
Does Label Smoothing Help Deep Partial Label Learning?

Xiuwen Gong 1 Nitin Bisht 1 Guandong Xu 1 2

Abstract
Although deep partial label learning (deep PLL)
classifiers have shown their competitive perfor-
mance, they are heavily influenced by the noisy
false-positive labels leading to poorer perfor-
mance as the training progresses. Meanwhile,
existing deep PLL research lacks theoretical guar-
antee on the analysis of correlation between label
noise (or ambiguity degree) and classification per-
formance. This paper addresses the above limita-
tions with label smoothing (LS) from both theo-
retical and empirical aspects. In theory, we prove
lower and upper bounds of the expected risk to
show that label smoothing can help deep PLL.
We further derive the optimal smoothing rate to
investigate the conditions, i.e., when label smooth-
ing benefits deep PLL. In practice, we design a
benchmark solution and a novel optimization al-
gorithm called Label Smoothing-based Partial La-
bel Learning (LS-PLL). Extensive experimental
results on benchmark PLL datasets and various
deep architectures validate that label smoothing
does help deep PLL in improving classification
performance and learning distinguishable repre-
sentations, and the best results can be achieved
when the empirical smoothing rate approximately
approaches the optimal smoothing rate in theo-
retical findings. Code is publicly available at
https://github.com/kalpiree/LS-PLL.

1. Introduction
Partial label learning (PLL) (Cour et al., 2011; Chen et al.,
2014; Yu & Zhang, 2017) is an important weakly-supervised
learning problem that allows each instance to be annotated
with a set of candidate labels, with only one being the true

1Faculty of Engineering and Information Technology, Uni-
versity of Technology Sydney, NSW, Australia 2Department of
Computing, The Hong Kong Polytechnic University (PolyU),
Kowloon, Hong Kong. Correspondence to: Guandong Xu
<Gdxu@eduhk.hk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

label. PLL has attracted increasing attention in real-world
applications due to its lower labeling cost, such as, automatic
face recognition, automatic object detection, etc.

In recent years, PLL has evolved from conventional PLL
to deep PLL (i.e., from linear/kernel-based models to deep
neural networks (DNNs)-based models) as a result of DNNs’
remarkable training ability on large-scale datasets. The main
challenge for deep PLL is that the ground-truth label in PLL
is unkown while DNNs largely depend on the precisely la-
beled data to guarantee the effectiveness of training. More
specifically, DNNs are over-confident on any fed example.
If the DNNs are not fed data with true labels, the learned
deep PLL classifiers perform worse than the desired ones as
with the training process continues. Moreover, what changes
with the PLL evolvement is the label noise, from uniform to
non-uniform, and from naive to competitive/realistic. Most
deep PLL methods assume that the noisy labels are ran-
domly generated from a uniform distribution (Lv et al.,
2020; Feng et al., 2020; Wen et al., 2021; Wang et al., 2022).
However, the noisy labels are usually high-correlated with
the true label and instances in real-world scenarios, which
makes the deep PLL problem more challenging than the
uniformally generated label noise. As is also pointed out
by Xu et al. (2021) that the candidate labels are always
instance-dependent. Yan & Guo (2023) also point out that
it is more realistic to consider the competitive noise, which
can demonstrate stronger association relationships with a
true label than a random label noise.

Here comes a question: What will happen when competi-
tive noise meets the over-confidence of deep PLL? Larger
performance degradation, definitely! In addition, existing
research on deep PLL lacks theoretical guarantee on the
analysis of correlation between label noise (or ambiguity
degree) and classification performance. These problems mo-
tivate us to figure out a solution. Label smoothing (Szegedy
et al., 2016) has shown to be effective in denoising and im-
proving predictive performance of deep learning models by
preventing DNN from becoming over-confident. Does label
smoothing help deep PLL? If so, when can label smoothing
benefit PLL? Little research has been done to explore this.

In this paper, we provide a novel insight into deep PLL by
investigating the effectiveness of label smoothing from both
theoretical and empirical aspects. We first propose a novel
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label smoothing-based expected risk for deep PLL. Then,
we put forward a definition called generalized ambiguity
degree to quantify the competitive label noise in real-world
scenarios. Theoretically, we show that label smoothing can
help deep PLL under mild conditions. We prove lower and
upper bounds of the expected risk w.r.t. label smoothing
on partial data to show its approximate equivalence to the
expected risk w.r.t. the label smoothing on clean data. More-
over, we derive the optimal smoothing rate to investigate
the conditions. We pioneer the theorectical guarantee on
the correlation between the classification performance (de-
termined by the optimal smoothing rate) and label noise
(quantified by the generalized ambiguity degree), which
sheds light on the parameter choice of smoothing rate in
empirical studies. We also prove an estimation error bound
of the empirical risk to further validate the effectiveness of
label smoothing for deep PLL. Empirically, we propose a
benchmark solution, and design a novel algorithm named
Label Smoothing-based Partial Label Learning (LS-PLL) to
optimize the objective function with respect to the empirical
risk. Extensive experimental results on various competitive
noise PLL datasets and different deep architectures validate
that label smoothing does help deep PLL in improving per-
formance and learning distinguishable representations, and
the best results can be achieved when the empirical smooth-
ing rate approximately approaches the optimal smoothing
rate in theoretical findings.

2. Related Work
Partial label learning (PLL), also known as ambiguous-label
learning (Hüllermeier & Beringer, 2006; Zeng et al., 2013)
or superset-label learning (Gong et al., 2018; Liu & Diet-
terich, 2014; 2012), is a weakly supervised learning problem
(Zhou, 2017), which differs from (semi-)supervised learning
(Liu & Tsang, 2017; Liu et al., 2017; 2019; Chen et al., 2023;
Mao et al., 2023). In PLL, each instance has a collection
of candidate labels, only one of which is the ground-truth
label while the others are false positive labels, resulting in
ambiguity while training classification models.

Conventional partial-label learning. Conventional disam-
biguation methods for PLL can be broadly divided into two
categories (Lyu et al., 2021; Zhou et al., 2017): disambigua-
tion by candidate label average methods, or disambigua-
tion by ground-truth label identification methods. For the
average-based methods (Cour et al., 2011; Hüllermeier &
Beringer, 2006; Zhang & Yu, 2015), all candidate labels
of each instance are treated equally as the ground-truth la-
bel, and the prediction is made by averaging the modeling
outputs. However, these kind of methods can be easily mis-
led by false-positive labels in the candidate label set, and
thus fail to generalize well in testing. For the identification-
based methods (Liu & Dietterich, 2012; Yu & Zhang, 2017;

Chai et al., 2020), the ground-truth label is regarded as a
latent variable and identified through an iterative refining
procedure. In addition, some labeling confidence-based ap-
proaches are proposed. For example, Zhang et al. (2016)
and Wang et al. (2019) proposed feature-aware disambigua-
tion methods to generate different labeling confidences over
candidate label set by utilizing the static and adaptive graph
structure of feature space. Xu et al. (2019) developed the
PL-LE approach that learns from partial label examples
via label enhancement, after which the generalized label
distributions are recovered by leveraging the topological
information of the feature space. Feng & An (2019) devel-
oped a self-training-based approach named SURE, which
jointly trains models and performs pseudo-labeling by in-
troducing the maximum infinity norm regularization on the
modeling outputs in order to automatically differentiate
the ground-truth label with high confidence. Yan & Guo
(2020) proposed a batch-based partial label learning algo-
rithm named PL-BLC, which dynamically corrects the label
confidence matrix of each training batch through taking the
prior averaging label confidence and the outputs of current
prediction network. With a high demand of big data in real-
world applications, conventional PLL methods has shown
limitations on processing large-scale datasets.

Deep partial-label learning. Recently, neural network
based methods are widely developped for PLL due to their
remarkable training ability on large-scale datasets. For ex-
ample, Lv et al. (2020) proposed a progressive identification
method named PRODEN for approximately minimizing the
proposed risk estimator, which updates the model and the
identification of true labels in a seamless manner. Yao et al.
(2020) proposed a PLL method called NCPD to train two
networks in a mutual learning manner in order to alleviate
the error accumulation problem. Feng et al. (2020) proposed
a generation model of candidate label sets, and develop two
novel PLL methods (i.e., RC and CC) that are guaranteed
to be provably consistent. Wen et al. (2021) proposed a
family of loss functions, which achieves risk consistency
by generalizing the uniform assumption on the generation
procedure of partial label sets. Wang et al. (2022) pro-
posed a contrastive learning-based method by embedding
class prototype-based label disambiguation strategy. Re-
cently, Yan & Guo (2023) proposed a mutual learning-based
method to solve the PLL problem, which is the first work
that considers the competitive noise setting under deep learn-
ing framework, and achieves SOTA prediction performance
for PLL.

Although deep PLL has shown its competitive performance,
it is still negatively and heavily impacted by the noisy false-
positive labels. This is because DNNs are largely dependent
on the precisely labeled data to guarantee effectiveness of
training, and are over-confident on any fed example. Specif-
ically, if the DNNs are not fed data with true labels, the
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learned deep PLL classifiers would be misled by the false
positive candidate labels and perform worse than the desired
ones as with the training process going on. What will hap-
pen when the competitve noise meets the over-confidence
of deep PLL? Larger performance degradation, definitely!
This motivates us to think of a way to alleviate this problem.

Label smoothing. Label smoothing is an emerging learning
paradigm, which has shown promise in denoising and also in
improving predictive performance of deep learning models
by preventing DNN from becoming over-confident (Szegedy
et al., 2016; Müller et al., 2019; Lukasik et al., 2020; Wei
et al., 2022). For any instance x, let y be the one-hot
vector form of the ground-truth label y, and yLS be the
label smoothing form of y. Following Szegedy et al. (2016),
the label smoothing formulation is defined as below:

yLS = (1− r) · y +
r

L
· 1 (1)

where r ∈ [0, 1] is the smoothing rate; L is the total number
of classes; and 1 is the all-ones vector. In above label
smoothing definition, one mixes the training label with a
uniform mixture over all possible labels. For example, when
r = 0.4, the smoothed label of y = [0, 1, 0, 0]T becomes
yLS = [0.1, 0.7, 0.1, 0.1]T .

Does label smoothing help deep PLL? If so, when does
label smoothing benefit PLL? These research has been un-
explored. This paper will present a novel perspective by
connecting label smoothing to deep PLL with solid theorec-
tical gurantees and empirical studies.

3. Theoretical Analysis
In this section, we provide a closer look at partial label learn-
ing in view of Label Smoothing (LS). Firstly, we develop
definitions of smoothed partial label and the smoothed par-
tial label loss, and then propose the expected risk based on
the defined loss. Secondly, we define generalized ambiguity
degree for PLL, which is crucial important for later theo-
rems and proofs. Thirdly, we prove lower and upper bounds
for the proposed risk and derive the optimal smoothing rate
through analysis. Last but not the least, an estimation error
bound of empirical risk is proved.

To start with, we define some notations in the paper. Let S =
{(xi, Yi)ni=1} = {(xi, {yi} ∪ Zi)ni=1} denote the partial
label dataset drawn i.i.d. n times from a distribution P.
For each training example (xi, Yi), we have an instance
xi ∈ Rd with d features, and a corresponding candidate
label set Yi ⊆ Y , where Y = [L]=̇ {1, · · · , L}. In addition,
let yi denote the ground-truth label of xi, which is known to
reside in the corresponding candidate label set, but cannot
be directly accessible in the training phase; let Zi denote
the set of false-positive candidate labels. With the ablove
definitions, we have Yi = {yi} ∪ Zi, yi ∈ Yi, Zi ⊂ Yi,

yi /∈ Zi. We further assume that the clean date (xi, yi) is
drawn from some unknown distribution D. Let X, Y, Y∗,
Z be the random variables of xi, Yi, yi, Zi respectively.
We then have (X,Y) ∼ P, (X,Y∗) ∼ D. To simplify
formulations, we use (X,Y) to denote (X,Y) ∼ P, and
use (X,Y∗) to denote (X,Y∗) ∼ D in the expectations.

3.1. The Expected Risk

We first derive the expected risk for label smoothing-based
PLL, and then provide theoretical analysis of the risk.

3.1.1. DERIVATION OF THE EXPECTED RISK

In PLL, the ground-truth label is unknown, but is assumed to
reside in the candidate label set. This makes label smoothing
for PLL to be different from the traditional definition in
Eq. (1) in Appendix. To cope with this, we first define
smoothed partial labels for PLL as follows:

Definition 3.1 (Smoothed Partial Labels). Let (x, Y ) be
a training example, where x denotes the instance and Y
denotes the candidate label set. Let Y ∈ {0, 1}L denote the
corresponding L-dimension label vector of Y ; Y LS ∈ RL
denote the smoothed label vector of Y ; Y LS,j be the j-th
element of Y LS . Assume that y is the ground-truth label
of the instance x, we then have the smoothed labels of the
training example as follows:

Y LS,j =

{
(1− r) · Ij=y + r

|Y | , if j ∈ Y
0, otherwise

(2)

where I is an indicator function; r is the smoothing rate, and
|Y | is the size of candidate label set.

Under the definition of label smoothing for PLL, we mix
the training labels with a uniform mixture over all can-
didate labels. For example, when r = 0.2, y = 3,
the smoothed label vector of Y = [0, 1, 1, 0]T becomes
Y LS = [0, 0.1, 0.9, 0]T .

We use f to denote a deep neural network, and f(xi) ∈ RL
denotes the model prediction scores of xi, with f j(xi) being
the j-th element. In the following parts, we use f j to denote
f j(xi) for simplicity. Let ` : [L] × RL → R+ be a loss
function, where `(f(xi), yi) is the penalty for the model pre-
diction scores given the true label yi ∈ Yi. Throughout this
paper, we use softmax cross-entropy loss (SCE) as the loss
function `. When SCE is applied to the hard labels in multi-
class classification, `(f(x), y) = −fy + log

∑
k∈[L] e

fk

for
any training example (x, y), where y is the correct class.
However, the ground-truth label is unknown in PLL, thus
we cannot apply multi-class SCE directly to PLL. Instead,
we choose to minimize SCE between the smoothed candi-
date labels and the soft outputs of the deep neural networks.
Following the definition of smoothed partial labels in Defini-
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tion 3.1, we can further define the loss function of smoothed
partial labels as follows:

Definition 3.2 (Smoothed Partial Label Loss). For any train-
ing example (x, Y ), the softmax cross-entropy loss for label
smoothing-based PLL can be defined as follows:

`(f(x),Y LS) =
∑
j∈Y

Y LS,j
(
− f j + log

∑
k∈[L]

ef
k)

(3)

where Y LS,j is defined Eq. (2).

To this end, we can define the expected risk for the label
smoothing-based PLL with the following formulation:

E(X,Y)

[
`
(
f(X),YLS

)]
(4)

3.1.2. ANALYSIS OF EXPECTED RISK

In this subsection, we aim to analyze the composition un-
derlying the expected risk via the following thereom.

Theorem 3.3. The expected risk minimization with respect
to (w.r.t.) smoothed partial labels YLS in PLL setting
(Eq. (4)) is equivalent to the expected risk w.r.t. the un-
observed correct label Y∗ defined on the clean data, and
the expected risk w.r.t. the candidate labels Y defined on
the observed partially labeled data:

E(X,Y)

[
`
(
f(X),YLS

)]
= E(X,Y∗)

[
(1− r)`

(
f(X),Y∗

)]
+ E(X,Y)

[ r

|Y|
∑
j∈Y

`
(
f(X), j

)] (5)

Proof. Proof of this theorem can be found in Appendix.

Remark. Since our goal is to minimize the expected risk
in Eq. (4) (i.e., the term on the left side of Theorem 3.3),
we need that the sum of both terms on the right side of
Theorem 3.3 to be small. When the smoothing rate r → 0,
we can use the expected risk on smoothed partial label data
to approximately estimate the expected risk w.r.t. the clean
data. When the smoothing rate r → 1, we can use the ex-
pected risk on smoothed partial label data to approximately
estimate the expected risk w.r.t. the observed partial data.
When r ∈ (0, 1), the expected risk w.r.t. smoothed partial
labels is equivalent to the risks trading off between the risk
on clean data and that on the observed partial data. To sum
up, the proposed expected risk w.r.t. smoothed partial la-
bels in PLL setting (Eq. (4)) could be taken as an effective
way for partial label learning according to the choice of
r. Intuitively, the label smoothing rate r is supposed to be
correlated with the noise levels or the ambiguity degree of
the partially labeled data. Next, we define a crucial term,
called the generalized ambiguity degree, that will be used in
later theorems and derivation of the optimal smoothing rate.

3.2. Generalized Ambiguity Degree

We define the generalized ambiguity degree ε of partial label
learning (PLL) w.r.t. distribution P (X,Y∗,Z) as follows:

Definition 3.4 (Generalized Ambiguity Degree of PLL).

ε = sup
Z⊆Y\y

P (Z = Z|X = x,Y∗ = y) (6)

In words, the above-defined ambiguity degree ε corresponds
to the maximum probability of all candidate labels co-
occurring with the ground-truth label in PLL. Here, Z =
Y \ y, Y ⊆ Y and |Z| ≥ 1. When ε = 0, we have Z = ∅,
then the candidate label set only includes the ground-truth
label, which becomes the traditional multi-class classifica-
tion problem. When ε = 1, we have Z = Y \ y, then the
candidate label set includes all the labels, which turns out
to be the traditional unsupervised learning problem. Thus,
we only consider the ambiguity degree between 0 and 1 for
PLL, i.e., 0 < ε < 1.

Different from the ambiguity degree defined by Cour et al.
(2011), our definition can be taken as a generalization form.
Specifically, our generalized ambiguity degree corresponds
to the maximum probability of all false-positive candidate
labels co-occurring with the ground-truth label, while Cour
et al. (2011) considers only one false-positive candidate
label. In real-world scenarios, candidate label set often in-
volves more than one false-positive labels that are chosen
by annotators according to random or competitive strategies.
All these false-positive labels are supposed to have negative
impact on disambiguation, and the extent of difficulty in
disambiguation depends on the extent of ambiguity. Thus,
it is more reasonable to consider the generalized ambigu-
ity degree in real-world scenarios. For example, in online
image annotation, the true label of a dog image is Alaskan
Malamute, but online annotators with limited professional
knowledge may provide the image with downgraded label
confidence like Alaskan Malamute (0.30), Siberian Husky
(0.10), German Shepherd (0.10), Border Collie (0.05), Set-
ters (0.04), Irish Wolfhound(0.03), and many other labels
with lower confidence. If the size of candidate label set is
required to be 3, the unconfident annotator may provide the
candidate label set as {Alaskan Malamute (0.30), Siberian
Husky (0.10), German Shepherd (0.10)}, {Alaskan Mala-
mute (0.30), Siberian Husky (0.10), Border Collie (0.05)},
or {Alaskan Malamute (0.30), Siberian Husky (0.10), Set-
ters (0.04)}. Assume candidate labels are i.i.d. gener-
ated, then the ambiguity degree given our definition will
be 0.20 = sup{0.20, 0.15, 0.14}, while Cour et al. (2011)
only considers the highest probability of one candidate label,
the ambiguity degree is 0.10 = sup{0.10, 0.10, 0.10}. Our
definition of ambiguity degree can demonstrate the differ-
ence among the three candidate label sets, while Cour et al.
(2011) can not. Thus, our definition of ambiguity degree is

4



Does Label Smoothing Help Deep Partial Label Learning?

more suitable for the competitive noise in real-world appli-
cations, and the uniformly generated noise could be taken
as a special case with all values being equal.

3.3. Lower and Upper Bounds

We prove the lower and upper bounds of the expected risk,
and further derive the optimal smoothing rate ropt. To start
with, we provide the lower bound in the following theorem:

Theorem 3.5 (Lower bound). For any instance (x, {y}∪Z),
let |Z| = c, ropt denote the optimal smoothing rate on
partial data. r∗ denotes the optimal smoothing rate on clean
data, and is usually set to a very small value in empirical
practice. Suppose t1 =

(
1− r+ r

c+1

)
1

1−r∗ , t2 = t1
(L
c)
· r
∗

L ,

t3 =
(
rε
c+1 − t2

)
, then the expected risk w.r.t. the loss of

(unobserved) smoothed correct label Y∗LS defined on clean
multi-class data could be lower bounded by the expected
risk w.r.t. the loss of (observed) smoothed partial label YLS

defined on PLL data with two extra bias terms as follows:

E(X,Y∗)

[
`
(
f(X),Y∗LS

)]
≥ E(X,Y)

[ 1

t1
`
(
f(X),YLS

)]
+ E(X,Y∗)

[ t2
t1

∑
Z⊂Y\Y∗

∑
j∈Z̄

`
(
f(X), j

)]
− E(X,Y∗)

[ t3
t1

∑
Z⊂Y\Y∗

∑
j∈Z

`
(
f(X), j

)]
(7)

Proof. Proof of this theorem can be found in Appendix.

It is known that t1 > 0 as a result of smoothing rate r ∈
[0, 1], and we can then get t2 > 0. Consequently, the lower
bound in (7) will become tighter by making the weight of the
third term equal to zero, i.e., t3 = 0. With some calculations,
we can derive the optimal partial label smoothing rate ropt:

ropt =
(c+ 1)r∗

∆
,where ∆ = L

(
L

c

)
ε(1− r∗) + cr∗

(8)

To this end, we bridge a connection between the optimal
label smoothing rate and the generalized ambiguity degree
by Eq. (8). By applying the optimal smooth rate ropt to
Eq. (7), we further derive an optimized lower bound.

Theorem 3.6 (Optimized lower bound). Under the condi-
tions in Theorem 3.5, partial label learning with the optimal
smoothing rate r = (c+1)r∗

∆ , where ∆ = L
(
L
c

)
ε(1− r∗) +

cr∗, yields the optimal lower bound as follows:

E(X,Y∗)

[
`
(
f(X),Y∗LS

)]
≥ E(X,Y)

[ 1

t1
· `
(
f(X),YLS

)]
+ E(X,Y∗)

[ t2
t1

∑
Z⊂Y\Y∗

∑
j∈Z̄

`
(
f(X), j

)] (9)

Next, we demonstrate the upper bound as follows:

Theorem 3.7 (Upper bound). Suppose the ambiguity de-
gree satisfies the condition that ε ∈ (δ, 1) and δ =
Lc−(L−1)cr∗

L(L−1)(L
c)(1−r∗)

, the expected risk w.r.t. the loss of (un-

observed) smoothed correct label Y∗LS defined on clean
multi-class data could be lower bounded by the expected
risk w.r.t. the loss of (observed) smoothed partial label YLS

defined on PLL data with a bias term as follows:

E(X,Y∗)

[
`
(
f(X),Y∗LS

)]
≤ E(X,Y)

[
`
(
f(X),YLS

)]
+ E(X,Y)

[r∗
L

∑
j∈Ȳ

`
(
f(X), j

)] (10)

Proof. Proof of this theorem can be found in Appendix.

Remark. Theorem 3.6 and Theorem 3.7 suggests that the
expected risk w.r.t. (unobserved) smoothed correct label
loss defined on the clean multi-class data could be lower
and upper bounded by the expected risk w.r.t. (observed)
smoothed partial label loss defined on PLL data. When
the partial label smoothing rate r is chosen to be optimal
in Theorem 3.6 and the ambiguity degree ε satisfies the
condition in Theorem 3.7, the optimization of smoothed
clean risk (unobserved) could be approximately estimated
by that of the smoothed partial risk (observed), which the-
oretically demonstrates our thinking of whether and when
label smoothing can help deep PLL.

3.4. Estimation Error Bound

In this subsection, we prove an estimation error bound for
the empirical risk to further demonstrate its effectiveness the-
oretically. To begin with, we restate some basic definitions,
i.e., Rademacher complexity (Bartlett & Mendelson, 2002)
and ρ-Lipschitz (Shalev-Shwartz & Ben-David, 2014), in
Definiton A.1 and Definiton A.2 in Appendix. Given the
definitions, we can derive the following Lemma:

Lemma 3.8 (ρ-Lipschitz for Label Smoothing-based PLL
Loss). Assume that the softmax cross-entropy loss (SCE)
`
(
f(x), y

)
is ρ-Lipschitz for every y, then the proposed La-

bel Smoothing-based PLL Loss `
(
f(x),Y LS

)
defined in

equation (3) is also ρ-Lipschitz with respect to f(x) for all
y ∈ Y .
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Proof. Proof of this lemma can be found in Appendix.

Lemma 3.9. Define a function space as G = {(x, Y ) 7→
`(f(x), Y LS)|f ∈ F}, then the following inequality holds:

Rn(G) ≤
√

2ρ
∑
y∈Y

Rn(Fy)

where Fy=̇{f : x 7→ f(x)|f ∈ F , y ∈ Y }, Rn(F) =
EXEσ[supf∈F

1
n

∑n
i=1 f(xi)].

Proof. Proof of this lemma can be found in Appendix.

Let Rexp(f) denote the expected risk for the la-
bel smoothing-based PLL defined in Eq. (4), and let
Remp(f) = 1

n

∑n
i=1 `

(
f(xi), Y

LS
i

)
denote the empirical

risk. Given the Rademacher bound on the maximal devia-
tion between the expected risk and the empirical risk, we
have the following theorem:

Theorem 3.10 (Estimation Error Bound). Assume the label
smoothing-based PLL loss function `(f(x), Y LS) is upper-
bounded by M , i.e., M = supf∈F `(f(x), Y LS). For any
η > 0, with a probability of at least 1− η, we have

sup
f∈F
|Rexp(f)−Remp(f)|

≤ 2
√

2ρ
∑
y∈Y

Rn(Fy) +
M

2

√
log 2

η

2n

Proof. Proof of this theorem can be found in Appendix.

Remark. Theorem 3.10 establishes a connection between
the expected riskRexp(f) and the empirical riskRemp(f)
with an upper bound. When the sample size n → ∞, the
empirical risk Remp(f) is expected to provide a good ap-
proximation of the expected riskRexp(f).

4. Benchmark Solution
In the previous section, our theories are based on the ex-
pected risk. In practice, we can only observe the finite PLL
samples while the distribution of partial label datasets are
unknown. In this section, we develop an optimization algo-
rithm, called Label Smoothing-based Partial Label Learning
Algorithm (LS-PLL Algorithm), to optimize the empirical
risk by training basic neural architectures and identifying
the ground-truth label alternately.

4.1. Neural Network Training

Let f denote a predictive network; let y be a latent ground-
truth variable. We can get the objective function of LS-PLL

given the empirical risk w.r.t. the smoothed partial data as
follows:

L(f, y) =
1

n

n∑
i=1

∑
j∈Yi

−Y LS,ji

f ji − log
∑
k∈[L]

ef
k
i


(11)

where Y LS,ji =

{
(1− r) · Ij=yi + r

|Yi| , if j ∈ Yi
0, otherwise

.

In each training iteration, we perform label smoothing on
the identified ground-truth label, and the ground-truth label
at the warm-up stage is randomly chosen from the can-
didate label set. We then train the predictive network by
minimizing the objective function in Eq. (11) with a mini-
batch based stochastic gradient descent algorithm. As the
performance of a prediction network is dependent on the
identified ground-truth label, we provide the ground-truth
label identification strategy in the next subsection.

4.2. Ground-truth Label Identification

For any instance xi, the probability vector of the predicton
network’s output is denoted by f(xi) with f ji being the j-th
element; the corresponding probability vector of the softmax
output is denoted by qi, with the j-th element being

qij =
ef

j
i∑

k∈[L] e
fk
i

(12)

In order to make the effect of predicting the ground-truth
label being stably accumulated with the increasing itera-
tions of training process, we update qij in a moving-average
manner as follows:

qtij = ηqtij + (1− η)qt−1
ij (13)

where η ∈ (0, 1) is a weighting parameter; t denotes the t-th
iteration.To mitigate the negative impact of false-positive
labels in the training process, we restrict j ∈ Yi. To guar-
antee the effectiveness of the accumulated softmax score
qtij , we constrain it to be within (0, 1) with the following
normalization:

q̂tij =


qtij∑

k∈Yi
qtik
, if j ∈ Yi

0, otherwise
(14)

Consequently, for each instance xi, we can identify its
ground-truth label yi at the t-th iteration as below:

yti = arg max
j
q̂tij (15)

As the neural network training and ground-truth label iden-
tification alternatively proceed in an iteration manner, the
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Algorithm 1 LS-PLL Algorithm
Input: PLL training data S; smoothing rate r; trade-off
weighting parameter η.

1: Initialize ground-truth label yi randomly chosen from
Yi for each instance xi;

2: for iter = 1, 2, . . . do
3: for batch = 1, 2, . . . do
4: Sample a mini-batch B from S;
5: Calculate smoothed labels for each instance on

current batch B according to Eq. (2);
6: Update the predictive network by minimizing the

objective function L in Eq. (11) with stochastic
gradient descent (SGD) algorithm;

7: Update the softmax output for each instance on
current batch according to Eq. (13), and then cal-
culate Eq. (14);

8: Update the ground-truth label for each instance on
current batch via Eq. (15).

9: end for
10: end for

probability vector of the softmax outputs updated through
moving-average and normalization strategies will become
more reflective on the ground-truth label, which in turn
brings a positive impact on the subsequent network training,
and gradually reduces the negative impact of false-positive
labels in the training process. The complete procedures
for implementing the proposed LS-PLL algorithm on each
mini-batch are summarized in Algorithm 1.

5. Experiments
We conduct experiments to validate the effectiveness of
label smoothing for deep PLL from two aspects: 1) vali-
date ‘whether’ label smoothing is effective for deep PLL. 2)
vadidate ‘when’ label smoothing benefits PLL.

5.1. Datasets and Implementation Details

We conduct experiments on four commonly used benchmark
datasets, i.e., Fashion-MNIST (Xiao et al., 2017), Kuzushiji-
MNIST (Clanuwat et al., 2018), CIFAR-10 and CIFAR-100
(Krizhevsky, 2009). Similar to the generation procedures
of candidate labels with competitive noise in Yan & Guo
(2023), we first produce a new label space constituted by
top-K highest probabilities predicted by a neural network
trained on the original clean dataset excluding the ground-
truth label. We then randomly generate integers as the size
of candidate labels for each instance with some constraints:
1) no less than one, no greater than one plus the size of new
label space; 2) the average number of all random integers
equals to that of candidate labels (Avg. #CL) specified in
our experiments. According to the size of candidate label

set, we generate noisy labels by choosing from the new
label space in a descending order of probability (exclud-
ing the true label) rather than randomly choosing, which
aims to make the label noise more competitive consider-
ing that more similar labels result in higher disambiguity.
The chosen noisy labels together with the true label form
the candidate label set. In detail, we choose the new la-
bel space from the top-6 predictions for Fashion-MNIST,
Kuzushiji-MNIST and CIFAR-10; and top-20 predictions
for CIFAR-100. The average number of candidate labels
(Avg. #CL) is specified to be 3, 4, 5 for Fashion-MNIST,
Kuzushiji-MNIST and CIFAR-10 respectively, and 7, 9, 11
for CIFAR-100. We employ LeNet-5 as the neural architec-
ture on the Fashion-MNIST and Kuzushiji-MNIST datasets,
ResNet-18 on CIFAR-10, and ResNet-56 on CIFAR-100.
The optimizer is stochastic gradient descent (SGD) (Rob-
bins et al., 1951) with momentum 0.9 and a weight decay
of 1e− 3 for model training. The mini-batch size, learning
rate and total training epochs are set to 128, 0.01, and 200
respectively. Moreover, the empirical smoothing rate r is
chosen from {0.1, 0.3, 0.5, 0.7, 0.9}. The weighting param-
eter η is set to be 0.9. The characteristics of each benchmark
dataset (including the number of features, classes, Avg.#CL
and architectures) are reported in Table 5 in Appendix.

5.2. Experimental Results w.r.t. ‘Whether’

We conduct experiments to validate whether label smoothing
is effective for deep PLL from two sides: Effect of label
smoothing on classification performance; Effect of label
smoothing on pre-logits.

Effect of label smoothing on classification performance:
In order to demonstrate how the classification performance
is influenced by label smoothing for deep PLL, we com-
pare test accuracies of basic neural architectures with label
smoothing (i.e., w/ LS) and without label smoothing (i.e.,
w/o LS) on PLL datasets under various noise levels ((i.e.,
Avg. #CL) in Table 1 and Table 2. From these results,
we can observe that the prediction accuracy w/ LS (i.e.,
LS-PLL) significantly outperform those w/o LS on all PLL
datasets under various noise levels. Meanwhile, the results
are consistent across all architectures, which indicates that
label smoothing is effective for deep PLL regardless of
different neural network architectures. Moreover, the supe-
riority of label smoothing is more evident as the varying
noise level becomes larger on all datasets. For example, on
CIFAR-10, LS-PLL improves the best accuracy w/o LS by
approximately 19%, 26%, 29% respectively. It can thus,
easily be concluded that label smoothing is effective for
deep PLL with superior classification performance.

Effect of label smoothing on pre-logits in PLL: To illus-
trate how pre-logits (i.e., penultimate layer representations)
are affected by label smoothing, we follow the visualization
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Table 1. Test accuracy of training basic network architectures LeNet-5, ResNet-18 with and without label smoothing on Fashion-MNIST,
Kuzushiji-MNIST, CIFAR-10 with various noise levels (i.e., Avg.#CL =3, 4, 5). The best results are highlighted in bold.

Dataset Achitecture Acc (Avg.#CL = 3) Acc (Avg.#CL = 4) Acc (Avg.#CL = 5)

Fashion-MNIST LeNet-5 w/o LS 87.80 83.36 81.23
w/ LS (i.e., LS-PLL) 89.99 84.32 84.06

Kuzushiji-MNIST LeNet-5 w/o LS 85.28 76.31 67.25
w/ LS (i.e., LS-PLL) 90.64 87.85 76.10

CIFAR-10 ResNet-18 w/o LS 63.39 51.47 38.96
w/ LS (i.e., LS-PLL) 82.97 77.68 67.23

Table 2. Test accuracy of training basic network architecture ResNet-56 with and without label smoothing on CIFAR-100 with various
noise levels (i.e., Avg.#CL =7, 9, 11). The best results are highlighted in bold.

Dataset Method Acc (Avg.#CL = 7) Acc (Avg.#CL = 9) Acc (Avg.#CL = 11)

CIFAR-100 ResNet-56 w/o LS 34.15 33.60 21.00
w/ LS (i.e., LS-PLL) 57.90 47.50 35.50

Table 3. Test accuracy comparisons of LS-PLL w.r.t. varying
smoothing rate r on Fashion-MNIST (FMNIST), Kuzushiji-
MNIST(KMNIST) and CIFAR-10 datasets at different noise levels
(i.e., Avg.#CL =3, 4, 5). The best results are highlighted in bold.

Dataset SmoothRate Avg.#CL = 3 Avg.#CL = 4 Avg.#CL = 5

FMNIST

r = 0.1 84.39 72.96 52.55
r = 0.3 84.72 66.89 55.87
r = 0.5 84.73 76.42 47.56
r = 0.7 84.80 81.48 47.95
r = 0.9 89.99 84.32 84.06

KMNIST

r = 0.1 81.11 47.99 36.10
r = 0.3 88.22 53.39 33.68
r = 0.5 89.34 55.17 50.50
r = 0.7 89.35 77.77 34.37
r = 0.9 90.64 87.85 76.10

CIFAR-10

r = 0.1 82.62 64.20 48.99
r = 0.3 82.97 77.68 53.09
r = 0.5 82.06 76.95 62.31
r = 0.7 82.19 77.24 62.92
r = 0.9 81.31 75.99 62.38

Table 4. Test accuracy comparisons of LS-PLL w.r.t. varying
smoothing rate r on CIFAR-100 dataset at different noise lev-
els (i.e., Avg.#CL = 7, 9, 11). The best results are highlighted in
bold.

Dataset SmoothRate Avg.#CL=7 Avg.#CL=9 Avg.#CL=11

CIFAR-100

r = 0.1 37.62 27.40 16.40
r = 0.3 38.00 20.00 22.70
r = 0.5 43.50 25.80 22.10
r = 0.7 48.67 38.80 25.10
r = 0.9 57.90 47.50 33.10

method from Müller et al. (2019) to compare the pre-logits
of basic neural architectures trained without label smooth-
ing (i.e., w/o LS) and with label smoothing (i.e., w/ LS) on
PLL datasets under various noise levels (i.e., Avg. #CL)
in Figs. 1-4. We show Fig. 1 of CIFAR-10 in main pa-
per, while the rest figures can be found in Appendix. The
first column represents pre-logits of examples trained w/o
LS, while the second to sixth column represent pre-logits
of examples trained w/ LS under varying smoothing rate
r = 0.1, 0.3, 0.5, 0.7, 0.9. Each row represents one kind of

noise levels. From these figures, we can observe that the
first column w/o LS shows broad clusters, while the last five
columns w/ LS show tight clusters through various noise
levels (i.e., Avg. #CL) on all PLL datasets. This is because
label smoothing encourages activations of the penultimate
layer to be close to the template of correct class and equally
distant to the templates of incorrect classes on PLL datasets.
Moreover, when noise levels increase (from the first row to
the third row), clusters become more broad and fuzzy on
all PLL datasets. In particular, the clusters w/o LS (the first
column) become more broad and vague than that w/ LS (the
last five columns). The results are consistent on all datasets
across various neural architectures, which indicates that
label smoothing is effective for the penultimate layer’s rep-
resentations of deep PLL regardless of architecture. Thus, it
can be concluded that label smoothing is effective in learn-
ing distinguishable representations for deep PLL, and that
the effect of label smoothing on pre-logits is independent of
architectures, datasets and noise levels.

5.3. Experimental Results w.r.t. ‘When’

We conduct experiments to validate when label smoothing
helps deep PLL most by comparing the prediction accura-
cies of LS-PLL at varying smoothing rates in Table 3 and 4.
From these results, we can observe that most datasets prefer
high label smoothing rate. For example, on Fashion-MNIST,
the best results under Avg. #CL = 3, 4, 5 are achieved at
r = 0.9, 0.9, 0.9 respectively. Similar behavior can be ob-
served on Kuzushiji-MNIST, and CIFAR-100. Meanwhile,
some datasets seem to prefer middle to large label smooth-
ing rates. For example, on CIFAR-10, the highest accuracies
under Avg.#CL = 3, 4, 5 are achieved at r = 0.3, 0.3, 0.7
respectively. Moreover, the best results are consistent with
the best effect of pre-logit representations in Fig. 2-4. For
example, on Kuzushiji-MNIST, the best cluster effect under
noise level Avg. #CL=3, 4, 5 is obtained at r = 0.9, 0.9, 0.9
respectively, while on CIFAR-10, the best cluster effect is
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(a) w/o LS (b) w/ LS, r = 0.1 (c) w/ LS, r = 0.3 (d) w/ LS, r = 0.5 (e) w/ LS, r = 0.7 (f) w/ LS, r = 0.9

(g) w/o LS (h) w/ LS, r = 0.1 (i) w/ LS, r = 0.3 (j) w/ LS, r = 0.5 (k) w/ LS, r = 0.7 (l) w/ LS, r = 0.9

(m) w/o LS (n) w/ LS, r = 0.1 (o) w/ LS, r = 0.3 (p) w/ LS, r = 0.5 (q) w/ LS, r = 0.7 (r) w/ LS, r = 0.9

Figure 1. Visualization of pre-logits of CIFAR-10/ResNet-18 with various ambiguity degrees Avg.#CL=3 (first row), Avg.#CL=4 (second
row), and Avg.#CL=5 (third row).

obtained at r = 0.3, 0.3, 0.7 respectively. Here, the best
cluster effect means ten clusters are most clearly seperated
with tight gathering. The results demonstrate that the best
prediction accuracy can be achieved at a certain smooth-
ing rate, which is supposed to be correlated with different
datasets and various noise levels. The above experimental
results corroborate our theoretical findings to some extent.
For example, on CIFAR-10, given the definition of General
Ambiguity Degree ε, we can figure out the value of ε under
noise levels Avg. #CL=3, 4, 5 to be 0.0049, 0.0058, 0.0018
respectively. Given Eq. (8), we can further get the theoreti-
cal optimal smoothing rate ropt = 0.24, 0.26, 0.68, which
can be approximated by the empirical best smoothing rate
r = 0.3, 0.3, 0.7 respectively. To sum up, these empirical
results validate our theoretical findings, which in turn guides
on the parameter choice of empirical smoothing rate.

6. Conclusion
This paper presents a novel insight into deep PLL from
label smoothing. We study whether and when label smooth-
ing helps deep PLL from both the theoretical and emprical
aspects. Theoretically, we provide affirmative answers to
these questions by proving the lower and upper bounds of
the expected risk with respect to label smoothing on PLL,
and deriving the optimal smoothing rate. Practically, we

propose a benchmark solution, design a novel algorithm
(i.e., LS-PLL), and conduct extensive experiments on bench-
mark datasets to validate that label smoothing does help
deep PLL in improving performance and learning distin-
guishable representations regardless of achitectures, and the
best results can be achieved when the empirical smoothing
rate approximately approaches the optimal smoothing rate
in theoretical findings. This research also bridges the gap of
existing deep PLL methods for lacking theoretical guaran-
tee on the classification performance and the label noise by
forging a connection between the optimal smoothing rate
and the generalized ambiguity degree, which sheds light on
the parameter choice of smoothing rate in empirical studies.
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A. Definitons and Proofs
Definition A.1 (Rademacher complexity). Let F = {f :
X → R} denote a class of measurable functions, i.e., hy-
pothesis space, then the Rademacher complexity w.r.t. F ,
which quantifies how much f ∈ F is correlated with a noise
sequence of length n, can be defined as follows:

Rn(F) = EŜ
[
R̂n(F)

]

where R̂n(F) = Eσ

[
sup
f∈F

1
n

∑n
i=1 σif(xi)|Ŝ

]
, σi denotes

n independent uniform {±1}-valued random variables. Ŝ =
{xi}ni=1 are independent samples.

Definition A.2 (ρ-Lipschitz). Let f : Rm → R be a func-
tion. If∣∣∣f(t)− f(t′)∣∣∣ ≤ ρ∥∥∥(t1 − t

′

1, . . . , tm − t
′

m)
∥∥∥,∀t, t′ ∈ Rm,

function f is ρ-Lipschitz w.r.t. a norm ‖·‖ in Rm. The
`p-norm of a vector t = (t1, . . . , tm) is defined as

∥∥t∥∥
p

=[∑m
j=1 |tj |

p
] 1

p

.

Proof of Theorem 3.3

Proof.

E(X,Y)

[
`
(
f(X),YLS

)]
=E(X,Y)

[∑
j∈Y

YLS,j
(
− f j + log

∑
k∈[L]

ef
k
)]

=E(X,Y)

[∑
j∈Y

(
(1− r) · Ij=Y∗ +

r

|Y|
)

·
(
− f j + log

∑
k∈[L]

ef
k)]

=E(X,Y)

[
(1− r)

∑
j∈Y

Ij=Y∗
(
− f j + log

∑
k∈[L]

ef
k)

+
r

|Y|
∑
j∈Y

(
− f j + log

∑
k∈[L]

ef
k)]

=E(X,Y∗)

[
(1− r)`

(
f(X),Y∗

)]
+ E(X,Y)

[ r

|Y|
∑
j∈Y

`
(
f(X), j

)]

Proof of Theorem 3.5
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Proof. Following Theorem 3.3, we can further derive that

E(X,Y)

[
`
(
f(X),YLS

)]
= E(X,Y∗)

[
(1− r)`

(
f(X),Y∗

)]
+ E(X,Y)
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(
f(X),Y∗LS

)]
− E(X,Y∗)

[
(1−r+

r

c+ 1
)

1

1− r∗
· r
∗

L
·

1(
L
c

) ∑
Z⊂Y\Y∗

[∑
j∈Z

`
(
f(X), j

)
+
∑
j∈Z̄

`
(
f(X), j

)]]
+ E(X,Y∗)

[ r

c+ 1

∑
Z⊂Y\Y∗

P (Z|X,Y∗)
∑
j∈Z

`
(
f(X), j

)]
(16)

For simplicity, let t1 =
(

1− r+ r
c+1

)
1

1−r∗ , t2 = t1
(L
c)
· r
∗

L ,

t3 =
(
rε
c+1 − t2

)
, then Eq. (16) can be reformulated as

follows:

Eq. (16)

= E(X,Y∗)

[
t1`
(
f(X),Y∗LS

)]
− E(X,Y∗)

[
t2
∑

Z⊂Y\Y∗

[∑
j∈Z

`
(
f(X), j

)
+
∑
j∈Z̄

`
(
f(X), j

)]]
+ E(X,Y∗)

[ r

c+ 1

∑
Z⊂Y\Y∗

P (Z|X,Y∗)
∑
j∈Z

`
(
f(X), j

)]
= E(X,Y∗)

[
t1`
(
f(X),Y∗LS

)]
− E(X,Y∗)

[
t2
∑

Z⊂Y\Y∗

[∑
j∈Z

`
(
f(X), j

)
+
∑
j∈Z̄

`
(
f(X), j

)]]
+ E(X,Y∗)

[ r

c+ 1

∑
Z⊂Y\Y∗

P (Z|X,Y∗)
∑
j∈Z

`
(
f(X), j

)]
≤ E(X,Y∗)

[
t1`
(
f(X),Y∗LS

)]
− E(X,Y∗)

[
t2
∑

Z⊂Y\Y∗

[∑
j∈Z

`
(
f(X), j

)
+
∑
j∈Z̄

`
(
f(X), j

)]]
+ E(X,Y∗)

[ r

c+ 1

∑
Z⊂Y\Y∗

ε
∑
j∈Z

`
(
f(X), j

)]
= E(X,Y∗)

[
t1`
(
f(X),Y∗LS

)]
− E(X,Y∗)

[
t2
∑

Z⊂Y\Y∗

∑
j∈Z̄

`
(
f(X), j

)]
+ E(X,Y∗)

[
t3
∑

Z⊂Y\Y∗

∑
j∈Z

`
(
f(X), j

)]
(17)

By combining Eq. (16) and Eq. (17), we have,

E(X,Y)

[
`
(
f(X),YLS

)]
≤ E(X,Y∗)

[
t1`
(
f(X),Y∗LS

)]
− E(X,Y∗)

[
t2
∑

Z⊂Y\Y∗

∑
j∈Z̄

`
(
f(X), j

)]
+ E(X,Y∗)

[
t3
∑

Z⊂Y\Y∗

∑
j∈Z

`
(
f(X), j

)]
(18)

With a little bit math, we can derive Eq. (7) in Theorem 3.5.

Proof of Theorem 3.7

12
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Proof. Following Theorem 3.3, we can derive that

E(X,Y)

[
`
(
f(X),YLS

)]
− E(X,Y∗)

[
`
(
f(X),Y∗LS

)]
= E(X,Y∗)

[
(1− r)`

(
f(X),Y∗

)]
+ E(X,Y)

[ r

|Y|
∑
j∈Y

`
(
f(X), j

)]
− E(X,Y∗)

[
(1− r∗)`

(
f(X),Y∗

)]
− E(X,Y)

[r∗
L

∑
j∈[L]

`
(
f(X), j

)]
= E(X,Y∗)

[
(r∗ − r)`

(
f(X),Y∗

)]
+ E(X,Y)

[
(
r

|Y|
− r∗

L
)
∑
j∈Y

`
(
f(X), j

)]
− E(X,Y)

[r∗
L

∑
j∈Ȳ

`
(
f(X), j

)]
(19)

From Eq. (19) with a little bit math, we can get

E(X,Y)

[
`
(
f(X),YLS

)]
− E(X,Y∗)

[
`
(
f(X),Y∗LS

)]
+ E(X,Y)

[r∗
L

∑
j∈Ȳ

`
(
f(X), j

)]
= E(X,Y∗)

[
(r∗ − r)`

(
f(X),Y∗

)]
+ E(X,Y)

[
(

r

c+ 1
− r∗

L
)
∑
j∈Y

`
(
f(X), j

)]
= E(X,Y∗)

[
(r∗ − r +

r

c+ 1
− r∗

L
)︸ ︷︷ ︸

c1

`
(
f(X),Y∗

)]

+ E(X,Z)

[
(

r

c+ 1
− r∗

L
)︸ ︷︷ ︸

c2

∑
j∈Z

`
(
f(X), j

)]
(20)

Next, we prove c2 > 0. Given r = (c+1)r∗

∆ and ∆ =

L
(
L
c

)
ε(1 − r∗) + cr∗, we can get r

c+1 = r∗

∆ . Then, given

r∗ < L−L(L
c)ε

c−L(L
c)ε

as a result of r∗ ∈ [0, 1] and
L−L(L

c)ε
c−L(L

c)ε
> 1,

we can get ∆ < L. Thus, we can get r
c+1 > r∗

L , which
verifies that c2 > 0.

To get the upper bound, it is required that c1 > 0, by deriva-
tion, we can get a condition for the upperbound to be satis-
fied in Theorem 3.7, which is smoothing rate ε > δ where
δ = Lc−(L−1)cr∗

L(L−1)(L
c)(1−r∗)

. Combining with ε ∈ (0, 1), we

can get the condition in Theorem 3.7, i.e., ε ∈ (δ, 1) and
δ = Lc−(L−1)cr∗

L(L−1)(L
c)(1−r∗)

.

By applying c1 > 0, c2 > 0 in Eq. (20) with a little bit
math, we can derive Eq. (10) in Theorem 3.7.

Proof of Lemma 3.8

Proof. If `
(
f(x), y

)
is ρ-Lipschitz for every y, then for

any f1(x), f2(x), we have |`
(
f1(x), y

)
− `
(
f2(x), y

)
≤

ρ|f1(x)− f2(x)|.

Thereby, we can get,

|`
(
f1(x),Y LS

)
− `
(
f2(x),Y LS

)
|

= |(1− r)`
(
f1(x), y

)
+

r

|Y |
∑
j∈Y

`
(
f1(x), j

)
− (1− r)`

(
f2(x), y

)
− r

|Y |
∑
j∈Y

`
(
f2(x), j

)
=
∣∣(1− r)[`(f1(x), y

)
− `
(
f2(x), y

)]
+

r

|Y |
∑
j∈Y

[
`
(
f1(x), j

)
− `
(
f2(x), j

)]∣∣
≤ (1− r)

∣∣`(f1(x), y
)
− `
(
f2(x), y

)∣∣
+

r

|Y |
∑
j∈Y

∣∣`(f1(x), j
)
− `
(
f2(x), j

)∣∣
≤ ρ|f1(x)− f2(x)|

Thus, we have |`
(
f1(x),Y LS

)
− `

(
f2(x),Y LS

)
| ≤

ρ|f1(x)− f2(x)|, which concludes the proof.

Proof of Lemma 3.9

Proof. Given Definition A.1, we have Rn(G) =

E(X,Y)Eσ
[
sup
g∈G

1
n

∑n
i=1 σig(xi, Yi)

]
. By defining ` ◦

F=̇{` ◦ f |f ∈ F}=̇{(x, y) 7→ `(f(x), y)|f ∈ F}, we have

Rn(` ◦ F) = E(X,Y∗)Eσ
[
sup
f∈F

1
n

∑n
i=1 σi`(f(xi), yi)

]
.

Given
∑
j∈Y Y

LS,j = 1 and Y LS,j ∈ [0, 1], we have
Rn(G) ≤ Rn(`◦F). SinceFy=̇{f : x 7→ f(x)|f ∈ F , y ∈
Y } and `

(
f(x),Y LS

)
is ρ-Lipschitz given Lemma 3.8

with respect to f(x) for all y ∈ Y , by the Rademacher
vector contraction inequality (Maurer, 2016), we have
Rn(` ◦ F) ≤

√
2ρ
∑
y∈Y Rn(Fy).

Proof of Theorem 3.10

Proof. In order to prove this theorem, we first show that the
one direction supf∈F Rexp(f)−Remp(f) is bounded with
probability of at least 1− η/2, and the other direction can
be verified in the same way. Suppose an example (xi, Yi)
is replaced by another arbitrary example (x′i, Y

′
i ), then the

change of supf∈F Rexp(f) −Remp(f) is no greater than
M/2n, since `(f(x), Y LS) is upper-bounded by M . By
applying McDiarmid’s inequality (Warnke, 2016), for any

13
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η > 0, with probability of at least 1− η/2, we have,

sup
f∈F
Rexp(f)−Remp(f)

≤ E
[

sup
f∈F
Rexp(f)−Remp(f)

]
+
M

2

√
log 2

η

2n

By applying symmetrization (Mohri et al., 2012), we have,

E
[

sup
f∈F
Rexp(f)−Remp(f)

]
≤ 2Rn(G)

By further taking into account the other side
supf∈F Remp(f) − Rexp(f), we have, for η > 0,
with probability of at least 1− η, we have,

sup
f∈F

∣∣Rexp(f)−Remp(f)
∣∣ ≤ 2Rn(G) +

M

2

√
log 2

η

2n

By combining Lemma 3.9, we conclude the proof.

B. Tables and Figures
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Table 5. Statistics of generated PLL datasets with competitive label noise.
Dataset #Instances (Train) #Instances (Test) #Features #Classes Avg.#CL Architecture
Fashion-MNIST 60,000 10,000 784 10 3, 4, 5 LeNet-5
Kuzushiji-MNIST 60,000 10,000 784 10 3, 4, 5 LeNet-5
CIFAR-10 50,000 10,000 3,072 10 3, 4, 5 ResNet-18
CIFAR-100 50,000 10,000 3,072 100 7, 9, 11 ResNet-56

(a) w/o LS (b) w/ LS, r = 0.1 (c) w/ LS, r = 0.3 (d) w/ LS, r = 0.5 (e) w/ LS, r = 0.7 (f) w/ LS, r = 0.9

(g) w/o LS (h) w/ LS, r = 0.1 (i) w/ LS, r = 0.3 (j) w/ LS, r = 0.5 (k) w/ LS, r = 0.7 (l) w/ LS, r = 0.9

(m) w/o LS (n) w/ LS, r = 0.1 (o) w/ LS, r = 0.3 (p) w/ LS, r = 0.5 (q) w/ LS, r = 0.7 (r) w/ LS, r = 0.9

Figure 2. Visualization of pre-logits of Fashion-MNIST/LeNet-5 with various ambiguity degrees Avg.#CL=3 (first row), Avg.#CL=4
(second row), and Avg.#CL=5 (third row).
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(a) w/o LS (b) w/ LS, r = 0.1 (c) w/ LS, r = 0.3 (d) w/ LS, r = 0.5 (e) w/ LS, r = 0.7 (f) w/ LS, r = 0.9

(g) w/o LS (h) w/ LS, r = 0.1 (i) w/ LS, r = 0.3 (j) w/ LS, r = 0.5 (k) w/ LS, r = 0.7 (l) w/ LS, r = 0.9

(m) w/o LS (n) w/ LS, r = 0.1 (o) w/ LS, r = 0.3 (p) w/ LS, r = 0.5 (q) w/ LS, r = 0.7 (r) w/ LS, r = 0.9

Figure 3. Visualization of pre-logits of Kuzushiji-MNIST/LeNet-5 with various ambiguity degrees Avg.#CL=3 (first row), Avg.#CL=4
(second row), and Avg.#CL=5 (third row).

(a) w/o LS (b) w/ LS, r = 0.1 (c) w/ LS, r = 0.3 (d) w/ LS, r = 0.5 (e) w/ LS, r = 0.7 (f) w/ LS, r = 0.9

(g) w/o LS (h) w/ LS, r = 0.1 (i) w/ LS, r = 0.3 (j) w/ LS, r = 0.5 (k) w/ LS, r = 0.7 (l) w/ LS, r = 0.9

(m) w/o LS (n) w/ LS, r = 0.1 (o) w/ LS, r = 0.3 (p) w/ LS, r = 0.5 (q) w/ LS, r = 0.7 (r) w/ LS, r = 0.9

Figure 4. Visualization of pre-logits of CIFAR-100/ResNet-56 with various ambiguity degrees Avg.#CL=7 (first row), Avg.#CL=9 (second
row), and Avg.#CL=11 (third row).
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