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Abstract

Large language models (LLMs) have demon-001
strated remarkable success in Natural Lan-002
guage Processing (NLP), primarily due to their003
emergent abilities derived from extensive pre-004
training. These pre-trained LLMs can han-005
dle numerous tasks without additional super-006
vised fine-tuning, facilitating their transfer to007
various problems. However, when applied to008
the "language of life"—proteins, LLMs of-009
ten fall short in capturing the complex rela-010
tionships between amino acid sequences and011
their functions, resulting in suboptimal per-012
formance in related tasks. To address this013
issue, this study introduces ProteinRAP, a014
novel method leveraging Retrieval-Augmented015
Prompts (RAPs) to enhance LLM performance016
on protein tasks without extensive retrain-017
ing. ProteinRAP comprises Protein-Text CLIP,018
which utilizes contrastive learning for cross-019
modal retrieval, and an optimized prompt learn-020
ing strategy. Through RAP construction, LLMs021
exhibit significant improvements in protein un-022
derstanding. Evaluations on both general and023
protein-specific LLMs in protein understand-024
ing tasks highlight existing methods’ limita-025
tions. ProteinRAP markedly boosts perfor-026
mance, achieving up to 87.7% improvement027
over general LLMs and matching state-of-the-028
art results without additional training.029

1 Introduction030

In recent years, pre-trained large language mod-031

els such as GPT4 (Achiam et al., 2023), Llama3032

(Dubey et al., 2024), Qwen (Bai et al., 2023), and033

Deepseek (Liu et al., 2024a) have emerged as a034

new paradigm in the field of natural language pro-035

cessing (NLP). (Zhang et al., 2023; Chang et al.,036

2024) This shift is largely due to their remarkable037

performance on few-shot and zero-shot tasks (Wei038

et al., 2022; Kojima et al., 2022). The underlying039

mechanism enabling this capability is the models’040

ability to perform in-context learning from specific041
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Figure 1: (a) General LLMs face challenges in pro-
tein understanding tasks. (b) Retrieval mechanisms en-
able LLMs to produce accurate answers. (c) Retrieval-
augmented approaches achieve significant performance
improvements across diverse tasks.

prompts. (Brown et al., 2020) By providing pre- 042

defined instructions and question formats as input, 043

these models can infer and provide answers to tasks 044

with zero or few samples without the need for pa- 045

rameter updates. 046

In the biological domain, and particularly in pro- 047

tein science, pre-trained LLMs have shown subop- 048

timal performance in few-shot and zero-shot tasks 049

(Tan et al., 2024). While proteins can be repre- 050

sented as sequences of amino acids, LLMs strug- 051

gle to capture the relationship between these se- 052

quences and their biological functions due to the 053
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Figure 2: A comparison of retrieval-augmented methods and traditional approaches. Traditional methods re-train
LLMs on protein sequences, whereas retrieval-augmented approaches leverage contrastive learning to train a
retriever. By injecting retrieved knowledge into prompts, the retrieval-augmented method boosts LLM performance
on protein-related tasks.

structural differences between protein sequences054

and natural language. To address this issue, vari-055

ous protein-specific models have been developed,056

such as ESM (Hayes et al., 2025), Galactica (Tay-057

lor et al., 2022), ProtTrans (Elnaggar et al., 2021),058

ProteinBERT (Brandes et al., 2022), and ProGen2059

(Nijkamp et al., 2023), which integrate protein se-060

quences in their pre-training datasets. Though these061

models excel in protein property prediction and062

design, they fail to process natural language in-063

structions effectively. Alternative approaches in-064

volve continued pre-training and supervised fine-065

tuning using protein databases (Fang et al., 2024),066

or employ protein encoders and cross-modal pro-067

jectors for alignment (Liu et al., 2024c; Wang et al.,068

2024; Liu et al., 2024b). Despite mitigating some069

issues, these methods require significant compu-070

tational resources as LLM parameters grow, and071

suffer from challenges such as catastrophic forget-072

ting (Wu et al., 2024b; Luo et al., 2023), where the073

model’s original domain performance declines, and074

adaptability issues requiring parameter updates per075

task (Zhao et al., 2024).076

Leveraging evolutionary insights that homolo-077

gous proteins tend to perform similar functions078

(Hilbert et al., 1993), we propose a retrieval-079

enhanced prompt technique to enhance LLM per-080

formance on protein-related tasks. Our approach081

uses contrastive learning to develop a protein-text082

multi-modal retriever, called Protein-Text CLIP.083

This model retrieves similar samples from pro-084

tein databases to construct Retrieval-Augmented085

Prompts (RAPs). Our experiments demonstrate086

that RAPs significantly improve LLM performance 087

across various scales. 088

In an evolutionary context, similar proteins are 089

often homologous and frequently perform simi- 090

lar functions in the life sciences (Hilbert et al., 091

1993). This insight prompts the use of alignment 092

and retrieval approaches to accomplish protein un- 093

derstanding tasks. Compared to traditional retrieval 094

augmentation methods, protein retrieval augmen- 095

tation involves two distinctly different modalities: 096

protein FASTA sequences and textual annotations. 097

Existing methods predominantly rely on sequence 098

alignment or retrieval techniques for protein at- 099

tribute prediction (Ma et al., 2023), rather than 100

addressing open-ended questions such as protein 101

instruction-based querying (Fang et al., 2024). 102

Based on all the above, in this study, we in- 103

troduce ProteinRAP, a method using retrieval- 104

enhanced prompts to enhance LLM capabilities in 105

protein understanding tasks. Firstly, we develop the 106

Protein-Text CLIP model, leveraging contrastive 107

learning for cross-modal retrieval. For different 108

downstream tasks, this model retrieves similar 109

samples from the corresponding protein database 110

and then constructs retrieval augmented prompts 111

(RAPs). RAPs are then used in LLMs through in- 112

context learning, integrating retrieved annotations 113

with the query sequence to enhance task perfor- 114

mance. Downstream experiments showed that this 115

approach significantly improves LLMs’ prediction 116

accuracy across various protein tasks without re- 117

quiring further model training. The contributions 118

of this work can be summarized as follows: 119
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1. We conduct a comprehensive evaluation of120

general LLMs and mixed protein-text LLMs on121

protein captioning and understanding tasks. Our122

analysis highlights the significant disadvantage of123

existing methods, particularly in the protein-text124

generation domain, underscoring the need for more125

targeted approaches.126

2. We propose a novel paradigm named Pro-127

teinRAP, which includes the development of an128

efficient protein-text retriever. This method is the129

first to employ retrieval-augmented techniques for130

open-ended answer generation in protein-related131

tasks. Furthermore, we design specialized prompts132

tailored for protein tasks and conduct exhaus-133

tive evaluations and ablation studies on the re-134

trieval method. This advances the development135

of retrieval-enhanced approaches in the protein do-136

main substantially.137

3. Our findings demonstrate remarkable im-138

provements in various tasks, achieving an 87.7%139

improvement on general-purpose LLMs and a140

23.7% increase in the protein caption over the pre-141

vious state-of-the-art (SOTA) method, and the pro-142

tein understanding task sees an 8.1% improvement.143

Notably, the RAP-based methodology achieves re-144

sults comparable to SOTA models in a training-free145

manner, highlighting its efficacy and practical ap-146

plicability.147

2 Related Works148

This section provides an overview of research ef-149

forts in three interconnected domains: protein lan-150

guage modeling, protein-text cross-modal learning,151

and prompt engineering techniques.152

2.1 Protein Language Models (PLMs)153

Protein language models (PLMs) leverage the suc-154

cess of Transformers in NLP to represent protein se-155

quences as biological languages. Encoder-Based156

Models (Hayes et al., 2025; Brandes et al., 2022;157

Elnaggar et al., 2021; Cao and Shen, 2021) ex-158

traction of protein sequence and structural features159

using bidirectional attention, Decoder-Based Mod-160

els (Madani et al., 2023; Nijkamp et al., 2023; Lv161

et al., 2024; Ferruz et al., 2022) focus on protein162

sequence generation. Encoder-Decoder Models163

(Chen et al., 2024; Elnaggar et al., 2021) broadened164

the scope with large-scale pre-training. These mod-165

els have achieved excellent performance in protein166

attribute prediction and protein design. However,167

PLMs cannot integrate textual information, which168

is critical for downstream tasks involving cross- 169

modal reasoning. 170

2.2 Mixed Protein-Text Language Models 171

To overcome the limitation of separate protein 172

and textual modeling, researchers have developed 173

mixed protein-text models that aim to bridge bio- 174

logical and linguistic domains, which can be mainly 175

divided into three categories: Contrastive Learn- 176

ing Based Methods (Xu et al., 2023; Liu et al., 177

2023, 2024c; Wu et al., 2024a) employs contrastive 178

learning to align protein sequence with their textual 179

annotations, Text-Augmented Pre-training Meth- 180

ods (Ferruz et al., 2022; Taylor et al., 2022; Lv 181

et al., 2024; Pei et al., 2023; Zhuo et al., 2024; Liu 182

et al., 2024b) expand the pre-training corpora to in- 183

clude protein sequences, and Multi-Modal Fusion 184

Methods (Liu et al., 2024c; Abdine et al., 2024; 185

Wang et al., 2024) adopt protein encoders to ex- 186

tract sequence embeddings, and then align them to 187

LLMs through projector layers. However, as LLMs 188

increase in parameter size, retraining demands sig- 189

nificant time and computational resources, while 190

fine-tuning can result in catastrophic forgetting. 191

2.3 Protein Related Retrieval-Based Methods 192

In the field of protein understanding, retrieval and 193

comparison-based methods are extensively utilized. 194

Multi-Sequence Alignment Models (Rao et al., 195

2021; Jumper et al., 2021; Li et al., 2024) lever- 196

age multi-sequence alignment techniques to en- 197

hance deep learning model performance in protein 198

attribute and structure prediction. An alternative 199

approach, Single-Sequence Alignment Method 200

(Ma et al., 2023), offers improvements in model 201

performance while increasing speed by modifying 202

the alignment process from multiple to single se- 203

quences. Additionally, Retrieval-Enhanced Pre- 204

diction Models (Shaw et al., 2024) utilize retrieval- 205

enhanced techniques specifically for protein at- 206

tribute prediction tasks, and ProlLM (Jin et al., 207

2024) applies thought chain retrieval to enhance the 208

efficacy of protein interaction predictions. Despite 209

their advancements, these methods predominantly 210

concentrate on attribute prediction tasks and do not 211

adequately address more complex challenges such 212

as protein annotation. 213

3 Methodology 214

The overall pipeline of our methods is shown in Fig. 215

4. To leverage the gap between protein sequences 216

and bio-textual description, a CLIP-like model is 217
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Figure 3: Overview of the Protein-Text CLIP training and retrieval-augmented prompting framework. (a) Protein-
Text CLIP is trained using protein sequences and textual descriptions from the Swiss-Prot dataset, aligning protein
embeddings with text embeddings in a shared space. (b) Given a user query with a protein sequence, top-K similar
entities are retrieved using Protein-Text CLIP. A knowledge-augmented prompt is created and processed by advanced
language models (e.g., Llama 3, GPT-4) to generate detailed biological insights.

trained to perform a bidirectional search between218

protein and text. For downstream tasks, we first use219

this model to retrieve the most similar sequences220

and their description in the training dataset, con-221

structing RAP with retrieval results. Pre-trained222

LLMs can use RAP to predict the final answer.223

3.1 Protein-Text CLIP224

The Contrastive Language-Image Pre-Training225

(CLIP) model (Radford et al., 2021) has achieved226

remarkable success in cross-modal retrieval within227

the visual domain. The original CLIP architecture228

employs separate image and text encoders, trained229

with contrastive learning on (image, text descrip-230

tion) pairs. Specifically, for each training batch231

containing k pairs {Pi, Ti}, the image encoder ex-232

tracts features F i
p from all Pi, and the text encoder233

extracts features F i
t from all Ti. The optimization234

objective is to maximize the similarity between235

matching pairs (F i
p and F i

t ) while minimizing the236

similarity between non-matching pairs (F i
p and F j

t237

for i ̸= j).238

Building on this framework, we introduce the239

Protein-Text CLIP model, which adapts the CLIP 240

paradigm to the protein-text domain. To leverage 241

existing pre-trained models and reduce computa- 242

tional overhead, we utilize ESM-C (ESM Team, 243

2024) as the protein encoder and BioGPT (Luo 244

et al., 2022) as the text encoder. A multi-layer 245

perceptron (MLP) is employed to project the em- 246

beddings from ESM-C and BioGPT into a shared 247

feature space of identical dimensionality, facilitat- 248

ing effective similarity computation. The overall 249

architecture of Protein-Text CLIP is illustrated in 250

Figure 4 (b). Unlike to existing work ProteinCLIP 251

(Wu et al., 2024a), we utilize the different pro- 252

tein encoder and text encoder, and train the whole 253

model instead of only the projector part. 254

3.1.1 Architecture and Training 255

Protein-Text CLIP adopts a dual-encoder architec- 256

ture inspired by the original CLIP model, tailored 257

for protein and text modalities. The protein encoder 258

ESM-C 600M and the text encoder BioGPT gen- 259

erate feature vectors of 1152 and 768 dimensions, 260

respectively. Both encoders are linked to MLP pro- 261
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jection heads that map their outputs into a unified262

512-dimensional embedding space for cross-modal263

similarity computation. The model is trained on264

a combined dataset from Swiss-Prot (Bairoch and265

Apweiler, 2000) and ProteinKG25 (Zhang et al.,266

2022). Detailed information about the dataset can267

be seen in Section 4.1.268

3.1.2 Loss Function269

To align the protein and text embeddings, we adopt270

a symmetric contrastive loss function inspired by271

the original CLIP model. This involves computing272

cross-entropy losses in both protein-to-text and text-273

to-protein directions and averaging them. The loss274

function is defined as Equation 1, 2 and 3.275

Lp2t =
1

2k

k∑
i=1

log

(
exp

(
sim(F i

p, F
i
t )/τ

)∑k
j=1 exp

(
sim(F i

p, F
j
t )/τ

)) (1)276

277

Lt2p =
1

2k

k∑
i=1

log

(
exp

(
sim(F i

t , F
i
p)/τ

)∑k
j=1 exp

(
sim(F i

t , F
j
p )/τ

)) (2)278

279
L = Lp2t + Lt2p (3)280

In Equation 1,2, τ represents a learnable temper-281

ature parameter, and sim denotes the cosine sim-282

ilarity between the projected embeddings. This283

symmetric loss ensures that both protein-to-text284

and text-to-protein alignments are optimized, en-285

hancing the robustness of the cross-modal repre-286

sentations.287

3.2 Retrieval-Augmented Prompt288

Construction289

The ProteinRAP framework constructs task-290

specific prompts through a hybrid representation291

learning and retrieval process, as illustrated in Fig-292

ure 4 (c). For each training sample xi ∈ Dtrain293

containing protein sequence Pi and associated text294

description Ti, we compute dual-modality embed-295

dings using Protein-Text CLIP:296

Fi
p = CLIPprotein(Pi) ∈ Rd

Fi
t = CLIPtext(Ti) ∈ Rd

(4)297

The mixed embedding Mi is computed through298

modality fusion:299

Mi = αFi
p + (1− α)Fi

t (5)300

where α ∈ [0, 1] controls the sequence-text bal-301

ance. These mixed embeddings are indexed us-302

ing Faiss (Johnson et al., 2019) with exact inner-303

product search (IndexFlatIP), which guarantees pre-304

cise retrieval for moderate-scale biological datasets.305

The knowledge database B = {(Mi, xi)}Ni=1 maps 306

embeddings to original samples. 307

Retrieval operates through cosine similarity com- 308

puted as normalized inner products: 309

sim(Mi,Mj) =
Mi ·Mj

∥Mi∥∥Mj∥
(6) 310

During training, for each xi we retrieve its k- 311

nearest neighbors from B using cosine similarity: 312

Nk(xi) = top-k
Mj∈B\{Mi}

sim(Mi,Mj) (7) 313

Test samples x′ ∈ Dtest retrieve neighbors from 314

B using the same similarity metric. The final 315

prompt P(x) for input x combines the original 316

sample with retrieved instances: 317

P(x) = [x;Nk(x)] (8) 318

where [·; ·] denotes context concatenation. Im- 319

plementation details and prompt templates are pro- 320

vided in Supplementary A. 321

3.3 Instruction Tuning and RAP In-Context 322

Learning 323

Instruction tuning with constructed prompts en- 324

ables LLMs to effectively utilize Retrieval- 325

Augmented Prompts (RAPs) for summarizing and 326

extracting answers from retrieval results, which 327

is simpler than learning implicit protein features 328

directly from sequences. To enhance few-shot pre- 329

diction capabilities using models exceeding 70 bil- 330

lion parameters, RAPs leverage strong in-context 331

learning abilities. In ProteinRAP, relevant textual 332

descriptions are retrieved for a given protein se- 333

quence query Q. Let R(Q) = {T1, T2, . . . , Tn} be 334

these descriptions. The prompt P(Q) is: 335

P(Q) = "[Retrievals]: " T1 T2 . . . Tn "[Query]: "Q (9) 336

This structure integrates retrievals into the 337

prompt, enriching the model with relevant con- 338

text and enhancing prediction accuracy. In-context 339

learning, whereby models use embedded examples 340

within the prompt, aids in guiding the responses. 341

The LLM processes P(Q), which includes both the 342

query and retrievals, to produce the prediction ŷ: 343

ŷ = LLM(P(Q)) (10) 344

Here, ŷ is the output prediction, benefiting from 345

query-driven augmentation during prompt construc- 346

tion. 347
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4 Experiment348

In this section, we evaluate the performance of349

Protein-Text CLIP on protein-text retrieval tasks.350

Moreover, on two open-ended answer generation351

tasks, Protein Caption and Protein Understand-352

ing, we trained and tested the performance of ex-353

isting LLMs, and demonstrated the performance354

of retrieval-based methods under instruction fine-355

tuning and context learning356

4.1 Protein-Text Dataset357

In this section, we introduce the datasets used in358

protein retrieval, protein caption, and protein under-359

standing tasks, including Swiss-Prot, ProteinKG25,360

and Mol-Instruction. Statistical information on361

these datasets is provided in Appendix C.362

Swiss-Prot (Bairoch and Apweiler, 2000) The363

Swiss-Prot database is a high-quality, manually cu-364

rated protein database that provides comprehensive365

annotations for proteins, including functional de-366

scriptions, catalytic activities, biological processes,367

and subcellular localization. In this study, we368

adopted the annotation processing methodology369

from ProtT3 (Liu et al., 2024c), focusing on three370

key attributes: FUNCTION, SUBCELLULAR371

LOCATION, and SIMILARITY. These curated372

attributes were extracted to form (protein, text)373

pairs for model training.374

ProteinKG25 (Zhang et al., 2022) The Pro-375

teinKG25 dataset is a comprehensive knowledge376

graph derived from the Gene Ontology database.377

This dataset encodes protein-related information378

in the form of triples, representing relationships379

between proteins and their associated attributes or380

terms. Utilizing the annotation processing method-381

ology from ProtT3 (Liu et al., 2024c), we aggre-382

gated all triples corresponding to the same protein383

and transformed them into free-text descriptions384

using predefined text templates.385

Mol-Instruction (Fang et al., 2024) The Mol-386

Instruction dataset is a specialized instructional387

dataset designed to address the limitations of LLMs388

in the biomolecular domain. It comprises three389

key components: molecule-oriented instructions,390

protein-oriented instructions, and biomolecular text391

instructions. In this study, we utilize the protein-392

oriented subset, mainly focus on four tasks, protein393

function, general function, domain motif and394

catalytic activity.395

4.2 Protein-Text Bi-directional Retrieval 396

We extract the (text, protein) data from the Pro- 397

teinKG25 and Swiss-Prot datasets to train the 398

Protein-Text CLIP model. In order to compare 399

with existing methods, we tested the retrieval per- 400

formance in batch and in the whole test dataset on 401

ProteinKG25. Following (Liu et al., 2024c), we 402

use the accuracy and Recall@20 as evaluation met- 403

rics. Besides, we employ ProtST (Xu et al., 2023), 404

ProteinCLAP (Liu et al., 2023) and ProtT3 stage 1 405

(Liu et al., 2024c) as baselines. 406

Results Table 3 shows our results: we observed 407

that in the whole test set, our method improved 408

by about 21% in accuracy and 5.7% in recall@20 409

compared with the previous best method, demon- 410

strating the superiority of our model in cross-modal 411

retrieval. 412

4.3 Protein Captioning 413

The protein caption task involves generating de- 414

scriptive textual annotations for given protein se- 415

quences, thereby enhancing the understanding and 416

analysis of protein functions and characteristics. 417

We utilize the Swiss-Prot dataset (Bairoch and 418

Apweiler, 2000) to create (protein sequence, text 419

description) pairs for both training and evalua- 420

tion. Following (Liu et al., 2024c), BLEU (Pap- 421

ineni et al., 2002), ROUGE (Lin, 2004), METEOR 422

(Banerjee and Lavie, 2005) and Exact Matching are 423

used as metrics. Details of these evaluation met- 424

rics can be found in Appendix D. In this task, we 425

have trained the most advanced LLMs by full pa- 426

rameter tuning and LoRA tuning as baselines, also 427

compared them with the existing methods. Specifi- 428

cally, we perform full parameter tuning on Galac- 429

tica (Taylor et al., 2022), BioGPT (Luo et al., 2022), 430

Llama3.3-1B, Llama3.2-3B (Dubey et al., 2024), 431

utilize LoRA fine-tuning on Llama3.1-8B (Dubey 432

et al., 2024) and ProLLaMA-7B (Lv et al., 2024), 433

compare with ProtT3 (Liu et al., 2024c). 434

For our approach, we evaluate the results of 435

the fine-tuning model ProteinRAP-1B and the gen- 436

eral large-scale model (GPT-4o) (Achiam et al., 437

2023) with RAP. ProteinRAP-1B uses Llama-3.2- 438

1B-Instruct (Dubey et al., 2024) as the base model, 439

trained in one epoch on the RAP format training 440

dataset and evaluated with the same format. GPT- 441

4o with RAP is a training-free method that per- 442

forms in-context learning directly from retrieval 443

prompts to predict the target answer. 444
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Model Exact. BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Average.

Galactica-1.3B 11.2 23.6 20.5 40.4 39.5 29.2 37.7 28.8
BioGPT-347M 0.0 9.4 7.2 28.18 27.5 13.3 26.5 16.0
ProLLaMA-7B* 0.0 4.5 3.4 12.8 6.2 11.7 21.4 8.5
Llama3.3-1B 22.0 60.3 57.9 54.7 44.2 53.1 61.8 50.5
Llama3.2-3B 34.0 68.9 67.1 65.0 58.5 63.7 69.8 61.0
Llama3.1-8B* 8.7 20.9 17.8 39.0 37.7 25.9 35.9 26.5
ProtT3-1.3B 25.7 55.0 51.4 63.6 56.5 62.1 63.6 53.9

GPT-4o w/ RAP 38.2 71.9 70.4 83.5 80.1 82.6 81.8 72.6 (19% ↑)
ProteinRAP-1B* 46.5 81.4 80.5 80.8 77.1 79.9 81.9 75.5 (23% ↑)

Table 1: Performance (%) comparison of Swiss-Prot (Bairoch and Apweiler, 2000) protein caption tasks. "*" stands
for LoRA finetuning. Bold indicates the best performance, underline indicates the second-best performance. (x% ↑)
represents the performance improvement over existing methods.

Model Protein Function General Function Domain Motif Catalytic Activity Average.
R-L METEOR R-L METEOR R-L METEOR R-L METEOR

Galactica-1.3B 7.1 8.6 48.2 46.2 55.3 57.3 30.2 31.4 35.53
BioGPT-347M 50.9 51.8 49.7 45.1 55.4 57.1 54.2 50.5 51.83
ProLLaMA-7B* 48.6 53.2 20.3 35.0 46.7 57.0 39.3 50.6 43.83
Llama-3.2-1B* 46.5 47.1 45.1 39.9 49.9 53.9 52.6 51.4 48.30
Llama-3.1-8B* 52.1 54.4 54.2 50.4 51.2 56.7 59.6 61.1 54.96
BioT5-Plus-252M 56.6 62.2 68.0 67.7 53.4 62.0 71.8 77.6 64.91

GPT-4o w/ RAP 58.8 65.5 74.8 73.0 44.0 43.3 72.4 76.6 63.55 (2% ↓)
ProteinRAP-1B* 62.0 69.6 76.1 76.6 54.0 62.2 75.7 83.6 69.97 (7.1% ↑)
ProteinRAP-8B* 62.8 70.4 76.8 77.2 53.4 61.0 76.1 84.0 70.21 (8.1% ↑)

Table 2: Performance (%) comparison of different models across four protein understanding tasks. "R-L" stands for
ROUGE-L metric, "*" stands for LoRA finetuning. Bold indicates the best performance, underline indicates the
second-best performance. (x% ↑) represents the performance improvement over existing methods.

Model
Batched (64) Test Set (10k)

Acc R@20 Acc R@20

ProtST 70.8 98.5 5.5 41.6
ProteinCLAP 93.2 99.2 53.4 91.2
ProtT3 92.3 98.9 55.8 91.7
Our Method 92.1 99.5 67.6 97.0

Table 3: Protein-to-text retrieval performance (%) (Acc,
R@20) on the ProteinKG25(Zhang et al., 2022) dataset.

Results Table 1 presents the results. We observed445

that (1) The models using protein data in the pre-446

training stage (Galactica, BioGPT, ProLLaMA)447

performed worse than the Llama series models,448

which may be due to their lack of text process-449

ing ability. (2) LLMs with full parameter fine-450

tuning outperform the LoRA model, pointing out451

that learning from protein sequences needs more452

trainable parameters. (3) Using RAP can signifi-453

cantly enhance the effect of LLM on this task. Our454

method achieves 23 % and 19 % improvement of455

existing methods in instruction fine-tuning and in-456

context learning respectively.457

4.4 Protein Understanding 458

The Protein Understanding task is designed to eval- 459

uate the ability of models to accurately follow in- 460

structions related to protein-specific queries, which 461

consists of three components: [instructions], [in- 462

put], and [output]. Unlike the Protein Caption task, 463

the Protein Understanding task is more challenging, 464

requiring LLMs to simultaneously handle both the 465

protein sequences and the instructions to generate 466

final answers. Mol-Instruction dataset mentioned 467

in Section 4.1 is used, employing ROUGE-L (Lin, 468

2004) and METEOR (Banerjee and Lavie, 2005) 469

as evaluation metrics for each task, using the av- 470

erage scores across all tasks to assess the models’ 471

capabilities. 472

Similar to the Protein Caption in Section 4.3, we 473

trained and evaluated the performance of various 474

LLMs, with baselines including LLama3 (Dubey 475

et al., 2024), ProLLaMA (Lv et al., 2024), Galac- 476

tica (Taylor et al., 2022), and BioT5 plus (Pei et al., 477

2024). For our method, we tested the fine-tuning 478

performance of RAPs on the 1B and 8B LLama 479
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models and explored the effects of using prompts480

for in-context reasoning with GPT-4o.481

Result The experimental results, as shown in Ta-482

ble 2, allow us to draw the following conclusions:483

(1) In the protein understanding task, LLMs pre-484

trained with protein data exhibit performance com-485

parable to the Llama3 models, indicating that these486

models have strong capabilities in processing pro-487

tein sequences and text simultaneously. (2) For the488

Llama3 models, increasing the model scale leads489

to better performance in the protein understanding490

task, regardless of whether RAPs are used. (3)491

Methods based on in-context learning can achieve492

performance similar to previous best models with-493

out additional training, while the instruction fine-494

tuning model achieves an average improvement of495

8.1%.496

5 Ablation Study497

In this part, we analyzed the ablation of the498

Protein-Text CLIP module and retrieval enhance-499

ment prompt. Specifically, we studied the follow-500

ing tasks from the perspective of model training501

and method implementation (1) Is RAPs generic502

on existing open source LLMs? As shown in Ta-503

ble 4 , We have studied the improvement of three504

accessible LLMS in protein understanding tasks by505

raps. The results show that after enhancing raps,506

the general large-scale model can achieve great507

improvement in all tasks, which shows the univer-508

sality of our method.509

(2) Can RAPs still perform well in the case510

of insufficient retrieval samples? As shown in511

Table 5, we used a more difficult division on the512

general function task and only predicted 80% of513

the test data from 20% of the training data. Exper-514

iments show that the baseline method has a huge515

decline when using more difficult partition meth-516

ods, while the proteinRAP can still maintain a good517

performance.518

(3) in RAPs, how does the number of retrieved519

entries K affect the performance of the model?520

As shown in Figure 4, we visualized the perfor-521

mance of LLMS’ different K on four tasks. The522

results show that increasing the number of K can523

slightly increase the performance of the model, but524

at the same time, due to too many samples, LLMS525

will be misled by the wrong samples, and the effect526

will decline on some cases527

Model PF GF DM CA Avg.

Llama3 70B
- w/o RAP 27.0 22.1 34.4 36.0 29.8
- w/ RAP 56.7 66.8 45.7 66.6 58.9 (97.6% ↑)

GPT-4o
- w/o RAP 27.3 26.8 36.0 41.0 32.7
- w/ RAP 58.8 70.6 44.0 72.4 61.4 (87.7% ↑)

DeepSeek V3
- w/o RAP 25.5 19.8 30.3 36.5 28.0
- w/ RAP 51.1 30.7 46.9 62.6 47.8 (70.7% ↑)

Table 4: ROUGE-L Performance (%) Comparison of
Large Models with and without RAP Across Four Tasks,
"PF", "GF", "DM", and "CA" stands for "general func-
tion", "domain motif", "catalytic activity", and "protein
function" tasks respectively.

Model B-2 B-4 R-1 R-2 R-L

ProteinRAP-1B
- Original Split 74.7 71.3 77.0 68.6 76.1
- Train:Test = 5:5 73.0 69.1 74.2 65.3 73.5
- Train:Test = 2:8 66.3 62.0 68.4 58.1 66.9

Llama-3.2-1B
- Original Split 48.2 44.3 56.3 45.3 54.6
- Train:Test = 5:5 47.1 42.8 53.3 41.4 51.2
- Train:Test = 2:8 20.4 14.9 35.6 21.1 32.7

Table 5: Performance (%) Comparison of ProteinRAP-
1B and Llama-3.2-1B Models Under Different Data
Splits, in which "B-2" and "B-4" means BLUE-2,
BLUE-4 metrics, "R-1", "R-2" and "R-L" means
ROUGE-1, ROUGE-2 and ROUGE-L metrics.

6 Conclusions 528

In this study, we introduced a novel approach, 529

ProteinRAP, in the domain of protein science by 530

leveraging retrieval-augmented prompts to enhance 531

the capabilities of LLMs in protein-related tasks. 532

Through comprehensive evaluations, we demon- 533

strated that our retrieval-enhanced paradigm closes 534

the performance gap between general LLMs and 535

models specifically pre-trained with protein data. 536

Our findings indicate that ProteinRAP significantly 537

outperforms existing methods in protein captioning 538

and understanding, achieving remarkable improve- 539

ments even in a training-free setup. These results 540

underscore the potential of retrieval-augmented 541

methodologies to enable efficient and scalable solu- 542

tions for complex biological tasks without the need 543

for extensive parameter tuning. By showcasing the 544

utility of cross-modal retrieval and prompt engi- 545

neering, this work sets a new direction for future 546

explorations in enhancing LLMs’ applicability in 547

specialized domains such as protein science. 548
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7 Limitations549

While ProteinRAP demonstrates substantial im-550

provements, it has several limitations. Weakness551

in Protein Design Tasks remains a challenge, as552

the method performs well in understanding, it has553

suboptimal results in protein design tasks, which554

is shown in Appendix A. Retrieval Methodology555

Limitations hinder performance when high-quality556

data is lacking, and optimal base model selection557

requires further study. Furthermore, Limited Ex-558

ploration of Other Scientific Entities indicates559

that our approach has yet to extend beyond protein560

sequences to entities such as DNA and RNA. We561

will improve the method in the later feature work562

to solve these limitations.563

8 Potential Risks564

In this study, the proposed ProteinRAP method565

focuses on enhancing the protein understanding ca-566

pabilities of LLMs by using retrieval-augmented567

prompts. While this approach does not involve568

human subjects, it is crucial to consider the poten-569

tial risks associated with its application. Similar570

to other LLM-focused research, ProteinRAP could571

be misused to generate inaccurate or misleading572

descriptions of protein properties, which may have573

implications for scientific research and applications.574

Additionally, the enhanced understanding capabili-575

ties of LLMs in the biological domain might inad-576

vertently contribute to the development of harmful577

applications, such as engineered pathogens, if not578

properly regulated. Therefore, we encourage re-579

searchers and practitioners employing this method580

to remain vigilant about these risks and to imple-581

ment appropriate safeguards to minimize potential582

misuse.583
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models to synthesize protein sequences that meet878

specific functional and structural constraints. Mod-879

els must interpret complex instructions detailing880

properties like enzymatic specificity, metal ion881

binding, and solubility optimization, and output882

corresponding amino acid sequences. This task883

has critical applications in drug design, synthetic884

biology, and enzyme engineering.885

A.2 Experimental Results886

We evaluated ProteinRAP alongside other baseline887

models, including Galactica-1.3B, Llama variants,888

ProLLaMA, and general RAP models, on the Mol-889

Instructions Protein Design task. Performance was890

evaluated using metrics such as BLEU (2/4-gram),891

METEOR, and ROUGE. Table 7 details the results.892

A.3 Result Analysis and Conclusion893

The results reveal that retrieval-augmented prompts894

(RAP) provide limited improvements in protein895

design tasks, as LLMs struggle to effectively in-896

terpret and utilize retrieved protein sequence in-897

formation compared to textual data. In contrast,898

BioT5+, which underwent unsupervised pretrain-899

ing on protein-specific datasets, significantly out-900

performs RAP-based and instruction-tuned autore-901

gressive models across most metrics. This under-902

scores the importance of domain-specific pretrain-903

ing for understanding complex protein data. Future904

work should explore combining unsupervised pre-905

training on protein data with RAP approaches to906

further enhance task performance.907

B Model Training Details908

B.1 Protein-Text CLIP909

Model Architecture The Protein-Text CLIP910

model consists of two primary components: a pro-911

tein sequence encoder and a text encoder. The pro-912

tein encoder is based on ESMC (600M) (Hayes913

et al., 2025) for protein sequence understand-914

ing, while the text encoder leverages BioGPT915

(Luo et al., 2022) to process textual descriptions.916

Both encoders generate high-dimensional embed-917

dings, which are then projected into a shared 512-918

dimensional latent space using linear projections919

(see Table 8). Ablation about protein encoder and920

text encoder can be seen in Table 6.921

During training, the model employs contrastive922

learning to align protein and text representations.923

Specifically, mean-pooled embeddings from both924

modalities are normalized and passed through sep-925

arate projection layers. The resulting embeddings 926

are used to compute a similarity score, scaled by a 927

learnable temperature parameter σ, and optimized 928

using cross-entropy loss. 929

Hyper-Parameters We used the hyper- 930

parameters summarized in Table 8 to train 931

Protein-Text CLIP. Mixed precision training 932

with bf16 was enabled to accelerate large-scale 933

computations on GPUs. During training, we 934

combine two datasets: SwissProt and OntoProtein, 935

for both protein and text inputs. 936

Training Procedure: The model was trained 937

on 4 GPUs using the "Accelerate" library. Protein- 938

text pairs were tokenized and encoded separately 939

for training. During inference, embeddings were 940

extracted to compute recall at various thresh- 941

olds (recall@k) using FAISS indexing. The loss 942

function alternates between optimizing logits for 943

protein-text alignment and text-protein alignment. 944

The reported evaluation metrics include re- 945

call@1, recall@10, and recall@20. These metrics 946

provide quantitative measures of the model’s abil- 947

ity to retrieve correct text descriptions for a given 948

protein sequence. 949

B.2 Large Language Model 950

Model Architecture We leverage a large pre- 951

trained causal language model for protein-related 952

tasks, fine-tuned using instruction-tuning tech- 953

niques. The training process builds upon the 954

Llama3 (Dubey et al., 2024) framework, with ad- 955

ditional lightweight parameter-efficient finetuning 956

(PEFT) using the LoRA (Low-Rank Adaptation) 957

mechanism (Hu et al., 2022). 958

The overall architecture consists of a 959

transformer-based auto-regressive model fine- 960

tuned on protein-text tasks. LoRA fine-tuning is 961

applied to selected projection layers (e.g., q_proj, 962

k_proj, v_proj, o_proj), allowing modification 963

of only a small subset of the model’s parameters to 964

efficiently adapt to domain-specific tasks. 965

Hyper-Parameters The LLM fine-tuning pro- 966

cess utilizes hyper-parameters shown in Table 9. 967

Training is conducted with DeepSpeed-enabled dis- 968

tributed GPUs, utilizing mixed-precision (bf16) 969

and memory optimization techniques. LoRA sig- 970

nificantly reduces memory requirements by freez- 971

ing the majority of model weights and introducing 972

lightweight low-rank updates. The cosine learning 973

rate schedule with warm-up ensures stable conver- 974

gence. 975

12



Figure 4: Ablation study of retrieval numbers of four tasks.

Protein Encoder Text Encoder
In Batch (64) In Test Set (10k)

R@1 R@10 R@1 R@10

ESM-C 300M BioMedBERT 0.87 0.99 0.17 0.58
ESM-C 300M BioGPT 0.90 0.99 0.22 0.66
ESM-C 600M BioMedBERT 0.89 0.99 0.20 0.63
ESM-C 600M BioGPT 0.90 0.99 0.23 0.67

Table 6: Ablation Study in Protein Encoder and Text Encoder selection.

Model BLEU-2 BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L

Galactica-1.3B 8.57 3.98 15.57 32.63 14.57 25.56
Llama-3.1-8B-Instruct 8.55 3.73 18.97 47.48 22.54 39.02
Llama-3.2-1B-Instruct 8.26 3.59 17.83 48.21 23.68 37.69
ProLLaMA Stage 1 5.25 2.25 12.73 18.38 8.86 15.23
BioT5+ (ROUGE-L only) - - - - - 63.44
ProteinRAP 13.91 6.00 24.78 47.48 22.95 38.60

Table 7: Model performance on the Mol-Instructions Protein Design task.

Evaluation The evaluation follows multi-metric976

assessment using BLEU, Meteor, and ROUGE977

scores. During inference, sampling parameters978

for text generation include a top-p threshold of979

0.9, temperature of 0.6, and max output length of980

512 tokens. The model effectively handles protein-981

oriented tasks such as catalytic activity annotation982

and protein design, demonstrating high alignment983

between predicted and ground-truth outputs. 984

C Additional Dataset and Details 985

The datasets used in our study consist of three main 986

parts. 987

(a) The Swiss-Prot dataset includes proteins and 988

their text descriptions. It contains a training set of 989

430,595 entries with an average protein length of 990
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Hyper-parameter Value

Protein encoder ESMC,
Text encoder BioGPT
Protein feature dimension 1152
Text feature dimension 768
Batch size 32
Learning rate 4e-5
Number of epochs 1
Mixed precision bf16
Max protein sequence length 1024
Max text sequence length 512
Projection dimension 512
Optimizer AdamW
Scheduler linear decay
Logit scale initialization 2.6592
Training Epochs 50
Approximate training duration 2 days

Table 8: Hyper-parameter settings used for Protein-Text
CLIP.

336 and an average text length of 48. The validation991

set comprises 10,000 entries, with average protein992

and text lengths of 358 and 59, respectively. The993

test set also consists of 10,000 entries, with average994

lengths of 357 for proteins and 60 for text.995

(b) The ProteinKG25 dataset also features pro-996

teins and their text descriptions. The training set997

has 422,315 entries, with average protein and text998

lengths of 338 and 101, respectively. The validation999

set, containing 10,000 entries, has average lengths1000

of 360 for proteins and 104 for text. Similarly, the1001

test set includes 10,000 entries, with average pro-1002

tein and text lengths of 360 and 107, respectively.1003

(c) For protein property prediction tasks, the1004

dataset contains various aspects such as protein1005

function with 110,689 entries and 3,494 molecu-1006

lar instructions (PMol). Catalytic activity is rep-1007

resented by 51,573 entries with 1,601 PMol. Do-1008

main/Motif has 43,700 entries with 1,400 PMol,1009

and functional description involves 83,939 entries1010

with 2,633 PMol.1011

C.1 Protein Retrieval1012

Protein Retrieval aims to perform bidirectional re-1013

trieval between protein sequences and textual de-1014

scriptions using datasets such as SwissProt and Pro-1015

teinKG25. A pretrained Protein-Text CLIP model1016

is employed, evaluated with Recall@k. The task1017

includes: protein-to-text retrieval: Given a protein1018

sequence, retrieve its corresponding textual descrip-1019

Hyper-parameter Value

Learning rate for LoRA 1e-4
Learning rate for full parameter 4e-5
Batch size per device 2
Gradient accumulation steps 8
LoRA rank 8
LoRA α 32
LoRA dropout 0.05
Max sequence length 1024 tokens
RAP max sequence length 4096 tokens
Number of epochs 1
Optimizer AdamW
LR scheduler type Cosine
Warm-up ratio 0.1
Weight decay 1e-2
Mixed precision bf16
Gradient checkpointing Enabled
Devices 8 A100-80GB
Approximate training duration 2 hours per task
DeepSpeed config Zero-2

Table 9: Hyper-parameter settings during training.

tion. This task benchmarks the ability of models to 1020

bridge protein and text representations. 1021

C.2 Protein Caption 1022

Protein Caption generates functional, subcellular, 1023

and molecular similarity descriptions for proteins. 1024

Using SwissProt annotations. This task enables 1025

functional characterization of unknown proteins. 1026

A detailed breakdown, along with related query- 1027

answer tasks, is shown in Table 10. 1028

D Details on Metrics 1029

We evaluate the model using several commonly 1030

used evaluation metrics adapted to protein descrip- 1031

tion generation and understanding tasks. Here, 1032

we detail these metrics, including their calculation 1033

method, significance, and specific usage. 1034

Exact Match: This metric measures the propor- 1035

tion of predictions that exactly match the ground 1036

truth. It is typically used for retrieval tasks and 1037

provides an intuitive understanding of prediction 1038

accuracy. 1039

Recall@k: This metric evaluates whether the 1040

correct entity appears in the top-k retrieved items. 1041

For a prediction system: 1042

BLEU: (Papineni et al., 2002) BLEU, or BiLin-
gual Evaluation Understudy, is a metric often used
to measure the fluency and correspondence of
machine-generated sequences against reference de-
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scriptions. Employing n-grams, we compute the
overlap:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
,

where BP is a brevity penalty, wn are the weights1043

typically equal for all n-grams,
∑N

n=1wn = 1, and1044

pn is the precision for n-grams.1045

ROUGE: (Lin, 2004) Recall-Oriented Under-1046

study for Gisting Evaluation (ROUGE) measures1047

the quality of machine-generated text by comparing1048

its overlap with a reference set of word sequences.1049

Specifically, it evaluates:1050

• ROUGE-N (e.g., ROUGE-1, ROUGE-2):1051

Measures n-gram overlap.1052

• ROUGE-L: Based on the longest common1053

subsequence, it considers both recall and pre-1054

cision to compute an F1 score.1055

METEOR: (Banerjee and Lavie, 2005) ME-
TEOR considers synonyms and linguistic varia-
tions, providing a more semantically oriented evalu-
ation metric than BLEU or ROUGE. It is calculated
using unigram precision and recall, often integrat-
ing linguistic features like stemming and synonymy.
The simplified formula presented here is:

METEOR =
10m

(9k + p+ 10m)
,

where m is the number of aligned unigrams, k is the1056

fragmentation penalty, and p indicates precision.1057

E Prompt Construction Detail1058

E.1 Prompt Template1059

In the construction of prompts for protein-related1060

tasks, we employ distinct templates tailored to the1061

specific nature of the task: protein function analysis1062

or protein design. Each template is structured to in-1063

clude an introductory statement, a task description,1064

retrieved examples from the database, and specific1065

instructions for the task at hand. These compo-1066

nents ensure a comprehensive understanding and1067

execution of the given instructions.1068

E.2 Prompt Case1069

To better illustrate the application of these tem-1070

plates, a Retrieval Augmented Prompt sample for1071

the general function task is provided. This exam-1072

ple showcases how retrieved examples and task-1073

specific instructions are integrated to enhance the1074

problem-solving process.1075

F License 1076

In this section, we provide an overview of the li- 1077

censing terms for several models and datasets uti- 1078

lized in this study, detailing their respective usage 1079

conditions. 1080

Swiss-Prot Database (Bairoch and Apweiler, 1081

2000) 1082

The Swiss-Prot Database is distributed under the 1083

UniProt Consortium’s license, which allows free 1084

access for research and non-commercial purposes. 1085

Users must attribute the source and agree not to 1086

distribute the database without prior permission 1087

from the consortium. 1088

UniProt Database (Consortium, 2019) 1089

The UniProt Database is available under the Cre- 1090

ative Commons Attribution (CC BY 4.0) License. 1091

This license permits users to share and adapt the 1092

data for any purpose, provided appropriate credit 1093

is given, a link to the license is provided, and indi- 1094

cation of any changes made is specified. 1095

Mol-Instructions Dataset (Fang et al., 2024) 1096

Released under the Creative Commons 1097

Attribution-NonCommercial 4.0 International 1098

License (CC BY-NC 4.0). This license permits 1099

use, sharing, and adaptation of the dataset for 1100

non-commercial purposes, with appropriate 1101

attribution and indication of changes. Commercial 1102

use requires additional permissions. 1103

LLaMA 3 (Dubey et al., 2024) 1104

The LLaMA 3 model is released under the 1105

LLaMA Community License. This license permits 1106

use, modification, and distribution, with specific 1107

conditions such as prohibitions against using the 1108

model for training other language models. For com- 1109

mercial use, compliance with Meta’s Acceptable 1110

Use Policy is mandatory, and entities with over 700 1111

million monthly active users must obtain a separate 1112

license from Meta. 1113

BioT5+ Model (Pei et al., 2024) 1114

The BioT5+ model is available under the MIT 1115

License. This allows for free use, modification, and 1116

distribution, including for commercial purposes, as 1117

long as the original copyright notice and permission 1118

notice are retained. The software is provided "as 1119

is," with no warranties or guarantees, and the au- 1120

thors disclaim liability for any issues arising from 1121

its use. 1122
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GPT-4o (Achiam et al., 2023)1123

GPT-4o is proprietary software developed by1124

OpenAI. Access is provided through OpenAI’s ser-1125

vices, such as ChatGPT and the Azure OpenAI Ser-1126

vice, under subscription plans. The model is not1127

open-source and is governed by OpenAI’s terms of1128

service and usage policies.1129

DeepSeek V3 (Liu et al., 2024a)1130

DeepSeek V3 is distributed under the DeepSeek1131

License (v1.0, Oct 23, 2023). It grants a free,1132

global, irrevocable license for modification and1133

distribution, with strict restrictions on military use,1134

harm, misinformation, discrimination, and unau-1135

thorized data processing. Users must enforce these1136

limits in derivative works. Disclaimers of war-1137

ranties and liability are included, and any legal1138

matters are subject to the jurisdiction of Chinese1139

law, specifically in Hangzhou.1140
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Table 10: Protein Query-Answer and Caption Task Categories with Examples

Task Category Example

Protein Caption
Instruction: Provide a detailed description of the protein with the following
amino acid sequence, including its FUNCTION, SUBCELLULAR LOCATION,
and SIMILARITY.
Input: An amino acid sequence, e.g., “MAWRSGLCETD-
SRTLKQFLQEECMWKLVGK...”
Output: FUNCTION: Plays a critical role in cytoplasmic virus egress... SUB-
CELLULAR LOCATION: Virion tegument, Host cytoplasm, Host nucleus...
SIMILARITY: Belongs to the herpesviridae cytoplasmic envelopment protein 2
family...

General Function
Instruction: Could you evaluate the protein with this amino acid sequence and
present a summary of its features?
Input: An amino acid sequence, e.g., “MKSVHSSPQNTSHTIMTFYPT-
MEEFADFNT...”
Output: A brief summary highlighting general functions, e.g., “Histone demethy-
lase that specifically demethylates ’Lys-9’ of histone H3, thereby playing a central
role in histone code.”

Protein Function
Instruction: Could you analyze the protein corresponding to the amino acid
sequence and offer insights on its function, the biological processes it might
participate in, and its location within the cell?
Input: An amino acid sequence, e.g., “MNPKKLVIASRESLLAMWQAKHIQ-
GRLKAL...”
Output: Description of function, biological processes, and cellular localization,
e.g., “Hydroxymethylbilane synthase activity; implicated in heme biosynthetic
process; localized in cytoplasm.”

Catalytic Activity
Instruction: Given the protein sequence below, please analyze and describe the
catalytic activity of the corresponding enzyme, specifically the chemical reaction
it catalyzes.
Input: An amino acid sequence, e.g., “MKPVHIVSSAQMRWADMQTMQK-
TPSRTLME...”
Output: Chemical reaction catalyzed by the enzyme, e.g., “(6S)-NADPHX +
ADP = AMP + H(+) + NADPH + phosphate.”

Domain/Motif
Instruction: Please examine the following protein sequence and predict any
domains or motifs you can discern.
Input: An amino acid sequence, e.g., “MKSIEVHTDGSCLGNPGPGGWAALL-
RYNGR...”
Output: Identified domains or motifs, e.g., “RNase H type-1 domains.”
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Figure 5: A Retrieval Augmented Prompt sample on the general function task.
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Protein Function Analysis Template
Introductory Statement:
You are an assistant that helps with protein function analysis.
Task Description:
Task: {Task_Instruction}
Target Protein: {Target_Protein}
Retrieved Examples:
Below are similar proteins retrieved from a database along with their functions:
Example 1: Protein: {Protein1} Answer: [{Function1}]
Example 2: Protein: {Protein2} Answer: [{Function2}]
Example 3: Protein: {Protein3} Answer: [{Function3}]
Example 4: Protein: {Protein4} Answer: [{Function4}]
Example 5: Protein: {Protein5} Answer: [{Function5}]
Instruction for Analysis:
Please analyze and infer the possible function of the target protein based on the given information.
Refer to the functions of similar proteins and perform logical reasoning.

Table 11: Template for Protein Function Analysis

Protein Design Template
Introductory Statement:
You are an assistant that helps with protein design.
Task Description:
Task: {Task_Instruction}
Functional Description: {Functional_Description}
Retrieved Examples:
Below are similar tasks retrieved from a database along with their answer:
Example 1: Description: {Description1} Answer: [{Design1}]
Example 2: Description: {Description2} Answer: [{Design2}]
Example 3: Description: {Description3} Answer: [{Design3}]
Example 4: Description: {Description4} Answer: [{Design4}]
Example 5: Description: {Description5} Answer: [{Design5}]
Instruction for Design:
Please design the target protein based on the given information.

Table 12: Template for Protein Design
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