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Abstract

Large language models (LLMs) have demon-
strated remarkable success in Natural Lan-
guage Processing (NLP), primarily due to their
emergent abilities derived from extensive pre-
training. These pre-trained LLMs can han-
dle numerous tasks without additional super-
vised fine-tuning, facilitating their transfer to
various problems. However, when applied to
the "language of life"—proteins, LLMs of-
ten fall short in capturing the complex rela-
tionships between amino acid sequences and
their functions, resulting in suboptimal per-
formance in related tasks. To address this
issue, this study introduces ProteinRAP, a
novel method leveraging Retrieval-Augmented
Prompts (RAPs) to enhance LLM performance
on protein tasks without extensive retrain-
ing. ProteinRAP comprises Protein-Text CLIP,
which utilizes contrastive learning for cross-
modal retrieval, and an optimized prompt learn-
ing strategy. Through RAP construction, LLMs
exhibit significant improvements in protein un-
derstanding. Evaluations on both general and
protein-specific LLMs in protein understand-
ing tasks highlight existing methods’ limita-
tions. ProteinRAP markedly boosts perfor-
mance, achieving up to 87.7% improvement
over general LLMs and matching state-of-the-
art results without additional training.

1 Introduction

In recent years, pre-trained large language mod-
els such as GPT4 (Achiam et al., 2023), Llama3
(Dubey et al., 2024), Qwen (Bai et al., 2023), and
Deepseek (Liu et al., 2024a) have emerged as a
new paradigm in the field of natural language pro-
cessing (NLP). (Zhang et al., 2023; Chang et al.,
2024) This shift is largely due to their remarkable
performance on few-shot and zero-shot tasks (Wei
et al., 2022; Kojima et al., 2022). The underlying
mechanism enabling this capability is the models’
ability to perform in-context learning from specific

a) Protein Query-Answering without RAPs

It is plausible that the s
protein...(Wrong Answer). Overall, =

For the given protein:
Estimate its function
and the biological process.

without comparison to known databases,
the prediction remains broad.

b) Protein Query-Answering with RAPs

& =

Query Protein-Text
Protein Retriever

Reference
Description

the L,

. N protein sequence functions as @
GTP binding, GTP cyclohydrolase

! II activity ... (Right Answer).

c) Performance (%) on Downstream Tasks

Few-Shot Protein Finetuned
Q-A Tasks Caption Q-A Tasks
61.4 75.5 70.2
- 61.0 . 64.9
32.7 -
||
GPT-4 Ours. Llama3 Ours. BioT5+ Ours.

Figure 1: (a) General LLMs face challenges in pro-
tein understanding tasks. (b) Retrieval mechanisms en-
able LLMs to produce accurate answers. (c) Retrieval-
augmented approaches achieve significant performance
improvements across diverse tasks.

prompts. (Brown et al., 2020) By providing pre-
defined instructions and question formats as input,
these models can infer and provide answers to tasks
with zero or few samples without the need for pa-
rameter updates.

In the biological domain, and particularly in pro-
tein science, pre-trained LLMs have shown subop-
timal performance in few-shot and zero-shot tasks
(Tan et al., 2024). While proteins can be repre-
sented as sequences of amino acids, LLMs strug-
gle to capture the relationship between these se-
quences and their biological functions due to the
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Figure 2: A comparison of retrieval-augmented methods and traditional approaches. Traditional methods re-train
LLMs on protein sequences, whereas retrieval-augmented approaches leverage contrastive learning to train a
retriever. By injecting retrieved knowledge into prompts, the retrieval-augmented method boosts LLM performance

on protein-related tasks.

structural differences between protein sequences
and natural language. To address this issue, vari-
ous protein-specific models have been developed,
such as ESM (Hayes et al., 2025), Galactica (Tay-
lor et al., 2022), ProtTrans (Elnaggar et al., 2021),
ProteinBERT (Brandes et al., 2022), and ProGen2
(Nijkamp et al., 2023), which integrate protein se-
quences in their pre-training datasets. Though these
models excel in protein property prediction and
design, they fail to process natural language in-
structions effectively. Alternative approaches in-
volve continued pre-training and supervised fine-
tuning using protein databases (Fang et al., 2024),
or employ protein encoders and cross-modal pro-
jectors for alignment (Liu et al., 2024c; Wang et al.,
2024; Liu et al., 2024b). Despite mitigating some
issues, these methods require significant compu-
tational resources as LLM parameters grow, and
suffer from challenges such as catastrophic forget-
ting (Wu et al., 2024b; Luo et al., 2023), where the
model’s original domain performance declines, and
adaptability issues requiring parameter updates per
task (Zhao et al., 2024).

Leveraging evolutionary insights that homolo-
gous proteins tend to perform similar functions
(Hilbert et al., 1993), we propose a retrieval-
enhanced prompt technique to enhance LLM per-
formance on protein-related tasks. Our approach
uses contrastive learning to develop a protein-text
multi-modal retriever, called Protein-Text CLIP.
This model retrieves similar samples from pro-
tein databases to construct Retrieval-Augmented
Prompts (RAPs). Our experiments demonstrate

that RAPs significantly improve LLM performance
across various scales.

In an evolutionary context, similar proteins are
often homologous and frequently perform simi-
lar functions in the life sciences (Hilbert et al.,
1993). This insight prompts the use of alignment
and retrieval approaches to accomplish protein un-
derstanding tasks. Compared to traditional retrieval
augmentation methods, protein retrieval augmen-
tation involves two distinctly different modalities:
protein FASTA sequences and textual annotations.
Existing methods predominantly rely on sequence
alignment or retrieval techniques for protein at-
tribute prediction (Ma et al., 2023), rather than
addressing open-ended questions such as protein
instruction-based querying (Fang et al., 2024).

Based on all the above, in this study, we in-
troduce ProteinRAP, a method using retrieval-
enhanced prompts to enhance LLM capabilities in
protein understanding tasks. Firstly, we develop the
Protein-Text CLIP model, leveraging contrastive
learning for cross-modal retrieval. For different
downstream tasks, this model retrieves similar
samples from the corresponding protein database
and then constructs retrieval augmented prompts
(RAPs). RAPs are then used in LLMs through in-
context learning, integrating retrieved annotations
with the query sequence to enhance task perfor-
mance. Downstream experiments showed that this
approach significantly improves LLMs’ prediction
accuracy across various protein tasks without re-
quiring further model training. The contributions
of this work can be summarized as follows:



1. We conduct a comprehensive evaluation of
general LLMs and mixed protein-text LLMs on
protein captioning and understanding tasks. Our
analysis highlights the significant disadvantage of
existing methods, particularly in the protein-text
generation domain, underscoring the need for more
targeted approaches.

2. We propose a novel paradigm named Pro-
teinRAP, which includes the development of an
efficient protein-text retriever. This method is the
first to employ retrieval-augmented techniques for
open-ended answer generation in protein-related
tasks. Furthermore, we design specialized prompts
tailored for protein tasks and conduct exhaus-
tive evaluations and ablation studies on the re-
trieval method. This advances the development
of retrieval-enhanced approaches in the protein do-
main substantially.

3. Our findings demonstrate remarkable im-
provements in various tasks, achieving an 87.7%
improvement on general-purpose LLMs and a
23.7% increase in the protein caption over the pre-
vious state-of-the-art (SOTA) method, and the pro-
tein understanding task sees an 8.1% improvement.
Notably, the RAP-based methodology achieves re-
sults comparable to SOTA models in a training-free
manner, highlighting its efficacy and practical ap-
plicability.

2 Related Works

This section provides an overview of research ef-
forts in three interconnected domains: protein lan-
guage modeling, protein-text cross-modal learning,
and prompt engineering techniques.

2.1 Protein Language Models (PLMs)

Protein language models (PLMs) leverage the suc-
cess of Transformers in NLP to represent protein se-
quences as biological languages. Encoder-Based
Models (Hayes et al., 2025; Brandes et al., 2022;
Elnaggar et al., 2021; Cao and Shen, 2021) ex-
traction of protein sequence and structural features
using bidirectional attention, Decoder-Based Mod-
els (Madani et al., 2023; Nijkamp et al., 2023; Lv
et al., 2024; Ferruz et al., 2022) focus on protein
sequence generation. Encoder-Decoder Models
(Chen et al., 2024; Elnaggar et al., 2021) broadened
the scope with large-scale pre-training. These mod-
els have achieved excellent performance in protein
attribute prediction and protein design. However,
PLMs cannot integrate textual information, which

is critical for downstream tasks involving cross-
modal reasoning.

2.2 Mixed Protein-Text Language Models

To overcome the limitation of separate protein
and textual modeling, researchers have developed
mixed protein-text models that aim to bridge bio-
logical and linguistic domains, which can be mainly
divided into three categories: Contrastive Learn-
ing Based Methods (Xu et al., 2023; Liu et al.,
2023, 2024c; Wu et al., 2024a) employs contrastive
learning to align protein sequence with their textual
annotations, Text-Augmented Pre-training Meth-
ods (Ferruz et al., 2022; Taylor et al., 2022; Lv
et al., 2024; Pei et al., 2023; Zhuo et al., 2024; Liu
et al., 2024b) expand the pre-training corpora to in-
clude protein sequences, and Multi-Modal Fusion
Methods (Liu et al., 2024c; Abdine et al., 2024;
Wang et al., 2024) adopt protein encoders to ex-
tract sequence embeddings, and then align them to
LLMs through projector layers. However, as LLMs
increase in parameter size, retraining demands sig-
nificant time and computational resources, while
fine-tuning can result in catastrophic forgetting.

2.3 Protein Related Retrieval-Based Methods

In the field of protein understanding, retrieval and
comparison-based methods are extensively utilized.
Multi-Sequence Alignment Models (Rao et al.,
2021; Jumper et al., 2021; Li et al., 2024) lever-
age multi-sequence alignment techniques to en-
hance deep learning model performance in protein
attribute and structure prediction. An alternative
approach, Single-Sequence Alignment Method
(Ma et al., 2023), offers improvements in model
performance while increasing speed by modifying
the alignment process from multiple to single se-
quences. Additionally, Retrieval-Enhanced Pre-
diction Models (Shaw et al., 2024) utilize retrieval-
enhanced techniques specifically for protein at-
tribute prediction tasks, and ProlLM (Jin et al.,
2024) applies thought chain retrieval to enhance the
efficacy of protein interaction predictions. Despite
their advancements, these methods predominantly
concentrate on attribute prediction tasks and do not
adequately address more complex challenges such
as protein annotation.

3 Methodology

The overall pipeline of our methods is shown in Fig.
4. To leverage the gap between protein sequences
and bio-textual description, a CLIP-like model is
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Figure 3: Overview of the Protein-Text CLIP training and retrieval-augmented prompting framework. (a) Protein-
Text CLIP is trained using protein sequences and textual descriptions from the Swiss-Prot dataset, aligning protein
embeddings with text embeddings in a shared space. (b) Given a user query with a protein sequence, top-K similar
entities are retrieved using Protein-Text CLIP. A knowledge-augmented prompt is created and processed by advanced
language models (e.g., Llama 3, GPT-4) to generate detailed biological insights.

trained to perform a bidirectional search between
protein and text. For downstream tasks, we first use
this model to retrieve the most similar sequences
and their description in the training dataset, con-
structing RAP with retrieval results. Pre-trained
LLMs can use RAP to predict the final answer.

3.1 Protein-Text CLIP

The Contrastive Language-Image Pre-Training
(CLIP) model (Radford et al., 2021) has achieved
remarkable success in cross-modal retrieval within
the visual domain. The original CLIP architecture
employs separate image and text encoders, trained
with contrastive learning on (image, text descrip-
tion) pairs. Specifically, for each training batch
containing k pairs { P;, T;}, the image encoder ex-
tracts features Flf from all P;, and the text encoder
extracts features Fy from all T;. The optimization
objective is to maximize the similarity between
matching pairs (F;; and F}) while minimizing the
similarity between non-matching pairs (sz and Ft]
for i # j).

Building on this framework, we introduce the

Protein-Text CLIP model, which adapts the CLIP
paradigm to the protein-text domain. To leverage
existing pre-trained models and reduce computa-
tional overhead, we utilize ESM-C (ESM Team,
2024) as the protein encoder and BioGPT (Luo
et al., 2022) as the text encoder. A multi-layer
perceptron (MLP) is employed to project the em-
beddings from ESM-C and BioGPT into a shared
feature space of identical dimensionality, facilitat-
ing effective similarity computation. The overall
architecture of Protein-Text CLIP is illustrated in
Figure 4 (b). Unlike to existing work ProteinCLIP
(Wu et al., 2024a), we utilize the different pro-
tein encoder and text encoder, and train the whole
model instead of only the projector part.

3.1.1 Architecture and Training

Protein-Text CLIP adopts a dual-encoder architec-
ture inspired by the original CLIP model, tailored
for protein and text modalities. The protein encoder
ESM-C 600M and the text encoder BioGPT gen-
erate feature vectors of 1152 and 768 dimensions,
respectively. Both encoders are linked to MLP pro-



jection heads that map their outputs into a unified
512-dimensional embedding space for cross-modal
similarity computation. The model is trained on
a combined dataset from Swiss-Prot (Bairoch and
Apweiler, 2000) and ProteinKG25 (Zhang et al.,
2022). Detailed information about the dataset can
be seen in Section 4.1.

3.1.2 Loss Function

To align the protein and text embeddings, we adopt
a symmetric contrastive loss function inspired by
the original CLIP model. This involves computing
cross-entropy losses in both protein-to-text and text-
to-protein directions and averaging them. The loss
function is defined as Equation 1, 2 and 3.

1 & < exp (Sim(Fi Fti)/T) )
Lo = — log B i @
p2t 2% ; Zkzl exp (Slm(Fply th)/T)
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In Equation 1,2, 7 represents a learnable temper-
ature parameter, and sim denotes the cosine sim-
ilarity between the projected embeddings. This
symmetric loss ensures that both protein-to-text
and text-to-protein alignments are optimized, en-
hancing the robustness of the cross-modal repre-
sentations.

3.2 Retrieval-Augmented Prompt
Construction

The ProteinRAP framework constructs task-
specific prompts through a hybrid representation
learning and retrieval process, as illustrated in Fig-
ure 4 (¢). For each training sample x; € Diin
containing protein sequence F; and associated text
description T;, we compute dual-modality embed-
dings using Protein-Text CLIP:

F, = CLIPpoccin(P;) € R?
F! = CLIP(T}) € R?

The mixed embedding M; is computed through
modality fusion:

“4)

M; = oF}, + (1 — a)F; (5)

where a € [0, 1] controls the sequence-text bal-
ance. These mixed embeddings are indexed us-
ing Faiss (Johnson et al., 2019) with exact inner-
product search (IndexFlatIP), which guarantees pre-
cise retrieval for moderate-scale biological datasets.

The knowledge database B = {(M;, ;) }¥, maps
embeddings to original samples.

Retrieval operates through cosine similarity com-
puted as normalized inner products:

_ M- My
IV M

During training, for each x; we retrieve its k-
nearest neighbors from B using cosine similarity:

Ni(z;) = top-k

M, eB\{M;}

51m(Ml, M]) (7)

Test samples 2’ € Dy retrieve neighbors from
B using the same similarity metric. The final
prompt P(z) for input = combines the original
sample with retrieved instances:

P(x) = [z; Ni(z)] (®)

where [; -] denotes context concatenation. Im-
plementation details and prompt templates are pro-
vided in Supplementary A.

3.3 Instruction Tuning and RAP In-Context
Learning

Instruction tuning with constructed prompts en-
ables LLMs to effectively utilize Retrieval-
Augmented Prompts (RAPs) for summarizing and
extracting answers from retrieval results, which
is simpler than learning implicit protein features
directly from sequences. To enhance few-shot pre-
diction capabilities using models exceeding 70 bil-
lion parameters, RAPs leverage strong in-context
learning abilities. In ProteinRAP, relevant textual
descriptions are retrieved for a given protein se-
quence query Q. Let R(Q) = {T1,T5,...,T,} be
these descriptions. The prompt P(Q) is:

P(Q) = "[Retrievals]: " T1 T5 ... Ty, "[Query]: "Q (9)

This structure integrates retrievals into the
prompt, enriching the model with relevant con-
text and enhancing prediction accuracy. In-context
learning, whereby models use embedded examples
within the prompt, aids in guiding the responses.
The LLM processes P(Q), which includes both the
query and retrievals, to produce the prediction g:

g =LLM(P(Q)) (10)

Here, g is the output prediction, benefiting from
query-driven augmentation during prompt construc-
tion.



4 Experiment

In this section, we evaluate the performance of
Protein-Text CLIP on protein-text retrieval tasks.
Moreover, on two open-ended answer generation
tasks, Protein Caption and Protein Understand-
ing, we trained and tested the performance of ex-
isting LLMs, and demonstrated the performance
of retrieval-based methods under instruction fine-
tuning and context learning

4.1 Protein-Text Dataset

In this section, we introduce the datasets used in
protein retrieval, protein caption, and protein under-
standing tasks, including Swiss-Prot, ProteinKG?25,
and Mol-Instruction. Statistical information on
these datasets is provided in Appendix C.

Swiss-Prot (Bairoch and Apweiler, 2000) The
Swiss-Prot database is a high-quality, manually cu-
rated protein database that provides comprehensive
annotations for proteins, including functional de-
scriptions, catalytic activities, biological processes,
and subcellular localization. In this study, we
adopted the annotation processing methodology
from ProtT3 (Liu et al., 2024c), focusing on three
key attributes: FUNCTION, SUBCELLULAR
LOCATION, and SIMILARITY. These curated
attributes were extracted to form (protein, text)
pairs for model training.

ProteinKG25 (Zhang et al., 2022) The Pro-
teinKG25 dataset is a comprehensive knowledge
graph derived from the Gene Ontology database.
This dataset encodes protein-related information
in the form of triples, representing relationships
between proteins and their associated attributes or
terms. Utilizing the annotation processing method-
ology from ProtT3 (Liu et al., 2024c), we aggre-
gated all triples corresponding to the same protein
and transformed them into free-text descriptions
using predefined text templates.

Mol-Instruction (Fang et al., 2024) The Mol-
Instruction dataset is a specialized instructional
dataset designed to address the limitations of LLMs
in the biomolecular domain. It comprises three
key components: molecule-oriented instructions,
protein-oriented instructions, and biomolecular text
instructions. In this study, we utilize the protein-
oriented subset, mainly focus on four tasks, protein
function, general function, domain motif and
catalytic activity.

4.2 Protein-Text Bi-directional Retrieval

We extract the (text, protein) data from the Pro-
teinKG25 and Swiss-Prot datasets to train the
Protein-Text CLIP model. In order to compare
with existing methods, we tested the retrieval per-
formance in batch and in the whole test dataset on
ProteinKG25. Following (Liu et al., 2024c), we
use the accuracy and Recall@20 as evaluation met-
rics. Besides, we employ ProtST (Xu et al., 2023),
ProteinCLAP (Liu et al., 2023) and ProtT3 stage 1
(Liu et al., 2024c¢) as baselines.

Results Table 3 shows our results: we observed
that in the whole test set, our method improved
by about 21% in accuracy and 5.7% in recall @20
compared with the previous best method, demon-
strating the superiority of our model in cross-modal
retrieval.

4.3 Protein Captioning

The protein caption task involves generating de-
scriptive textual annotations for given protein se-
quences, thereby enhancing the understanding and
analysis of protein functions and characteristics.
We utilize the Swiss-Prot dataset (Bairoch and
Apweiler, 2000) to create (protein sequence, text
description) pairs for both training and evalua-
tion. Following (Liu et al., 2024c), BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), METEOR
(Banerjee and Lavie, 2005) and Exact Matching are
used as metrics. Details of these evaluation met-
rics can be found in Appendix D. In this task, we
have trained the most advanced LLMs by full pa-
rameter tuning and LoRA tuning as baselines, also
compared them with the existing methods. Specifi-
cally, we perform full parameter tuning on Galac-
tica (Taylor et al., 2022), BioGPT (Luo et al., 2022),
Llama3.3-1B, Llama3.2-3B (Dubey et al., 2024),
utilize LoRA fine-tuning on Llama3.1-8B (Dubey
et al., 2024) and ProLLaMA-7B (Lv et al., 2024),
compare with ProtT3 (Liu et al., 2024c).

For our approach, we evaluate the results of
the fine-tuning model ProteinRAP-1B and the gen-
eral large-scale model (GPT-40) (Achiam et al.,
2023) with RAP. ProteinRAP-1B uses Llama-3.2-
1B-Instruct (Dubey et al., 2024) as the base model,
trained in one epoch on the RAP format training
dataset and evaluated with the same format. GPT-
40 with RAP is a training-free method that per-
forms in-context learning directly from retrieval
prompts to predict the target answer.



Model Exact. BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR | Average.
Galactica-1.3B | 112 23.6 20.5 404 39.5 292 37.7 28.8
BioGPT-347M 0.0 9.4 72 28.18 275 133 26.5 16.0
ProLLaMA-7B* | 0.0 45 34 12.8 62 117 214 8.5
Llama3.3-1B 20 603 57.9 54.7 442 53.1 61.8 50.5
Llama3.2-3B 340 689 67.1 65.0 58.5 63.7 69.8 61.0
Llama3.1-8B* 8.7 20.9 17.8 39.0 37.7 25.9 35.9 26.5
ProtT3-1.3B 257 550 514 63.6 56.5 62.1 63.6 539
GPT-4ow/RAP | 382 719 70.4 83.5 80.1 82.6 81.8 | 72.6 (19% 1)
ProteinRAP-1B* | 465  81.4 80.5 80.8 77.1 79.9 819 | 75.5(23% 1)

Table 1: Performance (%) comparison of Swiss-Prot (Bairoch and Apweiler, 2000) protein caption tasks. "*" stands
for LoRA finetuning. Bold indicates the best performance, underline indicates the second-best performance. (x% 1)
represents the performance improvement over existing methods.

M ‘ Protein Function General Function = Domain Motif  Catalytic Activity ‘
odel Average.

‘ R-L METEOR R-L METEOR R-L METEOR R-L METEOR ‘
Galactica-1.3B 7.1 8.6 48.2 46.2 553 57.3 30.2 314 35.53
BioGPT-347M 50.9 51.8 49.7 45.1 55.4 57.1 54.2 50.5 51.83
ProLLaMA-7B* | 48.6 53.2 20.3 35.0 46.7 57.0 39.3 50.6 43.83
Llama-3.2-1B* 46.5 47.1 45.1 39.9 499 539 52.6 514 48.30
Llama-3.1-8B* 52.1 54.4 54.2 50.4 51.2 56.7 59.6 61.1 54.96
BioT5-Plus-252M | 56.6 62.2 68.0 67.7 53.4 62.0 71.8 77.6 64.91
GPT-40 w/ RAP 58.8 65.5 74.8 73.0 44.0 433 72.4 76.6 63.55 2% )
ProteinRAP-1B* | 62.0 69.6 76.1 76.6 54.0 62.2 75.7 83.6 69.97 (7.1% 1)
ProteinRAP-8B* | 62.8 70.4 76.8 77.2 53.4 61.0 76.1 84.0 70.21 (8.1% 1)

Table 2: Performance (%) comparison of different models across four protein understanding tasks. "R-L" stands for
ROUGE-L metric, "*" stands for LoRA finetuning. Bold indicates the best performance, underline indicates the
second-best performance. (2% 1) represents the performance improvement over existing methods.

Model Batched (64) Test Set (10k)
Acc R@20 Acc R@20
ProtST 70.8  98.5 5.5 41.6
ProteinCLAP 93.2 992 534 912
ProtT3 923 989 558 91.7
Our Method 92.1 995 67.6 97.0

Table 3: Protein-to-text retrieval performance (%) (Acc,
R@20) on the ProteinKG25(Zhang et al., 2022) dataset.

Results Table 1 presents the results. We observed
that (1) The models using protein data in the pre-
training stage (Galactica, BioGPT, ProLLaMA)
performed worse than the Llama series models,
which may be due to their lack of text process-
ing ability. (2) LLMs with full parameter fine-
tuning outperform the LoRA model, pointing out
that learning from protein sequences needs more
trainable parameters. (3) Using RAP can signifi-
cantly enhance the effect of LLM on this task. Our
method achieves 23 % and 19 % improvement of
existing methods in instruction fine-tuning and in-
context learning respectively.

4.4 Protein Understanding

The Protein Understanding task is designed to eval-
uate the ability of models to accurately follow in-
structions related to protein-specific queries, which
consists of three components: [instructions], [in-
put], and [output]. Unlike the Protein Caption task,
the Protein Understanding task is more challenging,
requiring LLMs to simultaneously handle both the
protein sequences and the instructions to generate
final answers. Mol-Instruction dataset mentioned
in Section 4.1 is used, employing ROUGE-L (Lin,
2004) and METEOR (Banerjee and Lavie, 2005)
as evaluation metrics for each task, using the av-
erage scores across all tasks to assess the models’
capabilities.

Similar to the Protein Caption in Section 4.3, we
trained and evaluated the performance of various
LLMs, with baselines including LLama3 (Dubey
et al., 2024), ProLLaMA (Lv et al., 2024), Galac-
tica (Taylor et al., 2022), and BioT5 plus (Pei et al.,
2024). For our method, we tested the fine-tuning
performance of RAPs on the 1B and 8B LLama



models and explored the effects of using prompts
for in-context reasoning with GPT-4o.

Result The experimental results, as shown in Ta-
ble 2, allow us to draw the following conclusions:
(1) In the protein understanding task, LLMs pre-
trained with protein data exhibit performance com-
parable to the Llama3 models, indicating that these
models have strong capabilities in processing pro-
tein sequences and text simultaneously. (2) For the
Llama3 models, increasing the model scale leads
to better performance in the protein understanding
task, regardless of whether RAPs are used. (3)
Methods based on in-context learning can achieve
performance similar to previous best models with-
out additional training, while the instruction fine-
tuning model achieves an average improvement of
8.1%.

5 Ablation Study

In this part, we analyzed the ablation of the
Protein-Text CLIP module and retrieval enhance-
ment prompt. Specifically, we studied the follow-
ing tasks from the perspective of model training
and method implementation (1) Is RAPs generic
on existing open source LLMs? As shown in Ta-
ble 4 , We have studied the improvement of three
accessible LLMS in protein understanding tasks by
raps. The results show that after enhancing raps,
the general large-scale model can achieve great
improvement in all tasks, which shows the univer-
sality of our method.

(2) Can RAPs still perform well in the case
of insufficient retrieval samples? As shown in
Table 5, we used a more difficult division on the
general function task and only predicted 80% of
the test data from 20% of the training data. Exper-
iments show that the baseline method has a huge
decline when using more difficult partition meth-
ods, while the proteinRAP can still maintain a good
performance.

(3) in RAPs, how does the number of retrieved
entries K affect the performance of the model?
As shown in Figure 4, we visualized the perfor-
mance of LLMS’ different K on four tasks. The
results show that increasing the number of K can
slightly increase the performance of the model, but
at the same time, due to too many samples, LLMS
will be misled by the wrong samples, and the effect
will decline on some cases

Model PF GF DM CA Avg.
Llama3 70B

-w/oRAP 27.0 221 344 36.0 29.8

- w/ RAP 56.7 66.8 457 66.6 58.9(97.6% 1
GPT-40

-w/oRAP 273 268 36.0 41.0 32.7

- w/ RAP 588 70.6 440 724 61.4087.7% 1)
DeepSeek V3

-w/oRAP 255 19.8 303 365 28.0

-w/RAP  51.1 307 469 626 47.8(70.7% 1)

Table 4: ROUGE-L Performance (%) Comparison of
Large Models with and without RAP Across Four Tasks,
"PF", "GF", "DM", and "CA" stands for "general func-
tion", "domain motif", "catalytic activity", and "protein
function" tasks respectively.

Model B-2 B4 R-1 R-2 R-L
ProteinRAP-1B

- Original Split 747 713 770 68.6 76.1
- Train:Test=5:5 73.0 69.1 742 653 735
- Train:Test =2:8  66.3 62.0 684 58.1 669
Llama-3.2-1B

- Original Split 482 443 563 453 546
- Train:Test=5:5 47.1 428 533 414 512
- Train:Test=2:8 204 149 356 21.1 327

Table 5: Performance (%) Comparison of ProteinRAP-
1B and Llama-3.2-1B Models Under Different Data
Splits, in which "B-2" and "B-4" means BLUE-2,
BLUE-4 metrics, "R-1", "R-2" and "R-L" means
ROUGE-1, ROUGE-2 and ROUGE-L metrics.

6 Conclusions

In this study, we introduced a novel approach,
ProteinRAP, in the domain of protein science by
leveraging retrieval-augmented prompts to enhance
the capabilities of LLMs in protein-related tasks.
Through comprehensive evaluations, we demon-
strated that our retrieval-enhanced paradigm closes
the performance gap between general LLMs and
models specifically pre-trained with protein data.
Our findings indicate that ProteinRAP significantly
outperforms existing methods in protein captioning
and understanding, achieving remarkable improve-
ments even in a training-free setup. These results
underscore the potential of retrieval-augmented
methodologies to enable efficient and scalable solu-
tions for complex biological tasks without the need
for extensive parameter tuning. By showcasing the
utility of cross-modal retrieval and prompt engi-
neering, this work sets a new direction for future
explorations in enhancing LLMs’ applicability in
specialized domains such as protein science.



7 Limitations

While ProteinRAP demonstrates substantial im-
provements, it has several limitations. Weakness
in Protein Design Tasks remains a challenge, as
the method performs well in understanding, it has
suboptimal results in protein design tasks, which
is shown in Appendix A. Retrieval Methodology
Limitations hinder performance when high-quality
data is lacking, and optimal base model selection
requires further study. Furthermore, Limited Ex-
ploration of Other Scientific Entities indicates
that our approach has yet to extend beyond protein
sequences to entities such as DNA and RNA. We
will improve the method in the later feature work
to solve these limitations.

8 Potential Risks

In this study, the proposed ProteinRAP method
focuses on enhancing the protein understanding ca-
pabilities of LLMs by using retrieval-augmented
prompts. While this approach does not involve
human subjects, it is crucial to consider the poten-
tial risks associated with its application. Similar
to other LLM-focused research, ProteinRAP could
be misused to generate inaccurate or misleading
descriptions of protein properties, which may have
implications for scientific research and applications.
Additionally, the enhanced understanding capabili-
ties of LLMs in the biological domain might inad-
vertently contribute to the development of harmful
applications, such as engineered pathogens, if not
properly regulated. Therefore, we encourage re-
searchers and practitioners employing this method
to remain vigilant about these risks and to imple-
ment appropriate safeguards to minimize potential
misuse.
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A ProteinRAP in Protein Design Tasks

A.1 Task Overview

The protein design task, derived from the Mol-
Instructions dataset (Fang et al., 2024), requires
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models to synthesize protein sequences that meet
specific functional and structural constraints. Mod-
els must interpret complex instructions detailing
properties like enzymatic specificity, metal ion
binding, and solubility optimization, and output
corresponding amino acid sequences. This task
has critical applications in drug design, synthetic
biology, and enzyme engineering.

A.2 Experimental Results

We evaluated ProteinRAP alongside other baseline
models, including Galactica-1.3B, Llama variants,
ProLLLaMA, and general RAP models, on the Mol-
Instructions Protein Design task. Performance was
evaluated using metrics such as BLEU (2/4-gram),
METEOR, and ROUGE. Table 7 details the results.

A.3 Result Analysis and Conclusion

The results reveal that retrieval-augmented prompts
(RAP) provide limited improvements in protein
design tasks, as LL.Ms struggle to effectively in-
terpret and utilize retrieved protein sequence in-
formation compared to textual data. In contrast,
BioT5+, which underwent unsupervised pretrain-
ing on protein-specific datasets, significantly out-
performs RAP-based and instruction-tuned autore-
gressive models across most metrics. This under-
scores the importance of domain-specific pretrain-
ing for understanding complex protein data. Future
work should explore combining unsupervised pre-
training on protein data with RAP approaches to
further enhance task performance.

B Model Training Details

B.1 Protein-Text CLIP

Model Architecture The Protein-Text CLIP
model consists of two primary components: a pro-
tein sequence encoder and a text encoder. The pro-
tein encoder is based on ESMC (600M) (Hayes
et al., 2025) for protein sequence understand-
ing, while the text encoder leverages BioGPT
(Luo et al., 2022) to process textual descriptions.
Both encoders generate high-dimensional embed-
dings, which are then projected into a shared 512-
dimensional latent space using linear projections
(see Table 8). Ablation about protein encoder and
text encoder can be seen in Table 6.

During training, the model employs contrastive
learning to align protein and text representations.
Specifically, mean-pooled embeddings from both
modalities are normalized and passed through sep-
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arate projection layers. The resulting embeddings
are used to compute a similarity score, scaled by a
learnable temperature parameter o, and optimized
using cross-entropy loss.

Hyper-Parameters We used the hyper-
parameters summarized in Table 8 to train
Protein-Text CLIP. Mixed precision training
with bf16 was enabled to accelerate large-scale
computations on GPUs. During training, we
combine two datasets: SwissProt and OntoProtein,
for both protein and text inputs.

Training Procedure: The model was trained
on 4 GPUs using the "Accelerate" library. Protein-
text pairs were tokenized and encoded separately
for training. During inference, embeddings were
extracted to compute recall at various thresh-
olds (recall@k) using FAISS indexing. The loss
function alternates between optimizing logits for
protein-text alignment and text-protein alignment.

The reported evaluation metrics include re-
call@1, recall@10, and recall@20. These metrics
provide quantitative measures of the model’s abil-
ity to retrieve correct text descriptions for a given
protein sequence.

B.2 Large Language Model

Model Architecture We leverage a large pre-
trained causal language model for protein-related
tasks, fine-tuned using instruction-tuning tech-
niques. The training process builds upon the
Llama3 (Dubey et al., 2024) framework, with ad-
ditional lightweight parameter-efficient finetuning
(PEFT) using the LoRA (Low-Rank Adaptation)
mechanism (Hu et al., 2022).

The overall architecture consists of a
transformer-based auto-regressive model fine-
tuned on protein-text tasks. LoRA fine-tuning is
applied to selected projection layers (e.g., q_proj,
k_proj, v_proj, o_proj), allowing modification
of only a small subset of the model’s parameters to
efficiently adapt to domain-specific tasks.

Hyper-Parameters The LLM fine-tuning pro-
cess utilizes hyper-parameters shown in Table 9.
Training is conducted with DeepSpeed-enabled dis-
tributed GPUs, utilizing mixed-precision (bf16)
and memory optimization techniques. LoRA sig-
nificantly reduces memory requirements by freez-
ing the majority of model weights and introducing
lightweight low-rank updates. The cosine learning
rate schedule with warm-up ensures stable conver-
gence.
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Figure 4: Ablation study of retrieval numbers of four tasks.

Protein Encoder Text Encoder In Batch (64)  In Test Set (10k)
R@l R@10 R@l1 R@10
ESM-C 300M BioMedBERT 0.87 099 0.17 0.58
ESM-C 300M BioGPT 090 099 0.22 0.66
ESM-C 600M BioMedBERT 0.89 099 0.20 0.63
ESM-C 600M BioGPT 090 099 0.23 0.67

Table 6: Ablation Study in Protein Encoder and Text Encoder selection.

BLEU-2 BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L

Model

Galactica-1.3B 8.57 3.98
Llama-3.1-8B-Instruct 8.55 3.73
Llama-3.2-1B-Instruct 8.26 3.59
ProLLaMA Stage 1 5.25 2.25
BioT5+ (ROUGE-L only) - -
ProteinRAP 13.91 6.00

15.57 32.63 14.57 25.56
18.97 47.48 22.54 39.02
17.83 48.21 23.68 37.69
12.73 18.38 8.86 15.23

- - - 63.44
24.78 47.48 22.95 38.60

Table 7: Model performance on the Mol-Instructions Protein Design task.

Evaluation The evaluation follows multi-metric
assessment using BLEU, Meteor, and ROUGE
scores. During inference, sampling parameters
for text generation include a top-p threshold of
0.9, temperature of 0.6, and max output length of
512 tokens. The model effectively handles protein-
oriented tasks such as catalytic activity annotation
and protein design, demonstrating high alignment

between predicted and ground-truth outputs.

C Additional Dataset and Details

The datasets used in our study consist of three main
parts.

(a) The Swiss-Prot dataset includes proteins and
their text descriptions. It contains a training set of
430,595 entries with an average protein length of
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Hyper-parameter Value
Protein encoder ESMC,
Text encoder BioGPT
Protein feature dimension 1152
Text feature dimension 768
Batch size 32
Learning rate 4e-5
Number of epochs 1
Mixed precision bfl6
Max protein sequence length 1024
Max text sequence length 512
Projection dimension 512
Optimizer AdamW
Scheduler linear decay
Logit scale initialization 2.6592
Training Epochs 50
Approximate training duration 2 days

Table 8: Hyper-parameter settings used for Protein-Text
CLIP.

336 and an average text length of 48. The validation
set comprises 10,000 entries, with average protein
and text lengths of 358 and 59, respectively. The
test set also consists of 10,000 entries, with average
lengths of 357 for proteins and 60 for text.

(b) The ProteinKG25 dataset also features pro-
teins and their text descriptions. The training set
has 422,315 entries, with average protein and text
lengths of 338 and 101, respectively. The validation
set, containing 10,000 entries, has average lengths
of 360 for proteins and 104 for text. Similarly, the
test set includes 10,000 entries, with average pro-
tein and text lengths of 360 and 107, respectively.

(c) For protein property prediction tasks, the
dataset contains various aspects such as protein
function with 110,689 entries and 3,494 molecu-
lar instructions (PMol). Catalytic activity is rep-
resented by 51,573 entries with 1,601 PMol. Do-
main/Motif has 43,700 entries with 1,400 PMol,
and functional description involves 83,939 entries
with 2,633 PMol.

C.1 Protein Retrieval

Protein Retrieval aims to perform bidirectional re-
trieval between protein sequences and textual de-
scriptions using datasets such as SwissProt and Pro-
teinKG25. A pretrained Protein-Text CLIP model
is employed, evaluated with Recall@k. The task
includes: protein-to-text retrieval: Given a protein
sequence, retrieve its corresponding textual descrip-
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Hyper-parameter Value
Learning rate for LoORA le-4
Learning rate for full parameter 4e-5
Batch size per device 2
Gradient accumulation steps 8
LoRA rank 8
LoRA « 32
LoRA dropout 0.05
Max sequence length 1024 tokens
RAP max sequence length 4096 tokens
Number of epochs 1
Optimizer AdamW
LR scheduler type Cosine
Warm-up ratio 0.1
Weight decay le-2
Mixed precision bf16
Gradient checkpointing Enabled
Devices 8 A100-80GB
Approximate training duration 2 hours per task
DeepSpeed config Zero-2

Table 9: Hyper-parameter settings during training.

tion. This task benchmarks the ability of models to
bridge protein and text representations.

C.2 Protein Caption

Protein Caption generates functional, subcellular,
and molecular similarity descriptions for proteins.
Using SwissProt annotations. This task enables
functional characterization of unknown proteins.
A detailed breakdown, along with related query-
answer tasks, is shown in Table 10.

D Details on Metrics

We evaluate the model using several commonly
used evaluation metrics adapted to protein descrip-
tion generation and understanding tasks. Here,
we detail these metrics, including their calculation
method, significance, and specific usage.

Exact Match: This metric measures the propor-
tion of predictions that exactly match the ground
truth. It is typically used for retrieval tasks and
provides an intuitive understanding of prediction
accuracy.

Recall@k: This metric evaluates whether the
correct entity appears in the top-k£ retrieved items.
For a prediction system:

BLEU: (Papineni et al., 2002) BLEU, or BiLin-
gual Evaluation Understudy, is a metric often used
to measure the fluency and correspondence of
machine-generated sequences against reference de-



scriptions. Employing n-grams, we compute the
overlap:

N
BLEU = BP - exp <Z wn, 1ogpn) :

n=1
where BP is a brevity penalty, w,, are the weights
typically equal for all n-grams, 25:1 wy, = 1, and
Dp, is the precision for n-grams.

ROUGE: (Lin, 2004) Recall-Oriented Under-
study for Gisting Evaluation (ROUGE) measures
the quality of machine-generated text by comparing
its overlap with a reference set of word sequences.
Specifically, it evaluates:

* ROUGE-N (e.g., ROUGE-1, ROUGE-2):
Measures n-gram overlap.

* ROUGE-L: Based on the longest common
subsequence, it considers both recall and pre-
cision to compute an F1 score.

METEOR: (Banerjee and Lavie, 2005) ME-
TEOR considers synonyms and linguistic varia-
tions, providing a more semantically oriented evalu-
ation metric than BLEU or ROUGE. It is calculated
using unigram precision and recall, often integrat-
ing linguistic features like stemming and synonymy.
The simplified formula presented here is:

10m

METEOR = :
(9% + p + 10m)

where m is the number of aligned unigrams, k is the
fragmentation penalty, and p indicates precision.

E Prompt Construction Detail

E.1 Prompt Template

In the construction of prompts for protein-related
tasks, we employ distinct templates tailored to the
specific nature of the task: protein function analysis
or protein design. Each template is structured to in-
clude an introductory statement, a task description,
retrieved examples from the database, and specific
instructions for the task at hand. These compo-
nents ensure a comprehensive understanding and
execution of the given instructions.

E.2 Prompt Case

To better illustrate the application of these tem-
plates, a Retrieval Augmented Prompt sample for
the general function task is provided. This exam-
ple showcases how retrieved examples and task-
specific instructions are integrated to enhance the
problem-solving process.
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F License

In this section, we provide an overview of the li-
censing terms for several models and datasets uti-
lized in this study, detailing their respective usage
conditions.

Swiss-Prot Database (Bairoch and Apweiler,
2000)

The Swiss-Prot Database is distributed under the
UniProt Consortium’s license, which allows free
access for research and non-commercial purposes.
Users must attribute the source and agree not to
distribute the database without prior permission
from the consortium.

UniProt Database (Consortium, 2019)

The UniProt Database is available under the Cre-
ative Commons Attribution (CC BY 4.0) License.
This license permits users to share and adapt the
data for any purpose, provided appropriate credit
is given, a link to the license is provided, and indi-
cation of any changes made is specified.

Mol-Instructions Dataset (Fang et al., 2024)

Released wunder the Creative Commons
Attribution-NonCommercial 4.0 International
License (CC BY-NC 4.0). This license permits
use, sharing, and adaptation of the dataset for
non-commercial purposes, with appropriate
attribution and indication of changes. Commercial
use requires additional permissions.

LLaMA 3 (Dubey et al., 2024)

The LLaMA 3 model is released under the
LLaMA Community License. This license permits
use, modification, and distribution, with specific
conditions such as prohibitions against using the
model for training other language models. For com-
mercial use, compliance with Meta’s Acceptable
Use Policy is mandatory, and entities with over 700
million monthly active users must obtain a separate
license from Meta.

BioT5+ Model (Pei et al., 2024)

The BioT5+ model is available under the MIT
License. This allows for free use, modification, and
distribution, including for commercial purposes, as
long as the original copyright notice and permission
notice are retained. The software is provided "as
is," with no warranties or guarantees, and the au-
thors disclaim liability for any issues arising from
its use.



GPT-40 (Achiam et al., 2023)

GPT-40 is proprietary software developed by
OpenAl. Access is provided through OpenAI’s ser-
vices, such as ChatGPT and the Azure OpenAl Ser-
vice, under subscription plans. The model is not
open-source and is governed by OpenAl’s terms of
service and usage policies.

DeepSeek V3 (Liu et al., 2024a)

DeepSeek V3 is distributed under the DeepSeek
License (v1.0, Oct 23, 2023). It grants a free,
global, irrevocable license for modification and
distribution, with strict restrictions on military use,
harm, misinformation, discrimination, and unau-
thorized data processing. Users must enforce these
limits in derivative works. Disclaimers of war-
ranties and liability are included, and any legal
matters are subject to the jurisdiction of Chinese
law, specifically in Hangzhou.
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Table 10: Protein Query-Answer and Caption Task Categories with Examples

Task Category

Example

Protein Caption

Instruction: Provide a detailed description of the protein with the following
amino acid sequence, including its FUNCTION, SUBCELLULAR LOCATION,
and SIMILARITY.

Input: An amino acid sequence, e.g., “MAWRSGLCETD-
SRTLKQFLQEECMWKLVGK...”

Output: FUNCTION: Plays a critical role in cytoplasmic virus egress... SUB-
CELLULAR LOCATION: Virion tegument, Host cytoplasm, Host nucleus...
SIMILARITY: Belongs to the herpesviridae cytoplasmic envelopment protein 2
family...

General Function

Instruction: Could you evaluate the protein with this amino acid sequence and
present a summary of its features?

Input: An amino acid sequence, e.g., “MKSVHSSPQNTSHTIMTFYPT-
MEEFADFNT...”

Output: A brief summary highlighting general functions, e.g., “Histone demethy-
lase that specifically demethylates *Lys-9’ of histone H3, thereby playing a central
role in histone code.”

Protein Function

Instruction: Could you analyze the protein corresponding to the amino acid
sequence and offer insights on its function, the biological processes it might
participate in, and its location within the cell?

Input: An amino acid sequence, e.g., “MNPKKLVIASRESLLAMWQAKHIQ-
GRLKAL..”

Output: Description of function, biological processes, and cellular localization,
e.g., “Hydroxymethylbilane synthase activity; implicated in heme biosynthetic
process; localized in cytoplasm.”

Instruction: Given the protein sequence below, please analyze and describe the

Catalytic Activity | catalytic activity of the corresponding enzyme, specifically the chemical reaction
it catalyzes.
Input: An amino acid sequence, e.g., “MKPVHIVSSAQMRWADMQTMOQK-
TPSRTLME..””
Output: Chemical reaction catalyzed by the enzyme, e.g., “(6S)-NADPHX +
ADP = AMP + H(+) + NADPH + phosphate.”
Instruction: Please examine the following protein sequence and predict any
Domain/Motif domains or motifs you can discern.

Input: An amino acid sequence, e.g., “MKSIEVHTDGSCLGNPGPGGWAALL-
RYNGR..”
Output: Identified domains or motifs, e.g., “RNase H type-1 domains.”
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A Sample of Retrieval Augmented Prompt

You are an assistant that helps with protein function analysis.

Task: Analyze the protein with the following sequence and describe its properties:

Target Protein: *°°
MTTPTPLRSVTVNTPPPYTIAIGPGLLHDPPRLAATIRGRHALILSDSEVAPRYAAQLHETLLRARPDLHLNVFTLPAGETSKSLENFGAATIAQLATLGATRDA
CLFALGGGVIGDLAGFTAACWMRGIDYVQVPTTLLAMVDSSVGGKTAVDIPQGKNMVGAFHPPRAVIADTDTLATLPLRELRAGLSEVIKYGAIRDPVFFHWLQ
TTREALLARDPAALAQAIARSCEHKADIVGRDPLEKGERVLLNLGHTFGHAIETTQGYSTPGSNNLNHGEAVAVGMVLAARLSNTLGLAPAEDTETLKNLLDAY
GLPTVLPSGLTPEMLLERMRLDKKNIAGRLRLVLWRGIGHAEAVPDVDEAAVRQILAN

Below are similar proteins retrieved from a database along with their functions:
Example @: Protein: °
MAKFELYAEVDVSISGHQYPIIICRNGLIDPELINRFITSKQVLIVTNRTVAPLYLGHLQSGLPSKQCDVVILEDGEEHKNQRSLFTIYDSLIQNKHHRDTSII
ALGGGVIGDMAGFAASTYQRGVRFIQLPTTLLAQVDASVGGKTAINHPAGKNMIGSFYQPQAVIIDLNTLKTLPEREFRAGIAEMIKYALLVGGPFFERIQAVL
QQGLTVHSPELPLLIAECCQVKAKIVEQDERESGLRALLNLGHTFAHALETYTDYKKWLHGEAVAIGLYCAAVLSEKKGLLDKPIVDQVEKMLIHAGLPHKIPN
SIDLIQLRELMSLDKKIKNNCLRFVMIKKPGACYIDDSVTEDCLHNTLINVVEGEQK

**' Answer: [A short report on the protein with the given amino acid sequence highlights: Catalyzes the
conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ).]

Example 1: Protein: *°°
MNAIESIEVALDTLPENRSYSIHIGQGLLSRMDLLLPHLPGKKAAIVTNTTIAPLYLEKLRSALAEHHVETFAITLPDGERYKHWETLNLIFDALLEHRCERRT
PLIALGGGVIGDLTGFAAATYLRGVPFIQIPTTLLAQVDSSVGGKTGINHPLGKNMIGAFYQPQLVLTDSATLTTLPDRELRAGIAEIIKYGLIYDADFFDWLE
QHMNSLLARDPAAVNYAIRRSCEIKAEIVSLDERESGLRALLNLGHTFGHAIENAMGYGAWLHGEAVAAGTLMAADLSRRLQRITSQEVDRIRYLFENTGLPVK
GPRISPERYLESMQLDKKVKEGAIRFILLDSIGKASPGDTVPTPLLLETLSACVADA

**' Answer: [A concise description of the protein with the specified amino acid sequence includes:
Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ).]

Example 2: Protein: **°
MKTERVNVNVNNQPYPIYIGENLLQDKSLLQRHVKGRQVMIVSNETIAAFYLDPLKATYQDFQCDTFILPDGEQYKTLEYWERILHKLACNHHRDTTLIALGGG
VVGDITGFAAACYQRGVDFIQVPTTLLAQVDASIGGKTAVNHPVGKNLIGAFHQPKAVIIDLNTLNTLPEREFKAGMAEIVKAALIKDEKFFTDLENKMSDLLQ
RNFIFLQAVIKRAAEIKRDIVNADEKERSGERALLNLGHTFAHAIERLLGYGQWLHGEAVSAGLVLAAQLSHRKNLLDFESLQRICRLLTQISLPIHFPKSINA
DELLSAMYMDKKVANERLHLILLEDLGHAVVSDQVDDRELKSFLENG

**" Answer: [A concise description of the protein with the specified amino acid sequence includes:
Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ).]

Example 3: Protein: °
MNRPGWILLYGPPGVGKTTLGRWLAARLELPFYDLDERIQQVNGRTIPQIFQEEGESGFRQREKSALKELLTLPPGVAALGGGALLDGDNRQLAERCGTVLCLT
AGLQTLLERLGEASQTRPLLKGEDGWQARLSALLEARREHYASFETRLPTDGRTLDETGGEALCALGIFPIRGMERPYRMMVHNGILELAADHLNEIGRSRTAA
LVCDSNTARLYAEKVEKPLTAAGWRVRRCVVPAGEAHKTLQTTADLWAQFVEGGLERGSLVVALGGGVVGDMSGFAAAAFLRGVDWVNLPTTLLAMVDASIGGK
TGVDLPQGKNLVGAFHPPRLVLADPLVLSTLPIGEVRSGMAEVIKHGVIGDPALLDACADGAQGLSGGWEWLVRRAAAVKVRVIEADPYEQGLREVLNFGHTLG
HALEKSSGYRLRHGEAVAIGMVAETRLAERLGIAERGLSGRLAAILSRWGLPVDPPAGLSAEQIRAGLTVDKKRRDGQLRFSLPHRAGQVLHGVIVPAEEALRE
VIG

**" Answer: [A concise description of the protein with the specified amino acid sequence includes:
Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a
cosubstrate.]

Example 4: Protein: *°°
MATPLFHADLTVHTQSHDYPIVITENAIAENSSMASQVAPYITGRQVLIVTNETVAPLYLKALQEELEAQFTVQVCVLPDGEQYKNQSSINQIYDVLMAVHFNR
DVTLIALGGGVIGDMTGFAAASFMRGVNFIQIPTTLLSQVDSSVGGKTGINHPQGKNMIGAFWQPQMVLADMSTLKTLPARELSAGLAEVIKYALIMDAEFLTW
LEHNLPAMMALDLAVLGEAVKRCCQYKADVVAQDERESGVRALLNFGHTFGHVIETHEGYGSWLHGEAVAAGMVQAAELSQKIGWLTSDEVACVKRILSLANLP
ITPPPIEVQTALDLMGHDKKVKHGQIRLILLKSLGEAVLTNDFDPHLLTDVLATHAP

**" Answer: [A brief overview of the protein with the provided amino acid sequence is as follows:
Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ).]
Please analyze and infer the possible function of the target protein based on the given information.
Refer to the functions of similar proteins and perform logical reasoning.

Ground Truth: Here is a summary of the protein with the given amino acid sequence: Catalyzes the

conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ).

Figure 5: A Retrieval Augmented Prompt sample on the general function task.
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Protein Function Analysis Template

Introductory Statement:
You are an assistant that helps with protein function analysis.

Task Description:
Task: {Task_Instruction}
Target Protein: {Target_Protein}

Retrieved Examples:

Below are similar proteins retrieved from a database along with their functions:
Example 1: Protein: {Proteinl} Answer: [{Functionl}]

Example 2: Protein: {Protein2} Answer: [{Function2}]

Example 3: Protein: {Protein3} Answer: [{Function3}]

Example 4: Protein: {Protein4} Answer: [{Function4}]

Example 5: Protein: {ProteinS} Answer: [{Function5}]

Instruction for Analysis:
Please analyze and infer the possible function of the target protein based on the given information.
Refer to the functions of similar proteins and perform logical reasoning.

Table 11: Template for Protein Function Analysis

Protein Design Template

Introductory Statement:
You are an assistant that helps with protein design.

Task Description:
Task: {Task_Instruction}
Functional Description: {Functional_Description}

Retrieved Examples:
Below are similar tasks retrieved from a database along with their answer:
Example 1: Description: {Descriptionl} Answer: [{Designl }]

Example 2: Description: {Description2} Answer: [{Design2}
Example 3: Description: {Description3} Answer: [{Design3}
Example 4: Description: {Description4} Answer: [{Design4 }
Example 5: Description: {Description5} Answer: [{Design5}

e d

Instruction for Design:
Please design the target protein based on the given information.

Table 12: Template for Protein Design
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