysis of the main subroutine of our ℓ∞-regression algorithm, shown in
Algorithm 2 .

B.1 Correctness

Now we will show the correctness of our algorithm. That is, Algorithm 2 produces a primal solution
x such that g⊤x = −1 and x satisfies ∥Ax∥∞ ≤ (1 + ε)M or a dual solution r with E(r)

∥r∥1
≥
(

M
1+ε

)2
.

First, we can see that if Algorithm 2 outputs a primal solution x in Line 10 and Line 17, we
immediately have ∥Ax∥∞ ≤ (1 + ε)M . Therefore, we only have to show guarantees for the dual
solution. As hinted, we first show that Algorithm 2 maintains invariant 4 in the following lemma.

Lemma B.1. Algorithm 2 maintains that for all t ≥ 0,

E(r(t+1))− E(r(t))
∥r(t+1)∥1 − ∥r(t)∥1

≥M2.

Proof. When ∥Ax∥∞ ≥ S, we have r
(t+1)
j =

{
r
(t)
j j ̸= i

r
(t)
j + 1 j = i

, for a coordinate i such that

|(Ax(t))i| =
∥∥Ax(t)

∥∥
∞. Let v = 1i be the indicator vector for coordinate i. We have r(t+1) =

r(t) + v and ∥v∥1 = 1. Since r(t) ≥ r(0) > w, we can apply Lemma A.2 and have

E(r(t+1))− E(r(t))
∥r(t+1)∥1 − ∥r(t)∥1

≥
1
2vi(Ax(t))2i

vi
≥ S2

2
=

d2/3M2

2
≥M2.
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When ∥Ax∥∞ < S, for each coordinate j such that r(t+1)
j > r

(t)
j we have r

(t+1)
j = r

(t)
j

(Ax(t))2j
M2 .

Hence,

(Ax(t))2jr
(t)
j

(
1− r

(t)
j

r
(t+1)
j

)
r
(t+1)
j − r

(t)
j

=
(Ax(t))2jr

(t)
j

r
(t+1)
j

= M2.

By Lemma A.1,

E(r(t+1))− E(r(t))
∥r(t+1)∥1 − ∥r(t)∥1

≥

∑
j(Ax(t))2jr

(t)
j

(
1− r

(t)
j

r
(t+1)
j

)
∑

j r
(t+1)
j − r

(t)
j

≥M2.

Lemma B.1 allows us to show the quality of the dual solution, if output.

Lemma B.2. If Algorithm 2 returns a dual solution r(T ) then E(r(T ))
∥r(T )∥1

≥
(

M
1+ε

)2
.

Proof. The case when the Algorithm terminates in Line 8 immediately gives us the claim. We only
have to care about the case when the while-loop terminates with ∥r(T )∥1 > ∥r(0)∥1

ε . By Lemma B.1,
we have that

T−1∑
i=0

E(r(t+1))− E(r(t)) ≥M2
T−1∑
i=0

∥r(t+1)∥1 − ∥r(t)∥1

leading to E(r(T )) ≥M2(∥r(T )∥1 − ∥r(0)∥1). Since ∥r(T )∥1 > ∥r(0)∥1

ε

E(r(T ))

∥r(T )∥1
≥M2

(
1− ∥r

(0)∥1
∥r(T )∥1

)
≥M2 (1− ε) ≥

( M

1 + ε

)2
,

as needed.

B.2 Runtime

To bound the runtime of Algorithm 2, we also splits the iteration by the width of ∥Ax(t)∥∞. Let Thi

and Tlo be the iterations when ∥Ax(t)∥∞ > S and ∥Ax(t)∥∞ ≤ S, respectively before the algorithm
returns a solution. We also abuse the notations and denote by Thi and Tlo the numbers of such
iterations, respectively. The following lemmas bound Thi and Tlo.

Lemma B.3. Thi ≤ 6d1/3

ε .

Proof. Again, for t such that
∥∥Ax(t)

∥∥
∞ > S, by Lemma A.2, we have

E(r(t+1))− E(r(t))
∥r(t+1)∥1 − ∥r(t)∥1

≥
1
2vi(Ax(t))2i

vi
≥ S2

2
=

d2/3M2

2
.

Since ∥r(t+1)∥1 − ∥r(t)∥1 = 1, we get E(r(t+1)) − E(r(t)) ≥ d2/3M2

2 . Therefore E(r(T )) ≥ Thi ·
d2/3M2

2 . Notice that ∥r(T )∥1 ≤ ∥r(0)∥1

ε ≤ 3d
ε and E(r(T ))

∥r(T )∥1
≤
(

M
1+ε

)2
, we get that Thi ≤ 6d1/3

ε .

Lemma B.4. Tlo ≤ O
((

1
ε2 + d

1
3

ε log d

)
log n

ε

)
.

Proof. Let α(t)
j =

r
(t+1)
j

r
(t)
j

. Before the algorithm terminates, we have∥∥∥∥∥A
∑

t∈Tlo
x(t)

Tlo

∥∥∥∥∥
∞

≥ (1 + ε)M

14



This means there must exist a coordinate i such that
∑

t∈Tlo

|(Ax(t))i|
M ≥ (1 + ε)Tlo. We have if

(Ax(t))2i
M2 < (1 + ε), then |(Ax(t))i|

M < (1+ ε
2 ), and if (Ax(t))2i

M2 ≥ (1 + ε), (Ax(t))2i
M2 = α

(t)
i > 1. Hence,

|(Ax(t))i|
M

≤ (1 +
ε

2
) + 1

α
(t)
i >1

√
α
(t)
i

We obtain

Tlo(1 +
ε

2
) +

∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i ≥ (1 + ε)Tlo

and thus
∑

t∈Tlo,α
(t)
i >1

√
α
(t)
i ≥ εTlo

2 . For t such that α(t)
i > 1, we have

√
α
(t)
i = |(Ax(t))i|

M ∈

[(1 + ε)
1
2 , d

1
3 ]. By Lemma A.1 from [EV19], we have a lower bound for

∏
t∈Tlo,α

(t)
i >1

α
(t)
i :

∏
t∈Tlo,α

(t)
i >1

α
(t)
i ≥ min

{
(1 + ε)

εTlo

2(1+ε)
1
2 , d

2
3

εTlo

2d
1
3

}
(8)

On the other hand, r
(T )
i

r
(0)
i

is an upperbound for
∏

t∈Tlo,α
(t)
i >1

α
(t)
i . We initialize r

(0)
i ≥ d

n and before

the algorithm terminates r(T )
i ≤ ∥r(T )∥1 ≤ w+d

ε ≤ 3d
ε . We now have that∏

t∈Tlo,α
(t)
i >1

α
(t)
i ≤

r
(T )
i

r
(0)
i

≤ 3d

ε
· n
d
≤ 3n

ε
(9)

From (8) and (9), we obtain Tlo ≤ O
((

1
ε2 + d

1
3

ε log d

)
log 3n

ε

)
.

C Analysis of the QSC Algorithm

In this section, we analyze our main Algorithm 3 for QSC optimization. The algorithm starts with a
solution x(0) and iteratively updates it. Building on prior work [CMTV17, AZLOW17, ABS21], we
show that the algorithm returns a nearly-optimal solution provided we have access to an algorithm
for solving the following residual problems. Letting x(t) be the solution in iteration t of Algorithm 3,
we would like to find an approximate solution to the following residual problem:

max
∆: ∥A∆∥∞≤ 1

C

resx(t)(∆) := ∇f(x(t))⊤(A∆)− 1

e
(A∆)⊤∇2f(x(t))(A∆) (10)

Using a binary search approach as in [ABS21], we can find a value M that is a 2-approximation to
the optimal value of the above residual problem. This binary search is shown in the two for-loops
in Line 7 and Line 8 of Algorithm 3. With each guess M , the algorithm uses the ResidualSolver
(Algorithm 4) to find a solution to the residual problem. We show that if the residual solver returns
a constant factor approximation to the residual problem then Algorithm 3 returns a nearly-optimal
solution. We now give the formal analysis.

We start by showing that the steps executed in the two for-loops in Algorithm 3 are sufficient to find a
sufficiently close guess for the residual problem objective. The lemma follows from Lemmas 4.3, 4.4
in [ABS21].
Lemma C.1 (Lemma 4.3, 4.4 [ABS21]). For each value t of the outer-most iteration with iterate
x(t), there is an inner-most iteration of Algorithm 3 for which the following hold. Let M be the value
considered in that iteration. Consider the residual problem:

max
∆: ∥A∆∥∞≤1/C

resx(t)(∆) = ∇f(x(t))⊤(A∆)− 1

e
(A∆)⊤∇2f(x(t))(A∆)

Let ∆∗ ∈ argmax∥A∆∥∞≤1/C resx(t)(∆) be an optimal solution to the residual problem,
and let OPT = resx(t)(∆∗) be its objective value. We have OPT ∈ (M2 ,M ] and
(A∆∗)⊤∇2f(x(t))(A∆∗) ≤ eM .
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Next, we show that ResidualSolver(x(t),M) returns a constant factor approximation to the residual
problem max∆: ∥A∆∥∞≤1/C resx(t)(∆) when we run it with the value M guaranteed by the above
lemma. We will provide the proof of this lemma in Section C.1.

Lemma C.2. Consider an outermost iteration t of Algorithm 3 and an innermost iteration with a
value M with the properties guaranteed by Lemma C.1. Let ∆̃ := ∆ν,M be the solution returned by
ResidualSolver(x(t),M). We have ∥A∆̃∥∞ ≤ 1

C and resx(t)(∆̃) ≥ OPT
20 .

Equipped with the above guarantee, we can show that the algorithm converges in a small number
of iterations. To this end, we first prove the following lemma which shows that each iteration
significantly reduces the optimality gap.

Lemma C.3. Let x be an iterate. Suppose that ResidualSolver(x,M) returns a solution ∆̃ satisfying
∥A∆̃∥∞ ≤ 1

C and resx(∆̃) ≥ κmax∥A∆∥∞≤ 1
C
resx(∆). We have

h
(
x− ∆̃

e2

)
− h(x∗) ≤

(
1− κ

e2CR

)
(h(x)− h(x∗)) .

In order to prove Lemma C.3, first we recall the notion of Hessian stability.

Definition C.1. A function h : Rd → R is (r, d(r))-Hessian stable in the ℓ∞-norm iff for all x, y
such that ∥x− y∥∞ ≤ r we have

1

d(r)
∇2h(x) ⪯ ∇2h(y) ⪯ d(r)∇2h(x).

Fact C.1 (From [CJJ+20]). For a C-quasi-self-concordant function f ,
∑

i f(xi) is
(
r, eCr

)
-Hessian

stable in the ℓ∞-norm.

We now give the proof of Lemma C.3.

Proof. Let x∗ = argminh (x), we have ∥Ax−Ax∗∥∞ ≤ R, and h is (r, e)-Hessian stable where

r = 1
C . Let x̂ = r

Rx∗ +
(
1− r

R

)
x; and let ∆̂ = x − x̂ = r

R (x− x∗). We have
∥∥∥A∆̂

∥∥∥
∞
≤ r.

Suppose that ∆∗ is an optimal solution to the residual problem. Also recall the notation ∇h(x) =

A⊤∇f(x) and∇2h(x) = A⊤∇2f(x)A where we write∇f(x) =

(
f ′((Ax− b)1)

. . .
f ′((Ax− b)n)

)
,∇2f(x) =

diag(f ′′((Ax− b)1), . . . , f
′′((Ax− b)n)).

Let k = e2 and using hessian stability, we have

h
(
x− ∆̂

)
− h (x) ≥ −∇f (x)

⊤
(
A∆̂

)
+

1

exp (Cr)

(
A∆̂

)⊤
∇2f (x)

(
A∆̂

)
= −∇f (x)

⊤
(
A∆̂

)
+

1

e

(
A∆̂

)⊤
∇2f (x)

(
A∆̂

)
= −resx

(
∆̂
)
;

h

(
x− ∆̃

k

)
− h (x) ≤ −∇f (x)

⊤

(
A∆̃

k

)
+ exp

(
Cr

k

)(
A∆̃

k

)⊤

∇2g (x)

(
A∆̃

k

)

≤ 1

k

(
−∇f (x)

⊤
(
A∆̃

)
+

1

e

(
A∆̃

)⊤
∇2f (x)

(
A∆̃

))
= −1

k
resx

(
∆̃
)
.
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Since res
(
∆̃
)
≥ κresx (∆

∗) ≥ κresx

(
∆̂
)

, we have

h

(
x− ∆̃

k

)
− h (x) ≤ −κ

k
resx

(
∆̂
)

≤ κ

k

(
h
(
x− ∆̂

)
− h (x)

)
=

κ

k
(h (x̂)− h (x))

≤ κr

kR
(h (x∗)− h (x))

This give us the conclusion

h

(
x− ∆̃

k

)
− h (x∗) ≤

(
1− κr

kR

)
(h (x)− h (x∗)) .

By combining Lemmas C.2 and C.3, we obtain the following convergence guarantee.

Lemma C.4. Algorithm 3 constructs a solution x(T ) such that h(x(T )) ≤ h(x∗) + ε using T =

O
(
RC log

(
h(x(0))−h(x∗)

ε

))
iterations of the outermost loop.

Next, we analyze the overall running time of Algorithm 3. We have the following upper bound on
number of calls that Algorithm 3 makes to the residual solver.

Lemma C.5. In each iteration t, Algorithm 3 makes O
(
log (CR) log

(
h(x(0))−h(x∗)

ε

))
calls to the

residual solver 4.

Proof. The algorithm executes a binary search using two for-loops 7 and 8. The number of steps of
for-loop 7 is O

(
log h(x(t))−B

ε

)
= O

(
log h(x(0))−h(x∗)

ε

)
and the number of steps of for-loop 8 is

O (logCR), giving us the claim.

In Section C.6, we show the following upper bound on the running time of the ResidualSolver.

Lemma C.6. ResidualSolver uses O(d1/3 log n) linear system solves.

Finally, to conclude the proof of Theorem 1.1, we only have to combine Lemmas C.4, C.5, C.6.

C.1 Proof of Lemma C.2

In this section, we prove the approximation guarantee of the ResidualSolver stated in Lemma C.2. Let
x and M be the input to the ResidualSolver. As before, we let ∆∗ ∈ max∆: ∥A∆∥∞≤1/C resx(∆)

and OPT = resx(∆
∗) . As in Section 4, we let gi = −1

M

(
A⊤∇f(x)

)
i

and si = f ′′ ((Ax)i) for all
i.

We start with the following lemma.

Lemma C.7. Consider an iterate x and a guess M . Consider an algorithm that takes as input x
and M and it outputs a solution to the Problem 7. If OPT ∈ (M2 ,M ] and the algorithm satisfies
Invariant 1, then the algorithm outputs a solution ∆ such that for ∆̂ = ∆

11 ,we have ∥A∆̂∥∞ ≤ 1
C

and resx(∆̂) ≥ OPT
20 .

Proof. Let a = −g⊤∆∗. Note that ∆∗

a satisfies g⊤∆∗

a = −1. Since OPT ∈ (M2 ,M ], we have

a =
∇f (x)

⊤
(A∆∗)

M
≥ OPT

M
≥ 1

2
.
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Moreover since ∥A∆∗∥∞ ≤
1
C and from Lemma 4.3, we have〈

s,

(
A
∆∗

a

)2
〉

+
MC2

2

∥∥∥∥A∆∗

a

∥∥∥∥2
∞
≤ 4eM + 2M < 13M.

This means, our algorithm will output a solution ∆ that satisfies

∇f (x)
⊤
(A∆) = M

∥A∆∥∞ ≤
11

C〈
s, (A∆)

2
〉
≤ min

g⊤∆=−1

(〈
s, (A∆)

2
〉
+

MC2

2
∥A∆∥2∞

)
< 13M

Let ∆̂ = ∆
11 ,we have

∇f (x)
⊤
(
A∆̂

)
=

M

11∥∥∥A∆̂
∥∥∥
∞
≤ 1

C〈
s,
(
A∆̂

)2〉
<

13

121
M

which gives us

resx

(
∆̂
)
≥ M

11
− 1

e
· 13
121

M >
M

20
≥ OPT

20
.

Thus it only remains to show that ResidualSolver satisfies the aforementioned invariant. Notice that
the Problem 7 has a similar structure as an ℓ∞-regression problem solved in the previous section,
albeit with an additional quadratic term

〈
s, (A∆)2

〉
. Fortunately, the algorithm only needs to return

a constant factor approximation, instead of a 1 + ε approximation. This allows us to extend the
approach we used for Algorithm 2, and use a similar analysis.

In the remainder of this section, we show the following lemma, using similar ideas as in our analysis
of our ℓ∞ regression algorithm.
Lemma C.8. Algorithm 4 satisfies Invariant 1.

By combining Lemmas C.7 and C.8, we obtain Lemma 4.2.

We proceed with the proof Lemma C.8 by showing the following lemmas.
Lemma C.9. For all iterations t ≥ 1 of ResidualSolver, we have〈

s,
(
A∆(t)

)2〉
≤ min

g⊤∆=−1

〈
s, (A∆)

2
〉
+

MC2

2
∥A∆∥2∞ .

Proof. Let ∆∗ = argming⊤∆=−1

〈
s, (A∆)

2
〉
+ MC2

2 ∥A∆∥2∞. We have

2 (∥w∥1 + d)

〈
s,
(
A∆(t)

)2〉
≤
〈
MC2

2
r(t) + 2 (∥w∥1 + d) s,

(
A∆(t)

)〉
≤
〈
MC2

2
r(t) + 2 (∥w∥1 + d) s, (A∆∗)

〉
due to the optimality of x(t)

≤ 2 (∥w∥1 + d)

〈
MC2

2

r(t)∥∥r(t)∥∥
1

+ s, (A∆∗)
2

〉
since

∥∥∥r(t)∥∥∥
1
≤ 2 (∥w∥1 + d)
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which gives 〈
s,
(
A∆(t)

)2〉
≤

〈
MC2

2

r(t)∥∥r(t)∥∥
1

+ s, (A∆∗)
2

〉

≤
〈
s, (A∆∗)

2
〉
+

MC2

2
∥A∆∗∥2∞ ,

as needed.

Lemma C.10. ResidualSolver maintains the invariant that, for all t ≥ 0,

E
(
p(t+1)

)
− E

(
p(t)
)∥∥r(t+1)

∥∥
1
−
∥∥r(t)∥∥

1

≥ 26M.

Proof. When
∥∥A∆(t)

∥∥
∞ ≥ S = 11d

1
3

C , we have r
(t+1)
j =

{
r
(t)
j j ̸= i

r
(t)
j + 1 j = i

, for a coordinate i

such that
(
A∆(t)

)
i
=
∥∥A∆(t)

∥∥
∞. Let v = 1i be the indicator vector for coordinate i. We have

r(t+1) = r(t) + v and ∥v∥1 = 1. Using Lemma A.2 we have

E
(
p(t+1)

)
− E

(
p(t)
)∥∥r(t+1)

∥∥
1
−
∥∥r(t)∥∥

1

≥
MC2

2 · 12vi
(
A∆(t)

)2
i

vi
≥ MC2S2

4
= 26Md

2
3 ≥ 26M.

When
∥∥A∆(t)

∥∥
∞ < S, for each coordinate j such that r

(t+1)
j > r

(t)
j we have r

(t+1)
j =

1
52r

(t)
j

(
A∆(t)

)2
j
C2. Note that p(t)

p(t+1) ≥
r
(t)
j

r
(t+1)
j

. Hence,

(
A∆(t)

)2
j
p
(t)
j

(
1− p

(t)
j

p
(t+1)
j

)
r
(t+1)
j − r

(t)
j

=

(
A∆(t)

)2
j

p
(t)
j

p
(t+1)
j

(
p
(t+1)
j − p

(t)
j

)
r
(t+1)
j − r

(t)
j

≥
MC2

2

(
A∆(t)

)2
j

r
(t)
j

r
(t+1)
j

(
r
(t+1)
j − r

(t)
j

)
r
(t+1)
j − r

(t)
j

= 26M.

by Lemma A.1,

E
(
p(t+1)

)
− E

(
p(t)
)∥∥r(t+1)

∥∥
1
−
∥∥r(t)∥∥

1

≥

∑
j

(
A∆(t)

)2
j
p
(t)
j

(
1− p

(t)
j

p
(t+1)
j

)
∑

j

(
r
(t+1)
j − r

(t)
j

)

≥

∑
j:r

(t+1)
j >r

(t)
j

(
A∆(t)

)2
j
p
(t)
j

(
1− p

(t)
j

p
(t+1)
j

)
∑

j:r
(t+1)
j >r

(t)
j

(
r
(t+1)
j − r

(t)
j

)
≥ 26M.

Lemma C.11. If ResidualSolver returns a dual solution r(T ) then E
(
s+ MC2

2∥r(T )∥
1

r(T )

)
≥ 13M.

Proof. By Lemma C.10, we have that

T−1∑
i=0

E
(
p(t+1)

)
− E

(
p(t)
)
≥ 26M

T−1∑
i=0

∥∥∥r(t+1)
∥∥∥
1
−
∥∥∥r(t)∥∥∥

1
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leading to

E(p(T )) ≥ 26M
(∥∥∥r(T )

∥∥∥
1
−
∥∥∥r(0)∥∥∥

1

)
Since

∥∥r(T )
∥∥
1
≥ 2 (∥w∥1 + d)

E

(
s+

MC2

2
∥∥r(T )

∥∥
1

r(T )

)
≥ E

(
2 (∥w∥1 + d) s∥∥r(T )

∥∥
1

+
MC2

2
∥∥r(T )

∥∥
1

r(T )

)

≥ 26M

(
1−

∥∥r(0)∥∥
1∥∥r(T )
∥∥
1

)
≥ 13M,

as needed.

Lemma C.12. If ResidualSolver returns a primal solution ∆ then ∥A∆∥∞ ≤
11
C and〈

s, (A∆)
2
〉
≤ min

g⊤∆=−1

〈
s, (A∆)

2
〉
+

MC2

2
∥A∆∥2∞ .

Proof. If the algorithm returns ∆, we have ∥A∆∥∞ ≤
11
C , either by a solution in a single iteration,

or the average over iterations when
∥∥A∆(t)

∥∥
∞ ≤ S. In both case, by Lemma C.9, and convexity, we

have 〈
s, (A∆)

2
〉
≤ min

g⊤∆=−1

〈
s, (A∆)

2
〉
+

MC2

2
∥A∆∥2∞ .

C.2 Proof of Lemma C.6

In this section, we analyze the running time of the ResidualSolver (Algorithm 4). The running time
is dominated by the linear system solves, and thus we upper bound the number of calls to the linear
system solver.

We proceed similarly to the analysis of our ℓ∞ regression algorithm. Let Thi and Tlobe the iterations
when

∥∥A∆(t)
∥∥
∞ > S and

∥∥A∆(t)
∥∥
∞ ≤ S, respectively before the algorithm returns a primal

solution or a dual one. We also abuse the notations and denote by Thi and Tlo the numbers of such
iterations, respectively.
Lemma C.13. Thi ≤ O

(
d1/3

)
.

Proof. Again, for t such that
∥∥A∆(t)

∥∥
∞ > S, by Lemma A.2, we have

E
(
p(t+1)

)
− E

(
p(t)
)∥∥r(t+1)

∥∥
1
−
∥∥r(t)∥∥

1

≥ 26Md
2
3 .

Since
∥∥r(t+1)

∥∥
1
−
∥∥r(t)∥∥

1
= 1, we get

E
(
p(t+1)

)
− E

(
p(t)
)
≥ 26Md

2
3

Therefore

E
(
2 (∥w∥1 + d) s+

MC2

2
r(T )

)
≥ 26Md

2
3Thi

Notice that
∥∥r(T )

∥∥
1
≤ 2 (∥w∥1 + d) ≤ 6d and E

(
s+ MC2

2
r(T )

∥r(T )∥
1

)
≤ 13M

∥∥r(T )
∥∥
1

E
(
2 (∥w∥1 + d) s+

MC2

2
r(T )

)
= 2 (∥w∥1 + d) E

(
s+

MC2

2

r(T )

2 (∥w∥1 + d)

)
≤ 6dE

(
s+

MC2

2

r(T )∥∥r(T )
∥∥
1

)
≤ 78dM.
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We obtain Thi ≤ 3d1/3.

Lemma C.14. Tlo ≤ O
(
d

1
3 log (n)

)
.

Proof. Let α(t)
j =

r
(t+1)
j

r
(t)
j

. We have ∥∥∥∥∥A
∑

t∈Tlo
∆(t)

Tlo

∥∥∥∥∥
∞

≥ 11

C

We obtain that there exists a coordinate i such that∑
t∈Tlo

(
A∆(t)

)
i
C ≥ 11Tlo

We have if
(
A∆(t)

)2
i
C2 < 100,

(
A∆(t)

)
i
C < 10, and if

(
A∆(t)

)2
i
C2 ≥ 100,

(
A∆(t)

)2
i
C2 =

52α
(t)
i . Hence, (

A∆(t)
)
i
C ≤ 10 + 1

α
(t)
i >1

√
52α

(t)
i

We obtain ∑
t∈Tlo,α

(t)
i >1

√
α
(t)
i ≥

Tlo√
52

For t such that α(t)
i > 1, we have√

α
(t)
i =

1√
52

(
A∆(t)

)
i
C ∈

[
10√
52

,
11d

1
3

√
52

]
Similarly to Lemma B.4, we obtain

Tlo ≤ O
(
d

1
3 log (n)

)
.

Lemma C.6 now follows from the above lemmas.

D QSC Algorithm for the Underdetermined Case

In the underdetermined case n ≤ d, instead of using Lewis weights in the residual solver, we can
simply return to the algorithm by [EV19] and use a uniform initialization of the resistances. We
provide the algorithm in Algorithm 5. The analysis follows similarly (which we omit). The number
of linear system solves is O(n1/3 log n).

E Approximating the Lewis Weights

Here we review the fixed point iteration by [CCLY19] for computing approximate ℓ∞ Lewis weights.
While the algorithm is known to provide only a one-sided approximation, this guarantee suffices for
our application.
Theorem E.1. On input A ∈ Rn×d, the algorithm ApproxLewis(A) returns w.h.p. ℓ∞ Lewis weights
overestimates w ∈ Rn in the sense that

wi ≥ 1⊤i W
1/2A

(
A⊤WA

)−1
A⊤W 1/21i ,

d ≤ ∥w∥1 ≤ 2d ,

in time O (log n · TA), where TA is the time to solve a linear system involving a matrix A⊤DA, where
D is a positive diagonal.
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Algorithm 5 ResidualSolver(x,M) for n ≤ d

1: Initialize: r(0) = 1
2: gi =

−1
M (A⊤∇f(x))i, si = f ′′((Ax)i), t = 0, t′ = 0, v(t

′) = 0

3: while ∥r(t)∥1 ≤ 2n

4: Let p(t) = 2ns+ MC2

2 r(t); ∆(t) = argmin∆:g⊤∆=−1

〈
p(t), (A∆)2

〉
5: if

〈
s+ MC2

2
r(t)

∥r(t)∥
1

, (A∆(t))2
〉
≥ 13M then return r(t)

6: if ∥A∆(t)∥∞ ≤ 11
C then return ∆(t)

7: if ∥A∆(t)∥∞ ≤ S = 11n
1
3

C :
8: Let t′ = t′ + 1; v(t

′) = v(t
′−1) +∆(t)

9: if ∥Av(t
′)∥∞/t′ ≤ 11

C then return v(t
′)/t′

10: r
(t+1)
j =

{
1
52r

(t)
j (A∆(t))2jC

2 if (A∆(t))2j ≥ 100
C2

r
(t)
j otherwise

11: t = t+ 1
12: return r(t)

Algorithm 6 Approximate ℓ∞ Lewis weights ApproxLewis(A)

1: Input:A symmetric polytope given by −1n ≤ Ax ≤ 1n, where A ∈ Rn×d

2: Output: Approximate ℓ∞ Lewis weights w such that wtrue ≤ w and
∑

w ≤ d

3: Initialize: w(1)
i = d

n , for i = 1, . . . , n. T = 10 log n.
4: for k = 1, . . . , T − 1
5: W (k) = diag

(
w(k)

)
.

6: B(k) =
√
W (k)A.

7: Let S(k) ∈ Rs×n be a random matrix where each entry is chosen i.i.d. from N (0, 1), i.e.
the standard normal distribution.

8: for i = 1, . . . , n

9: w
(k+1)
i = 1

s

∥∥∥∥S(k)B(k)
(
B(k)⊤B(k)

)−1
(√

w
(k)
i ai

)∥∥∥∥2
2

.

10: wi =
1
T

∑T
k=1 w

(k)
i for i = 1, . . . ,m.

F Handling Affine Constraints

In this section we show that the problem we solve is in full generality, in the sense that even in
the presence of affine constraints we can still minimize objectives of the type 5 without significant
overheads. Formally, given an objective of the form

min
Nx=v

n∑
i=1

f ((Ax− b)i)

where A ∈ Rn×d, and N ∈ Rm×d, with m < d, we can minimize it to high precision using the
algorithms from Section 4 with minimal changes. Indeed, we can observe that, assuming the existence
of an appropriate residual solver, Algorithm 3 is completely unaffected by this subspace constraint.
Hence the only difficulty is posed by solving the residual problem described in Algorithm 4 while
additionally enforcing the subspace constraint. Recall that this problem, in its most general form,
takes as input a matrix A, as well as weight vectors s, u, and seeks an approximate minimizer for

min
x:⟨u,Ax⟩=−1

Nx=0

〈
s, (Ax)

2
〉
.

To handle the affine constraint Nx = 0, we can convert this objective into an unconstrained problem
via a change of variable. Indeed, let x0 be a point satisfying Nx0 = v. Then any x in the affine space
can be expressed as

x = x0 +By ,
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where B ∈ Rd×dimker(C) and im (B) = ker (N). In other words, the columns of B form a basis for
the null space of N . Thus our problem is equivalent to

min
y:⟨u,ABy⟩=−1

〈
s, (ABy)

2
〉
,

and takes exactly the form required for the ℓ∞ regression routine from Algorithm 4, which leaves
us with an optimization problem over a lower dimensional space y ∈ Rdimker(N). Unfortunately,
constructing the matrix B explicitly may be costly, so we want to avoid doing so. Instead, we claim
that the regression algorithm can be directly executed using solvers for matrices of the type A⊤DA

and N
(
A⊤DA

)+
N⊤ , where D is a positive diagonal.

The key difficulty lies in computing the least squares step

x(t) = By(t) , (11)

y(t) = arg min
y:⟨u,ABy⟩=−1

〈
p(t), (ABy)

2
〉
. (12)

without explicitly accessing B.
Lemma F.1. The solution for the least squares problem defined in (11) (12) can be explicitly computed
as

x(t) = − 1

u⊤A∆
·∆,

∆ =
(
A⊤PA

)+(−N⊤
(
N
(
A⊤PA

)+
N⊤

)+
N
(
A⊤PA

)+
A⊤u+A⊤u

)
,

where P = diag
(
p(t)
)

Proof. We notice that the solution to this least squares problem has solution

y(t) = − 1

u⊤AB (B⊤A⊤PAB)
+
B⊤A⊤u

·
(
B⊤A⊤PAB

)+
B⊤A⊤u ,

and equivalently y(t) satisfies y(t) = − 1
u⊤ABz

· z, where

B⊤A⊤PABz = B⊤A⊤u .

Therefore there exists some w = N⊤r such that:

A⊤PA ·Bz −A⊤u = w ∈ ker
(
B⊤) = im (B)

⊥
= ker (N)

⊥
= im

(
N⊤) ,

and thus we can write
Bz =

(
A⊤PA

)+ (
w +A⊤u

)
,

wich implies that
N
(
A⊤PA

)+ (
w +A⊤u

)
= 0 ,

and hence
N
(
A⊤PA

)+ (
N⊤r +A⊤u

)
= 0 .

This allows us to explicitly express

r = −
(
N
(
A⊤PA

)+
N⊤

)+
N
(
A⊤PA

)+
A⊤u ,

w = −N⊤
(
N
(
A⊤PA

)+
N⊤

)+
N
(
A⊤PA

)+
A⊤u ,

which finally yields

Bz =
(
A⊤PA

)+(−N⊤
(
N
(
A⊤PA

)+
N⊤

)+
N
(
A⊤PA

)+
A⊤u+A⊤u

)
and

x(t) = By(t) = y(t) = − 1

u⊤ABz
· z .

Therefore the entire algorithm can be carried out as in the unconstrained case.
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F.1 Lewis Weights in the Affine-constrained Setting

In addition to being able to properly execute the least squared steps in Algorithm 4, one also requires
a proper initialization of weights. While in general, there is no direct notion of Lewis weights in
the case where affine subspace constraints are included, we can apply the same reparametrization
idea. After reparametrizing the null space of N in terms of the image of a matrix B, we obtain an
unconstrained problem involving the matrix AB, which is the matrix for which we need to compute
the ℓ∞ Lewis weight overestimates we use at initialization. Again, we argue this can be done
without explicit access to B. Note that the fixed point iteration algorithm of [CCLY19] only requires
computing leverage scores of the underlying matrix 1⊤i AB

(
B⊤A⊤PAB

)+
B⊤A⊤1i. Since, for

increased efficiency, the algorithm also uses Johnson-Lindenstrauss sketching, we further require
being able to evaluate bilinear forms of the type

w⊤AB
(
B⊤A⊤PAB

)+
B⊤A⊤u ,

where P is a positive diagonal. As we saw before, we can evaluate

B
(
B⊤A⊤PAB

)+
B⊤A⊤u

=
(
A⊤PA

)+(−N⊤
(
N
(
A⊤PA

)+
N⊤

)+
N
(
A⊤PA

)+
A⊤u+A⊤u

)
,

which yields the expression for the required bilinear form, so it can be directly applied inside the
Lewis weights estimation algorithm.
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paper’s contributions and scope?
Answer: [Yes]
Justification: The introduction includes main results, which we provide proofs and support-
ing empirical evaluation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [No]
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Assumptions are stated along with the theorems. Proofs are provided in the
appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the code and necessary information for reproduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details are included in the paper.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars are included.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Machine specifications are listed.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper is mainly theoretical and does not have any potential harms to the
society.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The paper is mainly theoretical and does not have any potential harms to the
society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: The paper does not use pretrained language models and only uses synthetic
and publicly available data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All data and code used in this paper are cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release the code and data generation procedure described in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The experiments in this paper do not concern human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The experiments in this paper do not concern human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We did not use LLM at anytime in the development of this paper.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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