
Evaluating Representation Learning and Graph
Layout Methods for Visualization

Edith Heiter , Bo Kang , Tijl De Bie , and Jefrey Lijffijt

Department of Electronics and Information Systems, IDLab, Ghent University, 9000
Ghent, Belgium

first.last@ugent.be

Abstract. Graphs and other structured data have come to the fore-
front in machine learning over the past few years due to the efficacy of
novel representation learning methods boosting prediction performance
in various tasks. Representation learning methods embed the nodes in a
low-dimensional real-valued space, enabling the application of traditional
machine learning methods on graphs. These representations have been
widely premised to be also suited for graph visualization. However, no
benchmarks or encompassing studies on this topic exist. We present an
empirical study comparing several state-of-the-art representation learn-
ing methods with two recent graph layout algorithms, using readabil-
ity and distance-based measures as well as link prediction performance.
Generally, no method consistently outperformed the others across qual-
ity measures. The graph layout methods provided qualitatively superior
layouts when compared to representation learning methods. Embedding
graphs in a higher-dimensional space and applying t-Distributed Stochas-
tic Neighbor Embedding for visualization improved the preservation of
local neighborhoods, albeit at substantially higher computational cost.
A longer version of this paper was recently published in the IEEE Com-
puter Graphics and Applications journal (volume 42, issue 3, 2022). By
presenting it at the workshop on mining and learning with graphs, we
aim to reach the graph machine learning community in addition to the
visualization and application-oriented audience of the journal.

1 Introduction

Visualization of data is useful both for understanding data and cross-checking
models trained on that data. Consequently, it may lead to new insights, better
models, the detection of outliers, etc. Visualization is frequently used in data
science. However, it is not straightforward to visualize a graph. The vertices
and edges typically do not have a real-valued representation, hence the primary
problem in graph visualization is to find a good representation of the vertices in
two-dimensional space.

Traditionally this area was known as graph drawing and methods that pro-
duce a representation of the nodes of a graph on a two-dimensional real-valued
space were referred to as graph-layout algorithms. Early research considered prob-
lems such as to find planar embeddings (no edge crossings), later research also

https://orcid.org/0000-0003-0279-2139
https://orcid.org/0000-0002-9895-9927
https://orcid.org/0000-0002-2692-7504
https://orcid.org/0000-0002-2930-5057


2 E. Heiter et al.

Fig. 1: Visualizations of the netscience collaboration graph using t-Stochastic
Neighbor Embedding (t-SNE) and different embedding methods: (a) Arbitrary-
order Proximity Preserved Network Embedding (AROPE), (b) Conditional Net-
work Embedding (CNE), (c) DeepWalk, (d) Graph Auto-Encoder (GAE). Color
corresponds to edge length: yellow (long) to dark blue (short).

embeddings of large graphs, leading also to the development of still popular force-
directed approaches [3,18,6,?]. In contrast, graph representation learning methods
(sometimes also referred to as network embedding methods) have not been devel-
oped specifically for visualization, but rather they aim to embed graphs into a
low-dimensional space (depending on the method between 8 to 128 dimensions
in general), to enable subsequent use of common machine learning techniques.

There exist many graph-layout algorithms, each with a different objective
or optimization procedure. Someone who wants to inspect or analyze a graph
visually is then already faced with a difficult choice of which method would be
most appropriate for their goal. This difficulty is amplified by the introduction of
dozens of representation learning methods for graphs, which have been premised
to also produce good visualizations (see, e.g., [15,9,17,10]).

It is not clear which method to use, or even which aspects vary by choosing
one method instead of another. For example, in Figure 1 we show visualizations
from different representation learning methods. It is not obvious which visual-
ization is better than another or how they differ.

Representation learning methods are often evaluated by coloring the vertices
according to a class label, and a good visualization is then one where nodes from
the same class are (visually) grouped together. But such evaluations have limited
scope, because whether an algorithm does well depends strongly on what type
of structure from the graph aligns with the node labels.

New graph layout methods are evaluated on more immediate quality mea-
sures, but are not compared to representation learning methods (see, e.g., [9,21]).
It is an open question how to generally evaluate graph layouts and whether some
currently used methods outperform others.
Contributions. In this paper, we perform an empirical analysis of graph visual-
izations by representation learning and graph layout algorithms. We investigate
the differences in their visualizations visually and quantitatively using a diverse
set of quality measures. Representation learning methods are often used to com-
pute node embeddings in more than two dimensions. We thus evaluate native
two-dimensional and also higher-dimensional node representations that we em-



Title Suppressed Due to Excessive Length 3

bed into two dimensions using the well-known t-distributed stochastic neighbor
embedding (t-SNE) method. We base our analysis on publicly available methods
and provide the full source code, which can be easily extended to include other
methods or datasets. Lastly, we give recommendations on how to apply t-SNE to
retain important graph structure and how different methods could be improved
to yield better visualizations.

2 Setup of the study

In this section we introduce our choice of quality measures, graphs, and evaluated
methods. The definitions of the quality measures are provided in the supplement.

2.1 Quality measures

There exist a variety of scores to measure the quality of graph layouts. The
graph representation learning community typically evaluates graph embeddings
on tasks such as clustering, link prediction, graph reconstruction, or node clas-
sification. These are inspired by and suitable to evaluate embeddings as mod-
els of the data, either considering the performance of an embedding towards
reconstruction or prediction. In contrast, recent methods for graph visualiza-
tion ([9,10,21]) are mostly evaluated by means of readability, shape-based, or
distance-based measures. Such measures inform more directly about the quality
of a graph layout, as they are easy to interpret, but they may not capture to
what extent we can do inference and prediction using a layout.

As the measures may be complementary to each other, we evaluate graph
layouts on measures from each of these groups: Crosslessness [16,10] measures
the proportion of edge crossings that are avoided in a graph layout with respect
to all possible pairwise edge crossings. Minimum angle [16], measures how much
the smallest angle between incident edges at each node deviate from the optimal
angle that could be achieved when all edges are evenly spaced. Edge length
variation [4] quantifies the variability of the edge lengths relative to their mean.
Gabriel graph similarity [2] is a shape-based quality measure for layouts of large
graphs. We use the GLAM (Graph Layout Aesthetic Metrics) toolbox [10] to
compute these four readability measures. The distance-based measures that we
evaluate are neighborhood preservation [9] and stress [21].

Finally, we use the EvalNE toolbox [13] to quantify the suitability of the
layouts for link prediction. For link prediction, a random connected subset of
80% of the edges is used to compute the layout and the remaining 20% together
with the same number of randomly sampled non-existing edges are used for
testing. While some methods have built-in edge embeddings (AROPE, CNE,
GAE), others only result in node embeddings. In the latter case, we use EvalNE
to transform the node embeddings into edge embeddings using their element-
wise average, Hadamard product, L1, or L2 distance. The measure reported is
the AUC-ROC of a logistic classifier that predicts the test edge probabilities.



4 E. Heiter et al.

Table 1: Characteristics of graphs.

Name |V | |E| Type Source

karate club 34 78 social network [1]

can96 96 429 artificial network [1]

netscience 379 914 co-authorship graph [1]

facebook 4 039 88 234 social network [11]

powergrid 4 941 6 594 infrastructure graph [1]

twitter 44 631 73 133 social network [19]

2.2 Datasets

We evaluate visualizations of the largest connected components of six undirected
and unweighted graphs listed in Table 1. The karate club graph is a commonly
used example and models the social interactions of the sports club members.
can96 is an artificial mesh structure, netscience a co-authorship graph from
network scientists, and powergrid represents the electricity grid of the western
United States. The facebook friendship graph is commonly evaluated on the link
prediction task. The largest graph, a twitter feed graph, has been used in the
experiments by Zellmann et al. [19] and provided to us by the authors.

2.3 Evaluated methods

In this study we compare graph visualizations from seven methods, with param-
eter settings and links to their source code in Table 11 of the Supplement. We
followed the parameter recommendations of the original publications where pos-
sible. We selected four graph representation learning methods: Arbitrary-order
Proximity Preserved Network Embedding (AROPE), Conditional Network Em-
bedding (CNE), DeepWalk (DW), and Graph Auto-Encoders (GAE), which are
state-of-the-art methods each using a distinct approach [14]. These methods are
mostly used to compute low-dimensional node embeddings in more than two
dimensions and the two-dimensional graph layouts for visualization are then ob-
tained by t-SNE [12]. We denote their node embeddings by, e.g., AROPE128,
indicating the dimensionality before applying t-SNE. We also evaluate native
two-dimensional node representations for all graph representation learning meth-
ods denoted by e.g., AROPE2.

The representatives for graph layout methods are the Fruchterman-Reingold
(FR) algorithm and DRGraph. We chose FR due to its popularity and evaluate
its naive implementation as well as a recent more scalable grid-based optimiza-
tion. DRGraph is a recently published method that is faster than existing layout
techniques but produces visualizations with comparable readability and neigh-
borhood preservation.



Title Suppressed Due to Excessive Length 5

(a) AROPE128 (b) CNE16 (c) DW128 (d) GAE16

Fig. 2: Placement of low-degree nodes (dark) around a high-degree hub node
(yellow, marked with red arrow) for the twitter graph. While nodes are clustered
according to their degree in AROPE128 and GAE16, and to some extend in
CNE16, leaf nodes are close to their parent in DW128.

Arbitrary-order Proximity Preserved Network Embedding [20] pre-
serves higher-order proximities by factorizing a linear combination of powers
of the adjacency matrix. It is efficient through the use of eigen-decomposition
reweighting.
Conditional Network Embedding [7] is a probabilistic network embedding
method based on Maximum Likelihood Estimation that can factor out prior
knowledge about the graph structure using a Bayesian approach.
DeepWalk [15] captures the neighborhood structure of nodes using random
walks. The node embeddings are updated using the Skip-gram model, maximiz-
ing the co-occurrence probability of nodes in the same neighborhood.
Graph Auto-Encoders [8] embed the graph into a latent space using a graph
convolutional network encoder and an inner product decoder.
Fruchterman-Reingold [3] is a force-directed approach with attraction forces
between connected nodes and repulsion between all nodes. Node positions are
updated iteratively with a temperature cooling scheme that reduces the displace-
ment of nodes over time. We compare the O(|V |2) implementation of Fruchterman-
Reingold by Hagberg et al. [5] (version 2.2) with a GPU-optimized implementa-
tion by Zellmann et al. [19], denoted as FR-RTX.
DRGraph [21] preserves the first-order neighbors from the graph in the low-
dimensional representation by minimizing the difference between node similari-
ties and layout proximities. It is based on the idea of tsNET [9] but improved the
computational and memory complexity by introducing a sparse distance matrix,
negative sampling, and a multi-level optimization process.

3 Empirical results

We first compare the graph layouts qualitatively based on the visualizations in
Table 2 and then evaluate the quantitative measures. The code and the embed-
dings are available at https://github.com/aida-ugent/graph-vis-eval. The Sup-

https://github.com/aida-ugent/graph-vis-eval


6 E. Heiter et al.

Table 2: Visualizations based on node embeddings showing only the edges.
karate club can96 netscience facebook powergrid twitter

A
R

O
P

E
2

A
R

O
P

E
12

8
C

N
E

2
C

N
E

16
D

W
2

D
W

12
8

D
R

G
R

A
P

H
F
R

F
R

-R
T

X
G

A
E

2
G

A
E

16



Title Suppressed Due to Excessive Length 7

plement contains node-link diagrams (Table 12) and scores for all layouts (Tables
1 to 10).

3.1 Visual inspection of the embeddings

AROPE. The first embedding coordinate of graph layouts by AROPE2 is pro-
portional to the eigenvector centrality of the nodes, making the embedding unlike
the others. Central nodes may be identified on one side and leaf nodes on the
other side of the embedding for karate club, can96 , and powergrid . The nodes
for the other three graphs are mostly aligned along two axes, thus hiding most of
their connections. Embeddings by AROPE128 reveal more details of the graph
structure. In the twitter graph layout in Figure 2a we observe a clustering ac-
cording to node-degree.

CNE. The native two-dimensional embeddings of CNE2 exhibit a proximity-
based arrangement of the nodes where hub nodes are placed in the center of their
connections. The embeddings by CNE16 are similar to AROPE128, DW128, and
GAE16. For the twitter graph, we find the t-SNE embedding is more readable as
it shows cluster structure. We see in Figure 2b that CNE16 also clusters nodes
by degree.

DeepWalk. The embeddings by DW2 conceal the underlying shape of the graph
as nodes are mostly arranged on a curved line. DW128 produces readable embed-
dings with a clear cluster structure. In Figure 2c we note that DW128 embeds
low-degree nodes close to their connections resulting in a star shape around the
hub node.

DRGraph. The graph layouts by DRGRAPH for netscience and powergrid are
appealing and very similar to the layouts by DW128. The different communities
of the facebook graph are well visible, but in the node-link diagram (Supplement,
Table 13) we notice some long edges that have a leaf node on one end. Long
edges also dominate the visualization of the twitter graph and make it difficult
to observe any structure in the center of the layout. We do not know whether the
parameter settings or the fact that DRGRAPH only preserves first-order graph
distances cause the ‘hairball’ structure of this visualization.

FR. Both implementations result in graph layouts with similar global structure
but different local node arrangement. For FR, we observe that clusters are more
compact and nodes are pushed away from the center. For FR-RTX, nodes are
distributed more evenly around a shared connection, which hinders the forma-
tion of visible clusters for powergrid but improves the readability of twitter .
We assume this is the effect of approximating the repulsive forces in FR-RTX,
causing only the closest nodes to repel each other.

GAE. The embeddings from GAE2 have a distinct circular shape due to the
inner product decoder. High-degree node embeddings have large coordinates and
low-degree nodes are placed near the origin. In this graph layout, we can easily
identify the most central hub nodes, e.g., for facebook or twitter . The embeddings



8 E. Heiter et al.

karate can96 netscience facebook powergrid twitter
0.0

0.2

0.4

0.6

AROPE2
AROPE128

CNE2
CNE16

DW2
DW128

GAE2
GAE16

FR
FR-RTX

DRGRAPH

karate can96 netscience facebook powergrid twitter
2.5

5.0

7.5

10.0

12.5

−
lo

g 2
(1
−

cr
os

sl
es

sn
es

s)

(a) Crosslessness

karate can96 netscience facebook powergrid twitter

0.900

0.925

0.950

0.975

1.000

(b) Edge length uniformity

karate can96 netscience facebook powergrid twitter
0.0

0.2

0.4

0.6

(c) Minimum angle

karate can96 netscience facebook powergrid twitter
0.0

0.2

0.4

(d) Gabriel graph similarity

Fig. 3: Average readability scores for each dataset, ordered by number of nodes.
Crosslessness and edge length uniformity are scaled to better show the relative
differences between methods.

by GAE16 and AROPE128 have an similar local structure as shown in Figure 2d.
In both embeddings, nodes from the same cluster are arranged by degree.

3.2 Readability measures

We show the scores for crosslessness, edge-length uniformity, minimum angle, and
Gabriel graph similarity, averaged over four runs, in Figure 3. Averaging over all
graph datasets, the graph layout methods outperform the representation learn-
ing methods (Supplement Table 10). DW128 achieves high scores for the layouts
of larger graphs. The high minimum-angle scores of the layouts by FR-RTX and
DW128 stem from the star-shaped arrangement of hub-nodes and their connec-
tions (see Figure 2c). The layouts by AROPE2, DW2, and GAE2 generally have
small angles between incident edges as they optimize the dot-product similarity
of connected nodes. Further, we observe that AROPE2, DW2, and GAE2 score
poorly for the Gabriel shape measure. These methods optimize the node embed-
dings for dot-product similarity whereas the Gabriel graph similarity measure
retrieves neighbors based on Euclidean distance.

3.3 Distance-based measures

We show the scores for second-order neighborhood preservation and stress in
Figures 4a and 4b, and the scores of the first-order neighborhood preservation



Title Suppressed Due to Excessive Length 9

karate can96 netscience facebook powergrid twitter
0.0

0.2

0.4

0.6

AROPE2
AROPE128

CNE2
CNE16

DW2
DW128

GAE2
GAE16

FR
FR-RTX

DRGRAPH

karate can96 netscience facebook powergrid twitter
0.0

0.2

0.4

0.6

0.8

(a) Second order neighborhood preserva-
tion

karate can96 netscience facebook powergrid twitter

0.25

0.50

0.75

1.00

(b) Stress

karate can96 netscience facebook powergrid twitter

2

4

6

−
lo

g 2
(1
−

A
U

C
R

O
C

)

(c) Link prediction AUCROC

karate can96 netscience facebook powergrid twitter

101

103

105

(d) Runtime in seconds on a logarithmic
axis.

Fig. 4: Average neighborhood preservation, stress, AUC-ROC, and runtime over
four experiment repetitions. We scale the AUC values to better show the relative
differences.

measure in the Supplement; they are highly similar to the Gabriel similarity
measure. DW128 and DRGRAPH preserve the second-order neighborhood best.
Considering all methods, the neighborhoods of the facebook graph are better
preserved than the neighborhoods of powergrid or twitter . We presume that
the community structure of the graph aligns well with the second-order neigh-
borhoods. FR places these communities far apart and thus achieves the highest
score. The differences in the stress measure are subtle. Averaged over all datasets,
FR and FR-RTX result in layouts with lowest stress. The t-SNE based embed-
dings from AROPE128, DW128, and GAE16 are more distance faithful than
their native two-dimensional node embeddings but the opposite holds for CNE2
and CNE16.

3.4 Link-prediction

Results are presented in Figure 4c. No single method achieves the highest link
prediction score on more than two datasets. Averaging over all datasets, the
graph layouts based on the Fruchterman-Reingold algorithm result in the highest
link predict scores. While it is difficult to identify much structure in the hairball-



10 E. Heiter et al.

shaped twitter graph layouts by FR and DRGRAPH they score highly on the
link-prediction task.

3.5 Runtime

The average runtime to embed the whole graphs using an Intel Xeon CPU E5-
2620 v4 @ 2.10GHz with one GeForce GTX 1080Ti is depicted in Figure 4d.
We ran the experiments for GAE on twitter on a different machine with 256GB
RAM resulting in mean runtimes of 5020s for GAE2 and 4635s for GAE16.

We notice that AROPE2 is the fastest method and that the runtime increase
for AROPE128 is mainly caused by t-SNE, which took about 22, 43, and 660
seconds to reduce the dimensionality from 128 to 2 for facebook , powergrid ,
and twitter respectively. FR-RTX has a slightly larger runtime than the other
methods on the smaller graphs possibly due to a small startup cost for a user-
interface. Notably, on the twitter dataset, FR-RTX runs in less than a minute,
while FR takes almost 24 hours. CNE16 has lower runtime than CNE2 on the
larger graphs as the optimization of the 16-dimensional node representations
stabilizes earlier than the two-dimensional representations.

4 Discussion

In this study we have shown that visualizations by graph layout methods scored
higher on the chosen quality measures than the native two-dimensional node
embeddings by representation learning methods. The combination of DeepWalk
with t-SNE resulted in visualizations with the best local neighborhood preserva-
tion and highest scores in Gabriel graph similarity but does not scale to larger
graphs. We believe that there is great potential in comparing a wider range of
scalable graph layout and representation learning methods on real-world graphs
with millions of nodes.

The standard definitions of Gabriel graph similarity, neighborhood preser-
vation, and stress all assume that the graph-theoretical distances are reflected
by the Euclidean distances in the low-dimensional embedding. Methods such as
AROPE, DeepWalk, and GAE optimize the embedding based on dot-product
similarity. From this perspective, it is not surprising that the graph layouts by
AROPE2, DW2, and GAE2 score worse on these measures. Although other dis-
tances than Euclidean may be interpretable, it is not obvious to what extent
that may be the case. In addition to the quality measures, the standard ver-
sion of t-SNE also defines high and low-dimensional neighborhoods based on
Euclidean distance. To retain the graph neighborhoods, we would have to adjust
the similarity definition of t-SNE.

4.1 Recommendations for practical use

It is important to note that the choice of method is not universal and depends
on the task for which the visualization is used. The designer of the visualiza-
tion should ask the question which quality measure is most important to judge



Title Suppressed Due to Excessive Length 11

the effectiveness of the visualization, for that task. For example, out-of-sample
quality measures like link prediction performance may not be important in the
context when a static graph is to be analyzed that does not have any missing
edges. In other contexts, generalizability of the proximity of nodes, for which
link prediction performance is a proxy, could be desirable.

No single winner emerged from the comparisons of graph representation
learning with graph layout methods. Nonetheless, some general patterns did
emerge:
Graph layout methods. We found that FR and FR-RTX resulted in read-
able layouts, score best on stress minimization, and achieved the highest link-
prediction scores. The latter is especially surprising as the representation learning
methods are focused on generalization performance, through use of higher-order
information (paths, convolutions), supervised learning (use of negative edges),
or both.

DRGRAPH is a fast method that preserves the local graph neighborhoods
better than both versions of Fruchterman-Reingold. While the neighborhood
preservation decreases for larger graphs, it may be still the best choice to use
either of the computationally efficient graph layout methods instead of a repre-
sentation learning method.
Graph representation learning methods. While the native two-dimensional
embeddings of CNE2 perform well in terms of quality, it appears that the only
reason to consider the AROPE2, DW2, and GAE2 embeddings is to better un-
derstand the method itself. They are outperformed, typically by a wide margin,
by the t-SNE embeddings of higher-dimensional node representations. DW128
is arguably the best representation learning method included in the evaluation.
Compared to DRGRAPH, it provides a more readable visualization for the dif-
ficult twitter graph, but is also 1000 times slower. For larger graphs, we expect
the relative difference in runtime to grow further.

4.2 Future work

Improving the visual quality. We observed that the naive Fruchterman-
Reingold algorithm results in embeddings where cluster structure is more pro-
nounced compared to the grid optimized version where nodes are distributed
evenly across the layout. Adjusting the repulsive forces to depend on node de-
grees as in ForceAtlas2 [6] could improve the perceived clusteredness of the
layout, by embedding leaf nodes closer to their parent.
Combination of graph representation learning with t-SNE. The t-SNE
visualizations of the large twitter graph (CNE16, DW128, and GAE16) are of
high quality and suggest that preserving only the small distances of a low-
dimensional node representation avoids the ‘hairball’ embedding. It appears this
allows deriving an integrated method that could outperform existing methods.
Besides, it would be worthwhile to improve the scalability of the DW128 com-
bination.



12 E. Heiter et al.

Finally, we hope this evaluation inspires follow-up work to further connect
the representation learning with the graph drawing community.

Acknowledgements This research was funded by the ERC under the EU’s
7th Framework and H2020 Programmes (ERC Grant Agreement no. 615517
and 963924), the Flemish Government (“Onderzoeksprogramma Artificiële In-
telligentie (AI) Vlaanderen”), and the FWO (project no. 11J2322N, G0F9816N,
3G042220).

References

1. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans-
actions on Mathematical Software (TOMS) 38(1), 1–25 (2011)

2. Eades, P., Hong, S.H., Nguyen, A., Klein, K.: Shape-Based Quality Metrics for
Large Graph Visualization. JGAA 21(1), 29–53 (2017)

3. Fruchterman, T., Reingold, E.: Graph drawing by force-directed placement.
Software-Practice Exp. 21(11), 1129–1164 (1991)

4. Hachul, S., Jünger, M.: Large-graph layout algorithms at work: An experimental
study. JGAA 11(2), 345–369 (2007)

5. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and
function using networkx. Tech. rep., Los Alamos National Lab. (2008)

6. Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: ForceAtlas2, a continuous
graph layout algorithm for handy network visualization designed for the gephi
software. PLoS ONE 9(6), e98679 (Jun 2014)

7. Kang, B., Lijffijt, J., De Bie, T.: Conditional network embeddings. In: Proc. of
ICLR (2019)

8. Kipf, T.N., Welling, M.: Variational graph auto-encoders. NeurIPS Workshop on
Bayesian Deep Learning (2016)

9. Kruiger, J.F., Rauber, P.E., Martins, R.M., Kerren, A., Kobourov, S., Telea, A.C.:
Graph layouts by t-SNE. Computer Graphics Forum 36(3), 283–294 (Jun 2017)

10. Kwon, O.H., Crnovrsanin, T., Ma, K.L.: What Would a Graph Look Like in This
Layout? A Machine Learning Approach to Large Graph Visualization. IEEE TVCG
24(1), 478–488 (2018)

11. Leskovec, J., McAuley, J.: Learning to discover social circles in ego networks.
NeurIPS 25, 539–547 (2012)

12. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. JMLR 9(11) (2008)
13. Mara, A., Lijffijt, J., De Bie, T.: EvalNE: A framework for evaluating network

embeddings on link prediction. In: Reproducibility in Machine Learning Work-
shop@ICLR (2019)

14. Mara, A.C., Lijffijt, J., De Bie, T.: Benchmarking network embedding models for
link prediction: Are we making progress? In: Proc. of IEEE DSAA. pp. 138–147.
IEEE (2020)

15. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: Proc. of ACM SIGKDD. pp. 701–710 (2014)

16. Purchase, H.C.: Metrics for graph drawing aesthetics. JVLC 13(5), 501–516 (2002)
17. Tsitsulin, A., Mottin, D., Karras, P., Müller, E.: Verse: Versatile graph embeddings

from similarity measures. In: Proc. of WWW Conference. pp. 539–548 (2018)



Title Suppressed Due to Excessive Length 13

18. Walshaw, C.: A multilevel algorithm for force-directed graph drawing. In: Interna-
tional Symposium on Graph Drawing. pp. 171–182. Springer (2000)

19. Zellmann, S., Weier, M., Wald, I.: Accelerating force-directed graph drawing with
RT cores. In: Proc. of IEEE VIS. pp. 96–100 (2020)

20. Zhang, Z., Cui, P., Wang, X., Pei, J., Yao, X., Zhu, W.: Arbitrary-order proximity
preserved network embedding. In: Proc. of ACM SIGKDD. pp. 2778–2786 (2018)

21. Zhu, M., Chen, W., Hu, Y., Hou, Y., Liu, L., Zhang, K.: Drgraph: An efficient
graph layout algorithm for large-scale graphs by dimensionality reduction. IEEE
TVCG 27(2), 1666–1676 (2020)



Evaluating Representation Learning and Graph
Layout Methods for Visualization (Supplemental

Material)

Edith Heiter , Bo Kang , Tijl De Bie , and Jefrey Lijffijt

Department of Electronics and Information Systems, IDLab, Ghent University, 9000
Ghent, Belgium

first.last@ugent.be

Evaluation measures

We denote an undirected, unweighted, and connected graph G = (V,E) by the
set of nodes V with |V | = n and the set of edges E = {(i, j)} ⊆ V ×V . We refer
to the graph-theoretical shortest-path distance between nodes i and j by dij .
With N(i, h) = {j ∈ V |dij ≤ h, i ̸= j} , we denote set of nodes in the h-order
neighborhood of node i. With the following readability measures we evaluate
two-dimensional graph layouts Y ∈ Rn×2, where the embedding of a node i is
denoted as yi ∈ R2 and the edges are drawn using straight lines.
Crosslessness [6] measures the proportion of edge crossings that are avoided
in a graph layout with respect to all possible pairwise edge crossings. We adopt
the definition by Kwon et al. [4]

crosslessness =

{
1− c

cmax
cmax > 0

1 otherwise
,

where c is the number of crossings and cmax the upper bound on the number
of crossings. cmax is defined as |E|(|E|−1)

2 − 1
2

∑
i∈V |N(i, 1)|(|N(i, 1)|−1) , where

|N(i, 1)| is the degree of node i.
Minimum angle [6] measures how much the smallest angle between incident
edges at each node deviates from the optimal angle that could be achieved when
all edges are evenly spaced.

minimum angle = 1− 1

|V |
∑
i∈V

|θ(i)− θmin(i)|
θ(i)

,

where θ(i) = 360
|N(i)| is the optimal angle at node i and θmin(i) is the minimum

angle between any two edges incident to node i.
Edge length variation [2] measures the variability of the edge lengths relative
to their mean. It is defined as the coefficient of variance

lcv =
lσ
lµ

=

√∑
e∈E(le − lµ)2

|E| · l2µ
.

https://orcid.org/0000-0003-0279-2139
https://orcid.org/0000-0002-9895-9927
https://orcid.org/0000-0002-2692-7504
https://orcid.org/0000-0002-2930-5057


2 E. Heiter et al.

To be in line with the other readability measures where higher values are better,
we define for graphs with |E| > 1,

edge length uniformity = 1− lcv√
|E| − 1

,

where the coefficient of variance is normalized by its upper bound.
Gabriel graph similarity [1] is a shape-based quality measure for layouts of
large graphs. It is based on the intuition that a representation of the global graph
structure can be accurate despite a high number of edge crossings. It is defined
as the mean Jaccard similarity

1

|V |
∑
i∈V

|NG(i, 1) ∩NS(i, 1)|
|NG(i, 1) ∪NS(i, 1)|

,

between the first-order neighborhood in the original graph NG and the neigh-
borhood in the Gabriel graph NS . The Gabriel graph over the set of nodes V has
an edge connecting two nodes i and j if a disk with yi and yj on its boundary
and diameter ∥yi − yj∥ does not contain any other node.
Neighborhood preservation [3] is defined as the Jaccard similarity

1

|V |

N∑
i=1

|NG(i, h) ∩NY (yi, ki)|
|NG(i, h) ∪NY (yi, ki)|

,

where NG(i, h) is the graph neighborhood of node i with distance at most h and
NY (yi, ki) are the ki = |NG(i, h)| nearest neighbors based on Euclidean distances
in the embedding. We evaluate the neighborhood preservation for h ∈ {1, 2}.
Stress measures how accurate a graph layout represents the actual graph-
theoretic node distances. We define the stress similar to Zhu et al. [7] as

2

|V |(|V | − 1)

∑
i<j∈V

(
α∥yi − yj∥ − dij

dij

)2

,

where α ≥ 0 scales the embedding to minimize the stress as follows:

argmin
α

(stress) = argmin
α

∑
i<j∈V

1

d2
ij

(α∥yi − yj∥ − dij)
2

= argmin
α

∑
i<j∈V

(
α∥yi − yj∥ − dij

dij

)2

= argmin
α

∑
i<j∈V

(
α2∥yi − yj∥2

d2
ij

− 2α∥yi − yj∥
dij

+ 1

)

Taking the derivative with respect to α and equating to zero yields:

α =

∑
i<j∈V

∥yi−yj∥
dij∑

i<j∈V
∥yi−yj∥2

d2
ij

.



Supplemental Material 3

Evaluation Results

Table 1: First-order neighborhood preservation

karate can96 netscience facebook powergrid twitter

AROPE2 .215 .133 .242 .131 .008 .014

AROPE128 .128 .678 .317 .325 .102 .026

CNE2 .412 .521 .470 .279 .289 .070

CNE16 .277 .615 .514 .321 .389 .168

DW2 .310 .166 .285 .183 .048 .012

DW128 .261 .668 .640 .417 .506 .277

DRGRAPH .439 .509 .569 .258 .409 .174

FR .383 .392 .453 .285 .151 .019

FR-RTX .377 .641 .532 .307 .250 .024

GAE2 .283 .264 .145 .124 .010 .002

GAE16 .150 .698 .403 .230 .371 .130

karate can96 netscience facebook powergrid twitter
0.0

0.2

0.4

0.6

AROPE2
AROPE128

CNE2
CNE16

DW2
DW128

GAE2
GAE16

FR
FR-RTX

DRGRAPH

karate can96 netscience facebook powergrid twitter
0.0

0.2

0.4

0.6

Fig. 1: First-order neighborhood preservation



4 E. Heiter et al.

Table 2: Crosslessness
karate can96 netscience facebook powergrid twitter

AROPE2 .9232 .9327 .9907 .9779 .9642 .9907

AROPE128 .7999 .9912 .9880 .9794 .9990 .9623

CNE2 .9701 .9937 .9974 .9831 .9997 .9992

CNE16 .9267 .9967 .9974 .9823 .9998 .9990

DW2 .9383 .9709 .9950 .9806 .9977 .9971

DW128 .9405 .9966 .9979 .9847 .9999 .9995

DRGRAPH .9716 .9949 .9979 .9824 .9999 .9995

FR .9713 .9948 .9976 .9841 .9997 .9988

FR-RTX .9613 .9944 .9974 .9851 .9997 .9992

GAE2 .9386 .9870 .9834 .9772 .9796 .9775

GAE16 .8449 .9948 .9946 .9764 .9981 .9951

Table 3: Edge length uniformity
karate can96 netscience facebook powergrid twitter

.939 .975 .935 .994 .919 .983

.929 .943 .951 .995 .978 .995

.941 .980 .962 .993 .985 .994

.902 .972 .905 .996 .945 .988

.893 .969 .952 .992 .986 .995

.906 .964 .950 .996 .963 .987

.920 .975 .944 .994 .981 .977

.948 .976 .971 .996 .991 .997

.948 .973 .984 .998 .991 .997

.938 .978 .972 .995 .991 .995

.917 .951 .939 .996 .967 .992

Table 4: Minimum angle
karate can96 netscience facebook powergrid twitter

AROPE2 .166 .175 .186 .025 .506 .507

AROPE128 .295 .367 .224 .053 .570 .532

CNE2 .248 .317 .337 .058 .676 .629

CNE16 .286 .374 .325 .061 .682 .592

DW2 .291 .015 .267 .044 .562 .565

DW128 .308 .365 .375 .080 .722 .602

DRGRAPH .401 .206 .322 .075 .691 .626

FR .310 .249 .390 .059 .678 .588

FR-RTX .312 .427 .401 .078 .724 .621

GAE2 .330 .271 .167 .031 .557 .550

GAE16 .354 .391 .270 .044 .637 .555

Table 5: Gabriel shape
karate can96 netscience facebook powergrid twitter

.129 .049 .166 .020 .007 .012

.103 .451 .158 .058 .077 .017

.318 .423 .309 .058 .225 .054

.225 .484 .337 .073 .331 .122

.209 .120 .184 .031 .042 .010

.222 .518 .395 .110 .433 .195

.325 .389 .354 .048 .328 .125

.373 .426 .370 .055 .156 .015

.314 .526 .355 .076 .208 .022

.186 .144 .031 .023 .007 .001

.140 .526 .234 .041 .309 .090



Supplemental Material 5

Table 6: Second-order neighborhood preser-
vation

karate can96 netscience facebook powergrid twitter

AROPE2 .622 .287 .264 .522 .031 .216

AROPE128 .547 .682 .431 .629 .247 .269

CNE2 .916 .575 .605 .783 .330 .208

CNE16 .716 .627 .675 .575 .470 .415

DW2 .831 .282 .354 .646 .069 .058

DW128 .715 .647 .691 .605 .578 .451

DRGRAPH .828 .591 .681 .859 .460 .342

FR .911 .540 .582 .910 .278 .199

FR-RTX .843 .636 .523 .650 .286 .147

GAE2 .672 .470 .196 .443 .038 .118

GAE16 .552 .708 .580 .487 .429 .332

Table 7: Stress
karate can96 netscience facebook powergrid twitter

.416 .234 .804 .789 .989 .979

.344 .221 .308 .207 .170 .294

.103 .083 .150 .157 .198 .177

.156 .083 .224 .179 .261 .220

.265 .239 .247 .312 .319 .297

.182 .101 .140 .175 .180 .212

.162 .092 .161 .217 .129 .410

.089 .074 .114 .177 .158 .176

.078 .083 .108 .140 .176 .166

.310 .104 .273 .282 .341 .316

.295 .155 .222 .202 .313 .253

Table 8: Link prediction AUC-ROC
karate can96 netscience facebook powergrid twitter

AROPE2 .8011 .6613 .6863 .7843 .6361 .6492

AROPE128 .6500 .8284 .8583 .9613 .9261 .7490

CNE2 .7445 .9143 .9680 .9863 .8968 .9716

CNE16 .5978 .8834 .9729 .9764 .9397 .9526

DW2 .7011 .7438 .8985 .9605 .8046 .9016

DW128 .6156 .8779 .9778 .9823 .9646 .9618

DRGRAPH .7278 .8772 .9705 .9801 .9300 .9743

FR .7089 .9075 .9721 .9863 .9356 .9713

FR-RTX .6556 .9268 .9717 .9865 .9236 .9741

GAE2 .7900 .8811 .9114 .9620 .7246 .9214

GAE16 .5489 .7983 .9516 .9535 .7227 .8763

Table 9: Runtime in seconds with
logarithmic color scaling.
karate can96 netscience facebook powergrid twitter

0.5 0.5 0.5 1.5 0.7 2.4

0.9 1.0 2.6 29.2 45.4 645.2

1.5 4.9 26.9 1006.3 763.2 9382.6

2.0 6.2 21.9 874.3 357.8 5225.0

1.4 5.9 48.2 747.2 944.3 10023.1

1.8 8.6 62.8 1004.4 959.6 11681.6

0.9 0.9 1.0 2.3 1.9 9.7

0.8 0.9 8.0 1125.6 1559.9 85345.0

10.2 11.0 12.6 26.3 17.7 58.2

2.7 2.8 3.4 54.1 74.1 5019.7

2.9 3.3 5.3 77.0 107.0 4635.3

Table 10: Mean ranks of all methods on all quality measures. For each quality
measure and network dataset we ranked all methods and averaged these ranks
over the datasets.

crosslessness edgelengthuniformity minimumangle shapegabriel 1np 2np stress AUCROC

AROPE2 9.7 8.0 10.7 10.2 10.0 9.2 10.8 9.3

AROPE128 9.2 6.7 7.5 7.7 6.2 6.7 7.7 8.2

CNE2 4.7 4.8 5.5 5.0 4.8 4.5 3.5 4.0

CNE16 4.5 8.3 5.0 3.7 4.2 4.3 5.0 5.0

DW2 7.8 7.3 8.5 8.8 8.7 8.2 8.8 8.3

DW128 2.0 8.0 3.5 2.2 2.5 3.3 4.5 4.3

DRGRAPH 2.5 7.5 4.0 4.3 3.5 3.5 5.7 4.3

FR 3.8 2.0 5.2 5.0 6.2 5.2 2.2 3.3

FR-RTX 4.3 2.3 2.0 3.8 4.7 5.5 2.0 3.5

GAE2 9.3 3.5 8.3 9.8 9.7 9.8 8.8 6.3

GAE16 8.2 7.5 5.8 5.5 5.7 5.8 7.0 9.3



6 E. Heiter et al.

Table 11: Evaluated methods with parameter settings. The values in bold either
deviate from the default settings or did not have given default values. The abbre-
viations for graph representation learning methods include the dimensionality of
the node representations. For AROPE, we use only 10 instead of 128 embedding
dimensions for the smaller networks karate club, can96 , and netscience before
applying t-SNE.

Method Type Parameters Abbrv.

G
ra

ph
re

pr
es

en
ta

ti
on

le
ar

ni
ng

Arbitrary-order
Proximity Preserved
Network Embedding
https://github.com/Z
W-ZHANG/AROPE

matrix
factorization

order 3,
weights [1,0.1,0.01]

AROPE2,
AROPE128

Conditional Network
Embedding
https://bitbucket.org/
ghentdatascience/cne

probabilistic learning rate
0.05, ftol e−3,
epochs 1000

CNE2,
CNE16

DeepWalk
https://github.com/pha
nein/deepwalk

random
walks,
Skip-gram

number-walks 80,
walk-length 40,
window-size 10,
workers 4

DW2,
DW128

Graph Auto-Encoders
https:
//github.com/tkipf/gae

auto-encoder default parameters
with features=0

GAE2,
GAE16

G
ra

ph
la

yo
ut

Fruchterman-Reingold
https:
//networkx.org/documen
tation/networkx-2.2/r
eference/generated/net
workx.drawing.layout.s
pring_layout.html

spring-
electrical,
force-directed

iterations 1000 FR

Fruchterman-Reingold
with ray-tracing
acceleration
https://github.com/owl
-project/owl-graph-d
rawing

force-
directed,
spring-
electrical

bench true, mode
rtx, epochs
10000

FR-RTX

DRGraph
https://github.com/ZJU
VAG/DRGraph

distance
based dimen-
sionality
reduction

neg 5, samples
400, gamma 0.1,
mode 1, A 2, B 1

DRGRAPH

https://github.com/ZW-ZHANG/AROPE
https://github.com/ZW-ZHANG/AROPE
https://bitbucket.org/ghentdatascience/cne
https://bitbucket.org/ghentdatascience/cne
https://github.com/phanein/deepwalk
https://github.com/phanein/deepwalk
https://github.com/tkipf/gae
https://github.com/tkipf/gae
https://networkx.org/documentation/networkx-2.2/reference/generated/networkx.drawing.layout.spring_layout.html
https://networkx.org/documentation/networkx-2.2/reference/generated/networkx.drawing.layout.spring_layout.html
https://networkx.org/documentation/networkx-2.2/reference/generated/networkx.drawing.layout.spring_layout.html
https://networkx.org/documentation/networkx-2.2/reference/generated/networkx.drawing.layout.spring_layout.html
https://networkx.org/documentation/networkx-2.2/reference/generated/networkx.drawing.layout.spring_layout.html
https://networkx.org/documentation/networkx-2.2/reference/generated/networkx.drawing.layout.spring_layout.html
https://github.com/owl-project/owl-graph-drawing
https://github.com/owl-project/owl-graph-drawing
https://github.com/owl-project/owl-graph-drawing
https://github.com/ZJUVAG/DRGraph
https://github.com/ZJUVAG/DRGraph


Supplemental Material 7

Table 12: Node-link visualization with node coloring according to degree.
karate club can96 netscience facebook powergrid twitter

A
R

O
P

E
2

A
R

O
P

E
12

8
C

N
E

2
C

N
E

16
D

W
2

D
W

12
8

D
R

G
R

A
P

H
F
R

F
R

-R
T

X
G

A
E

2
G

A
E

16



8 E. Heiter et al.

References

1. Eades, P., Hong, S.H., Nguyen, A., Klein, K.: Shape-Based Quality Metrics for Large
Graph Visualization. JGAA 21(1), 29–53 (2017)

2. Hachul, S., Jünger, M.: Large-graph layout algorithms at work: An experimental
study. JGAA 11(2), 345–369 (2007)

3. Kruiger, J.F., Rauber, P.E., Martins, R.M., Kerren, A., Kobourov, S., Telea, A.C.:
Graph layouts by t-SNE. Computer Graphics Forum 36(3), 283–294 (Jun 2017)

4. Kwon, O.H., Crnovrsanin, T., Ma, K.L.: What Would a Graph Look Like in This
Layout? A Machine Learning Approach to Large Graph Visualization. IEEE TVCG
24(1), 478–488 (2018)

5. Mara, A., Lijffijt, J., De Bie, T.: EvalNE: A framework for evaluating network
embeddings on link prediction. In: Reproducibility in Machine Learning Work-
shop@ICLR (2019)

6. Purchase, H.C.: Metrics for graph drawing aesthetics. JVLC 13(5), 501–516 (2002)
7. Zhu, M., Chen, W., Hu, Y., Hou, Y., Liu, L., Zhang, K.: Drgraph: An efficient graph

layout algorithm for large-scale graphs by dimensionality reduction. IEEE TVCG
27(2), 1666–1676 (2020)


	Evaluating Representation Learning and Graph Layout Methods for Visualization
	Evaluating Representation Learning and Graph Layout Methods for Visualization (Supplemental Material)

