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ABSTRACT

To model various short-term temporal variations, we propose an effective design
of Transformer-based, termed FreCoformer. FreCoformer is designed on top of
the frequency domain and comprises three key designs: frequency patching op-
eration and two independent observations of these patches. The patching process
refines the frequency information, enhancing the locality. The subsequent obser-
vations extract the consistent representation within different channels by atten-
tion computation and summarize the relevant sub-frequencies to identify eventful
frequency correlations for short-term variations. To improve the data fit for dif-
ferent time series scenarios, we propose a divide-and-conquer framework and in-
troduce a simple linear projection-based module, incorporated into FreCoformer.
These modules learn both long-term and short-term temporal variations of time
series by observing their changes in the time and frequency domains. Exten-
sive experiments show the effectiveness of our proposal can outperform other
baselines in different real-world time series datasets. We further introduce a
lightweight variant of FreCoformer with attention matrix approximation, which
achieves comparable performance but with much fewer parameters and computa-
tion costs. The code is available: https://anonymous.4open.science/
r/FreCoformer-6F22

1 INTRODUCTION

Time series forecasting is an essential task in various applications and has recently witnessed great
advancements powered by deep learning methods, especially Transformer (Zhou et al., 2021; Woo
et al., 2022b; Nie et al., 2023; Wen et al., 2023). Such methods aim to discern consistent feature
representations in historical observations and forecasting time series. Successful approaches usually
involve learning representation in long-term temporal variations, e.g., trend and seasonality (Wen
et al., 2020). These variations are typically extracted through time series decomposition (Woo et al.,
2022a). Subsequently, they leverage the attention mechanism in Transformer to automatically learn
temporal dependencies of these variations to yield consistent representations (Wen et al., 2023).

Nevertheless, these approaches inevitably lead to information loss of short-term temporal variations
in some complex scenarios (Liu et al., 2022c; Wu et al., 2023). Figure 1(a) illustrates an electricity
case where modeling long-term variations mainly captures low-frequency features, neglecting many
consistent mid-to-high frequency components. Such components manifest as short-term variations,
such as fluctuations and periodicities over short durations, and are good guidances for several prac-
tical analyses (Crespo Cuaresma et al., 2004; Thompson & Wilson, 2016; Hammond et al., 2023).

To end this, previous studies have leveraged frequency decomposition and spectrum information
to assist Transformer in modeling temporal dependencies (Wu et al., 2021; Woo et al., 2022b).
However, low-frequency components generally carry most of the energy in the spectrum and are
dominant in real-world time series (Zhu & Shasha, 2002; Corripio et al., 2006). Influenced by such
redundant low-frequency and noise, these approaches tend to prioritize long-term temporal varia-
tions (Figure 1(b)). Moreover, researchers directly deploy Transformers to the frequency domain to
identify more eventfully relevant high-frequency components (Zhou et al., 2022). Despite enhance-
ments in frequency attention, this approach relies on heuristic and empirical strategies, i.e., random
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Figure 1: Discrete Fourier Transform (DFT) visualizations of input observations, predicted time
series, and ground truth between recent Transformer-based approaches and our proposed method.

or top-K frequency selection, often capturing spurious correlations for forecasting (seen in Figure
1(c)).

In this paper, we propose FreCoformer to represent various short-term temporal variations in com-
plex time series automatically. It is designed on top of the frequency domain and comprises three
key designs: frequency patching operation and two independent observations of these patches. The
patching operation refines the frequency bands, providing an opportunity to learn representations
from detailed views of frequency components. The first observation, a channel-wise attention mech-
anism, weighs channel-wise correlations for each independent sub-frequency component. These in-
dependent attentions share model parameters across all sub-frequency learning, preventing winner-
take-all of redundancy low-frequency components. The second observation is channel-independent,
which summarizes global frequency information (i.e., frequency-wise summarization) and elimi-
nates channel correlations to facilitate multivariate time series forecasting. We further propose a
’divide-and-conquer’ forecasting framework that integrates FreCoformer with a long-term modeling
module, deploying in the time domain, to improve the data fit of time series scenarios. Addition-
ally, we present a lightweight variant of FreCoformer to alleviate computational load, extending our
proposal to various large-scale datasets. Our main contributions lie in three folds.

1) FreCoformer is a novel forecasting module designed for computing frequency correlation for rep-
resenting short-term variations in time series. It can automatically identify the relevant and consis-
tent frequency components in historical observations and forecast data points. Figure 1(d) illustrates
our superiority to different previous methodologies in complex datasets.

2) The divided-and-conquer framework enhances data fit, and the ablation study shows the distinct
contributions of each module under varying data scenarios. Extensive experimental results on eight
benchmarks show the effectiveness of our proposal, achieving superior performance, with 41 top-1
and 21 top-2 cases out of 64 in total.

3) We incorporate the Nyström approximation to reduce the computational complexity of attention
maps, achieving lightweight models with competitive performance. This opens new possibilities for
efficient time series forecasting. Interestingly, results demonstrate that Nyström-FreCoformer can
particularly enhance performance in datasets with a large number of channels.

2 RELATED WORKS

Transformer for Time Series Forecasting. Forecasting is an important task in time series anal-
ysis (Alysha M. De Livera & Snyder, 2011; Hamilton, 2020). Transformer has recently achieved

2



Under review as a conference paper at ICLR 2024

a progressive breakthrough in time series forecasting (Nie et al., 2023; Zhang & Yan, 2023; Jiang
et al., 2023). Earlier attempts make efforts to improve the computational efficiency of Transformers
to form them for time series forecasting tasks (Beltagy et al., 2020; Zhou et al., 2021; Liu et al.,
2022a). Several works further apply Transformers to the time domain of time series to model inher-
ent temporal dependencies (Li et al., 2019; Zhou et al., 2021; Liu et al., 2022b; Nie et al., 2023).
Various studies have integrated frequency decomposition and spectrum analysis with Transformer
in modeling temporal variations (Wu et al., 2021; Woo et al., 2022b), to improve the capacity of
temporal-spatial representation. The work of (Zhou et al., 2022) designs the attention layers that
directly function in the frequency domain to enhance spatial or frequency representation.

Modeling Short-term Variation in Time Series. Short-term variations are intrinsic characteristics
of time series data, playing a crucial role in effective forecasting (Crespo Cuaresma et al., 2004;
Liu et al., 2022c). Numerous deep learning-based methods have been proposed to capture these
transient patterns (Chung et al., 2014; Neil et al., 2016; Chang et al., 2018; Bai et al., 2018; Stoller
et al., 2019; Wen et al., 2020; Wu et al., 2021; Woo et al., 2022a; Wang et al., 2022). Here, we
summarize some works closely aligned with our proposal. Pyraformer ((Liu et al., 2022b) applies a
pyramidal attention module with inter-scale and intra-scale connections to capture various temporal
dependencies. FEDformer ((Zhou et al., 2022) incorporates the Fourier spectrum within the attention
computation to identify pivotal frequency components. Beyond Transformers, TimesNet ((Wu et al.,
2023) employs Inception blocks to capture both intra-period and inter-period variations.

Channel-wise Correlation. Understanding the cross-channel correlation is also critical for time se-
ries forecasting. Several studies aim to capture intra-channel temporal variations and subsequently
model the inter-channel correlations using Graph Neural Networks (GNNs) (Wu et al., 2020; Cao
et al., 2021). Recently, Crossformer (Zhang & Yan, 2023) proposes a two-stage attention layer de-
signed to simultaneously capture temporal variations and their cross-channel correlations. Extensive
experimental results have demonstrated its effectiveness in multivariate time series forecasting.

3 PROPOSED METHOD

Let X = {x(i)
L }

C

m=1 denote a multivariate time-series consisting of C channels, where each channel
records an independent L length historical observation. We aim to design an effective forecasting
function f✓(·) that can accurately forecast T data points for each channel, resulting in X̂ 2 RC⇥T .

3.1 FRECOFORME.

Forward Process. FreCoformer consists of four principal components: (1) a DFT-to-IDFT back-
bone, (2) frequency-wise patching, (3) channel-wise attention, and (4) frequency-wise summariza-
tion. An overview can be found in Figure 2(a). The DFT-to-IDFT backbone decomposes the input
time series into its frequency components via DFT and learns a consistent representation of relevant
frequency components (by frequency-wise patching, channel-wise attention, and frequency-wise
summarization), enabling future time series generation through IDFT. Specifically,

(i) The input X is transformed to the real part R 2 RC⇥F and imaginary part I 2 RC⇥F of the
frequency by DFT, where F denotes the frequency bands.

(ii) Along the C-axis, we segment these two matrices into a sequence of N sub-frequency patches,
i.e., (R1, ...,RN ) and (I1, ..., IN ), for all channels to refine the frequency information.

(iii) Subsequently, cross-channel patches within the same sub-frequency are fed into the Trans-
former. Then, the Transformer sequentially and independently captures the channel-wise de-
pendencies of each sub-frequency and, post-processing, concatenates all sub-frequencies.

(iv) Along the F -axis, we further abstract the overall frequency information, resulting in two new
real R̂ and imaginary Î parts. These two parts serve as IDFT for forecasting X̂.

Frequency-wise Patching. Given the R and I matrices of DFT, a non-overlapping patching opera-
tion is performed on them. We segment the frequency entries of (r(m)

1 , ..., r(m)
F ) and (i(m)

1 , ..., i(m)
F )

of each channel into a set of sub-frequency patches with P dimension, resulting in (r̂(m)
1 , ..., r̂(m)

N )

and (î(m)
N , ..., î(m)

N ), where N = F/P is the number of patches. Thus, the input X will result in:
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Figure 2: System overview: (a) FreCoformer, (b) Divided-and-Conquer framework, and (c)
Nyström-FreCoformer

(R1, ...,RN ), (I1, ..., IN ) = Patching(DFT(X)), R1:N , I1:N 2 RC⇥P

The dimension of P prevents information redundancy over fine-grained frequency bands, like neigh-
boring 1Hz and 2Hz. This parameter is adjustable to real-world scenarios, e.g., an hourly sampling
in daily recordings or alpha waveform typically occurring at 8–12 Hz (Adamantidis et al., 2019).

Channel-wise Attention. We employ the Transformer encoder to learn the frequency-independent
channel-wise correlation. For the n-th sub-frequency, where n 2 1, 2, ..., N , r̂(m)

n and î(m)
n are con-

catenated as the embedding for each channel, yielding all channel patches Wn = Concat(Rn, In),
where Wn 2 RC⇥2P . These patches are then mapped to the Transformer latent space of dimension
D via a linear projection En 2 R2P⇥D, and a patch-wise normalization. This normalization is
used to eliminate distributional differences across sub-frequency bands. Subsequently, we feed C

tokens of W0
n = PreNorm(WnEn), each at a time for self-attention computations, and this process

is performed independently N times for all sub-frequencies to obtain the complete representations.
Therefore, the attention computation can be formalized as:

An = Attention(Qn,Kn,Vn) = Softmax
✓
W0

nW
q
n(W

0
nW

k
n)

T

p
d

◆
W0

nW
v
n

where Wq
n,W

k
n,W

v
n 2 RD⇥M are the weight matrices for generating the query matrix Qn, key

matrix Kn, and value matrix Vn.
p
d denotes a scaling operation. The attention module also

contains normalization and a feed-forward layer with residual connections (Dosovitskiy et al., 2021),
and An 2 RC⇥M weights the correlations among C channels for the n-th sub-frequency band.

Frequency-wise Summarization. We concatenate all independent attention maps (A1, ...,AN ), in
sequence to form A 2 RC⇥(N⇥M). Given A is derived from the N times observation of indepen-
dent frequency, we introduce a frequency-wise layer projection to summarize the overall frequency
information, resulting in A0. Ultimately, two distinct linear layers are employed to generate the
refined real and imaginary parts, serving IDFT for forecasting.

X̂ = IDFT(R̂, Î), where R̂ = Linear(A0); Î = Linear(A0)
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Notably, this frequency-wise summarization is channel-independent and shares the parameters of
linear projection across all channels, i.e., A0 = (A0(1)

, ...,A0(C)) = Linear(A(1)
, ...,A(C)). This

aims to mitigate channel correlations and enhance channel fits, referring to (Nie et al., 2023).

3.2 DIVIDED-AND-CONQUER FRAMEWORK

Real-world time series exhibit variability across different scenarios. For instance, analyzing long-
term variations in the data can reflect seasonal-trend patterns, such as differences between summer
and winter and weekly changes in air quality (Vito, 2016; Karevan & Suykens, 2020). Conversely,
areas like banking transactions, electricity consumption, and hospital foot traffic (Crespo Cuaresma
et al., 2004; Lai et al., 2018b; Alysha M. De Livera & Snyder, 2011) require a focus on short-term
variations. A successful forecasting function should adapt to various scenarios and capture eventful
patterns to ensure precise forecasting.

Therefore, we propose a ’divide-and-conquer’ framework and introduce a simple linear projection-
based module, incorporated into FreCoformer, to enhance adaptability to various types of time series
data. Since FreCoformer is designed on top of the frequency domain, this new module, termed T-
Net, operates in the time domain to further complement FreCoformer by improving the capability
of modeling temporal dependencies.

Given the input X 2 RC⇥T , the first-order difference operation is applied independently to each
univariate time series to remove the non-stationary variations and noise, yielding (X̃1

, ..., X̃C).
Drawing inspiration from the works of (Zeng et al., 2023; Nie et al., 2023), for the m-th series,
we also segment the time domain of X̃(m) into a sequence of N 0 temporal patches, where N

0 =
L/P

0 denotes the number of patches, each of dimension P
0. We form two-stage linear projections:

initially capturing the local temporal dependencies of each patch and subsequently learning the
global temporal dependencies after concatenating all the learned patches.

X̂ = Linear(global)(Linear(local)(X̃1), ...,Linear(local)(X̃C))

Notably, we intend for both FreCoformer and T-Net to independently learn different domain-based
representations and each to have its own capacity to forecast the ground truth X̂. A summation is
finally executed on the outputs of FreCoformer and T-Net without any additional operations.

3.3 NYSTRÖM-FRECOFORMER

Table 1: Computation complexity. L is
the input sequence length, C is the channel
count, and P denotes the patch dimension.

Methods Complexity
Fedformer O(LC)

PatchTST O(L
2

s2 C)

Crossfromer O(L
2

P 2C)
Ours O(LP C

2)
Ours(Nyström) O(LP C)

The O(n2) memory and time complexity of self-
attention is the bottleneck for using longer historical
time series for forecasting (Li et al., 2019; Zhou et al.,
2021; Nie et al., 2023). With the patching operations in
both the time and frequency domains, O(LC2) com-
plexity has reduced to O(LP C

2). However, due to the
channel-wise attention of FreCoformer, the compu-
tational cost increases proportionately with the num-
ber of channels, potentially leading to computational
overloads when a large number of channels. We
hence propose a lightweight Frecoformer inspired by
NyströmFormer (Xiong et al., 2021) and conduct a ma-
trix approximation for the attention map. Two main
motivations drive our approach: First, employing the
Nyström matrix approximation method allows us to further reduce our complexity to O(LSC) with-
out modifying the feature extraction (attention computation) or the data stream structure within the
Transformer, as opposed to previous methods (Zhou et al., 2021; Liu et al., 2022a; Wu et al., 2021;
Zhou et al., 2022). Second, real-world time series data often exhibit redundancy across different
dimensions due to consistent characteristics among similar variables, like the traffic volumes of
neighboring locations Zhou et al. (2021). This redundancy can lead to unnecessary correlation com-
putations in channel-wise attention processes. To compute the attention matrix A, we first select m
landmark columns from the input Qn and Kn matrices in each channel, denoted as Q̃n and Q̃n,
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then compute:

F̃n = softmax(
QnK̃n

T

p
d

), Ãn = softmax(
Q̃nK̃n

T

p
d

)+, B̃n = softmax(
Q̃nKn

T

p
d

)

Where Ãn
+

is the Moore-Penrose inverse of Ãn (Xiong et al., 2021), and the Nyström approxima-
tion for n-th channel-wise attention An is:

An ⇡ Ãn = F̃nÃnB̃n.

With the use of Nyström approximation on attention maps, the computational load has reduced from
O(LP C

2) to O(LP C). Detailed derivations and proofs can be found in Appendix A.1.

4 EXPERIMENTS

4.1 PROTOCOLS

Table 2: Benchmark datasets summary

Datasets Weather Electricity ETTh1 ETTh2 ETTm1 ETTm2 Air Traffic
#channel 21 321 7 7 7 7 12 862

#timesteps 52969 26304 17420 17420 69680 69680 6941 17544

Datasets. We conducted extensive experiments on eight real-world benchmark datasets: Weather,
four ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2), Electricity, Traffic, and Air 1 (Vito, 2016),
where the former seven datasets are available in the work (Wu et al., 2021) 2. A summary of the
datasets is presented in Table 2 and details can be found in Appendix A.2.

Baselines. We selected some state-of-the-art (SOTA) time series forecasting works as our base-
lines: PatchTST (Nie et al., 2023), TimesNet (Wu et al., 2023), Fedformer (Zhou et al., 2022) and
Pyraformer (Liu et al., 2022a). PatchTST represents a new SOTA, outperforming several authorita-
tive early works, including Autoformer (Wu et al., 2021), Informer (Zhou et al., 2021), and DLinear
(Zeng et al., 2023). Other baselines with differing architectures are designed to capture short-term
temporal variations. Besides, we compared our proposal to a multi-channel modeling SOTA, i.e.,
Crossformer (Zhang & Yan, 2023).

Setup. All baselines adhere to the same prediction length with T 2 {24, 36, 48, 60} for the Air
dataset and T 2 {96, 192, 336, 720} for other datasets. The look-back window L = 336 was used
in our setting for fair comparisons, referring to (Nie et al., 2023). Besides, we further explored the
impact of an extended look-back window by evaluating with L = 512.
– For the Air dataset, we tested our model and all baselines with a look-back window L = 104, based
on the settings recommended for small datasets in (Zhou et al., 2021).
– For other datasets, we collected all available results of PatchTST, Fedformer, and Pyraformer from
(Nie et al., 2023). Results for Crossformer with prediction lengths T 2 {336, 720} were collected
from (Zhang & Yan, 2023). For unavailable T 2 {96, 192}, we implemented Crossformer to obtain
the results. We collected results of TimesNet from (Wu et al., 2023) with the default L = 96 and
implemented TimesNet with our default L = 336 to select the best outcomes for a fair comparison.

4.2 RESULTS

4.2.1 MAIN RESULTS

Table 3 shows the main results for multivariate long-term forecasting. Overall, with default a look-
back window of L = 336, our proposal shows leading performance on most datasets, as well as
on different prediction length settings, with 27 top-1 and 34 top-2 cases out of 64 in total. When
the look-back window is extended to L = 512, our framework demonstrates superior performance,
achieving 41 top-1 and 21 top-2 rankings out of 64 cases. Considering both look-back Twindow
settings, our framework achieves top-1 rankings in 63 out of 64 cases.

1https://archive.ics.uci.edu/dataset/360/air+quality
2https://drive.google.com/drive/folders/1ZOYpTUa82 jCcxIdTmyr0LXQfvaM9vIy
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Table 3: Multivariate long-term forecasting results with MSE/MAE. Bold/underline indicates the
best/second results. The asterisk* denotes the results are implemented by us; Other results are from
original papers (Nie et al., 2023; Zhang & Yan, 2023; Wu et al., 2023).

Models Ours 512 Ours 336 PatchTST Crossformer TimesNet Fedformer Pyraformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.146 0.194 0.149 0.196 0.152 0.199 0.166* 0.238* 0.167* 0.227 0.238 0.314 0.896 0.556

192 0.190 0.240 0.193 0.238 0.197 0.243 0.232* 0.309* 0.214 0.263 0.275 0.329 0.622 0.624
336 0.242 0.277 0.245 0.279 0.249 0.283 0.266* 0.326* 0.269* 0.301 0.339 0.377 0.739 0.753
720 0.315 0.334 0.318 0.332 0.320 0.335 0.353* 0.393* 0.341 0.350 0.389 0.409 1.004 0.934

El
ec

tri
ci

ty 96 0.128 0.224 0.129 0.225 0.130 0.222 0.198* 0.289* 0.168 0.272 0.186 0.302 0.386 0.449
192 0.145 0.239 0.146 0.240 0.148 0.240 0.239* 0.315* 0.184 0.289 0.197 0.311 0.386 0.443
336 0.162 0.259 0.165 0.259 0.167 0.261 0.404 0.423 0.198 0.300 0.213 0.328 0.378 0.443
720 0.197 0.290 0.202 0.294 0.202 0.291 0.433 0.438 0.220 0.320 0.233 0.344 0.376 0.445

ET
Th

1 96 0.359 0.390 0.362 0.391 0.375 0.399 0.424* 0.444* 0.384 0.402 0.376 0.415 0.664 0.612
192 0.390 0.408 0.403 0.411 0.414 0.421 0.602* 0.555* 0.436 0.429 0.423 0.446 0.790 0.681
336 0.401 0.418 0.406 0.415 0.431 0.436 0.440 0.461 0.491 0.469 0.444 0.462 0.891 0.738
720 0.436 0.459 0.433 0.452 0.449 0.466 0.519 0.524 0.515* 0.498* 0.469 0.492 0.963 0.782

ET
Th

2 96 0.268 0.339 0.273 0.335 0.274 0.336 0.801* 0.635* 0.340 0.374 0.332 0.374 0.645 0.597
192 0.328 0.373 0.337 0.378 0.339 0.379 0.854* 0.665* 0.402 0.414 0.407 0.446 0.788 0.683
336 0.322 0.379 0.323 0.379 0.331 0.380 0.943* 0.755* 0.452 0.452 0.400 0.447 0.907 0.747
720 0.372 0.421 0.374 0.419 0.379 0.422 1.146* 0.814* 0.462 0.468 0.412 0.469 0.963 0.782

ET
Tm

1 96 0.286 0.340 0.285 0.338 0.290 0.342 0.378* 0.371* 0.338 0.375 0.326 0.390 0.543 0.510
192 0.326 0.366 0.322 0.362 0.332 0.369 0.394* 0.435* 0.374 0.362 0.365 0.415 0.557 0.537
336 0.356 0.384 0.353 0.385 0.366 0.392 0.404 0.427 0.410 0.411 0.392 0.425 0.754 0.655
720 0.416 0.424 0.409 0.420 0.420 0.424 0.569 0.528 0.478 0.450 0.446 0.458 0.908 0.724

ET
Tm

2 96 0.165 0.257 0.164 0.254 0.165 0.255 0.371* 0.427* 0.187 0.267 0.180 0.271 0.435 0.507
192 0.220 0.295 0.218 0.291 0.220 0.292 0.553* 0.535* 0.249 0.309 0.252 0.318 0.730 0.673
336 0.270 0.327 0.270 0.326 0.278 0.329 1.556* 0.906* 0.321 0.351 0.324 0.364 1.201 0.845
720 0.358 0.383 0.361 0.381 0.367 0.385 1.566* 0.984* 0.405* 0.399* 0.410 0.420 3.625 1.451

A
ir*

24 0.577 0.568 0.572 0.562 0.607* 0.582* 0.574* 0.581* 0.642* 0.602* 0.646* 0.602* 0.717* 0.661*
36 0.665 0.615 0.665 0.612 0.683* 0.621* 0.763* 0.695* 0.746* 0.653* 0.758* 0.654* 0.763* 0.685*
48 0.702 0.634 0.695 0.630 0.722* 0.644* 0.888* 0.735* 0.766* 0.662* 0.854* 0.697* 0.762* 0.687
60 0.720 0.645 0.738 0.653 0.766* 0.667* 0.815* 0.721* 0.809* 0.685* 0.904* 0.720* 0.916* 0.759*

Tr
af

fic

96 0.356 0.248 0.358 0.250 0.367 0.251 0.502* 0.299* 0.593 0.321 0.576 0.539 2.085 0.468
192 0.378 0.257 0.378 0.259 0.385 0.259 0.507* 0.287* 0.617 0.336 0.610 0.380 0.867 0.467
336 0.384 0.260 0.391 0.264 0.398 0.265 0.513 0.289 0.629 0.336 0.608 0.375 0.869 0.469
720 0.424 0.283 0.426 0.285 0.434 0.287 0.530 0.300 0.640 0.350 0.621 0.375 0.881 0.473

(a) Illustration of the prediction results on the ETTh1 dataset
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Figure 3: (a)Visualized predictions from our model and baselines on the ETTh1 dataset. The X-
axis denotes time steps, Y-axis is the amplitude of the time series. (b) Heatmaps of the input and
output matrixes of FreCoformer’s Transformer encoder on ETTh1, we showed 3 samples from dif-
ferent channels. These output matrixes will be used to generate forecasting. The X-axis denotes
frequency components, Y-axis is the dimension of the feature vector. These heat maps show the
energy distribution in the frequency domain.

4.2.2 MODEL ANALYSIS

Figure 1 already illustrates the ability of our proposal to accurately capture mid-to-high frequency
components, demonstrating superiority over time-domain modeling methods (PatchTST), frequency
decomposition-assisted temporal modeling methods (Autoformer), and frequency attention methods
(Fedformer). We further visualize the time domain representation with more advanced baselines in
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Table 4: Left part: Module ablation of our framework, FreCoformer only, and T-Net only, where
bold/underline indicates the best/second results. Right part: Ablation study of channel-wise at-
tention and frequency patching, where * denotes the better forecasting performance. ‘Non-CW’
denotes the removal of channel attention, replaced by an alternative linear projection; ‘Non-FP’ in-
dicates that the entire frequency bands are used as tokens for channel-wise attention.

Setting Complete FreCoformer T-Net

Dataset Metric MSE MAE MSE MAE MSE MAE

ETTh1

96 0.362 0.391 0.364 0.391 0.371 0.399
192 0.403 0.411 0.403 0.412 0.411 0.421
336 0.406 0.415 0.416 0.423 0.420 0.439
720 0.433 0.452 0.434 0.452 0.446 0.464

Weather

96 0.149 0.196 0.173 0.225 0.150 0.197
192 0.193 0.238 0.216 0.262 0.194 0.239
336 0.245 0.279 0.263 0.295 0.246 0.280
720 0.318 0.332 0.328 0.342 0.319 0.333

Non-CW Non-FP

MSE MAE MSE MAE
0.372* 0.398* 0.373 0.400
0.405* 0.414* 0.410 0.419
0.419* 0.424* 0.423 0.429
0.435* 0.453* 0.458 0.469

0.176 0.227 0.174* 0.225*
0.218 0.262* 0.217* 0.262*
0.265* 0.295* 0.266 0.298
0.332* 0.343* 0.333 0.347

Figure 3(a). Both input and output are from the ETTh1 dataset, and the length is 336. Fedformer
and TimesNet fail to accurately capture both long-term and short-term patterns. Compared to the
best-performing PatchTST, our model exhibits an advantage in identifying short-term variations,
resulting in detailed fluctuations in periodicity variation. More results can be seen in Appendix A.3.

To demonstrate the efficacy of the core design—channel-wise attention in FreCoformer, we visual-
ized the heatmaps of the input and output DFT matrices of the Transformer encoder in FreCoformer
in Figure 3(b). The energy of the original data is primarily concentrated in the low-frequency range,
leading to a potential imbalance in energy distribution. In the output of the transformer encoder,
there is a balanced energy distribution between low-frequency and mid-to-high-frequency compo-
nents. This balance likely enables our method to efficiently extract pivotal frequency features across
the entire frequency spectrum and various temporal variations, enhancing prediction outcomes.

4.2.3 ABLATION STUDY

Module Ablation Study. We investigate the efficiency of our framework and its modules by using
the ETTh1 and Weather datasets. The ETTh1 dataset contains more intricate mid-to-high-frequency
information, while the Weather dataset primarily focuses on low-frequency data. We independently
implement two modules for forecasting these datasets and compare their results to the complete
framework (in Table 4 (Left)). It shows on datasets like ETTh1, which are rich in complex high-
frequency information, FreCoformer consistently has better performance. Conversely, on datasets
like Weather, where long-term variations (low frequency) are dominant, using solely the time domain
modeling has better outcomes, but combining both has superior results. These observations imply
that frequency modeling has more contributions to our framework in intricate datasets. Also, it does
not bring redundancy to time domain modeling in simple and stationary time series.

Channel-wise Attention and Frequency Patching Ablations We further investigate the impact
of channel-wise attention and frequency patching (refinement) on forecasting accuracy. As shown
in Table 4 (Right), our framework consistently achieved superior accuracy in all experiments. In
datasets like ETTh1, characterized by more complex frequency information, channel-wise attention
achieves better performance in forecasting than frequency patching, emphasizing the significance of
our fundamental design of channel-wise attention.

4.2.4 NYSTRÖM-FRECOFORMER

We conduct comparative experiments to evaluate forecasting accuracy and computational complex-
ity against various baseline methods. In Figure 4, the X-axis denotes GPU memory usage, while
the Y-axis indicates prediction accuracy. Obviously, our framework outperforms in terms of ac-
curacy across both datasets. In datasets with fewer channels, like ETTh1 (7 channels), our model
excels in both accuracy and computational efficiency. In contrast, when dealing with datasets hav-
ing a larger number of channels, like the Weather (21 channels), our original method still retains
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Weather

OursPatchTST

Fedformer

TimeNet

Crossformer

Ours(N)

Crossformer

TimeNet

PatchTST
Ours

Fedformer

ETTh1

Figure 4: Visualization of prediction accuracy and computational complexity comparing various
baselines, FreCoformer, and Nyström-FreCoformer.

the highest accuracy, though with a slight increase in computational load (as denoted by ’Ours’
in Figure 4 (Right)). We further maintain constant parameters, modifying only the computational
method for self-attention by employing Nyström, which allowed for a substantial reduction in com-
putational demand without sacrificing accuracy (Ours(N)). Moreover, refining the parameters in
the Nyström variant allowed us to realize further computational efficiencies without compromis-
ing accuracy (Nyström-freCoformer). Consequently, our model demonstrates superiority in both
computational cost and accuracy in this setup.

Table 5: A more comprehensive comparison, taking into account MSE and GPU memory usage. We
used the ETTh1 and Weather, Electricity, Traffic dataset with a look-back window of length 336. For
ETTh1, the prediction length is 96, and for Weather, Electricity, and Traffic, it’s 720 time steps. We
evaluated the effectiveness of various methods based on these metrics and also considered runtime
memory consumption. The best results are in bold and the second best results are in underlined.

Dataset(channels) Metric Ours Ours (Nyström) PatchTST Crossfromer TimesNet Fedformer

ETTh1(7)
MSE 0.362 - 0.375 0.424 0.384 0.376
O 1661 - 1683 3096 2015 3989

Weather(21)
MSE 0.318 0.319 0.320 0.353 0.341 0.389
O 6029 2422 5775 2635 3943 6115

Electricity(321)
MSE 0.129 0.129 0.130 0.198 0.168 0.186
O 10113 6261 17379 15375 15593 7285

Traffic(862)
MSE 0.431 0.426 0.434 0.530 0.640 0.621
O 22317 13357 33823 39387 25689 17023

5 CONCLUSION

This paper proposes an effective design of Transformer-based models for modeling short-term tem-
poral variation through frequency modeling, termed FreCoformer. FreCoformer is built upon the
Transformer model and has three key components: (i) frequency refinement, (ii) channel-wise at-
tention to independent frequency bands, and (iii) frequency-wise summarization. Compared to the
previous works, FreCoformer locally and globally learns the frequency correlations of various short-
term variations in time series. We further propose a divide-and-conquer framework and introduce
a simple linear projection-based module incorporated into FreCoformer, to enhance adaptability to
various types of time series data. Extensive experiments show the effectiveness of our proposal
can outperform other baselines in different real-world time series datasets. The ablation shows the
success of our FreCoformer design. We further incorporate Nyström approximation to reduce the
computational complexity of attention maps, achieving lightweight with competitive forecasting
performance. This introduces a new perspective for effective time series forecasting. Interestingly,
results show that Nyström-FreCoformer can further enhance model performance in the time series
data with a large number of channels.
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