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ABSTRACT

Vision transformers (ViTs) have become the popular structures and outperformed
convolutional neural networks (CNNs) on various vision tasks. However, such
powerful transformers bring huge computation burden, due to the exhausting
token-to-token comparison. To make ViTs more efficient, we can prune them from
two orthogonal directions: model structure and token number. However, pruning
structure decreases the model capacity and struggles to speed up ViTs. Alterna-
tively, we observe that ViTs exhibit sparse attention with high token similarity,
while reducing tokens can greatly improve the throughput. Therefore, we propose
a generic self-slimming learning approach for vanilla ViTs, namely SiT. Specif-
ically, we first design a novel Token Slimming Module (TSM), which can boost
the inference efficiency of ViTs by dynamic token aggregation. Different from the
token hard dropping, our TSM softly integrates redundant tokens into fewer in-
formative ones, which can dynamically zoom visual attention without cutting off
discriminative token relations in the image. Furthermore, we introduce a concise
Dense Knowledge Distillation (DKD) framework, which densely transfers token
information in a flexible auto-encoder manner. Due to the similar structure be-
tween teacher and student, our framework can effectively leverage both parameter
and structure knowledge to accelerate training convergence. Finally, we conduct
extensive experiments to evaluate our SiT. In most cases, our method can speed
up ViTs by 3.6× while maintaining 97% of their performance. Surprisingly, by
simply arming LV-ViT with our SiT, we achieve new state-of-the-art performance
on ImageNet, surpassing all the CNNs and ViTs in the recent literature.

1 INTRODUCTION

Since vision transformer (ViT) (Dosovitskiy et al., 2021) started the era of transformer structure in
the fundamental computer vision tasks (Carion et al., 2020; Xie et al., 2021; Chen et al., 2021b),
variant transformers have been designed to challenge the dominance of convolutional neural net-
works (CNNs). Different from CNNs that stack convolutions to encode local features progressively,
ViTs directly capture the long-term token dependencies. However, because of the exhausting token-
to-token comparison, current powerful transformers require huge computation, limiting their wide
application in reality (Graham et al., 2021). For this reason, we aim to design a generic learning
framework for boosting the efficiency of vanilla vision transformers in this paper.

To make ViTs more efficient, we can prune them from two orthogonal directions, i.e., model struc-
ture and token number. Structure pruning has been popular in CNNs (He et al., 2017; Lin et al.,
2018). However, as the model capacity will be decreased by structure pruning, it requires iterative
optimization to maintain the performance. Besides, structure pruning struggles to speed up ViTs,
for example, S2ViTE (Chen et al., 2021c) can only improve the inference speed by 1.3×. We try
to prune LV-ViT-M (Jiang et al., 2021) in different orthogonal dimensions in Table 1. It shows that
token slimming can better improve the inference speed, especially for a large pruning ratio. To ver-
ify the feasibility of token slimming, we conduct a series of experiments based on LV-ViT, which
reveals that sparse attention with high token similarity exists in ViTs. In Figure 1a, we calculate
the correlation coefficients among tokens and count the proportion that is at least similar (≥0.7) to
4/8/16 tokens in different layers. It shows that even in the first layer, more than 60% of tokens are
similar to the other 3 tokens and the token similarity becomes higher in the deeper layer. Besides,
the attention tends to focus on the specific tokens in the deeper layers (Figure 1b), which means
the number of decision-relevant tokens becomes fewer. These observations demonstrate that only
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Pruning dimension
Throughput (image/s)

1GFLOPs 2GFLOPs 4GFLOPs 6GFLOPs 12GFLOPs
Structure-width 2651 (3.4×) 2168 (2.8×) 1517 (2.0×) 1204 (1.6×) 774
Structure-depth 6646 (8.6×) 4709 (6.1×) 2340 (3.0×) 1623 (2.1×) 774
Token number 10680 (13.8×) 5328 (6.9×) 2544 (3.3×) 1781 (2.3×) 774

Table 1: Throughput vs. FLOPs. We prune LV-ViT-M in different orthogonal dimensions. It
shows that token slimming achieves the highest throughput at the same FLOPs.

(a) Token similarity becomes
higher in deeper layers.

(b) All tokens focus on the same in-
formative tokens in deeper layers.

(c) Our soft slimming can automatically
zoom the attention scope.

Figure 1: Visualizations of LV-ViT and comparison between hard dropping and soft slimming.

a few token candidates indicate meaningful information. Intuitively, we can progressively drop the
redundant tokens as the network deepens. Recent studies have tried to compress tokens via data-
independent dropping with minimizing reconstruction error (Tang et al., 2021), and data-dependent
dropping with differentiable scoring (Rao et al., 2021). However, data-independent dropping re-
quires layer-by-layer optimization, which is hard to generalize. Moreover, the token hard dropping
will inevitably discard the vital tokens as the dropping ratio increases, e.g., the shape of the otter-
hound is destroyed in the deep layer (Figure 1c), thus limiting its performance.

In contrast, we propose token soft slimming to dynamically aggregate decision-relevant informa-
tion into a slimming token set. Specifically, we design a concise Token Slimming Module (TSM),
which generates decision-relevant tokens via a data-dependent weight matrix. As shown in Figure
1c, by simply inserting multiple TSMs in LV-ViT, our network can learn to localize the key object
tokens. More importantly, the attention scope can be zoomed automatically without cutting off the
discriminative token relations, e.g, our network can concentrate on the most informative parts of the
otterhound and the oxygen mask, which is totally different from the token hard dropping. Unde-
niably, token slimming will impair the capacity of representation learning, wherein some decision-
relevant information will be lost. Considering the invariant structure, the original network can teach
its slimming version by a dense (layer-to-layer) supervision manner. Therefore, we introduce a novel
Dense Knowledge Distillation (DKD) algorithm that elaborately utilizes the parameter knowledge
and structure knowledge, in order to achieve stable and efficient model slimming optimization. With
parameter knowledge, our model can converge faster, achieving 80.5% top-1 accuracy after 125
epochs, while training from scratch after 300 epochs even drops by 0.4%. To make use of struc-
ture knowledge, we first design a reverse version of the token slimming module (RTSM) to align
the token number in each layer in a flexible auto-encoder manner, thus we can densely transfer the
token information. Benefiting from the innate knowledge inheritance, our DKD is more suitable for
teaching itself, i.e., self-slimming learning, though other CNN/Transformer teachers perform better.

Our self-slimming learning method can be easily applied to all vanilla vision transformers (SiT),
e.g., DeiT (Touvron et al., 2021a), T2T-ViT (Yuan et al., 2021a), and LV-ViT (Jiang et al., 2021) etc.
We conduct extensive experiments on ImageNet (Deng et al., 2009) to verify the effectiveness and
efficiency. Interestingly, our method can perform better than DynamicViT (Rao et al., 2021) even
only with TSM. Besides, our SiT-XS achieves 81.8% top-1 accuracy with 3.6× inference speed and
SiT-L achieves competitive 85.6% top-1 accuracy while speed up by 1.7×. More importantly, our
SiT based on LV-ViT achieves the new state-of-the-art performance on ImageNet, surpassing all the
CNNs and ViTs in the recent literature.
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Figure 2: The framework of our self-slimming learning. We insert our token slimming module
(TSM) and the reverse version (RTSM) into vanilla vision transformers. Specially, the RTSM is only
used during training. The dense knowledge distillation (DKD) applies layer-to-layer supervision to
the recovered tokens of RTSM and the final predictions. The dash lines indicate the prediction
supervision from the extra CNN teacher is optional and complementary to our method.

2 RELATED WORK

Vision Transformers. Transformer architecture (Vaswani et al., 2017a) was first proposed for ma-
chine translation in the field of natural language processing (NLP). The success in NLP inspires the
application of transformer in various vision tasks, for example, DETR (Carion et al., 2020) for object
detection and ViT (Dosovitskiy et al., 2021) for image recognition. ViT is the first pure transformer
that achieves the state-of-the-art performance on ImageNet (Deng et al., 2009). Recent ViT variants
mainly focus on better optimization and more powerful performance (Touvron et al., 2021a; Zhou
et al., 2021; Touvron et al., 2021b; El-Nouby et al., 2021; Yuan et al., 2021b;a; Liu et al., 2021;
Wang et al., 2021b; Jiang et al., 2021; Han et al., 2021; Chen et al., 2021a; Dong et al., 2021; Wu
et al., 2021; d’Ascoli et al., 2021; Chu et al., 2021; Yang et al., 2021; Heo et al., 2021; Li et al., 2021;
Guo et al., 2021). However, few of them explore to improve the efficiency of vision transformers
(Graham et al., 2021). In this paper, we aim to design a general optimization framework named
self-slimming to promote the efficiency of ViTs.

Transformer Slimming. The large computation of self-attention hinders the wide application of
ViTs, such as detection and segmentation with the high-resolution input image. To solve this prob-
lem, several prior works concentrate on designing sparse attention (Wang et al., 2021a; Liu et al.,
2021) or structure pruning (Chen et al., 2021c). S2ViTE (Chen et al., 2021c) dynamically extracts
and trains sparse subnetworks of ViTs, while sticking to a fixed small parameter budget. However,
pruning model structure struggles to trim down the inference latency. Other works try to reduce
the token redundancy (Rao et al., 2021; Tang et al., 2021; Xu et al., 2021) by entirely dropping the
unimportant tokens. This hard dropping manner brings more improvements on throughput com-
pared to structure pruning. Different from the above works, our SiT aggregates all tokens into fewer
informative tokens in a soft manner by a concise slimming module, which can automatically zoom
the attention scope to localize the key object.

3 METHOD

In this section, we describe our self-slimming learning for vision transformer (SiT) in detail. First,
we introduce the overall architecture of SiT. Then, we explain the vital design of our SiT, i.e., token
slimming module (TSM) and dense knowledge distillation (DKD). Finally, we thoroughly compare
our TSM and DKD with other counterparts.

3.1 OVERVIEW OF SELF-SLIMMING LEARNING

In this section, we formally describe the details of our self-slimming learning for vision transformers
(SiT). The overall framework is illustrated in Figure 3. We first design a lightweight Token Slim-
ming Module (TSM) for conventional vision transformers to perform token slimming and its reverse
version of token slimming module (RTSM) for token reconstruction. Following the hierarchical fea-
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Figure 3: The pipelines of the token slimming module (TSM) and its reverse version (RTSM).

ture representations of prior works (Graham et al., 2021; Liu et al., 2021), we progressively perform
token slimming three times, reducing half of the tokens every time. To decrease the inevitable infor-
mation loss, we propose a layer-to-layer dense knowledge distillation (DKD), wherein the original
vision transformer can serve as a teacher to minimize the difference between itself and the slimmed
student. Finally, we integrate TSM and DKD to form a general self-slimming learning method for
all vanilla ViTs.

3.2 TOKEN SLIMMING MODULE

Given a sequence of N input tokens X = [x1;x2; · · · ;xN ] ∈ RN×C (class token is omitted as
it will never be pruned), token slimming aims to dynamically aggregate the redundant tokens to
generate N̂ informative tokens X̂ = [x̂1; x̂2; · · · ; x̂N̂ ]:

X̂ = ÂX, (1)

where Â ∈ RN̂×N is a normalized weight matrix:

N̂∑
i=1

Âi,j = 1, where j = 1 . . . N. (2)

Such operation is differentiable and friendly to end-to-end training. We follow the design paradigm
of self-attention (Vaswani et al., 2017b) and propose a lightweight token slimming module (TSM)
shown in Figure 3:

Â = Softmax(
Wqσ(XWk)T

τ
), (3)

where Wk ∈ RC×C
2 and Wq ∈ RN̂×C

2 are both learnable parameters. σ and τ represents the
nonlinear function (GELU) and scaling factor respectively. Similar to self-attention, TSM generates
a global attention matrix, but it requires much fewer overhead in terms of throughput and memory
usage during both training and inference. Thanks to the learnable scaling factor τ , the attention tends
to be sparse in our experiments, which means it learns to focus on the most informative tokens.

Besides, for the followed DKD, we also design a reverse version of the token slimming module
(RTSM) to reconstruct the original tokens in a flexible auto-encoder manner. Therefore, the lossless
token information can be seamlessly transferred from the teacher. Note that we only perform RTSM
when training, thus no extra computation is introduced during inference. We first linearly transform
the informative tokens into several token candidates, thus utilizing a non-linear function to filter
the vital representations. Finally, another linear transformation is performed to compress the token
candidates:

X̂′ = A2(σ(A1X̂)), (4)

where A1 ∈ R4N×N̂ and A2 ∈ RN×4N in our experiments. To further enhance the token repre-
sentations, we introduce an extra multi-layer perceptron (MLP) block (Vaswani et al., 2017b) with
skip-connection:

X′ = X̂′ + MLP(X̂′). (5)

The recovered tokens X′ will be forced to be consistent with the original tokens in DKD, which
guarantees the sufficient information of the slimmed tokens X̂.
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3.3 DENSE KNOWLEDGE DISTILLATION

Though token slimming significantly reduces the inference latency, it will inevitably discard some
decision-relevant token candidates, leading to an unacceptable accuracy drop. To ensure the stable
extraction of the decision-relevant information, we propose Dense Knowledge Distillation (DKD)
that regards the original vision transformer as a teacher to provide parameter knowledge and struc-
ture knowledge. Due to the invariant model structure, we can completely load parameter knowledge
from the teacher as initialization to accelerate the convergence of self-slimming learning. As for
structure knowledge, we design a dense (layer-to-layer) knowledge distillation for the recovered
tokens:

Ltoken =
1

LN

L∑
i=1

N∑
j=1

(Xs
i,j −Xt

i,j)
2, (6)

where Xs
i,j and Xt

i,j refer to the j-th token embedding at the i-th layer of the student and teacher,
respectively. Note that Xs refers to the recovered tokens X′ in Eq. 5. With such dense distilla-
tion, the student model will be forced to maintain as much as knowledge in the informative tokens
X̂. Besides, to alleviate the classification performance deterioration caused by token slimming,
we introduce the logits distillation to minimize the predictions difference between the student and
teacher:

Llogits = KL(ψ(Zs), ψ(Zt)), (7)
where KL denotes Kullback–Leibler divergence loss and ψ is the softmax function. Zs and Zt

are respectively the predictions of the student and teacher model. Moreover, the above DKD is
complementary to the hard distillation recommended in DeiT (Touvron et al., 2021a):

Lhard = CrossEntropy(ψ(Zd), yc), (8)

where Zd indicates the prediction of distillation head and yc is the hard decision of the extra CNN
teacher, which can further improve the performance with longer training epochs. Our final objective
of distillation for self-slimming learning is:

Ldist = λtokenLtoken + λlogitsLlogits + λhardLhard, (9)

where λ is the coefficient balancing the three distillation losses. We set λlogits = 2, λtoken = 2
by default. λhard is set to 1 when the CNN teacher is involved. As for the training objective of
self-slimming learning, we treat the classification task and the distillation task equally:

Lcls = CrossEntropy(ψ(Zs), y), (10)
Lglobal = Lcls + Ldist, (11)

3.4 DISCUSSION

Hard dropping vs. Soft Slimming. The prior works have tried to compress tokens via hard drop-
ping (Tang et al., 2021; Rao et al., 2021; Xu et al., 2021), in which the slimming weight Âi,j ∈ {0, 1}
is a binary decision matrix, i.e., keeping or dropping the corresponding token. However, this ap-
proach with binary decision leads to severe information loss if numerous tokens are discarded. Such
weakness limits their high efficiency on ImageNet (Deng et al., 2009), wherein the objects often
occupy a large part in the pictures. On the contrary, we design soft slimming with normalized
weight Âi,j ∈ (0, 1). It is able to discriminate the meaningful tokens in a global view, thus effec-
tively generating decision-relevant tokens. Moreover, as shown in Figure 1c, our soft slimming can
dynamically zoom the attention scope to cover the significant regions for classification.

DKD vs. Other Distillation. We compare our well-designed dense knowledge distillation with
other popular distillation methods, e.g., DeiT (Touvron et al., 2021a) and LV-ViT (Jiang et al., 2021).
Since the knowledge distillation often selects a stronger teacher network with different architectures,
e.g., RegNet for DeiT and NFNet for LV-ViT, only the spare knowledge can be used to supervise
the student, such as the single image-level or dense token-level predictions generated by the last
classification layer. Due to the structural isolation between student and teacher in conventional KD,
the semantic information in the intermediate layer is difficult to be utilized. In DKD, the structure is
consistent between the teacher and student, it can naturally conduct densely layer-wise and token-
level supervision for each layer, which further improves the stability of the model mimicking.
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Model Stage Embed
Dim Resolution

Student Teacher
Throughput Top-1 Top-1Υ Throughput Top-1
(image/s) (%) (%) (image/s) (%)

SiT-Ti {1,1,1,11} 320 2242 5896 (3.2×) 80.1 (−2.0) 80.6 (−1.5) 1827 82.1
SiT-XS {1,1,1,13} 384 2242 4839 (3.6×) 81.1 (−2.2) 81.8 (−1.5) 1360 83.3
SiT-S {9,3,2,2} 384 2242 1892 (1.4×) 83.2 (−0.1) 81.8 (+0.1) 1360 83.3
SiT-M {10,4,3,3} 512 2242 1197 (1.5×) 84.1 (−0.1) 84.3 (+0.1) 804 84.2
SiT-L {10,4,3,7} 768 2882 346 (1.7×) 85.6 (−0.1) - 204 85.7

Table 2: Main results on ImageNet. We apply our self-slimming learning on the state-of-the-art
vanilla vision transformer LV-ViT (Jiang et al., 2021). Υ means we adopt an extra CNN teacher.
Our SiT can speed up LV-ViT 1.7× with a slight accuracy drop. For fast inference, our SiT can
maintain 97% of the performance while speeding up the original transformers 3.6×.
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Figure 4: Speed vs. accuracy. “X” is short for “ResNeXt”. The throughput is measured on a single
16GB V100 GPU under the same setting as Graham et al. (2021). Our SiT surpasses EfficientNetV2
(Tan & Le, 2021) and Le-ViT (Graham et al., 2021), which are designed for fast inference.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

In this section, we conduct comprehensive experiments to empirically analyze the effectiveness of
our proposed self-slimming learning for vision transformer (SiT). All the models are evaluated on
the ImageNet dataset (Deng et al., 2009). For our teacher models, we train LV-ViTs (Jiang et al.,
2021) following the original settings, but we replace the patch embedding module with lightweight
stacked convolutions inspired by LeViT (Graham et al., 2021). All the teacher models share the
same head dimension (64) and expand ratio (3) for Feed Forward Network (FFN). As for student
models, all the training hyper-parameters are the same as DeiT (Touvron et al., 2021a) by defaults.
For initialization, we load all the weights from the corresponding teacher models to accelerate the
convergence and train them for 125 epochs. If utilizing an extra CNN teacher, we train the student
for 300 epochs for better improvement. Moreover, we set different initial learning rates for the
backbone and the token reconstruction branch, which are 0.0002× batch size

1024 and 0.001× batch size
1024

respectively. For token slimming, we insert TSM three times, thus there are four stages in SiT. The
default reduction ratio N̂/N is set to 0.5, which means the token number is halved after slimming.

4.2 MAIN RESULTS

We conduct our self-slimming learning for LV-ViT (Jiang et al., 2021), which is the state-of-the-
art vanilla vision transformer. More results based on DeiT (Touvron et al., 2021a) can be found in
Appendix A.1. Table 2 shows our detailed settings for different SiT variants. For SiT-Ti and SiT-XS,
we explore their capacity for fast inference, thus we insert TSMs in the early layers. It demonstrates
that our self-slimming method is able to speed up the original vision transformers 3.6×, while
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Model Resolution #Params #FLOPs Throughput ImageNet
(M) (G) (image/s) Top-1(%)

EfficientNet-B2 (Tan & Le, 2019) 2602 9.1 1.1 1818 80.1
PVT-S (Wang et al., 2021b) 2242 24.5 3.8 1017 79.8
LeViT-256∗ (Graham et al., 2021) 2242 18.9 1.1 5872 80.1
CaiT-XXS36Υ (Touvron et al., 2021b) 2242 17.3 3.8 525 79.7
SiT-Ti 2242 15.9 1.0 5896 80.6
EfficientNet-B3 (Tan & Le, 2019) 3002 12.2 1.9 1082 81.6
DeiT-SΥ (Touvron et al., 2021a) 2242 22.4 4.6 1619 81.2
LeViT-384∗ (Graham et al., 2021) 2242 39.1 2.4 3916 81.6
Swin-T (Liu et al., 2021) 2242 28.3 4.5 1046 81.3
SiT-XS 2242 25.6 1.5 4839 81.8
EfficientNet-B4 (Tan & Le, 2019) 3802 19.3 4.6 550 82.9
DeiT-BΥ (Touvron et al., 2021a) 2242 87.3 17.7 723 83.4
Swin-B (Liu et al., 2021) 2242 87.8 15.5 477 83.3
LV-ViT-S (Jiang et al., 2021) 2242 26.2 6.6 1277 83.3
SiT-S 2242 25.6 4.0 1892 83.4
EfficientNet-B6 (Tan & Le, 2019) 5282 43.0 19.9 154 84.0
EfficientNet-B7 (Tan & Le, 2019) 6002 66.3 39.2 86 84.3
EfficientNetV2-S (Tan & Le, 2021) 3842 21.5 8.5 747 83.9
NFNet-F0 (Brock et al., 2021) 2562 71.5 12.6 365 83.6
LV-ViT-M (Jiang et al., 2021) 2242 55.8 12.7 774 84.1
SiT-M 2242 55.6 8.1 1197 84.3
EfficientNetV2-M (Tan & Le, 2021) 4802 54.1 25.0 271 85.1
NFNet-F2 (Brock et al., 2021) 3522 193.8 63.2 72 85.1
CaiT-M36Υ (Touvron et al., 2021b) 2242 270.1 53.4 130 85.1
LV-ViT-L (Jiang et al., 2021) 2882 150.1 58.8 208 85.3
SiT-L 2882 148.2 34.4 346 85.6

Table 3: Comparison to the state-of-the-art on ImageNet. ∗ denotes the models are trained for 300
epochs for a fair comparison. Our SiT achieves the best balance between throughput and accuracy.

maintaining at least 97% of their accuracy. Besides, we adopt another CNN teacher to provide the
hard label as in DeiT. The results show that the complementary prediction supervision can further
improve the performance. As for other variants, we insert TSMs in the deeper layers. Surprisingly,
with negligible accuracy drop, our SiTs are up to 1.7× faster than their teacher models. It is worth
mentioning that, extra CNN prediction supervision brings little improvement, mainly because that
the CNN teacher is worse than the original transformer (82.9% vs. 83.3%/84.2%).

4.3 COMPARISON TO STATE-OF-THE-ART

In Table 3, we compare SiT with other competitive CNNs and ViTs. For a fair comparison, we
group these methods according to their top-1 accuracy. The throughput is measured on a single
16GB V100 GPU under the same setting as LeViT (Graham et al., 2021). Our SiT-Ti is competitive
with LeViT, while the throughput is 3.2× than that of EfficientNet (Tan & Le, 2019). Note that
EfficientNet is designed via extensive neural architecture search and LeViT is elaborately designed
for fast inference. For our larger model variants, they perform better than EfficientNetV2 (Tan &
Le, 2021) with simple training strategies. Compared with the original LV-ViT (Jiang et al., 2021),
our SiT is 1.5× faster than those with similar accuracy. We further visualize the comparisons to
the upper bound of CNNs and ViTs in Figure 4. It clearly shows that our SiT achieves the best
balance between throughput and accuracy, surpassing the recent state-of-the-art CNNs and ViTs.
These results demonstrate the effectiveness and efficiency of our self-slimming method.

4.4 ABLATION STUDIES

Does token slimming outperform structure pruning? In Table 4a, we compare token slimming
with structure pruning under the same computation limit. For structure pruning, we adapt the chan-
nel and depth individually. For token slimming, we simply insert TSMs without DKD. The above
models are trained from scratch for 300 epochs. We also drop tokens and train it with extra distil-
lation as in DynamicViT (Rao et al., 2021). It shows that pruning channel achieves higher accuracy
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Method Top-1 FPS
Structure-width 76.3 2947
Structure-depth 69.4 5652
DynamicViT 75.7 5762(Rao et al., 2021)
SiT w/o DKD 77.7 5896

(a) Efficiency comparison. Token
slimming performed by TSM yeilds
the best efficiency.

Knowledge Self CaiT RegNet
83.3 83.5 82.9

None 80.1 79.9 79.2
Parameter 80.5 80.2 80.0
Parameter 81.1 80.6 80.2+Structure

(b) Inherited knowledge. Parameter
knowledge accelerates convergence and
structure knowledge increases accuracy.

Method Top-1
None 79.0
T-Linear 78.8
T-Mixer 79.0
T-Linear + MLP 79.6
Our RTSM 80.1

(c) Token reconstruction
methods. The MLP is crit-
ical to token reconstruction.

Method GFLOPs Top-1
None 3.5 82.1
AvgPool 1.0 77.4
Conv 1.0 79.3
T-Mixer 1.1 79.3
Our TSM 1.0 80.1

(d) Token slimming methods.
The dynamic TSM reaches better
accuracy than the static methods.

Method Top-1
Baseline 77.7
+Llogits 79.0(+1.3)
+Ltoken 80.1(+2.4)
+Lhard 80.2(+2.5)
+Longer training 80.6(+2.9)

(e) Knowledge distillation. Each
distillation supervision help improve
the performance.

FLOPs Llogits Lhardratio +Ltoken

1 82.1 82.1
0.75 82.0 82.0
0.5 81.6 81.3
0.25 80.1 78.4

(f) Robustness analysis. Our
self-slimming learning with
DKD is robust to FLOPs ratio.

Table 4: Ablation studies. If not otherwise specified, all experiments for ablations are conducted
on SiT-Ti and run with only 125 training epochs under the supervision of our DKD.

than pruning depth but with lower throughput. Besides, token slimming can largely improve the
throughput with higher performance. However, DynamicViT performs worse than our SiT without
distillation, which is mainly because token hard dropping loses much discriminative information
with a large slimming ratio. Such results also demonstrate the effectiveness of our TSM.

Do parameter knowledge and structure knowledge matter to self-slimming? We further inves-
tigate whether the parameter knowledge and structure knowledge benefit the performance as shown
in Table 4b. For the teacher models, we adopt different architectures (LV-ViT-S(Jiang et al., 2021),
CaiT-S24(Touvron et al., 2021b), and RegNetY-16GF(Radosavovic et al., 2020)) but similar accura-
cies for a fair comparison. It shows that training with parameter knowledge for 125 epochs converges
to higher results than those trained for 300 epochs without parameter knowledge. Moreover, we uti-
lize structure knowledge via layer-to-layer mimicking, which can further boost the performance. It
also reveals that higher similarity between students and teachers can bring greater improvements.

Dynamic vs. Static: Which aggregation manner works better for token slimming? To explore
whether dynamic aggregation is better for token slimming, we perform ablation experiments as
shown in Table 4d. For static aggregation, we choose different data-independent operations and
maintain similar computation: 3×3 average pooling/convolution with stride 2×2, and double linear
layers with GELU function (“T-Mixer”). It shows that learnable parameters are vital for token
slimming since average pooling leads to a severe accuracy drop. Besides, the static aggregation
methods with data-independent weights yield similar but inferior performance to our TSM (79.3%
vs. 80.1%). Such comparisons prove that our TSM can generate more informative tokens.

How much does MLP bring for token reconstruction? We first reconstruct the original tokens
by only single and double linear layers. As shown in Table 4c. “T-Linear” and “T-Mixer” do not
bring any accuracy gains and even hurts the capacity compared with the baseline (without layer-to-
layer mimicking). Surprisingly, simply introducing an MLP (Dosovitskiy et al., 2021) obviously
improves the performance by 0.8% and 1.1% respectively. It shows that via enhancing the token
representations individually, MLP can guarantee the sufficient information of the slimmed tokens.

Does each distillation supervision helps? Table 4e presents that the soft logits surpervision Llogits

brings 1.4% top-1 accuracy gain. When further introducing layer-to-layer knowledge supervision,
our model improves the accuracy by 1.1%. Finally, combining complementary hard label supervi-
sion, the top-1 accuracy reaches 80.6% with longer training epochs.

Is self-slimming learning robust to different FLOPs ratios? In Table 4f, we empirically training
models with different FLOPs ratios. When the ratio is large than 0.5, our DKD and CNN distillation
are both helpful for maintaining performance. However, when the ratio is small, CNN distillation
leads to a higher performance drop, while our DKD only drops the accuracy by 2.0%. These results
demonstrate that our self-slimming learning with DKD is robust to different FLOPs ratios.
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Original 0.5 0.8750.75 Original Original

Slimming ratio

0.5 0.8750.75 0.5 0.8750.75

Figure 5: Visualizations of our progressive token slimming. The darker tokens contribute less to the
final informative tokens. Our method can zoom the attention scope to cover the key object.

LV-ViT-S

LV-ViT-S RegNet-16GF CaiT-S24

CKA mean: 0.85 CKA mean: 0.33 CKA mean: 0.38

Student:

Teacher:

CKA mean: 0.75

w/ parameter knowledgew/o parameter knowledge w/ parameter knowledge w/ parameter knowledge

Figure 6: Cross CKA heatmap between different student models and the teacher models.

4.5 VISUALIZATION

Token slimming visualization. Figure 5 shows the original images and the token slimming proce-
dure of our SiT-Ti. We observe that the tokens of higher scores, i.e., brighter tokens, are concentrated
and tend to cover the key objects in the image. It demonstrates that our proposed TSM is able to
localize the significant regions and predict accurate scores for the most informative tokens.

Model similarity visualization. In Figure 6, we compute the CKA (Kornblith et al., 2019) heatmap
by comparing all layers of the student models (LV-ViT-S) with all layers of their teacher models. It
shows that the CKA similarities between the similar structures are generally higher than those be-
tween different structures (0.75/0.85 vs. 0.33/0.38). Interestingly, we find the parameter knowledge
inherited by the student force itself to be similar to its teacher. Besides, for similar structures, the
CKA similarities in the shallow layers are higher than those in deep layers. It is mainly because we
slim a large number of tokens after the third layer, leading to an inevitable information loss. As for
different structures, the CKA similarities in the deep layers are higher than those in shallow layers,
which is mainly because the logits distillation provides direct supervision for features in the deeper
layers. Note that the above observations are consistent with the results in Table 4b, which reveals
that teachers with similar structures can transfer structure knowledge better for higher performance.

5 CONCLUSION

In this paper, we propose a generic self-slimming learning method for vanilla vision transformers
(SiT), which can speed up the ViTs with negligible accuracy drop. Our concise TSM softly integrates
redundant tokens into fewer informative ones. For stable and efficient training, we introduce a novel
DKD framework to leverage parameter knowledge and structure knowledge, which can densely
transfer token information in a flexible auto-encoder manner. Extensive experiments demonstrate
the effectiveness of our SiT. By simply arming LV-ViT with our SiT, we achieve new state-of-the-art
performance on ImageNet, surpassing all the other CNNs and ViTs.
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A ADDITIONAL RESULTS

A.1 MORE RESULTS ON DEIT

We also verify the effectiveness of our self-slimming learning on DeiT as illustrated in Table 5.
For the FLOPs ratio of 0.5 and 0.25, the stage numbers are {3,4,3,2} and {1,1,1,9} respectively.
Specifically, we conduct the experiments on the original DeiT (Touvron et al., 2021a) and its variant
with lightweight convolutional patch embedding. Both models achieve similar accuracy with the
same computational costs. However, we observe the performance of their students is quite differ-
ent especially at a small FLOPs ratio. DeiTP suffers severe performance deterioration when 75%
computation is reduced, while DeiTC only drops the accuracy by 2.5%. More importantly, DeiTC

generally obtain higher accuracies than DeiTP at a relatively higher FLOPs ratio. It demonstrates
that the models with convolutional patch embedding are more redundant and friendly to slimming.
In addition, we also compare our DKD with the CNN distillation under different settings. The
layer-to-layer dense knowledge distillation consistently brings more performance gains than CNN
distillation. It is worth mentioning that, self-slimming is also complementary to the extra CNN dis-
tillation. Surprisingly, the best student model of DeiTC even outperforms the teacher by 0.6% top-1
accuracy while running 2× faster under the joint supervision. These results prove the effectiveness
and generalization ability of our self-slimming learning.

A.2 COMPARISONS TO DYNAMICVIT

As described in Table 6, we further compare our self-slimming learning with the recent method,
i.e., DynamicViT. We observe that our SiT runs slightly faster than DynamicViT with the same
FLOPs, which reveals our TSM presents better inference efficiency than the prediction module of
DynamicViT. More importantly, thanks to the soft-slimming designs, SiT outperforms DynamicViT
by a large margin (5.3%-10.0%) at the FLOPs ratio of 0.25. For the large FLOPs ratio, our SiT
still obtains at least 0.7% higher accuracy than DynamicViT, proving the soft slimming triumphs the
hard dropping manner.

A.3 VISUALIZATION

We present more visualizations of our progressive token slimming in Figure 7.
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Model FLOPs #FLOPs Llogits Lhard
Throughput ImageNet

ratio (G) +Ltoken (image/s) Top-1(%)

DeiTP -S

0.25

1.1 % % 6413(3.9×) 71.6(-8.2)
1.1 " % 6413(3.9×) 75.9(-3.9)
1.1 % " 6286(3.8×) 72.9(-6.9)
1.1 " " 6286(3.8×) 75.3(-4.5)

0.5

2.3 % % 3308(2.0×) 78.6(−1.3)

2.3 " % 3308(2.0×) 79.3(−0.5)

2.3 % " 3262(2.0×) 78.8(−1.0)

2.3 " " 3262(2.0×) 79.8(+0.0)

1 4.6 % % 1637 79.8

DeiTC-S

0.25

1.1 % % 5898(3.7×) 76.1(-3.9)
1.1 " % 5898(3.7×) 78.4(-1.6)
1.1 % " 5830(3.7×) 77.5(-2.5)
1.1 " " 5830(3.7×) 78.8(-1.2)

0.5

2.3 % % 3150(2.0×) 79.1(−0.9)

2.3 " % 3150(2.0×) 79.9(−0.1)

2.3 % " 3106(1.9×) 80.3(+0.3)

2.3 " " 3106(1.9×) 80.6(+0.6)

1 4.6 % % 1597 80.0

Table 5: More results on DeiT. “DeiTP ” indicates the original DeiT and “DeiTC” refers to the
variant with lightweight convolutional patch embedding stacked by four 3×3 convolutions (2×2
stride) and one point-wise convolution.

Model FLOPs
ratio

#FLOPs
(G)

DynamicViT SiT
Throughput ImageNet Throughput ImageNet
(image/s) Top-1(%) (image/s) Top-1(%)

DeiTP -S
0.25 1.1 6254(3.8×) 65.6(-14.2) 6413(3.9×) 75.9(−3.9)

0.5 2.3 3248(2.0×) 78.4(-1.4) 3308(2.0×) 79.3(−0.5)

1 4.6 1637 79.8 1637 79.8

DeiTC-S
0.25 1.1 5689(3.6×) 73.4(-6.6) 5898(3.7×) 78.4(−1.6)

0.5 2.3 3092(1.9×) 79.2(-0.8) 3150(2.0×) 79.9(−0.1)

1 4.6 1597 80.0 1597 80.0

Table 6: Comparisons between DynamicViT and our SiT on DeiT.
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Original 0.5 0.1250.25 Original Original

Slimming ratio
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Slimming ratio

0.5 0.1250.25 0.5 0.1250.25

Figure 7: More visualizations of our SiT.
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