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Abstract

In settings where ML models are used to inform the allocation of resources, agents
affected by the allocation decisions might have an incentive to strategically change
their features to secure better outcomes. While prior work has studied strategic
responses broadly, disentangling misreporting from genuine adaptation remains a
fundamental challenge. In this paper, we propose a causally-motivated approach to
identify and quantify how much an agent misreports on average by distinguishing
deceptive changes in their features from genuine adaptation. Our key insight is that,
unlike genuine adaptation, misreported features do not causally affect downstream
variables (i.e., causal descendants). We exploit this asymmetry by comparing the
causal effect of misreported features on their causal descendants as derived from
manipulated datasets against those from unmanipulated datasets. We formally
prove identifiability of the misreporting rate and characterize the variance of our
estimator. We empirically validate our theoretical results using a semi-synthetic
and real Medicare dataset with misreported data, demonstrating that our approach
can be employed to identify misreporting in real-world scenarios.

1 Introduction

Machine learning models are increasingly used by decision-makers to guide decisions about the
allocation of critical resources, such as in loan applications, or determining government payouts to
private insurers [2, 47, 14]. In these contexts, organizations—referred to as agents—may have an
incentive to strategically change their features to secure better outcomes [32]. They can do so through
genuine adaptation or misreporting. Genuine adaptation refers to agents genuinely changing their
behavior, causing the actual values of their features to change. This leads to real improvements and
authentic changes. Misreporting refers to agents not changing their behavior but instead reporting
incorrect feature values to manipulate the allocation process, creating an illusion of improvement
without any real change. Incentivizing genuine adaptation is often desirable to the decision-maker, as
it can lead to improvements in the target outcome [41, 17]. Misreporting, however, is never desirable
to the decision-maker as it leads to incorrect predictions and inefficient resource allocation.

As a running example, we consider the U.S. Medicare Advantage (MA) program, where the govern-
ment uses a public risk adjustment model to allocate payments to privately-owned insurers based
on enrollee health [37, 31]. This risk adjustment model is designed to recommend higher payments
to insurers for higher-risk, sicker enrollees [3]. In response, private insurers may genuinely change
their enrollees’ health by providing targeted interventions to high-risk enrollees, reducing their costs
and increasing their profit margins. Alternatively, they may resort to misreporting, or “upcoding,” by
inflating diagnosis codes to make enrollees appear sicker, which in turn increases payments without
additional treatment expenses [23]. Upcoding has led to an estimated $50 billion in overpayments [29]
and over $100 million in auditing efforts in 2024 alone [13]. Estimating the extent of misreporting is
therefore critical for prioritizing oversight and promoting resource efficiency.
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In this work, we develop a causal framework for detecting and quantifying misreporting in the
presence of genuine adaptation. Our key insight is that misreporting, unlike genuine adaptation,
does not causally affect the descendants of a given feature. Consequently, misreporting leads to
biased causal effect estimates between the feature and its descendants. We exploit this asymmetry
by comparing the estimated causal effect of a feature on its descendants in both manipulated and
unmanipulated datasets to infer a misreporting rate. We assume access to both types of data, where
the unmanipulated dataset is collected in a setting where there are no incentives to misreport, such as
a setting prior to model deployment.

Our contributions are summarized as follows. (1) We recast the problem of quantifying the
misreporting rate as a causal problem, showing that causal descendants of features can be
used to distinguish changes due to genuine adaptation and misreporting. (2) We propose a
novel estimator for the misreporting rate that leverages discrepancies in causal effect estimates
computed from manipulated data and unmanipulated data where incentives to misreport are
absent. (3) We provide theoretical guarantees, including conditions under which the misre-
porting rate is identifiable, and variance analysis of our estimator. (4) We empirically vali-
date the performance of our estimator, showing that it outperforms baseline approaches on a
semi-synthetic and real Medicare dataset. Code for our experiments is publicly available at
https://github.com/DylanJamesZapzalka/misreporting_estimation.

2 Related Work

Strategic Classification and Regression. Our work is related to work on strategic classification and
regression, where agents may change their features at some cost [15, 10, 28]. However, it differs
in two key aspects. (1) The primary goal is to find a model that is robust to the distribution shifts
caused by gaming, often relying on known agents’ cost functions and iterative model retraining [36].
In contrast, we seek to estimate how much agents misreport. (2) Our method doesn’t require the
unrealistic assumptions of a known agent’s cost function or iterative model training.

Causal Strategic Classification. Recent work views strategic classification/regression through a
causal lens [32, 41, 17, 19] where agents can only genuinely adapt their features. They distinguish
between two types of genuine adaptations: improvement and gaming, which correspond to modifi-
cations to features that are and are not causally related to the target label, respectively [32]. Unlike
us, their focus is on creating models robust to both forms of genuine adaptation [19] and finding
models that incentivize improvement over gaming [41, 17]. Closest to our work is Chang et al. [6],
who propose an algorithm that can rank agents by their propensity to misreport their features. Unlike
our work, their approach can only partially identify how much agents misreport, and they do not
make a distinction between misreporting and genuine adaptation. Moreover, their approach works by
estimating the causal effect of the agent on the observed feature, whereas our method leverages causal
effect estimates on the causal descendants of the feature, which allows us to distinguish misreporting
from genuine adaptation.

Auditing Policies. Other work seeks to disincentivize agents from misreporting their features
through auditing [21, 11, 12]. They define a setting where the decision-maker deploys a transparent
auditing policy that allows them to reveal the true features of a limited number of agents selected
by the policy. If the agent’s true features differ from their reported features, they endure a penalty,
which incentivizes them to report their true features. Instead of performing costly audits, our work
estimates misreporting by relying on additional unmanipulated data from settings where agents have
no incentive to misreport, e.g., data collected before any model was deployed.

Anomaly/Fraud Detection. Our work is closely related to anomaly detection methods aimed at
identifying fraudulent instances within a dataset, such as those arising in credit card transactions or
insurance claims [18, 5]. Most relevant are one-class classification algorithms [40, 30, 39], which are
trained on an unmanipulated dataset to detect anomalies in a manipulated dataset. Unlike our work,
these methods focus on identifying specific instances that are anomalous or misreported, whereas our
method estimates a rate of misreporting in a dataset. These methods also rely on the assumption that
misreported data points differ significantly from normal data points. Our method instead relies on
causal assumptions, specifically, that misreporting does not affect the causal descendants of features.
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Figure 1: Causal DAGs that describe the setting of this paper. White nodes are unobserved whereas
grey nodes are observed. Double-line arrows represent misreporting while dashed arrows represent
genuine adaptation. DAGs (a)-(c) represent manipulated data-generating processes while DAG (d)
represents unmanipulated data. The DAG in (a) represents our simplified main setting, (b) represents
a setting with selection bias, (c) depicts a setting with unobserved confounding between A and Y ,
and (d) represents unmanipulated data with potential genuine adaptation but no misreporting.

3 Preliminaries

Setup. We study a setting where some agents may either genuinely adapt and/or misreport their
features. Let A denote the agent identity, X∗ the true features, X the (potentially misreported) agent-
reported features, Y a downstream variable causally influenced by X∗, and C observed features that
may act as confounders or effect modifiers for the relationship between X∗ and Y . We use uppercase
letters to denote variables and lowercase letters for their realizations.

We assume that we have access to two datasets: (1) A possibly manipulated dataset
D = {(xi, yi, ci, ai)}Ni=1 ∼ P , where P follows any of the DAGs in 1(a)-(c). (2) An unmanipulated
dataset D∗ = {(x∗

i , yi, ci)}Mi=1 ∼ P ∗ generated according to DAG 1(d). D∗ may be pre-deployment
data used to train the decision-making model, as agents have no incentive to manipulate their features
before the model is deployed. We do not require access to agent identities in D∗, nor do we assume
that the same agents appear in both datasets.

In Figure 1, we use dashed arrows to indicate genuine adaptation and double-line arrows to indicate
misreporting. In DAG 1(d), which represents the unmanipulated distribution, only genuine adaptations
are allowed. For clarity, we present our main analysis assuming D is sampled according to the DAG
in Figure 1(a). However, our results apply without modification to the more complicated DAGs in
Figure 1(b)-(c), which include selection bias via an unobserved variable S influencing both A and
X∗, or an unobserved confounder U between A and Y . Additional allowable DAGs are included in
Appendix A.

Running example. In Medicare claims, D∗ can be insurance claims covered directly by the govern-
ment (i.e., Traditional Medicare (TM)), where there is no incentive to misreport. D can be claims
covered by private insurers. Selection bias could happen, for example, when price-sensitive enrollees
(S) who are less likely to have chronic conditions (X∗) prefer private insurance (A). Confounding
between A and Y could occur if enrollees who prefer private insurance (A) tend to be sicker (Y ).

Assumptions. We assume that X∗ and X are binary whereas all other variables may be continuous.
Without loss of generality, we assume that X = 1 is associated with a higher payout than X = 0
which means that agents are not incentivized to misreport features where X∗ = 1, as formally stated
in Assumption 1. We adopt the notation of the Neyman-Rubin potential outcomes framework [38],
where X(X∗ = x∗) is defined as the counterfactual outcome that we would get if X∗ is set to x∗.

Assumption 1 (Optimal Misreporting). ∀i, xi(x
∗
i = 1) = 1

We assume that agents are incentivized to misreport only X∗ and genuinely adapt it as follows.

Assumption 2 (Useful Modifications). Agents may only misreport X∗, or genuinely adapt it by
intervening on X∗ or its ancestors.

Under this setting, our goal is to determine how much an agent misreported their features, without
access to the true features X∗. Letting Pa(V ) := P (V |A = a) for an arbitrary variable V , we define
our estimand of interest as follows:
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Definition 1 (Misreporting Rate). MR = Pa(X
∗ = 0|X = 1)

This definition of the MR quantifies the conditional probability that a reported feature is false. We
also show in Appendix C that our analysis can be trivially extended to other variants such as the false
positive rate, Pa(X = 1|X∗ = 0), and the marginal difference Pa(X = 1)− Pa(X

∗ = 1).

Key to our suggested approach will be our ability to estimate the causal effect of X∗ on Y . We also
require the typical assumptions used in causal inference, defined below.
Assumption 3. The features X∗, C, and the potential outcomes Y (X∗ = 1), Y (X∗ = 0) satisfy the
following properties:

1. No unmeasured confounding: Y (0), Y (1) ⊥ X∗ | C
2. Overlap: Pa(X

∗ = x∗|C = c), Pa(X = x|C = c), P ∗(X∗ = x∗|C = c) > 0 ∀x∗, x, c

3. Consistency: Yi(x
∗) = yi if X∗

i = x∗.

Finally, we assume that the conditional average treatment effects are invariant across Pa and P ∗ for
all values of a.
Assumption 4. EPa

[Y (1)− Y (0)|C = c] = EP∗ [Y (1)− Y (0)|C = c] ∀c, a

This assumption allows us to leverage unmanipulated data D∗ to recover causal effects needed for
estimating misreporting in D.

4 Estimating Misreporting Rates

Recall that our goal is to estimate the misreporting rate for a given agent, defined in Definition 1.
The core challenge lies in the fact that we only observe the reported features X , but not the true
features X∗. This means that the estimand is not identifiable from D alone. A naive approach
would be to combine D and D∗ to estimate the causal effect of A on the observed feature values.
However, this would yield a biased estimate of the misreporting rate because it gives an estimate of
both the effect of genuine adaptation and misreporting, i.e., a biased estimate of misreporting, as we
establish in Appendix E. Instead, we estimate the misreporting rate by leveraging the distinct causal
consequences that agent interventions corresponding to genuine adaptation and misreporting have on
the downstream variables Y .

In Section 4.1, we present our main estimator for the misreporting rate. In Section 4.2, we analyze
the variance of our estimator and give guidance on how to generate a low-variance estimator.

4.1 Our causal misreporting estimator (CMRE)

Our key insight is that genuine adaptation and misreporting have different effects on the causal
descendants of X∗. When an agent genuinely adapts X∗, this results in a change to its causal
descendant, Y . In contrast, when agents misreport, they only change the reported feature X , which
doesn’t causally affect Y . To illustrate, in our running Medicare example, if an enrollee truly has
cancer (X∗ = 1), this will cause them to experience cancer-related symptoms (Y ). In contrast, if an
insurer falsely reports a cancer diagnosis for an enrollee (X∗ = 0, X = 1), the misreporting itself
has no causal effect on the patient’s symptoms.

This difference allows us to use the causal effect of X on Y and that of X∗ on Y as a signature to
distinguish between misreporting and genuine adaptation. To make progress, we define the “reported”
group as the group for whom X = 1 and define the true average feature effect on the reported (TAFR)
and the nominal average feature effect on the reported (NAFR) as follows:

τ∗a :=

∫
C

(EPa
[Y (X∗ = 1)|C = c]− EPa

[Y (X∗ = 0)|C = c])Pa(C = c|X = 1)dc,

and

τa :=

∫
C

(EPa
[Y |X = 1, C = c]− EPa

[Y |X = 0, C = c])Pa(C = c|X = 1)dc,

respectively. These two expressions are similar to the average treatment effect on the treated, a
commonly studied estimand in causal inference. They define the true and nominal causal effects for
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the population for whom X = 1. We focus on causal effects for the “reported” group defined by
X = 1 because the MR as defined in Defnition 1 is a conditional estimand over X = 1.

Although observing a difference in τ∗a and τa indicates that an agent misreported, it doesn’t give us a
rate at which an agent misreports. To obtain the misreporting rate, we must compare the difference
in the NAFR and TAFR relative to the baseline causal effect of X∗ on Y for the group that is
misreported. Since only the variable X∗ influences an agent’s decision to misreport a datapoint,
the misreported group will be a random sample of the group where X∗ = 0 once we condition on
the agent. Therefore, the average causal effect of X∗ on Y for the misreported will be the average
causal effect on the datapoints where X∗ = 0. We define this as the true average feature effect on the
misreported (TAFM):

δ∗a :=

∫
C

(EPa
[Y (X∗ = 1)|C = c]− EPa

[Y (X∗ = 0)|C = c])Pa(C = c|X∗ = 0)dc.

Next, we show that the MR can – in principle – be quantified as the rate of the differences between
the TAFR and NAFR over the TAFM.

Lemma 1 (Estimator for the misreporting rate). Let Assumptions 1-3 hold. Then for δ∗a ̸= 0, the MR
can be expressed as:

Pa(X
∗ = 0|X = 1) =

τ∗a − τa
δ∗a

.

The proof for Lemma 1 and all other statements in this subsection are presented in Appendix B. The
lemma states that we can quantify the MR by comparing the true and nominal causal effects of X∗ on
Y and X on Y respectively. While instructive, Lemma 1 is not very useful as we do not have access
to X∗ for agent a, and hence we cannot directly estimate τ∗a or δ∗a from the manipulated data alone.

To resolve this issue, we leverage the unmanipulated dataset D∗ to estimate two other quantities in
place of τ∗a and δ∗a. Specifically, we define

τ ′a :=

∫
C

(EP∗ [Y (X∗ = 1)|C = c]− EP∗ [Y (X∗ = 0)|C = c])Pa(C = c|X = 1)dc

and

δ′a :=

∫
C

(EP∗ [Y (X∗ = 1)|C = c]− EP∗ [Y (X∗ = 0)|C = c])Pa(C = c|X = 0)dc.

Both τ ′a and δ′a are identifiable because X∗ is observed in the unmanipulated dataset and can be used
as valid estimators of τ∗a and δ∗a to estimate the MR, as we show in Theorem 1.

Theorem 1 (Identifiability). Let Assumptions 1-4 hold. Then for δ′a ̸= 0, Pa(X
∗ = 0|X = 1) is

identifiable and can be expressed as:

Pa(X
∗ = 0|X = 1) =

τ ′a − τa
δ′a

.

The proof of Theorem 1 relies on (1) the invariance of conditional causal effects of X∗ on Y across
Pa and P ∗ and (2) our assumptions about agent behavior to show that τ ′a = τ∗a and δ′a = δ∗a. We
then show that the misreporting rate is identifiable as both δ′a and τ ′a are identifiable from D, D∗, and
standard causal effect assumptions.

Approach. Guided by Theorem 1, we now introduce our primary estimator – the causal misreporting
estimator (CMRE) – which can estimate the misreporting rate for each agent. CMRE proceeds by
estimating the conditional average treatment effect (CATE) over D∗ and for an agent a over D, which
we denote as θ∗(c) and θa(c) using typical causal estimators such as S-learners, T-learners [27],
double/debiase ML methods [9, 33] and doubly robust estimators [25]. We demonstrate the estimation
process using S-learners, which we used for our empirical analysis in Section 5. Specifically, for each
agent a in D we estimate the following

fa(c, x) = argmin
f∈F

1

Na

∑
i:i∈D,ai=a

ℓ(f(ci, xi), yi), and θa(c) := fa(c, 1)− fa(c, 0) (1)
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where F is a suitable function class, ℓ is some loss function and Na is the number of data points in D
for which A = a. Similarly, we can get an estimate of θ∗(c):

f∗(c, x∗) = argmin
f∈F

1

M

∑
i:i∈D∗

ℓ(f(ci, x
∗
i ), yi) and θ∗(c) := f∗(c, 1)− f∗(c, 0). (2)

Finally, our estimates for τ ′a, τa and δ′ can be computed as follows, where Nax is the number of
datapoints in D where A = a and X = x:

τ̂ ′a =
1

Na1

∑
i:i∈D,xi=1,

ai=a

θ∗(ci), τ̂a =
1

Na1

∑
i:i∈D,xi=1,

ai=a

θ(ci), δ̂′a =
1

Na0

∑
i:i∈D,xi=0,

ai=a

θ∗(ci). (3)

Our full algorithm is summarized in Appendix E. We note that our approach can be extended to
estimate conditional versions of the misreporting rate by estimating CATE versions of the TAFR,
NAFR, and TAFM estimands conditioned on any features of interest. Although this may increase the
variance, it may be mitigated by using double ML methods [9] rather than S-learners.

4.2 Analyzing the variance of our estimator

In this section, we analyze the asymptotic variance of our estimator to give guidance as to how to
obtain a low-variance estimator of the MR. We aim to show that if multiple causal descendants of X∗

are known, the causal descendent with the strongest causal relationship to X∗ should be used as it
will result in the lowest asymptotic variance. For simplicity, we limit our analysis to a setting where
the MR can be estimated from parametric estimators τ̂a, τ̂ ′a, and δ̂′a that are asymptotically normal.
We characterize the asymptotic variance of a MR estimator under these assumptions in Theorem 2.

Theorem 2 (Variance). Let τ̂a, τ̂ ′a, and δ̂′a be asymptotically normal estimators with an asymptotic
variance of σ2

τa , σ2
τ ′
a
, and σ2

δ′a
. Also let στaτ ′

a
, στaδ′a

, and σδ′aτ
′
a

denote the covariance between the

estimators and d−→ denote convergence in distribution. Suppose that N = M = n, then for δ′a ̸= 0

and δ̂′a ̸= 0,

√
n[
τ̂ ′a − τ̂a

δ̂′a
− τ ′a − τa

δ′a
]

d−→ N (0,
σ2
τ ′
a
+ σ2

τa − 2στ ′
aτa

δ′a
2 +2

τa − τ ′a
δ′a

3 (στ ′
aδ

′
a
−στaδ′a

)+
(τa − τ ′a)

2

δ′a
4 σ2

δ′a
)

Theorem 2 shows that the asymptotic variance will increase significantly as δ′a → 0 as each term
in the variance is divided by either δ′a

2, δ′a
3, and δ′a

4. Thus, the causal descendent with the largest
estimate of δ′a should be used to calculate the MR.

5 Empirical Results

We evaluate the performance of our approach (CMRE) on semi-synthetic and real-world data. We
show that CMRE consistently yields reliable estimates of the MR, even when genuine adaptation is
present, and outperforms relevant baselines.

Baseline Algorithms We compare CMRE against the following baselines. (1) Natural Direct Effect
Estimator (NDEE): this estimates the natural direct effect of the agent A on the feature X as a proxy
for MR. We expect it to fail when genuine adaptation is non-zero, as it cannot distinguish between
the direct causal effect of A (misreporting) and the causal effect mediated through X∗ (genuine
adaptation) without access to X∗. (2) Naive Misreporting Estimator (NMRE): this is similar to
our approach but doesn’t control for confounding between X∗ and Y . It is used to highlight the
importance of controlling for confounding when estimating the MR. (3) One-Class SVM (OC-SVM):
an anomaly detection approach trained on D∗ where X∗ = 1. It then detects which data points in D
where where X = 1 are outliers. It highlights the limitations of using anomaly detection methods for
MR estimation. Both CMRE and NDEE use S-learners [27] with an XGBoost [8] for causal effect
estimation. NMRE relies on a difference-in-means estimator since it doesn’t control for confounding.
Additional implementation details are in Appendix D.
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Figure 2: Results from the loan fraud dataset. The x-axis is the causal effect of A on X∗ (left), causal
effect of X∗ on Y (middle), and the misreporting rate (right). The y-axis is the estimated misreporting
rate. Dashed lines represent the true misreporting rate and the error bars represent the standard
deviation. Our approach (CMRE) accurately estimates the MR for all levels of genuine adaptation,
the causal effect of X∗ on Y , and misreporting rates. The variance for our estimator depends on the
magnitude of the causal effect of X∗ on Y . Baselines that do not adjust for confounding (NMRE) or
do not distinguish between genuine adaptation and misreporting (NDEE) give biased estimates in
various cases. Anomaly detection methods (OC-SVM) are unable to distinguish misreported data
points from unmanipulated data points.

5.1 Semi-synthetic data experiments: Loan fraud

We simulate a scenario where loan applicants may misreport their employment status to improve their
chances of loan approval. Here, we focus on a simple setting where we’re interested in the overall
MR rather than the MR for a specific agent. We leave the multi-agent analysis to Section 5.2.

We simulate a setting where D∗ was collected before a model used to estimate the risk of default was
deployed and D is the data collected after. We extract the confounders from a real credit card dataset
(n = 30, 000) [45, 46], with C = (CA, CS , CE , CM ) denoting age, sex, education, and marital
status. We simulate the outcome Y , true employment status X∗, reported employment status X , and
agent identity A as follows:

Ai ∼ Bernoulli(0.05 + 0.3(1− CSi) + 0.3(1− CMi)),

X∗
i ∼ Bernoulli(0.05 + 0.05CEi + 0.3CSiCMi + 0.1CA

2
i + βAAi),

Yi ∼ Bernoulli(0.05 + 0.05CEi + 0.3CSiCMi + 0.1CA
2
i + βX∗X∗

i ),

Xi ∼ X∗
i +Ai(1−X∗

i )Bernoulli(µ),

where µ is picked to target a desired MR (default = 0.2) and we set βA = 0.3 and βX∗ = 0.4 unless
otherwise specified. All samples with Ai = 1 are assigned to D and the rest to D∗.

Each experiment is repeated 100 times each with a different draw of A,X,X∗, and Y . We use an
80/20 train/test split of D where our models are trained on the larger split and the MR is estimated
using the smaller split. We do not split D∗ as it is only used to train the models. We present the
means and standard deviations of the MR estimates across these 100 runs. Additional results and
details can be found in Appendix D.

Varying the amount of genuine adaptation. First, we examine how changes in genuine adaptation
affect the MR estimates, highlighting the need to account for genuine adaptation when estimating the
MR. To vary the amount of genuine adaptation, we simulate 7 settings with βA between 0.0 and 0.3.

The results are shown in Figure 2 (left), where the x-axis shows the different values of βA and the
y-axis is the estimated MR. The dashed line shows the true value of the MR. The results show that
our approach (CMRE) gives unbiased, stable estimates of the MR that are unaffected by the level of
genuine adaptation. This signals that CMRE can successfully disentangle misreporting from genuine
adaptation. By contrast, genuine adaptation affects the estimates from NMRE and NDEE. Notably,
NMRE generally gives biased estimates because it does not control for confounding. As genuine
adaptation increases, NMRE gives worse estimates due to a shift in the relationship between X∗ and
C across D and D∗ that NMRE does not control for by not conditioning on C. Despite being rooted
in mediation analysis, NDEE is unable to disentangle the direct causal effect of A on X from the
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effect mediated through X∗ without access to X∗. This means that it gives an unbiased estimate
only when genuine adaptation is zero, i.e., there is no path from A to X through X∗. OC-SVM gives
biased estimates for all levels of genuine adaptation because the misreported data points are still
plausible under D∗.

Varying the causal effect of X∗ on Y . Next, we empirically test our characterization of the variance
of our estimator (Theorem 2) by varying the causal effect of X∗ on Y . To vary the causal effect of
X∗ on Y , we simulate 5 settings with the causal effect of X∗ on Y , βX∗ = [0.1, 0.2, 0.3, 0.4, 0.5].

The results are shown in Figure 2 (middle), where the x-axis shows the causal effect of X∗ on Y ,
the y-axis represents the estimated MR, and the dashed line denotes the true MR. The results show
that our approach (CMRE) is unbiased, regardless of what the causal effect between the feature and
outcome is. However, small causal effects result in high-variance estimates for CMRE consistent
with Theorem 2. The NMRE estimates are biased but do improve as the causal effect of X∗ on Y
increases, as the unobserved confounders have a diminished contribution towards the full estimate
as the causal effect X∗ on Y itself increases. In contrast, the estimates of NDEE do not vary, as the
causal effect of X∗ on Y has no impact on the causal effect of A on X . Similarly, the estimates of
OC-SVM are biased but invariant because the misreported data points are still plausible under D∗.

Varying the misreporting rate. Finally, we consider how varying the true MR affects our approach
and the baselines. To that end, we simulate 5 datasets with a MR between 0 and 0.2.

Figure 2 (right) shows the results. The x-axis and the dashed line show true MR whereas the y-axis
shows the estimated MR. The results show that, unlike the baselines, our approach is always able to
accurately estimate the MR. NDEE gives biased estimates since the genuine adaptation is non-zero.
OC-SVM is invariant to the MR, indicating that it is completely unable to distinguish between normal
and misreporting samples. The inaccuracy in NMRE arises due to uncontrolled confounding whereas
by controlling for all confounders, CMRE leads to accurate estimates.

5.2 Real data experiments: Misreporting in Medicare insurance claims

Next, we highlight the utility of our approach in a real data setting. We aim to identify if private
insurers misreport enrollees’ diagnoses to secure higher government payouts, and which insurers
have a higher misreporting rate.

Background. The government calculates payouts using a public risk adjustment model based on
enrollee demographics (age, sex, race) and current diagnoses (X∗), as measured by Hierarchical
Condition Categories (HCCs) at year (t− 1) [37] to predict future healthcare costs. This model is
trained on Traditional Medicare (TM) enrollees, who only use government insurance, which provides
an unmanipulated dataset, D∗, as there’s no incentive to misreport. In contrast, data from private
insurers, D, may be manipulated. We expect to find evidence of misreporting or “upcoding” of HCCs
included in the risk adjustment model by private insurers, consistent with existing literature [14, 42].
Estimating misreporting rates has been difficult, as private insurers claim diagnosis rate differences
result from their improved care (i.e., genuine adaptation). For instance, private insurers may provide
greater access to wellness benefits, screening assessments, and home-based care that result in an
improvement of various conditions, while also identifying conditions that would have remained
unreported in TM. Our proposed estimator can make progress toward resolving this long-standing
issue by distinguishing between genuine adaptation and misreporting.

Setup. We use mortality during year t as the downstream outcome Y and consider the set of
confounders to be enrollee demographics as well as HCCs measured in the previous year, t − 1.
To ensure that C is unmanipulated, we consider only the population of “switchers”: enrollees who
were covered by the government in year t− 1 but switched to a private insurer in year t. For these
enrollees, their possible confounding HCCs (C) were reported during their government coverage but
the HCCs used to calculate risk (X) were reported during their private coverage.

Here, we do not have access to the ground truth MR. Instead, we gauge the quality of our MR
estimates for HCCs included in the payment model by comparing them to estimates of non-payment
HCCs: diagnoses that are not included in the government’s risk adjustment models. Private insurers
have no incentive to misreport these HCCs and we expect the true MR for the non-payment HCCs
to be zero. To obtain a 95% confidence interval for our estimator, we used bootstrapping with
1000 samples. To ensure a small interval, as represented by the error bars, we only considered the
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Figure 3: For each plot, the y-axis represents the estimated MR for an HCC code and the error bars
represent a 95% confidence interval. (Left) The x-axis has two nonpayment HCCs (HCC117 and
HCC50) and two payment HCCs (HCC21 and HCC8). Our approach (CMRE) has a MR estimate
close to zero for nonpayment HCCs and significantly above zero for the payment HCCs, which aligns
with what is expected in current literature. Baselines that fail to distinguish genuine adaptation from
strategic adaptation (NDEE) seem to underestimate the MR and baselines that do not control for
confounding (NMRE) seem to overestimate the MR. (Middle and Right) The x-axis represents
the baselines. The middle plot represents estimates for HCC50 and the right plot represents MR
estimates for HCC8 across different private insurers (agents). Similar to the left plot, NDEE seems to
underestimate the MR across most agents and NMRE overestimates.

payment and nonpayment HCCs where at least 1% of switcher enrollees in year t had the HCC code,
and the causal effect of the HCC on Y , as estimated using D∗, is greater than 0.1 (consistent with
Theorem 2). To further reduce variance, future work can explore alternative causal descendants that
exhibit stronger causal relationships with each feature or employ different causal effect estimators
(e.g., doubly robust or double ML methods [25, 9]).

We conduct two sets of analysis: in the first, we present the overall misreporting rate for all insurance
companies (i.e., all agents) on the top two payment and non-payment HCCs with the highest causal
effect estimates on Y. Second, we look at variations in the MR across multiple agents, i.e., multiple
insurance companies. Results for OC-SVM are only in the Appendix, as the method fails to distinguish
between normal and misreported samples, consistent with observations in the semi-synthetic results.
We include additional results and details in Appendix F and D.

Results. Figure 3 (left) shows the MR estimates for all insurance companies for two nonpayment
HCCs (left of the vertical dashed line) and two payment HCCs (right of the vertical line). Our
approach (CMRE) is the only approach that passes the sanity check: it gives MR estimates that are
not statistically significantly different from zero for the nonpayment HCCs. This is consistent with
our expectation that private insurers have no incentive to misreport nonpayment HCCs. Conversely,
CMRE estimates significantly high misreporting rates for both of the payment HCCs. These results
are validated in the health policy literature. For instance, HCC21 (Protein Calorie Malnutrition), has
long been suspected to be improperly reported as it is reported at much higher rates than TM, leading
it to be removed from the risk adjustment model years after our data was collected [4, 26]. In contrast,
NMRE estimates a high misreporting rate for all HCCs, NDEE estimates a negative misreporting rate
for all HCCs, which does not align with what is expected. All OC-SVM results are included only in
Appendix F since they are consistently incorrect.

For the agent-level analysis, we focus on the top payment and the top nonpayment HCC to simplify
our visualizations. Figure 3 (middle and right) show that the main conclusions from the aggregate
level analysis hold on the agent-level: our approach is the only approach that reports MR rates not
statistically significantly different from zero for nonpayment HCCs across all insurance companies.
Our approach estimates that 2 out of the 5 insurance companies have misreporting rates that are
statistically significantly different from zero. None of the baselines give consistently reliable estimates
for the nonpayment HCCs. NDEE continues to underestimate the MR whereas NMRE overestimates
the MR.

6 Conclusion
In this work, we propose a causal approach to estimating how much strategic agents misreport their
features. We show that the misreporting rate is fully identifiable by comparing causal effect estimates
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between a possibly manipulated and unmanipulated dataset. We also analyze the variance of our
estimator, showing that a decision maker can accurately estimate the misreporting rate of a feature
given a causal descendent with a strong causal relationship. We highlight the utility of our approach
across empirical experiments over a semi-synthetic and a real Medicare dataset.

Limitations, Broader Impacts, and Future Work. Our work introduces a novel framework for
disentangling genuine adaptation from misreporting, opening several promising directions for future
research. First, our method assumes the absence of unobserved confounding, a standard but untestable
assumption in causal inference. Future extensions could incorporate sensitivity analysis techniques
to assess robustness under potential violations of this assumption [44, 24, 22]. Second, the current
framework focuses on binary misreported features; extending it to categorical and continuous variables
remains an important next step toward broader applicability. Finally, in many real-world settings,
downstream causal variables may be unobserved or only observed after a long delay. Addressing this
limitation through the use of surrogate or proxy outcomes [1] offers another valuable direction for
future work.

We also acknowledge that this method could be used to disproportionately target certain organizations
that may not have the resources to adequately respond to claims of misreporting. To mitigate this
issue, we recommend the integration of impact assessments to be used alongside our method to
mitigate such disparities.
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Figure 4: Causal DAGs that describe the setting of this paper. White nodes are unobserved, whereas
grey nodes are observed. Double-line arrows represent misreporting, while dashed arrows represent
genuine adaptation. DAGs (a)-(g) represent manipulated data-generating processes, while DAG (h)
represents unmanipulated data.

Figures 4(a)-4(g) represent settings in which agents may either genuinely adapt or misreport their
features. In contrast, Figure 4(h) represents a scenario involving trustworthy agents that only genuinely
adapt their features. In all cases shown in Figures 4(a)-4(g), the decision maker lacks access to X∗

but observes X , A, C, and Y . While the main focus of the paper was on the DAG in Figure 4(a), our
findings extend naturally to the more complex settings depicted in Figures 4(b)-4(g).

Specifically, the DAGs in Figures 4(b) and 4(f) represent scenarios where some unknown confounding
bias may exist between A and X∗, e.g., S. In the context of the Medicare example discussed in the
main text, this could arise if enrollees with more chronic conditions (X∗) are more likely to enroll in
a private health insurance plan (A). Notably, our approach doesn’t require controlling for S, as it’s
not a confounder between X∗ and Y .
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The DAGs in Figures 4(c), 4(e), and 4(g) illustrate settings where an unobserved confounder may
influence both A and Y . For example, this could occur if enrollees who prefer private insurance
plans (A) also happen to have worse health outcomes (Y ). Again, our approach does not require
controlling for U . Although U is a confounder of X∗ and Y , the backdoor path can be blocked by
conditioning on A, which means that an adjustment for U is unnecessary.

Finally, the DAGs in Figures 4(d)-4(f) capture settings where an agent may genuinely adapt their
features by intervening on a mediator M that lies between A and X∗. For example, this could occur
if private health insurers (A) are more likely to offer free gym memberships (M ), which influence the
true health status of their enrollees (X∗). As before, our approach does not require any knowledge
of the mediators an agent intervenes on in order to estimate the misreporting rate, as M is not a
confounder of X∗ and Y .

B Main Proofs

Each of the proofs within this Section assume that the dataset D ∼ Pa is generated according to any
one of the DAGs in Figures 4(a)-4(g).

B.1 Proof for Lemma 1

Lemma 1 is important to build up to Theorem 1. It shows that the MR can be estimated by comparing
the true and nominal causal effects of X∗ on Y and X on Y .

Lemma A1 (Estimator for the misreporting rate; Lemma 1 in the main text). Let Assumptions 1-3
hold. Then for δ∗a ̸= 0, the MR can be expressed as:

Pa(X
∗ = 0|X = 1) =

τ∗a − τa
δ∗a

Proof. Our proof proceeds in three main steps. First, we decompose τa into two terms: τ∗a and an
additional bias term. Second, we show that this additional term can be written as a function of our
target estimand, P (X∗ = 0|X = 1). Third and finally, we show that using simple algebra, we can
express our target estimand as a function of τ∗a , τa and δ∗a
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Step 1: Decomposing τa into τ∗a and an additional term

τa =

∫
C

(EPa
[Y |X = 1, C = c]− EPa

[Y |X = 0, C = c])Pa(C = c|X = 1)dc

=

∫
C

EPa [Y |X = 1, C = c,X∗ = 1]Pa(X
∗ = 1|X = 1, C = c)Pa(C = c|X = 1)dc

+

∫
C

EPa
[Y |X = 1, C = c,X∗ = 0]Pa(X

∗ = 0|X = 1, C = c)Pa(C = c|X = 1)dc

−
∫
C

EPa
[Y |X = 0, C = c]Pa(C = c|X = 1)dc

=

∫
C

EPa [Y |X∗ = 1, C = c](1− Pa(X
∗ = 0|X = 1, C = c))Pa(C = c|X = 1)dc

+

∫
C

EPa
[Y |X∗ = 0, C = c]Pa(X

∗ = 0|X = 1, C = c)Pa(C = c|X = 1)dc

−
∫
C

EPa
[Y |X = 0, C = c]Pa(C = c|X = 1)dc

=

∫
C

EPa
[Y |X∗ = 1, C = c]Pa(C = c|X = 1)dc

−
∫
C

EPa
[Y |X∗ = 1, C = c]Pa(X

∗ = 0|X = 1, C = c)Pa(C = c|X = 1)dc

+

∫
C

EPa [Y |X∗ = 0, C = c]Pa(X
∗ = 0|X = 1, C = c)Pa(C = c|X = 1)dc

−
∫
C

EPa
[Y |X∗ = 0, C = c]Pa(C = c|X = 1)dc

= τ∗a −
∫
(EPa

[Y |X∗ = 1, C]− EPa
[Y |X∗ = 0, C])Pa(X

∗ = 0|X = 1, C)Pa(C|X = 1)dc.

The third equality holds as Y ⊥ X|X∗, A for the DAGs in Figure 4(a)-4(g) and the fourth equality
holds due to Assumption 1.

Step 2: Expressing the additional term as a function of P (X∗ = 0|X = 1) Next, to explicitly
show that this additional term is a direct consequence of misreporting, we can rewrite it in terms of
the misrepoting rate:

∫
C

(EPa
[Y |X∗ = 1, C]− EPa

[Y |X∗ = 0, C])Pa(X
∗ = 0|X = 1, C)Pa(C|X = 1)dc

=

∫
C

(EPa
[Y |X∗ = 1, C]− EPa

[Y |X∗ = 0, C])
Pa(X

∗ = 0, C|X = 1)

Pa(C|X = 1)
Pa(C|X = 1)dc

=

∫
C

(EPa
[Y |X∗ = 1, C]− EPa

[Y |X∗ = 0, C])Pa(X
∗ = 0|X = 1)Pa(C|X∗ = 0, X = 1)dc

= Pa(X
∗ = 0|X = 1)

∫
C

(EPa [Y |X∗ = 1, C]− EPa [Y |X∗ = 0, C])Pa(C|X∗ = 0, X = 1)dc

= Pa(X
∗ = 0|X = 1)

∫
C

EPa
[Y |X∗ = 1, C]− EPa

[Y |X∗ = 0, C]Pa(C|X∗ = 0)dc

= Pa(X
∗ = 0|X = 1)

∫
C

EPa
[Y (X∗ = 1)|C]− EPa

[Y (X∗ = 0)|C = c]Pa(C|X∗ = 0)dc

= Pa(X
∗ = 0|X = 1)δ∗a.

The fourth equality comes directly from the fact that C ⊥ X|X∗, A for the DAGs in Figures 4(a)-4(g).
The fifth equality comes from Assumption 3, as all confounders are controlled for. Notably, both M
and S are not confounders of X∗ and Y . The variable U is a confounder of X∗ and Y , however, the
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backdoor path is blocked by A, so it doesn’t need to be directly controlled for. Overall, this shows
that any difference between τa and τ∗a is directly related to the misreporting rate.

Step 3: Getting the expression for the final target estimand Finally, we can obtain a way to
estimate the misreporting rate by rearanging the terms:

τa = τ∗a − Pa(X
∗ = 0|X = 1)δ∗a =⇒ Pa(X

∗ = 0|X = 1) =
τ∗a − τa

δ∗a
,

for δ∗a ̸= 0. Therefore, by comparing the difference in causal effects, we can identify the misreporting
rate.

B.2 Proof for Theorem 1

We now build upon the result from Lemma 1 as we work toward our main theorem. Before presenting
the proof of Theorem 1, we first introduce an additional Lemma which shows that τa, τ ′a, and δ′a are
identifiable using D and D∗, along with standard causal estimation assumptions. Then, in Theorem 1,
we demonstrate that the misreporting rate is identifiable by showing that τ ′a = τ∗a and δ′a = δ∗a. This
proof follows from Assumption 4, which states that the conditional causal effect of X∗ on Y will
remain invariant across both strategic and non-strategic populations.
Lemma A2 (Identifiability of τa, τ ′a, and δ′a). Let Assumption 3 hold. Then τa, τ ′a, and δ′a are
identifiable using D and D′.

Proof. First, recall that

τa :=

∫
C

(EPa [Y |X = 1, C = c]− EPa [Y |X = 0, C = c])Pa(C = c|X = 1)dc.

We know that τa is identifiable using only D as Y , X , and C are all known in D.

Next, recall that

τ ′a :=

∫
C

(EP∗ [Y (X∗ = 1)|C = c]− EP∗ [Y (X∗ = 0)|C = c])Pa(C = c|X = 1)dc

and

δ′a :=

∫
C

(EP∗ [Y (X∗ = 1)|C = c]− EP∗ [Y (X∗ = 0)|C = c])Pa(C = c|X = 0)dc.

Again, we know that Pa(C = c|X = 1) and Pa(C = c|X = 0) are identifiable using only D.
Therefore, to show that τ ′a and δ′a are identifiable, we must show that

EP∗ [Y (X∗ = 1)|C = c]− EP∗ [Y (X∗ = 0)|C = c]

is identifiable. This follows immediately from Assumptions 3:

EP∗ [Y (X∗ = 1)|C = c]− EP∗ [Y (X∗ = 0)|C = c]

= EP∗ [Y (X∗ = 1)|X∗ = 1, C = c]− EP∗ [Y (X∗ = 0)|X∗ = 0, C = c]

= EP∗ [Y |X∗ = 1, C = c]− EP∗ [Y |X∗ = 0, C = c]

Therefore, τa, τ ′a, and δ′a are identifiable using D and D′.

Theorem A1 (Identifiability; Theorem 1 in the main text). Let Assumptions 1-4 hold. Then for
δ′a ̸= 0, Pa(X

∗ = 0|X = 1) is identifiable and can be expressed as:

Pa(X
∗ = 0|X = 1) =

τ ′a − τa
δ′a

.

Proof. We know that τa, τ ′a, and δ′a are identifiable using D and D∗ by Lemma A2. Therefore, to
complete this proof, we only need to show that τ ′a = τ∗a and δ′a = δ∗a, as implied by Lemma 1.
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First, we show that τ ′a = τ∗a . Recall that

τ ′a :=

∫
C

(EP∗ [Y (X∗ = 1)|C = c]− EP∗ [Y (X∗ = 0)|C = c])Pa(C = c|X = 1)dc

and

τ∗a :=

∫
C

(EPa [Y (X∗ = 1)|C = c]− EPa [Y (X∗ = 0)|C = c])Pa(C = c|X = 1)dc.

Since
EPa

[Y (1)− Y (0)|C = c] = EP∗ [Y (1)− Y (0)|C = c]

for all c by Assumption 4, it follows immediately that τ ′a = τ∗a .

Next, recall that

δ′a :=

∫
C

(EP∗ [Y (X∗ = 1)|C = c]− EP∗ [Y (X∗ = 0)|C = c])Pa(C = c|X = 0)dc

and

δ∗a :=

∫
C

(EPa
[Y (X∗ = 1)|C = c]− EPa

[Y (X∗ = 0)|C = c])Pa(C = c|X∗ = 0)dc.

We already know that the conditional causal effects of X∗ on Y are the same across P ∗ and Pa.
It remains to show that Pa(C = c|X∗ = 0) = Pa(C = c|X = 0) for all values of c to show that
δ′a = δ∗a. We establish this equality next.

To show this, we simply apply the law of total probability as follows:

Pa(C = c|X = 0) = Pa(C = c|X = 0, X∗ = 1)P (X∗ = 1|X = 0)

+ Pa(C = c|X = 0, X∗ = 0)P (X∗ = 0|X = 0)

= Pa(C = c|X = 0, X∗ = 0)

= Pa(C = c|X∗ = 0).

The second equality follows because Pa(X
∗ = 1|X = 0) = 0 and P (X∗ = 0|X = 0) = 1 by

Assumption 1. The third equality follows as C ⊥ X|A,X∗ for all DAGs in Figures 4(a)-4(g). Note
that this finding is intuitive: it can be traced back to the assumption that the agents pick who to
misreport at random, which is implied by the DAGs.

Thus, the MR is identifiable.

B.3 Proof for Theorem 2

Theorem A2 (Variance; Theorem 2 in the main text). Let τ̂a, τ̂ ′a, and δ̂′a be asymptotically normal
estimators with an asymptotic variance of σ2

τa , σ2
τ ′
a
, and σ2

δ′a
. Also let στaτ ′

a
, στaδ′a

, and σδ′aτ
′
a

denote

the covariance between the estimators and d−→ denote convergence in distribution. Suppose that
N = M = n, then for δ′a ̸= 0 and δ̂′a ̸= 0,

√
n[
τ̂ ′a − τ̂a

δ̂′a
− τ ′a − τa

δ′a
]

d−→ N (0,
σ2
τ ′
a
+ σ2

τa − 2στ ′
aτa

δ′a
2 +2

τa − τ ′a
δ′a

3 (στ ′
aδ

′
a
−στaδ′a

)+
(τa − τ ′a)

2

δ′a
4 σ2

δ′a
)

Proof. By the definition of asymptotic normality, each estimator has the following asymptotic
distributions, where σ2

τ ′
a

is asymptotic variance of τ̂ ′a, σ2
τa is asymptotic variance of τ̂a, and σ2

δ′a
is

asymptotic variance of δ̂′a: √
n[τ̂ ′a − τ ′a]

d−→ N (0, σ2
τ ′
a
),

√
n[τ̂a − τa]

d−→ N (0, σ2
τa), and

√
n[δ̂′a − δ′a]

d−→ N (0, σ2
δ′a
).
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To proceed, we define the function g(τ̂ ′a, τ̂a, δ̂
′
a) as an estimator for the misreporting rate:

g(τ̂ ′a, τ̂a, δ̂
′
a) =

τ̂ ′a − τ̂a

δ̂′a
.

Since τ̂ ′a, τ̂a, δ̂′a are asymptotically normal, we can apply the delta method [43] to find the asymptotic
variance of g(τ̂ ′a, τ̂a, δ̂

′
a), which states that

√
n[g(τ̂ ′a, τ̂a, δ̂

′
a)− g(τ ′a, τa, δ

′
a)]

d−→ N (0,∇g(τ ′a, τa, δ
′
a)Σ∇g(τ ′a, τa, δ

′
a)

⊤),

where
∇g(τ ′a, τa, δ

′
a) =

(
1
δ′a

−1
δ′a

τa−τ ′
a

δ′a
2

)
and

Σ =

 σ2
τ ′
a

στaτ ′
a

σδ′aτ
′
a

στ ′
aτa

σ2
τa σδ′aτa

στ ′
aδ

′
a

στaδ′a
σ2
δ′a


Therefore, we can calculate the asymptotic variance as follows:

∇g(τ ′a, τa, δ
′
a)

⊤Σ∇g(τ ′a, τa, δ
′
a) =

(
1
δ′a

−1
δ′a

τa−τ ′
a

δ′a
2

) σ2
τ ′
a

στaτ ′
a

σδ′aτ
′
a

στ ′
aτa

σ2
τa σδ′aτa

στ ′
aδ

′
a

στaδ′a
σ2
δ′a




1
δ′a−1
δ′a

τa−τ ′
a

δ′a
2



=


σ2
τ ′
a

1
δ′a

− στ ′
aτa

1
δ′a

+ στ ′
aδ

′
a
(
τa−τ ′

a

δ′a
2 )

στaτ ′
a

1
δ′a

− σ2
τa

1
δ′a

+ στaδ′a
(
τa−τ ′

a

δ′a
2 )

σδ′aτ
′
a

1
δ′a

− σδ′aτa
1
δ′a

+ σ2
δ′a
(
τa−τ ′

a

δ′a
2 )




1
δ′a−1
δ′a

τa−τ ′
a

δ′a
2


= σ2

τ ′
a

1

δ′a
2 − στ ′

aτa

1

δ′2a
+ στ ′

aδ
′
a

τa − τ ′a
δ′a

3

− στaτ ′
a

1

δ′2a
+ σ2

τa

1

δ′2a
− στaδ′a

τa − τ ′a
δ′a

3

+ σδ′a,τ
′
a

τa − τ ′a
δ′3a

− σδ′aτa

τa − τ ′a
δ′3a

+ σ2
δ′a

(τa − τ ′a)
2

δ′a
4

= σ2
τ ′
a

1

δ′a
2 + σ2

τa

1

δ′2a
− 2στ ′

aτa

1

δ′2a

+ 2στ ′
aδ

′
a

τa − τ ′a
δ′a

3 − 2στaδ′a

τa − τ ′a
δ′a

3

+ σ2
δ′a

(τa − τ ′a)
2

δ′a
4

=
1

δ′a
2 (σ

2
τ ′
a
+ σ2

τa − 2στ ′
aτa

)

+ 2
τa − τ ′a
δ′a

3 (στ ′
aδ

′
a
− στaδ′a

)

+
(τa − τ ′a)

2

δ′a
4 σ2

δ′a
.

Therefore,
√
n[

τ̂ ′
a−τ̂a

δ̂′a
− τ ′

a−τa
δ′a

] asymptotically converges to the following normal distribution:

√
n[
τ̂ ′a − τ̂a

δ̂′a
− τ ′a − τa

δ′a
]

d−→ N (0,
σ2
τ ′
a
+ σ2

τa − 2στ ′
aτa

δ′a
2 +2

τa − τ ′a
δ′a

3 (στ ′
aδ

′
a
−στaδ′a

)+
(τa − τ ′a)

2

δ′a
4 σ2

δ′a
)
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C Additional Estimands

In this section, we show that if we can identify the main estimand of interest, Pa(X = 1|X∗ = 0),
we can also identify other useful estimands, which are defined below.

Definition 2 (Difference in Marginals). DIM = Pa(X = 1)− Pa(X
∗ = 1).

Definition 3 (False Positive Rate). FPR = Pa(X = 1|X∗ = 0).

The estimand in definition 3 can simply be interepreted as the false positive rate whereas the estimand
in definition 2 can be thought of as the probability that a feature was misreported.

To establish that the estimand in definition 2 is identifiable, we first establish that our estimand of
interest, Pa(X = 1)− Pa(X

∗ = 0), can be expressed as the joint distribution Pa(X = 1, X∗ = 0)
in Lemma A3. Identifiability follows from Theorem 1 and a simple application of Bayes rule as both
Pa(X

∗ = 0|X = 1) and Pa(X = 1) are identifiable.

Additionally, since Lemma A3 implies that both Pa(X = 1, X∗ = 0) and Pa(X
∗ = 0) are

identifiable, we can show that the estimand in definition 3 is also identifiable.

Lemma A3. Let Assumption 1 hold. Then Pa(X = 1)− Pa(X
∗ = 1) = Pa(X = 1, X∗ = 0)

Proof.

Pa(X = 1, X∗ = 0) = Pa(X = 1, X∗ = 0) + Pa(X
∗ = 1)− Pa(X

∗ = 1)

= Pa(X = 1, X∗ = 0) + Pa(X = 1|X∗ = 1)Pa(X
∗ = 1)− Pa(X

∗ = 1)

= Pa(X = 1, X∗ = 0) + Pa(X = 1, X∗ = 1)− Pa(X
∗ = 1)

= Pa(X = 1)− Pa(X
∗ = 1),

where the second equality follows because Pa(X = 1|X∗ = 1) = 1 by Assumption 1.

Corollary A1 (Identifiability of difference in marginals). Let Assumptions 1-4 hold. Then for δ′a ̸= 0,
Pa(X = 1)− Pa(X

∗ = 1) is identifiable and can be expressed as:

Pa(X = 1)− Pa(X
∗ = 1) =

τ ′a − τa
δ′a

× Pa(X = 1).

Proof. The proof relys on a simple application of Bayes rule, and results from Lemma A3 and
Theorem 1. Specifically, we have that:

Pa(X = 1)− Pa(X
∗ = 1) = Pa(X = 1, X∗ = 0)

= Pa(X
∗ = 0|X = 1)Pa(X = 1),

where the first equality follows by Lemma A3 and the second equality follows by Bayes rule. By
theorem 1, the first term (Pa(X

∗ = 0|X = 1)) is identifiable, and Pa(X = 1) is identifiable because
all variables required for estimation are observed.

Corollary A2 (Identifiability of false positive rate). Let Assumptions 1-4 hold. Then for δ′a ̸= 0,
Pa(X = 1|X∗ = 0) is identifiable and can be expressed as:

Pa(X = 1|X∗ = 0) =
τ ′a − τa

δ′a
× Pa(X = 1).

Proof. From Lemma A3, we can derive P (X∗ = 0) as follows:

Pa(X = 1)− Pa(X
∗ = 1) = Pa(X = 1, X∗ = 0) =⇒

Pa(X = 1)− Pa(X = 1, X∗ = 0) = Pa(X
∗ = 1) =⇒

1− {Pa(X = 1)− Pa(X = 1, X∗ = 0)} = 1− Pa(X
∗ = 1) =⇒

Pa(X = 0) + Pa(X = 1, X∗ = 0) = Pa(X
∗ = 0)
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By Bayes’ theorem, we can write the estimand as

Pa(X = 1|X∗ = 0) =
Pa(X

∗ = 0|X = 1)Pa(X = 1)

Pa(X∗ = 0)

=
Pa(X

∗ = 0|X = 1)Pa(X = 1)

Pa(X = 0) + Pa(X = 1, X∗ = 0)

Thus, since Pa(X
∗ = 0|X = 1), Pa(X = 1, X∗ = 0), Pa(X = 1), and Pa(X = 0) are identifiable,

Pa(X = 1|X∗ = 0) must be identifiable.

D Datasets

D.1 Medicare Dataset

The medicare dataset used in our experiments consists of insurance claims data from real U.S.
Medicare enrollees enrolled in either Traditional Medicare or a private medicare insurance plan. The
data was provided to the authors under a data usage agreement with the Centers for Medicare and
Medicaid Services (CMS). For our experiments, we only use enrollees that had Medicare coverage in
both 2019 (t) and 2018 (t− 1). We exclude enrollees who were dual-eligible (i.e., are eligible for
both U.S. Medicaid and Medicare), had end-stage renal disease, or were below the age of 65 for the
year t− 1. In addition, we exclude all enrollees who resided outside of the 50 U.S. states, the District
of Columbia, Puerto Rico, or the U.S. Virgin Islands.

Each of the private medicare insurers is treated as a strategic agent that may misreport enrollee
features. We used five agents in total for our experiments. Four agents correspond to the largest
private insurers based on the total number of enrollees in year t. The fifth agent is created by
aggregating the enrollees from all other smaller insurers. In contrast, Traditional Medicare was
treated as a trustworthy agent that doesn’t manipulate enrollee data, as there is no incentive to
misreport.

The goal of our analysis is to assess how much private medicare insurers misreport HCC codes, which
are binary variables that indicate if an enrollee has been diagnosed with a specific medical condition.
We use V23 HCC codes, as defined by CMS, which are derived by mapping ICD-10 diagnosis codes
reported in the claims data. There are two types of HCC codes: payment HCCs, which are used by a
risk-adjustment model to predict future healthcare costs, and nonpayment HCCs, which are not used
to determine costs. We expect the misreporting rate for each nonpayment HCC to be zero as there is
no incentive for private insurers to misreport them.

For our analysis, we partition the enrollees into two different cohorts: stayers and switchers. To
derive the stayers cohort, we sampled enrollees enrolled in Traditional Medicare for all 12 months in
year t− 1 and were not enrolled in a private insurance plan in year t. For the switchers cohort, we
used enrollees that were enrolled in Traditional Medicare for all 12 months in year t− 1 and were
enrolled in a private insurance plan for at least one month in year t. We only used a 20% random
sample of the eligible stayers cohort (868255 samples) and 100% of the eligible switchers cohort
(166539 samples). For the outcome (Y ), we use the enrollee’s death status in year t.

For the features (X), we used both payment and nonpayment HCC codes, consisting of 83 and 99
codes, respectively. As covariates, we used the enrollee’s age, race, sex, and the payment HCCs from
year t− 1 to ensure they were not misreported. To obtain low variance estimates, we restricted our
analysis to payment and nonpayment HCCs with the largest causal effects on death and where at least
1% of the switchers enrollees in year t had the HCC code.

D.2 Loan Datasets

In our loan dataset simulations, we model a setting where loan applicants may either genuinely adapt
or misreport their employment status to improve their chances of getting approved for a loan. For
each of our simulations, we simulate a single strategic agent (A = 1) and a single nonstrategic agent
(A = 0). In addition to the semi-synthetic dataset used for the experiments in Section 5, we generate
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additional datasets based on different DAGs in Figure 4. The data generation process for the other
datasets is explained in Appendix F.

All of the simulations use the covariates extracted from a real credit card dataset [45]. These include
three binary variables: marriage status (CM ), sex (CS), and education (CE), as well as another
variable representing a person’s age (CA). We use min-max normalization so that CA is between 0
and 1. The agent variable (A), the variable for employment status (X∗), and the variable indicating
if a loan applicant defaulted (Y ), are all generated using the covariates. Misreporting is done in
accordance with the following equation:

Xi ∼ X∗
i +Ai(1−X∗

i )Bernoulli(µ)

where µ is picked to target a desired MR (default = 0.2). Each experiment is repeated 100 times, with
new draws of A,X,X∗, and Y . Across all experiments, we use an 80/20 train/test split of D.

E Estimators

In this section, we present additional details about our primary method (CMRE) as well as the baseline
approaches (NMRE, NDEE, and OC-SVM). We also specify the hyperparameters and libraries used
to implement each method in our experiments.

E.1 CMRE

Recall that for a suitable function class F , a loss function ℓ, and Na – the number of data points in D
for which A = a – we define

fa(c, x) = argmin
f∈F

1

Na

∑
i:i∈D,ai=a

ℓ(f(ci, xi), yi), and θa(c) := fa(c, 1)− fa(c, 0) (4)

and

f∗(c, x∗) = argmin
f∈F

1

M

∑
i:i∈D∗

ℓ(f(ci, x
∗
i ), yi) and θ∗(c) := f∗(c, 1)− f∗(c, 0). (5)

Recall that Nax denotes the number of data points in D for which A = a and X = x. Using this, we
compute the estimates for τ ′a, τa and δ′a as follows:

τ̂ ′a =
1

Na1

∑
i:i∈D,xi=1,

ai=a

θ∗(ci), τ̂a =
1

Na1

∑
i:i∈D,xi=1,

ai=a

θ(ci), δ̂′a =
1

Na0

∑
i:i∈D,xi=0,

ai=a

θ∗(ci). (6)

To estimate θa(c) and θ∗(c), we employ an S-learner, where the models fa and f∗ are implemented
using XGBoost. We use the default hyperparameters provided by the XGBoost library in Python
to train each model [7], including a learning rate of 0.3, a maximume tree depth of 6, and L2
regularization with a coefficient of 1.

The complete algorithm for CMRE is summarized in 1. We note that for our experiments, we split D
such that the data used to train fa(c, x) in equation 4 is different than the data used to estimate the
MR in equation 6. Specifically, 80% of the data in D is used to train fa(c, x) in equation 4 and the
other 20% is used to estimate τ̂ ′a, τ̂a, and δ̂′a.

E.2 NMRE

NMRE adopts a similar strategy to CMRE for estimating the misreporting rate. Specifically, it
leverages the differences in causal effect estimates. However, the key distinction between NMRE
and CMRE is that NMRE doesn’t account for potential confounders or treatment effect modifiers
between X∗ and Y . As a result, NMRE employs a simple difference-in-means estimator to estimate
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Algorithm 1 CMRE algorithm
Input: D = {(xi, yi, ci, ai)}Ni and D∗ = {(x∗

i , yi, ci)}Mi
Output: M̂R, an estimate of the MR for each agent

for each agent a do
Estimate θa(c) using equation 4
Estimate θ∗(c) using equation 5
Estimate τ̂ ′a, τ̂a, and δ̂′a using equation 6
return τ̂ ′

a−τ̂a

δ̂′a
end for

the average effect of the feature on Y over both D∗ and D. Therefore, to estimate the MR for a given
agent a, we define

τ̂ ′ =
1

M1

∑
i:i∈D∗,x∗

i =1

yi −
1

M0

∑
i:i∈D∗,x∗

i =0

yi (7)

and

τ̂a =
1

Na1

∑
i:i∈D,xi=1,

ai=a

yi −
1

Na0

∑
i:i∈D,xi=0,

ai=a

yi, (8)

where Mx is the number of datapoints in D∗ where X∗ = x.

The misreporting rate is the estimated as:

M̂R =
τ̂ ′ − τ̂a

τ̂ ′
.

The complete algorithm for NMRE is summarized in Algorithm 2.

Algorithm 2 NMRE algorithm
Input: D = {(xi, yi, ci, ai)}Ni and D∗ = {(x∗

i , yi, ci)}Mi
Output: M̂R, an estimate of the MR for each agent

for each agent a do
Estimate τ̂ ′ using equation 7
Estimate τ̂a using equation 8
return τ̂ ′−τ̂a

τ̂ ′

end for

E.3 NDEE

The NDEE baseline estimates the misreporting rate by computing a quanitity similar to the natural
direct effect of A on X , divided by the probability Pa(X = 1). Specifically, we estimate

1

Pa(X = 1)

∫
C

(EPa
[X|C = c]− EP∗ [X|C = c])Pa(C = c)dC. (9)

Assuming that all datapoints in P ∗ are generated a single trustworthy agent a∗, the integral term,∫
C

(EPa
[X|C = c]− EP∗ [X|C = c])Pa(C = c)dC,

can be interpreted as the natural direct effect of A of X within the treated population (i.e., data points
where A = a are the treated whereas a∗ refers to the untreated), when C controls for all mediators
and confounders between A and X . We next show how to estimate the NDEE in practice, which is as
follows.
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Dataset Preparation. We modify the original dataset D∗ such that D∗ = {(x∗
i , yi, ci, ai)}Mi=1

where ai = a∗ for all ai. Next, we combine both D and D∗ to create a unified dataset:

D′ = D ∪D∗.

Causal Effect Estimation Let F denote a suitable function class and ℓ a loss function. We then
learn a function

f(c, a) := arg min
f ′∈F

1

N +M

∑
i:i∈D′

ℓ(f ′(ci, ai), xi). (10)

Next, we estimate the natural direct effect of A over the treated population as follows:

τ̂NDE :=
1

Na

∑
i:i∈D,ai=a

f(ci, a)− f(ci, a
∗). (11)

Probability Estimation The probability Pa(X = 1) can be estimated simply as

πa :=
1

Na

∑
i:i∈D,ai=a

xi (12)

The full algorithm is summarized in 3. The model f(c, a) is implemented using XGBoost, where we
use the default hyperparameters provided by the XGBoost library in Python [7] (a learning rate of
0.3, a maximume tree depth of 6, and L2 regularization with a coefficient of 1).

Algorithm 3 NDEE algorithm

Input: D = {(xi, yi, ci, ai)}Ni , D∗ = {(x∗
i , yi, ci)}Mi , and D′ = {(xi, yi, ci, ai)}N+M

i

Output: M̂R, an estimate of the MR for each agent
for each agent a do

Estimate f(c, a) using equation 10
Estimate τ̂NDE using equation 11
Estimate πa using equation 12
return 1

πa
τ̂NDE

end for

When can the NDEE accurately estimate the MR? We show that if A does not directly causally
effect X∗, it is possible to obtain an accurate estimate of the misreporting rate using the NDEE. To
show this, we can rewrite the misreporting rate as follows:

MR = Pa(X
∗ = 0|X = 1)

=
Pa(X = 1)− Pa(X

∗ = 1)

Pa(X = 1)

=
1

Pa(X = 1)
(EPa

[X]− EPa
[X∗])

=
1

Pa(X = 1)

∫
C

(EPa
[X|C = c]− EPa

[X∗|C = c])Pa(C = c)dC.

Thus, unless EPa [X
∗|C = c] = EP∗ [X∗|C = c], the NDEE will give a biased estimate of the

misreporting rate. This equality will hold if X∗ ⊥ A|C, which can only be true if A does not directly
affect X∗. Therefore, we should expect the NDEE to only work in settings where agents do not
directly genuinely adapt their features.
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E.4 OC-SVM

Under our assumptions, no data points where X = 0 are misreported. Therefore, we restrict the
OC-SVM approach to a subset of the data from D∗ and D where X = 1, which we denote as D∗

1
and D1, respectively. To train a One-Class SVM model, we use data from D∗

1 , which is assumed
to contain no misreported instances. The One-Class SVM model, denoted as g(y, c), is trained to
identify outliers/misreported instances using only the variables Y and C. The model outputs a 1 if a
datapoint is classified an outlier, and 0 otherwise.

For a given agent a, we estimate the misreporting rate using the OC-SVM as:

M̂R =
1

Na1

∑
i:i∈D1,ai=a

g(yi, ci).

We use the One-Class SVM implementation from the scikit-learn library [35]. Given our assumption
that all data points in D∗

1 are correctly reported, we used a small ν parameter (0.01). Additionally, we
use an RBF kernel with a bandwidth parameter γ = 0.1.

F Additional Experiments

F.1 Medicare Experiments

Figure 5 presents our Medicare experiments including the results from the OC-SVM estimator. The
estimated misreporting rate for the OC-SVM is consistent across all HCC codes and agents, reflecting
the results from our semi-synthetic loan dataset experiments. This suggests that the OC-SVM is
unable to distinguish misreported data points from normal data points.

Tables 1 and 2 provide information about each of the nonpayment and payment HCCs that had δ̂′a > 0
and were present in at least 1% of the switcher enrollees. For each HCC code, the tables report the
estimated MR using CMRE, the number of stayer and switcher enrollees in year t, δ̂′a, and the lower
and upper bounds for the 95% confidence interval. We exclude HCCs that were nonpayment in year
t but were used as payment HCCs for the risk adjustment model in year t+ 1, due to the potential
incentive for agents to misreport them.

HCC117 HCC50 HCC21 HCC8

−0.2

0.0

0.2

M
R

E
st

im
a

te

Payment HCCsNonpayment HCCs

MR Estimates for HCCs

CMRE NDEE NMRE OC-SVM

CMRE NDEE NMRE OC-SVM

−0.2

0.0

0.2

0.4
Estimated MR for Nonpayment HCC

Insurance 1 Insurance 2 Insurance 3 Insurance 4 Insurance 5

CMRE NDEE NMRE OC-SVM
−0.5

0.0

0.5

Estimated MR for Payment HCC

Figure 5: For each plot, the y-axis represents the estimated MR for an HCC code and the error bars
represent a 95% confidence interval. (Left) The x-axis has two nonpayment HCCs (HCC117 and
HCC50) and two payment HCCs (HCC21 and HCC8). Our approach (CMRE) has a MR estimate
close to zero for nonpayment HCCs and significantly above zero for the payment HCCs, which
aligns with what is expected in current literature. Baselines that fail to distinguish genuine adaptation
from strategic adaptation (NDEE) seem to underestimate the MR and baselines that do not control
for confounding (NMRE) seem to overestimate the MR. OC-SVM has a similar estimate for each
HCC, making it ineffective at identifying misreported data points. (Middle and Right) The x-axis
represents the baselines. The middle plot represents estimates for HCC50 and the right plot represents
MR estimates for HCC8 across different private insurers (agents). Similar to the left plot, NDEE
seems to underestimate the MR across most agents, and NMRE overestimates, and the MR estimates
for OC-SVM are consistent across all agents and HCC codes.

24



Table 1: Nonpayment HCCs with δ̂′a > 0.1 and present in at least 1% of switcher enrollees.

HCC Full Name MR # Stayers # Switchers δ̂′a LCB UCB

50 Delirium and
Encephalopathy .015 32294 4535 .175 -.138 .091

117 Pleural
Effusion/Pneumothorax

.019 39037 5601 .153 -.103 .120

Table 2: Payment HCCs with δ̂′a > 0.1 and present in at least 1% of switcher enrollees.

HCC Full Name MR # Stayers # Switchers δ̂ LCB UCB

8 Metastatic Cancer and
Acute Leukemia

.130 18762 2646 .276 .037 .238

21 Protein-Calorie
Malnutrition

.217 21460 3338 .270 .109 .285

84 Cardio-Respiratory
Failure and Shock

.046 40308 6292 .247 -.030 .103

188 Artificial Openings for
Feeding or Elimination .004 10528 1684 .194 -.110 .210

2 Septicemia, Sepsis, SIRS,
and Shock

.112 28297 4309 .190 .040 .248

135 Acute Renal Failure -.004 49021 7868 .130 -.073 .116
103 Hemiplegia/Hemiparesis .241 12589 2395 .129 .066 .439

86 Acute Myocardial
Infarction

.033 20555 3230 .117 -.121 .217

F.2 Loan Dataset Experiments

We conduct additional experiments using alternative versions of the loan fraud dataset to show how
well our method and the baselines work under the DAGs defined in Figure 4. We also include
two additional baselines that were not in the main paper: NDEE (no C) and NDEE (no S). Unlike
the standard NDEE model, which controls for all covariates, NDEE (no C) doesn’t control for
confounders between X∗ and Y , and NDEE (no S) doesn’t control for common causes of A and X∗,
e.g., S. These variants are used to highlight the importance of controlling for S for NDEE.

F.2.1 Simulation 1

The first simulation replicates the setup used to generate the results in Section 5. It includes four
confounders of X∗ and Y : education (CE), sex (CS), marriage (CM ), and age (CA). Among these
variables, sex and marriage also causally effect A, reflecting a similar scenario represented by the
DAG in Figure 4(g). The simulation details are provided below:

Ai ∼ Bernoulli(0.05 + 0.3(1− CSi) + 0.3(1− CMi)),

X∗
i ∼ Bernoulli(0.05 + 0.05CEi + 0.3CSiCMi + 0.1CA

2
i + βAAi),

Yi ∼ Bernoulli(0.05 + 0.05CEi + 0.3CSiCMi + 0.1CA
2
i + βX∗X∗

i ),

Xi ∼ X∗
i +Ai(1−X∗

i )Bernoulli(µ),

In this simulation, NDEE (no S) doesn’t control for either CS or CM . Our main method, CMRE,
controls for all covariates as they are all confounders between X∗ and Y . βA = 0.3 and βX∗ = 0.4
unless specified otherwise. The results for this simulation are shown in Figure 6.

F.2.2 Simulation 2

The second simulation includes three confounders of X∗ and Y : education (CE), sex (CS), and age
(CA). Marriage (CM ) is a common cause of A and X∗ and an agent genuinely adapts eduction,
reflecting similar scenarios represented by the DAGs in Figure 4(a) and 4(b). In addition, eduction is
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Figure 6: The x-axis is the causal effect of A on X∗ (left), causal effect of X∗ on Y (middle), and
the misreporting rate (right). The y-axis is the estimated misreporting rate. Dashed lines represent
the true misreporting rate and the error bars represent the standard deviation. Our approach (CMRE)
accurately estimates the MR for all levels of genuine adaptation, the causal effect of X∗ on Y , and
misreporting rates. The variance for our estimator depends on the magnitude of the causal effect
of X∗ on Y . Baselines that do not adjust for confounding (NMRE) or do not distinguish between
genuine adaptation and misreporting (NDEE) give biased estimates in various cases. NDEE is
accurate when there is no genuine adaptation whereas NDEE (no S) is not, highlighting the need for
controlling for common causes of A and X∗. Anomaly detection methods (OC-SVM) are unable to
distinguish misreported data points from unmanipulated data points.

also a treatment effect modifier. The simulation details are provided below:

Ai ∼ Bernoulli(0.05 + 0.4(1− CMi)),

C ′
Ei ∼ CEi + (1− CEi)AiBernoulli(βM ),

X∗
i ∼ Bernoulli(0.05 + 0.25CMi + 0.1C ′

EiCSi + 0.1CA
2
i + βAAi),

Yi ∼ Bernoulli(0.05 + 0.2C ′
EiCSi + 0.1CA

2
i + (βX∗ + 0.1C ′

Ei)X
∗
i ),

Xi ∼ X∗
i +Ai(1−X∗

i )Bernoulli(µ),

In this simulation, NDEE (no S) doesn’t control for CM and NDEE (no C) only controls for CM .
Our main method, CMRE, only controls for CE , CS , and CA. βA = 0.1, βM = 0.2, and βX∗ = 0.4
unless specified otherwise. The results for this simulation are shown in Figure 7.

F.2.3 Simulation 3

The third simulation includes three confounders of X∗ and Y : education (CE), sex (CS), and age
(CA). Marriage (CM ) is a common cause of A and Y and an agent genuinely adapts education,
reflecting the scenario represented by the DAG in Figure 4(c). In addition, education is also a
treatment effect modifier. βA = 0.1, βM = 0.2, and βX∗ = 0.4 unless specified otherwise. The
simulation details are provided below:

Ai ∼ Bernoulli(0.05 + 0.4(1− CMi)),

C ′
Ei ∼ CEi + (1− CEi)AiBernoulli(βM ),

X∗
i ∼ Bernoulli(0.05 + 0.1C ′

EiCSi + 0.1CA
2
i + βAAi),

Yi ∼ Bernoulli(0.05 + 0.2CMi + 0.1C ′
EiCSi + 0.05CA

2
i + (βX∗ + 0.1C ′

Ei)X
∗
i ),

Xi ∼ X∗
i +Ai(1−X∗

i )Bernoulli(µ),

In this simulation, NDEE (no C) only controls for CM . Our main method, CMRE, only controls for
CE , CS , and CA. The results for this simulation are shown in Figure 8.

F.2.4 Simulation 4

The fourth simulation includes two confounders of X∗ and Y : sex (CS), and age (CA). Marriage
(CM ) is a common cause of A and Y and an agent genuinely adapts education, which is a mediator
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Figure 7: The x-axis is the direct causal effect of A on X∗ (left), causal effect of X∗ on Y (middle),
and the misreporting rate (right). The y-axis is the estimated misreporting rate. Dashed lines
represent the true misreporting rate and the error bars represent the standard deviation. Our approach
(CMRE) accurately estimates the MR for all levels of genuine adaptation, the causal effect of X∗ on
Y , and misreporting rates. The variance for our estimator depends on the magnitude of the causal
effect of X∗ on Y . Baselines that do not adjust for confounding (NMRE) or do not distinguish
between genuine adaptation and misreporting (NDEE) give biased estimates in various cases. NDEE
is accurate when there is no genuine adaptation whereas NDEE (no S) and NDEE (no C) are not,
as they either don’t control for common causes of A and X∗ or mediators of A and X∗. Anomaly
detection methods (OC-SVM) are unable to distinguish misreported data points from unmanipulated
data points.

0.0 0.1 0.2 0.3
Causal Effect of A on X∗

0.0

0.2

0.4

0.6

0.8

E
st

im
a

te
d

M
R

CMRE (Ours) NMRE NDEE (All) NDEE (no C) OCSVM

0.2 0.4
Causal Effect of X∗ on Y

0.0

0.2

0.4

0.6

0.0 0.1 0.2
Misreporting Rate

0.0

0.2

0.4

0.6

Figure 8: The x-axis is the direct causal effect of A on X∗ (left), causal effect of X∗ on Y (middle),
and the misreporting rate (right). The y-axis is the estimated misreporting rate. Dashed lines
represent the true misreporting rate and the error bars represent the standard deviation. Our approach
(CMRE) accurately estimates the MR for all levels of genuine adaptation, the causal effect of X∗ on
Y , and misreporting rates. The variance for our estimator depends on the magnitude of the causal
effect of X∗ on Y . Baselines that do not adjust for confounding (NMRE) or do not distinguish
between genuine adaptation and misreporting (NDEE) give biased estimates in various cases. NDEE
is accurate when there is no genuine adaptation whereas NDEE (no C) is not, as it doesn’t account
for the mediators of A and X∗. Anomaly detection methods (OC-SVM) are unable to distinguish
misreported data points from unmanipulated data points.

of A and X∗, reflecting the scenario represented by the DAGs in Figure 4(d) and 4(e). The simulation
details are provided below:

Ai ∼ Bernoulli(0.05 + 0.4(1− CMi)),

C ′
Ei ∼ CEi + (1− CEi)AiBernoulli(βM ),

X∗
i ∼ Bernoulli(0.05 + 0.3C ′

EiCSi + 0.1CA
2
i + βAAi),

Yi ∼ Bernoulli(0.05 + 0.2CMi + 0.1CSi + 0.05CA
2
i + βX∗X∗

i ),

Xi ∼ X∗
i +Ai(1−X∗

i )Bernoulli(µ),
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In this simulation, NDEE (no C) only controls for CM and CE . Our main method, CMRE, only
controls for CS and CA. βA = 0.1, βM = 0.2, and βX∗ = 0.4 unless specified otherwise. The
results for this simulation are shown in Figure 9.
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Figure 9: The x-axis is the direct causal effect of A on X∗ (left), causal effect of X∗ on Y (middle),
and the misreporting rate (right). The y-axis is the estimated misreporting rate. Dashed lines
represent the true misreporting rate and the error bars represent the standard deviation. Our approach
(CMRE) accurately estimates the MR for all levels of genuine adaptation, the causal effect of X∗ on
Y , and misreporting rates. The variance for our estimator depends on the magnitude of the causal
effect of X∗ on Y . Baselines that do not adjust for confounding (NMRE) or do not distinguish
between genuine adaptation and misreporting (NDEE) give biased estimates in various cases. Both
NDEE and NDEE (no C) are accurate when there is no genuine adaptation, as they control for all
common causes of A and X∗ and mediators of A and X∗. Anomaly detection methods (OC-SVM)
are unable to distinguish misreported data points from unmanipulated data points.

F.2.5 Simulation 5

The fifth simulation includes two confounders of X∗ and Y : sex (CS), and age (CA). Marriage (CM )
is a common cause of A and X∗ and an agent genuinely modifies education, which is a mediator of A
and X∗, reflecting similar scenarios represented by the DAGs in Figure 4(d) and 4(f). The simulation
details are provided below:

Ai ∼ Bernoulli(0.05 + 0.4(1− CMi)),

C ′
Ei ∼ CEi + (1− CEi)AiBernoulli(βM ),

X∗
i ∼ Bernoulli(0.05 + 0.2CMi + 0.3C ′

EiCSi + 0.1CA
2
i + βAAi),

Yi ∼ Bernoulli(0.05 + 0.3CSi + 0.05CA
2
i + βX∗X∗

i ),

Xi ∼ X∗
i +Ai(1−X∗

i )Bernoulli(µ),

In this simulation, NDEE (no C) only controls for CM and CE and NDEE (no S) doesn’t control for
CM . Our main method, CMRE, only controls for CS and CA. βA = 0.1, βM = 0.2, and βX∗ = 0.4
unless specified otherwise. The results for this simulation are shown in Figure 10.

G Software and Hardware

G.1 Software

All of the code for the experiments was written in Python 3.10.16 (PSF License). The XGBoost
models were implemented using the XGBoost 2.1.4 (Apache License 2.0) [7]. The OC-SVM baseline
was implemented by using scikit-learn 1.6.1 (BSD License) [35], which used the implementation
of the One-Class SVM. To generate the semi-synthetic datasets and for data processing tasks, both
numpy 2.0.2 (modified BSD license) [16] and pandas 2.2.3 (BSD license) [34] were employed. For
the Medicare dataset, HCCPy 0.1.9 (Apache License 2.0) was employed to extract the HCCs from
raw data. All plots were created using matplotlib 3.10.1 (PSF License) [20].
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Figure 10: The x-axis is the direct causal effect of A on X∗ (left), causal effect of X∗ on Y (middle),
and the misreporting rate (right). The y-axis is the estimated misreporting rate. Dashed lines
represent the true misreporting rate and the error bars represent the standard deviation. Our approach
(CMRE) accurately estimates the MR for all levels of genuine adaptation, the causal effect of X∗ on
Y , and misreporting rates. The variance for our estimator depends on the magnitude of the causal
effect of X∗ on Y . Baselines that do not adjust for confounding (NMRE) or do not distinguish
between genuine adaptation and misreporting (NDEE) give biased estimates in various cases. Both
NDEE and NDEE (no C) are accurate when there is no genuine adaptation, as they control for all
common causes of A and X∗ and mediators of A and X∗. In contrast, NDEE does not control for
common causes of A and X∗, which makes it biased. Anomaly detection methods (OC-SVM) are
unable to distinguish misreported data points from unmanipulated data points.

G.2 Hardware

All experiments were conducted using 16 CPU cores and 32 GB of memory on a computing
cluster with 2 x 2.5 GHz Intel Haswell (Xeon E5-2680v3) processors, which was managed using
a Slurm resource manager. The simulations for all of the five semi-synthetic loan experiments
took approximately 5 hours to complete, whereas the experiments over the Medicare dataset took
approximately 36 hours to complete.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction claim that we propose a causally motivated
approach to quantify how much a strategic agent misreports (shown in Sections 3 and 4),
and claim that we show that how much a strategic agent misreports is identifiable (shown in
Lemma 1 and Theorem 1). We also claim that we characterize the variance of our estimator,
which is shown in Theorem 2. Finally, we claim that we empirically validate our theoretical
results over a semi-synthetic and real Medicare dataset, which is shown in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper does discuss the limitations – see the “Limitations and Broader
Impacts” section in the Conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Yes, all assumptions are listed formally and numbered. Each Theorem and
Lemma states the full set of assumptions and proofs are provided in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided a sufficient amount of details in the paper so that the semi-
synthetic simulations can be reproduced. All model details and hyperparameters that were
used are included in the Appendix. Due to restrictions on the Medicare dataset, we are
unable to share this dataset with the public. However, we do provide details on how we
generated the cohorts of data used in our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: To the extent legally permitted, we provide code and access to the semi-
synthetic data used in the paper. Due to various restrictions regarding the use of the
Medicare data, the authors do not have the power to share or grant access to the data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details on the datasets, train/test splits, and hyperparameters necessary to
understanding the results are provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We report the standard deviation via error bars for the baseline estimates
across multiple different simulations. This is explicitly stated in the Figure 2 caption for our
semi-synthetic experiment results. For our Medicare experiments, we provide error bars that
represent a 95% confidence interval, as is stated in the Figure 3 caption.
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of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details of the computational resources used for all of our experi-
ments in the Appendix, as well as how long it takes to run our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and confirm that this
research conforms to the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This work discusses potential negative impacts in the “Limitations and Broader
Impacts” section. We also discuss the potential positive societal impacts in the introduction.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The simple semi-synthetic dataset that we will release poses no risk for misuse.
Since the authors are not permitted to release any the the real Medicare data, risks regarding
the release of the data are minimized.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: Citations are provided for relevant code and data that was used for our
experiments. License information is provided and respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The only new asset introduced in this paper is a code repository used for our
experiments. The repository includes a README file that contains all of the instructions
necessary for running our code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing experiments were performed in this paper. The Medicare
data used for the experiments was purchased following a data usage agreement by the Center
for Medicare Services.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The Medicare dataset was obtained from the U.S. Center for Medicare and
Medicaid Services under a data usage agreement authorizing a scope of analyses including
misreporting and upcoding in U.S. Medicare. IRB review was not required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: At no point were LLMs involved in the core method development of this
research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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