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Data analytics and machine learning have grown in importance to efficiently manage large amounts of
healthcare data. Recent statistics indicate that breast cancer is the most commonly diagnosed cancer worldwide.
Different tumor features are available in various datasets for breast cancer detection. Filtering those to obtain

Prediction an accurate diagnosis is time-consuming and challenging. Machine learning algorithms are beneficial for
Ensemble methods .1 s . . . . .
Analytics finding a significant relationship between various features and malignant tumors. This research proposes a

new ensemble-based framework named Meta-Health Stack to predict breast cancer more efficiently. In this
framework, to extract the most relevant features, the Extra Trees classifier is used to integrate the attributes
obtained from Variance Inflation Factor, Pearson’s Correlation, and Information Gain to detect the tumors’
hidden patterns. Finally, three approaches, including Boosting, Bagging, and Voting, were combined with equal
weights together through the Stacking approach. The proposed method resulted in a 97% F1-score and 98%
precision tested on Wisconsin Diagnosed Diagnostic Breast Cancer (WDBC) dataset. Based on the findings, we
noticed that the suggested framework’s performance works perfectly due to the selection of more appropriate
features by the Extra Trees algorithm. Furthermore, we recommend that this proposed framework be used to
diagnose breast cancer in its early stages as it works effectively. Using this framework, breast cancer recovery
and therapy will be more successful. Moreover, to evaluate the performance of the proposed framework, it
has been implemented on three other medical datasets. Results show an appropriate performance in predicting
other illnesses as well.

1. Introduction and literature review machine learning (ML) and DM have become widespread for discover-

ing patterns from different datasets. Moreover, they are used to develop

Diagnosis and prognosis of breast cancer are highly prioritized due
to the importance and prevalence of this cancer type, especially in
women. For example, in the United States, it accounts for about 30% of
all cancer types in womenSiegel, Miller [1]. According to the statistics
published by the World Health Organization (WHO) in 2018, More than
two million new breast cancer cases have been identified. This number
is expected to reach 2.8 million cases by 2040 - a significant statistic
rise. Late treatment of breast cancer leads to harmful stages of cancer
and thus lower survival rates. Thus, early detection of cancer could
notably decrease its mortality rate [2].

The existence of powerful computers has facilitated the acquisition
and use of data in today’s world. Using data to extract useful informa-
tion can lead to earlier detection, and it can also improve the power
of doctors’ decision-making [3]. Data mining (DM) is the process of
extracting valuable knowledge from large databases. In recent years,

expert systems to help physicians improve diagnosis accuracy [4]. For
instance, Brause [5] conducted a study to show machine learning(ML)
will enhance diagnosis accuracy. The results indicate that the most
experienced physician diagnoses correctly in 79.97% of cases, while
ML diagnoses with an accuracy of 91.1%.

The accurate prediction of breast cancer is among the most critical
tasks for physicians because it leads to quick responses and better sur-
vival chances. Moreover, mammography requires human and material
resources, which make it a complex process. Therefore, the prediction
of breast cancer can be simplified with DM and ML techniques. Sev-
eral expert systems have been developed for breast cancer diagnosis
using different methodologies such as statistical approaches, support
vector machine(SVM), neural network, fuzzy systems, and hybrid meth-
ods [6]. For breast cancer predictions, major ML algorithms such as lo-
gistic regression(LR) [71], artificial neural networks(ANN) [8], K Nearest
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Neighbors (KNN) [9], Decision tree(DT) [10], Random forest(RF) [11],
Naive Bayes [12], SVM [13,14], etc. are used.

Feature engineering is one of the most critical parts to improve
ML methods’ performance, improves our understanding of the data,
reduces the model’s complexity and execution time, and increases the
model’s performance. The feature selection is selecting the most rele-
vant data features [15,16]. In other words, feature engineering prevents
undesired correlation in the learning process by eliminating redundant
and irrelevant features [17]. For example, Memon, Li [18] proposed
a method that achieved higher accuracy than other state-of-the-art
methods due to the implementation of appropriate feature selection.
Zheng, Yoon [13] paid particular attention to feature extraction and
selection for a high-quality breast cancer diagnosis classifier. They
developed a hybrid of Support Vector Machine and K-means(K-SVM) al-
gorithms. Said, Abd-Elmegid [19] used a technique to divide the dataset
into different clusters based on their feature similarity and applied
the classification model on these clusters rather than the full dataset.
Kumara, Sushila [20] used the Heatmap matrix to show the correlation
between features. The features having co-efficient values close to one
must be eliminated. SVM is implemented on the extracted features as
well as all features. Pasha and Mohamed [21] introduced a novel Bio-
inspired Ensemble Feature Selection (BEFS) model that worked with ML
and DM algorithms while relevant and essential features were selected
by an ensemble algorithm named ‘random forest’ and a bio-inspired
algorithm called genetic algorithm. Panda, Swagatika [12] used prin-
cipal component analysis (PCA) to reduce the Wisconsin breast cancer
dataset’s dimension from nine features to four to maintain the most
uncorrelated data. Ed-daoudy and Maalmi [22] used Association Rules
(AR) to reduce feature dimension, and in this way, they selected eight
inputs, which provided a high accuracy.

Recent advances in ML have led to the development of new methods
that combine several single models and simultaneously take advantage
of them. These methods usually produce more accurate solutions than
a single model would. These learning methods have been called “meta-
learning schemes” or “meta-classifiers” or “ensembles” [23]. Some
of the popular techniques in constructing ensemble models are listed
below:

Decision Trees (DTs) were widely used to build ensemble classifi-
cation models. Many types of them were implemented in different
research studies, such as Simple Classification and Regression
Trees (CART), C4.5, CART, Reduced Error Pruning Tree (REP-
Tree), and Decision Stump [24]. DTs are comprehensible, they
stand outliers, and they prevent over-fitting by pruning.

The SVM algorithms are widely adopted in constructing ensem-
bles. They have several advantages, such as avoiding over-fitting.
Furthermore, they could be used for high-dimensional data, but
their output is hard to interpret [25].

ANN is mostly used in complex datasets because it has an appro-
priate function applying to noisy data [26].

Another algorithm in constructing ensembles is Bayesian classi-
fiers. It has the ability to deal with irrelevant features and missing
values [27].

In the following lines, some of the articles that combined these single
techniques to construct ensemble models are discussed:

Abdar and Makarenkov [28] used the confidence-weighted voting
method, an ensemble classifier, which integrates an SVM with Boosting
ANNSs to diagnose breast cancer. After performing the ensemble method
by backup vector ML algorithms and artificial neural networks, the
level of accuracy obtained by CVW-BANN got higher. Basunia, Per-
vin [29] used a stacking classifier, an ensemble method that combines
several classification techniques, classified tumors into two categories
— benign and malignant. They applied classification techniques such
as CART, RF, LR, KNN, and SVM; Then computed their accuracy.
Kumar, Gangal [30] used bootstrap aggregation for creating sample
datasets. This algorithm is an ensemble technique that reduces the
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variance of ML methods using the decision tree for processing data that
divides the dataset into two branches. On each branch, Deep Learning
(DL) and SVM algorithms are applied separately. They showed that
the proposed model, based on SVM or DL combined with the decision
tree, performs better than other standard bagging models. Srimani and
Koti [31] conducted ensemble methods on five medical datasets and
reached an excellent enhancement in the base classifiers’ performance.
More recently, Islam, Haque [32] compared SVM, RF, LR, KNN, and
ANN according to different measures to show that ANN outperforms
other algorithms in all the performance metrics.

Moreover, researchers used different tools to construct and evaluate
their ensemble models. Some of these tools are open-sources such
as Weka [11], R [33], Python packages [34], BVLC Caffe [35], and
other types of tools are commercial such as MATLAB [36], IBM SPSS
Modeler [37], and SAS Enterprise Miner [38].

Furthermore, the parameter setting of ML models has a signifi-
cant impact on their performances. Therefore, it is essential to tune
the ensemble classifiers’ parameters. Some researchers adopted evo-
lutionary algorithms, including Bayesian optimization and the genetic
algorithm [39]. Moreover, some other algorithms were utilized for this
purpose. For example, Salma [40] proposed the Bat algorithm to opti-
mize Extreme Machine Learning (EML) parameters to achieve high ac-
curacy. Said, Abd-Elmegid [19] used the Hyper Parameter Optimization
technique to enhance the classification model’s accuracy rate.

Besides Ensemble classifiers, some papers used Deep Learning tech-
niques to predict breast cancer. These algorithms are used to process
complicated and high-dimensional datasets. For instance, for intelligent
image analysis, deep neural networks are widely used [41]. However,
the application of the DL method is rarely seen in papers on the
Wisconsin dataset. Mekha and Teeyasuksaet [42] used DL to predict
breast cancer and compare the results with other classification methods
such as SVM, Decision tree, Naive Bayes (NB), Vote (DT+NB+SVM), RF,
and AdaBoost. The results proved the successful performance of DL.
Panda, Swagatika [12] used Deep Forest, which has few parameters
and can be deployed as a fully automatic model. They overcame the
problem of traditional neural networks’ high number of parameters.
More recently, Gupta and Garg [43] used different machine learning
algorithms to classify breast cancer tumors. Additionally, they used
the deep learning approach and found out that using Adam Gradient
Descent Learning has the highest accuracy among all algorithms.

Based on reviewing recent literature, it appears to be some research
gaps in breast cancer prediction studies. Firstly, previous studies did not
pay much attention to feature engineering, and it may lead to higher
training time and increase the chance of overfitting. Second, most of
them used statistical methods, neither in the structure of their model
nor in the performance evaluation.

This paper proposed a novel framework that has an appropriate
function in predicting breast cancer. Moreover, this framework has
been tested on three other datasets to show its adequate performance.
More precisely, this framework selects the most appropriate features
using a statistical approach to describe information better and keep our
prediction model more effective. To do this, different feature selection
algorithms are aggregated, and the results are compared together.
Finally, we used Extra Trees to determine the best features to utilize
in the classification section. In the following, the extracted features are
used for breast cancer prediction. Ensemble models such as Bagging,
Boosting, and Voting were combined by a mathematical stacked-based
model, which weighs these three approaches equally. Moreover, instead
of using accuracy, recall and F1-score were used in both feature engi-
neering and classification sections due to the nature of our problem.

Taken together, this study highlights some new points in this area
that can be useful for developing a better prediction model and helping
healthcare systems to diagnose breast cancer more accurately. We
introduced a new approach that leads to an effective breast cancer
diagnosis and reduces the risk of missing valuable information. Besides,
it could be beneficial for other types of healthcare datasets aiming to
detect whether someone has an illness.
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Fig. 1. (a) Area vs. Diagnosis (b) Concave points vs Diagnosis (Blue = Malignant; Orange = Benign).. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

Table 1

Data description.
Attributes Description
Radius Mean of distances from the center to points on the perimeter
Texture The standard deviation of gray-scale values
Perimeter The outer perimeter of the tumor in the image
Area Tumor image covered with content
Smoothness Local variation in radius lengths
Compactness Perimeter*2/area — 1.0
Concavity The severity of concave portions of the contour
Concave points Number of concave portions of the contour
Symmetry Image two sides symmetry

Fractal dimension  Coastline approximation” — 1

The rest of this paper is organized as follows. Section 2 describes
the dataset used in the experiment and the proposed methods, and
Section 3 presents the framework’s results. In Section 4, the presented
framework is implemented on three other datasets to evaluate its per-
formance. In Section 5, our findings’ usefulness, consistency with other
papers, limitations, and possible future works are presented. Finally, in
Section 6, we concluded the paper.

2. Methodology

In this study, we designed a new framework for cancer prediction
named Meta-Health Stack. This method is sensitive to Precision and
F1-score. We used Wisconsin Diagnostic Breast Cancer (WDBC) dataset
from the University of California — Irvine repository [44] to show our
proposed framework’s performance and accuracy.

2.1. Dataset description

In this study, Wisconsin Diagnostic Breast Cancer (WDBC) dataset
is used. It has 570 observations, including 30 attributes in 10 groups
for each cell nucleus presented in Table 1. Features are extracted from
a digital image of a breast mass. Three indicators are measured for
each group: mean value, standard error, and maximum value. The three
measurements for each group are considered features in the dataset.
Thus, the dataset has 30 attributes. Our goal is to name label attribute,
whether it is a benign tumor or a malignant one.

According to clinical literature for tumor type prediction, two vital
features are area and concave points. From Fig. 1(a), tumor type is very
interpretable based on Area and Concave points. When these values
increase, the probability of being malignant becomes higher, while in
lower values of these attributes, a benign tumor is more probable.

For more features’ explanations, probability density for all features
according to the target variable is shown in Fig. 2. According to this
figure, the more benign and malignant cases are separate, the more
the corresponding variable depends on the target variable. These vari-
ables, including concave points_mean, radius_worst, perimeter worst,
area_ worst, and concave points worst, are very interpretable. On the
other hand, some variables, including compactness_se, concavity_se,
concave points_se, and concavity_mean, are not interpretable due to
their inseparability in their histograms. This issue is critical for any
cancer prediction and should be considered in our feature engineering
method. Consequently, high correlated features with the target mask-

ing other features’ impact and features with less correlation with the
target value are critical in our calculations and should be considered.

2.2. Feature engineering

We used both ML algorithms and metric-based methods for the
feature engineering section. In medical cases, it is crucial to predict the
malignant instances correctly. Features importance is a measure of how
useful attributes are in predicting a target variable. Using features with
the highest feature importance can provide insight into the dataset and
improve a predictive model. It also helps to estimate our goal, which
is to identify the malignant cases accurately.

We applied two different approaches to our dataset for feature
selection. Firstly, a Heatmap correlation matrix was used to remove the
most correlated features. Then, Univariate feature selection, Recursive
feature elimination with (and without) cross-validation, and Tree-based
feature selection were applied to the remained features separately. Sec-
ondly, Variance inflation factors (VIF), Information Gain, and Pearson’s
Correlation were applied to the whole dataset. Then, the Extra Trees
classifier was used to aggregate the mentioned algorithms’ results. We
used Random Forest to see how well each of these methods works to
predict our problem.

Fig. 3 shows a heatmap matrix, also known as a correlation matrix,
among all features. The correlation coefficient ranges from —1 to 1. The
value closer to one indicates that the features are closely correlated,
and the conclusion is that the features are positively dependent on each
other. In contrast, the value closer to zero indicates that the features are
independent of each other. As a result, there is a perfect correlation.

2.3. Classification algorithms

The extracted features from Extra Trees are used in the classification
section in Bagging, Boosting, and Voting algorithms. Three types of
bagging algorithms named Bagged Classifier, Random Forest, and Extra
Trees were applied. We used AdaBoost, XGBoost, Gradient Boosting,
and LightGBM (LGBM) Classifier for Boosting algorithm. The AdaBoost
is the first algorithm from the boosting’s family, which is easy to
understand and has a few hyper-parameters to be tuned. However,
when the dataset has irrelevant features, Adaboost’s performance is
not appropriate [45]. XGBoost and Gradient Boosting Machines (GBMs)
are ensemble tree-based methods that apply the principle of gradient
descent. However, XGBoost has more parameters to be optimized and
may enhance the prediction in this way [46]. The LGBM concept is
based on a gradient boosting algorithm, but it is faster than XGBoost
because of inspecting the most informative samples [47]. In the end,
we aggregated the algorithms’ results with optimum weights using the
Stacking method. The overall procedure of our proposed method is
presented in Fig. 3. We defined the concept of these methods below.

2.3.1. Bagging

A bagging algorithm is an approach in which based classifiers are
trained in parallel, and each training sample is selected randomly from
the whole dataset. This algorithm fits some classifiers and aggregates
their prediction result by voting or averaging. Bootstrap samples are
used to fit almost all independent models because it needs a large
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Fig. 2. The probability density for each feature according to the target variable.

amount of data to fit completely independent models. Bagging helps to
build a stable learning algorithm that prevents overfitting and reduces
variance. Random Forest, Extra Trees, and Bagged decision trees are
among the most common bagging algorithms that are also used in this
study [48].

2.3.2. Boosting

Boosting is an ensemble model that is used to reduce variance. It
was introduced by Schapire 1990 [49] to boost the performance of
weak learning algorithms by building strong learners from several weak
ones. In the first step, this model starts with training data, and then in
the second step, it tries to make the previous model better and correct
the errors. This process is continued. Therefore, in Boosting, models
are trained sequentially, and each model considers the success of the
previous model. In this way, the model could focus on the most difficult
data samples by giving higher weight or importance. Some of the most
common boosting algorithms used in this study are AdaBoost, Gradient
Boosting, XGboost, and LGBM Classifier.

2.3.3. Stacking
The stacking approach combines weak algorithms by training a
meta-model to build a model with higher prediction accuracy. Thus,

two things have to be defined in the stacking method: the classification
algorithms we want to fit and the meta-model that combines them [50].

2.4. Proposed method

Our proposed method is a stacking-based model using each algo-
rithm according to its abilities. We used two approaches in the feature
engineering section of the framework to rely on the most interpretable
features. Then, three ensemble approaches are stacked to create a
breakthrough for predicting breast cancer. Fig. 4 presents an overall
procedure of our framework.

2.5. Metrics for evaluation of performance

Accuracy, precision, recall, and F1-score as presented in Egs. (1)-(4)
are used to evaluate the different ensemble algorithms’ performance
with selected features. Accuracy could be used as a defining metric
in many models, although, in many cases, precision and recall are
advisable to be considered. In some situations, the accuracy is very
high, while the precision or recall is low. But in our model, we have to
prevent misclassifying a malignant tumor as a benign one. As a result,
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Fig. 3. Heatmap matrix of all features.

high recall is a better metric in our case. The measure of correctly
recognizing true positives is called recall. Precision tells us how many
true positives are identified among all positives. In some situations,
precision and recall are equally important. For example, if a patient is
misdiagnosed with breast cancer, treatment for his or her actual disease
may be postponed. Hence, our goal is to reach a high precision as well
as a high recall.

To illustrate this issue, consider a classifier that uses a variety of
patient measures to predict whether a patient has a malignant tumor
or a benign one. We are more concerned with this classifier’s capacity
to discover everyone with true malignant tumur — not letting anyone
slip through the cracks, the threat to their health unnoticed - than with
overall model accuracy. We may be lenient with the model’s tendency
to overpredict sickness because such folks will likely seek additional
testing, visit their physicians, and so on, and the issue will be resolved.
However, if the model predicts a benign tumor in a patient who has
actually a malignant one, that is a much more serious mistake. That
patient is sent home without being treated. That is why Recall is more
important in medical cases. However, it is not enough for a good
prediction; Because if the model predicts all the instances as malignant,
then the Recall goes to 1. This issue would not be desirable. Therefore,
Flscore is also important and should be considered.

TP + TN

S e i B @
TP +FP + FN + TN

accuracy =

8 8 &8 8§ ¥ ¥ ¥ P B B B B ]
SEFs T i E 8 1f:El
8 3 5 ] b
£ 8 3
Recall:L 2)
TP + FN
TP
recision = ————— 3
P TP + FP 3
recision * Recall
Fl1Score =2 % P 4)

precision + Recall

TP and TN are the numbers of true positives and true negatives that
are correctly labeled. FP and FN refer to wrongly labeled samples. The
Confusion Matrix (CM) metrics present these four mentioned metrics in
a table [46].

3. Results
3.1. Feature engineering results

Python, a popular open-source programming language, is used in
this experiment. As discussed in Section 2, two approaches were ap-
plied for feature selection. We used the Heatmap correlation matrix
in the first approach and chose 16 features to use in Univariate [51],
RFE [52], RFE with cross-validation, and tree-based algorithms. In the
second approach, VIF [53], Pearson’s correlation [54], and Information
Gain [55] were applied on all 30 features, and in the following, the
Extra Trees ensemble algorithm was applied.
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One of the notable individual methods is implementing a tree-
based algorithm on the dataset without preprocessing and using the
Heatmap to remove highly correlated features. According to Fig. 5,
concave points worst, area worst, perimeter worst, and radius_worst
have a high deviation of feature importance value in the prediction
procedure; Especially the first two mentioned features. Therefore, these
features are not reliable in prediction due to their high deviation in
their feature importance values.

The experimental results achieved in the feature selection step are
given in Table 2. All the results in Table 2 are achieved after apply-
ing Random Forest. Since recall and Fl-score are the most preferred

performance evaluation measure, we chose the Extra Trees algorithm
to select features.

Each method gives us a threshold for features’ impact and specifies
the number of most important features. As we can see in Table 2, many
mentioned methods such as VIF, Pearson’s Correlation, Univariate, and
Information Gain cannot introduce a high number of vital features.
We call these methods group one. Although VIF has the highest recall
and F1-score, it is useless because of the limited features it introduces.
Those methods with a high number of selected features have low values
in performance metrics, which we call group two. We built an Extra
Tree-based on group one, which achieved high-performance metrics
and introduced many important features.
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Fig. 6. Feature importance based on Extra Trees Ensemble feature selection and random forest classification.
According to Fig. 6, the feature importance values of fourteen 3.2. Prediction results
features are higher than 0.05. As we have discussed, these features
were selected to fit prediction models, and the rest of them were In this section, our described framework for the prediction part is

removed.

implemented. Each of these algorithms’ fitting performance depends on
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Feature selection Precision Recall Fl-score Accuracy Number of

algorithms selected features
Correlation 0.96 0.93 0.95 0.96 16
Univariate 0.96 0.93 0.95 0.94 5
RFE 0.98 0.93 0.95 0.97 10
RFE + cross 0.96 0.93 0.95 0.96 15
validation
Tree-based 0.92 0.92 0.92 0.94 16
VIF 0.96 1 0.98 0.99 8
Pearson’s correlation 1 0.9 0.94 0.96 9
Information gain 1 0.92 0.96 0.97 6
Extra trees 1 0.93 0.96 0.97 14
ensemble

Table 3

Classification algorithms’ parameters.
Classification Parameters
algorithms

Bagged classifier
Random forest
Extra trees

n_estimators=1000
n_estimators=1000
n_estimators=1000, max_features=7

AdaBoost n_estimators=10
GradientBoosting n_estimators=3000, learning rate=0.05 max_depth=4,
max_features=‘sqrt’,min_samples_leaf=15,min_samples_split=10
XGBClassifier
colsample_bytree=0.4603, gamma=0.0468,
learning rate=0.05, max_depth=3, min_child_weight=1.7817,
n_estimators=2200, reg_alpha=0.4640, reg lambda=0.8571
LGBMClassifier

objective = ‘binary’,boosting_type=‘gbdt’,num_leaves=>5,
learning_rate=0.05, n_estimators=720, max_bin = 55,
bagging_fraction = 0.8, bagging freq = 5, feature_fraction =
0.2319, feature_fraction_seed=9, bagging seed=9,
min_data_in_leaf =6, min_sum_hessian_in_leaf = 11

Voting ensemble
LogisticRegression(solver=‘liblinear’), DecisionTreeClassifier,
SVC (gamma="scale’)

the parameters that have been chosen for them. These parameters are
described below:

+ n_estimators: This parameter determines the number of trees in a
forest

» max_features: This parameter specifies the number of features to
do the best split.

+ learning rate: This parameter specifies each tree’s effect on the
final result.

+ max_depth: This parameter prevents over-fitting by determining
the maximum depth of the tree.

As a result, the discussed parameters in Table 3 are selected as the
best parameters of each classification algorithm according to a trial and
error method. The algorithms that do not have specific parameters are
not mentioned here.

Numerical results of applying classification algorithms are given in
Table 4. As discussed in Section 2.5, Fl-score and Recall play a more
critical role in medical cases, and our selection for the best predictor
was based on these two-evaluation metrics. According to Table 4, we
used bagging and boosting approaches and their algorithms individ-
ually and compared their results. The voting approach was based on
simple classifiers such as Logistic Regression, Decision Tree classifier,
and Support Vector Classifier, which have different logics compared to
decision trees or Bagging and Boosting systems. Finally, we stacked
all the results of the predictions and fitness with the same weight.
Interpreting the error in data is an essential topic that is applicable here
by using the mentioned approaches with the same weights. In the case
of being more confident about a specific method, the given weight to
that method could be higher in the stacking approach.

Confusion matrix of feature engineering and classification results for
all the methods are presented in Appendix A. All outputs, including TP,

Table 4
Classification algorithms’ performance evaluation metrics for test data.
Classification algorithms Precision Recall Fl-score Accuracy
Bagged classifier 0.972 0.936 0.951 0.964
Random forest 0.980 0.936 0.959 0.970
Extra trees 0.984 0.968 0.976 0.982
AdaBoost 0.90 0.952 0.930 0.947
Gradient boosting 0.980 0.952 0.960 0.970
XGB classifier 0.970 0.936 0.959 0.982
LGBM classifier 0.964 0.936 0.959 0.964
Voting ensemble 0.925 0.793 0.854 0.900
Meta-Health stack 0.985 0.968 0.976 0.982
Table 5
Data description of the heart.
Attributes Description
Age
Sex Sex (1 = male; 0 = female)
cp Chest pain type (typical angina)
- Value 1: typical angina
- Value 2: atypical angina
- Value 3: non-angina pain
— Value 4: asymptomatic
trestbps Resting blood pressure (in mm Hg on admission to the hospital)
chol Serum cholesterol in mg/dl
fbs (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
restecg Resting electrocardiographic results
- Value 0: Normal
- Value 1: Having ST-T wave abnormality (T wave inversions and/or
ST elevation or depression of > 0.05 mV)
- Value 2: showing probable or definite left ventricular hypertrophy by
Estes’ criteria
thalach Maximum heart rate achieved
exang Exercise induced angina (1 = yes; 0 = no)
oldpeak ST depression induced by exercise relative to rest
slope Coastline approximation” - 1
ca Number of major vessels (0-3) colored by fluoroscopy
thal Displays the thalassemia

0 = normal; 1 = fixed defect; 2 = reversible defect

TN, FP, FN, accuracy, precision, and recall can be obtained from these
figures.

Appendix B contains a great visual comparison between the meth-
ods used in this study based on accuracy, recall (the most important
metric), and Fl-score. This comparison is performed for test data. In
these graphs, our method is compared to all Boosting, Bagging, and
Voting approaches.

As seen in the first figure that compares approaches by accuracy,
most of the methods do well for train data except for Voting and
AdaBoost. However, the differences are about 1 to 2 percent between
the accuracy values. In the second figure, all the methods perform
exceptionally well in recall metrics for train data, but just Extra Trees
and our method do better than others for the unseen data known as
test data. The results are the same for the Fl-score. Therefore, our
proposed framework outperforms all other methods and approaches.
For a few feature numbers, Extra Trees using Random Forest have equal
performances to our approach. Nonetheless, our model is more resistant
to changes in the feature number. Moreover, it has an appropriate
function on other datasets to predict cancer occurrence or any other
diseases.

4. Sensitivity analysis

To assess the function of our proposed framework, we implemented
it on three other health-related data sets named heart, proc_heart_cleve,
and prostate cancer. Similar to our main dataset, each of the mentioned
datasets have some numerical and Boolean attributes, and the goal is
to detect the presence of the disease. The attributes description of these
datasets are given in Tables 5-7.

It should be mentioned that sex, thalach, and ca were eliminated
in the heart dataset after the feature engineering process. Similarly,
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Table 6 Table 10

Data description of heart_proc_clev. Classification algorithms’ performance evaluation metrics for Prostate Cancer data.
Attributes Description Classification algorithms Precision Recall Fl-score Accuracy
Age Bagged classifier 0.750 0.784 0.761 0.800
Sex Sex (1 = male; 0 = female) Random forest 0.744 0.744 0.744 0.800
ind_typ_angina Typical angina (0/1) Extra trees 0.904 0.863 0.883 0.833
ind_atyp_angina Atypical angina (0/1) AdaBoost 0.900 0.818 0.857 0.800
ind_non_ang_pain Non-angina chest pain (0/1) Gradient boosting 0.869 0.909 0.888 0.833
resting_BP Rest blood pressure XGB classifier 0.863 0.863 0.863 0.800
Serum_cholest Serum cholesterol in mg/dl LGBM classifier 0 0 0 0.266
blood_sugar_exc120 Fasting blood glucose > 120 mg/dl (0/1) Voting ensemble 0.900 0.818 0.857 0.800
ind_for_ecg_1 Ecg 1 indicator (0/1) Meta-Health stack 0.863 0.863 0.863 0.800

ind_for_ecg 2
Max_heart_rate
ind_exerc_angina

Ecg 2 indicator (0/1)

Maximum heart rate

Exercise-induced angina indicator (0/1)

ST _dep_by_exerc Exercise-induced ST depression with respect to rest
ind_for _slope_up_exerc  Peak exercise ST segment upward slope indicator (0/1)
ind_for_slope_down_exerc Downslope indicator of peak exercise ST segment (0/1)
num_vessels_fluro The number of great vessels colored by fluoroscopy (0-3)
Thal_rev_defect Thal reversible damage indicator (0/1)

Thal_fixed_defect Thal permanent damage indicator (0/1)

Table 7
Data description of prostate cancer.
Attributes Description
Radius Mean of distances from center to points on the perimeter
Texture Standard deviation of gray-scale values
Perimeter The outer perimeter of the tumor in the image

Area Tumor image covered with content

Smoothness Local variation in radius lengths
Compactness Perimeter"2/area — 1.0
Symmetry Image two sides symmetry

Fractal dimension Coastline approximation” — 1

Table 8
Classification algorithms’ performance evaluation metrics for Heart data.

Classification algorithms Precision Recall F1-score Accuracy
Bagged classifier 0.801 0.804 0.801 0.802
Random forest 0.829 0.780 0.804 0.791
Extra trees 0.822 0.740 0.778 0.769
AdaBoost 0.872 0.820 0.845 0.835
Gradient boosting 0.750 0.720 0.734 0.714
XGB classifier 0.822 0.740 0.778 0.769
LGBM classifier 0.872 0.820 0.845 0.835
Voting ensemble 0.844 0.825 0.829 0.835
Meta-Health stack 0.836 0.820 0.828 0.813

Table 9
Classification algorithms’ performance evaluation metrics for proc_heart_cleve data.

Classification algorithms Precision Recall F1-score Accuracy
Bagged classifier 0.742 0.739 0.742 0.755
Random forest 0.771 0.702 0.722 0.777
Extra trees 0.718 0.621 0.718 0.744
AdaBoost 0.756 0.756 0.756 0.800
Gradient boosting 0.659 0.783 0.716 0.744
XGB classifier 0.736 0.756 0.736 0.788
LGBM classifier 0.736 0.756 0.736 0.788
Voting ensemble 0.782 0.779 0.781 0.788
Meta-Health stack 0.750 0.810 0.779 0.811

max_heart_rate, ind_for slope_up_exerc, and num_vessels_fluro in
proc_heart_cleve dataset and texture, perimeter, and Smoothness from
prostate cancer were removed.

After applying our proposed framework to the mentioned datasets,
the classification algorithms’ performance evaluation metrics for
datasets are given in Tables 8-10.

5. Discussion

The proposed framework, which consists of a combination of feature
engineering and classification, will lead to an effective and accurate
breast cancer diagnosis. By implementing this framework by practi-
tioners, breast cancer mortality could be reduced. Our research was

limited to a dataset that had ten relevant features. Nonetheless, some
more significant factors in predicting breast cancer can be extracted
from other kinds of datasets. (e.g., mammographic data). Our proposed
method provides higher prediction quality in comparison with simi-
lar previous studies mentioned in the literature review. For example,
Zheng et al. [16] obtained 97.38% accuracy, which is lower than our
proposed method’s accuracy. Furthermore, in their study, accuracy and
CPU time were the only considered evaluation metrics. As we men-
tioned before, in medical cases, recall and Fl-score are more critical
and must be considered carefully.

The performance of an appropriate ensemble method depends on
the selected features for the model’s input and classification method
selection. Our proposed model selects attributes with high feature
importance as input for our prediction models. Choosing the attributes
with the highest feature importance provides a global insight into the
model’s behavior. Moreover, all interactions with other features are
automatically taken into account when calculating feature importance
measures.

We chose the integrating approach to aggregate the result of some
most effective ensemble methods, such as different types of bagging,
boosting, and voting. Based on the results, the proposed approach to
predicting breast cancer provided the best recall and F1-score compared
to the previous studies. It benefits from a new method for feature
reduction leading to a more precise prediction.

6. Conclusion and future works

Cancers’ rapid and accurate diagnosis is one of the main challenges
in medical studies. Breast cancer is the main cause of death for women
worldwide. This study was conducted to improve the previous stud-
ies’ classification methods in predicting breast cancer. To this aim, a
framework called Meta-Health Stack was introduced. This framework
consists of two parts: feature selection and classification. In the first
part, the Extra Trees algorithm was used to integrate the results of
VIF, Information Gain, and Pearson’s Correlation methods to select the
appropriate attributes as input to the classification section. In the next
section, the results of Bagging, Boosting, and Voting algorithms were
integrated with equal shares using the Stacking approach. The final
results indicate that the proposed framework allows us to get a 97%
F1-score and recall and 98% accuracy. The findings on WBCD’s breast
cancer dataset demonstrated that the Meta-Health Stack framework
would improve the diagnosis’ performance. Moreover, the framework
is tested on three other medical-based datasets, and the results showed
the high ability of the framework in predicting illnesses.

In the future, implementing this framework on bigger datasets
and evaluating it on a larger scale, if possible, could be a positive
challenge for future studies. Furthermore, The Meta-Health Stack can
integrate with some optimization techniques such as GA (Genetic al-
gorithm), PSO (particle swarm optimization), or ACO (ant colony op-
timization algorithm). These techniques can be utilized to choose the
best parameters of ensemble algorithms precisely.

Moreover, a graphical user interface could be designed. It can pro-
vide more comfortable use of this framework by medical practitioners.
The practitioners can enter all the relevant patient’s data and obtain
the classification result without any ML and data science experience.
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