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ABSTRACT

Conformal Prediction (CP) is a popular method for uncertainty quantification with
machine learning models. While the method provides probabilistic guarantees re-
garding the coverage of the true label, these guarantees are agnostic to the presence
of sensitive attributes within the dataset. In this work, we formalize Conformal

Fairness, a notion of fairness using conformal predictors, and provide a theoret-
ically well-founded algorithm and associated framework to control for the gaps
in coverage between different sensitive groups. Our framework leverages the ex-
changeability assumption (implicit to CP) rather than the typical IID assumption,
allowing us to apply the notion of Conformal Fairness to data types and tasks that
are not IID, such as graph data. Experiments were conducted on graph and tabu-
lar datasets to demonstrate that the algorithm can control fairness-related gaps in
addition to coverage aligned with theoretical expectations.

1 INTRODUCTION

Machine learning (ML) models are increasingly used to make critical decisions in many fields of
human endeavor making it essential to quantify the uncertainty associated with their predictions.
Conformal Prediction (CP) is a distribution-free framework (Vovk et al., 2005) which produces
confidence sets with rigorous theoretical guarantees and has become popular in real-world appli-
cations (Cherian & Bronner, 2020). Post-hoc CP allows for facile integration into ML pipelines,
while its weaker requirement of a statistical exchangeability assumption makes it applicable to a
wide variety of data types, including graph data (H. Zargarbashi et al., 2023; Huang et al., 2024).

Relatedly, ensuring the fairness of machine learning models is vital for their high-stakes deployments
in critical decision-making. Biases affect ML models at different stages - from data collection to al-
gorithmic learning stages (Mehrabi et al., 2021). During the data collection stage, measurement and
representation biases can skew how each feature is interpreted, leading to inaccurate determinations
by learning models. Algorithmic bias, caused by model design choices and prioritization of specific
metrics while learning the model, can also lead to unfair outcomes. Many models inherit biases from
historical outcomes (Kallus & Zhou, 2018; Dwork et al., 2012) and inadvertently skew decisions to-
wards members of certain advantaged groups (Mehrabi et al., 2021). These biases have led to several
global actors proposing and requiring practitioners to adhere to certain fairness standards (Hirsch
et al., 2023). To facilitate ML pipeline and model adherence to socio-cultural or regulatory fairness
standards, researchers have proposed methods to either construct fair-predictors (Alghamdi et al.,
2022; Creager et al., 2019; Zhao et al., 2023) or audit fairness claims made by deployed machine
learning models (Ghosh et al., 2021; Maneriker et al., 2023; Yan & Zhang, 2022).

However, these efforts on fairness (predictors, auditing, and uncertainty quantification) primarily
focus on binary classification, often implicitly relying on the independent and identically distributed
(IID) assumption, and do not, for the most part, bridge both fairness and uncertainty quantification.
The need to both quantify uncertainty and ensure that fairness considerations are met is critical. A
few researchers have started to examine how to assess (and possibly improve) the prediction quality
of unreliable models (Wang & Wang, 2024) while meeting socio-cultural or regulatory standards of
fairness. However, these efforts are limited in that they either require knowledge of group member-
ship at inference time (a somewhat impractical assumption) (Lu et al., 2022) or are model specific
(Wang & Wang, 2024).

Key Contributions: To redress these concerns, we propose a novel and comprehensive Conformal
Fairness (CF) Framework.
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First, we develop the theoretical insights that facilitate how our framework leverages CP’s
distribution-free approach to build and construct fair uncertainty sets according to user-specified
notions of fairness. Our framework is not only comprehensive but also highly flexible, as it can be
adapted to bespoke user-specified fairness criteria. This adaptability ensures that the framework can
be customized to meet the specific needs of different users, enhancing its practicality and usability.

Second, the weaker (exchangeability) assumptions required by CP allow us to extend the utility of
our framework to fairness problems in graph models. Graph models, in particular, suffer from the
homophilly effect, which exacerbates inherent segregation due to node linkages and causes further
biases in predictions (Dong et al., 2023).

Third, we discuss how our approach serves as a fairness auditing tool for conformal predictors. This
function is important as it allows one to verify the fairness of the model, ensuring that fairness is not
just a theoretical concept but a practical reality in predictive modeling.

Finally, we demonstrate the effectiveness of our CF Framework by evaluating fairness using multiple
popular fairness metrics for multiple different conformal predictors on both real-world graph and
tabular fairness datasets.

2 BACKGROUND

2.1 CONFORMAL PREDICTION

Conformal Prediction (Vovk et al., 2005) is a framework for quantifying the uncertainty of a model
by constructing prediction sets that satisfy a miscoverage guarantee. For expository simplicity, we
will focus on split (or inductive) conformal prediction (CP) in the classification setting. Given a
calibration dataset, Dcalib = {(xi, yi)}ni=1 and a test point (xn+1, yn+1), where xi 2 X = Rd and
yi 2 Y = {0, . . . ,K � 1}, CP is used to construct a prediction set C(xn+1) such that:

↵� 1

n+ 1
< Pr

⇥
yn+1 62 Cq̂(↵)(xn+1)

⇤
 ↵, (1)

where ↵ 2 [0, 1] is the miscoverage bound. Concretely, given a non-conformity score function
s : X ⇥ Y ! R, let q̂(↵) = Quantile

⇣
d(n+1)(1�↵)e

n ; {s(xi, yi)}ni=1

⌘
. Then, Cq̂(↵)(xn+1) = {y 2

Y : s(x, y)  q̂(↵)} satisfies Equation 1.

Evaluating CP: Coverage quantifies the true test time probability Pr
⇥
yn+1 2 Cq̂(↵)(xn+1)

⇤
while

efficiency is the average test prediction set size, |C(xn+1)|. Intuitively, there is an inverse relationship
between coverage and efficiency, as a higher desired coverage is harder to achieve so the method
may produce larger prediction sets to satisfy the guarantee. In CP, the only assumption made about
the data is that Dcalib [ {(xn+1, yn+1)} is exchangeable – a weaker notion than iid, enabling its use
on non-iid data, including graph data.

Graph CP: In this work, we focus on the node classification task. Given an attributed graph G =
(V, E ,X), where V is the set of nodes, E is the set of edges, and X is the set of node attributes.
Let A be the adjacency matrix for the graph. Further, let Y = {0, . . . ,K � 1} denote the set of
classes associated with the nodes. For v 2 V , xv 2 Rd denotes its features and yv 2 Y denotes its
true class. The task of node classification is to learn a model that predicts the label for each node
given node features and the adjacency matrix, i.e. (X,A, v) 7! yv . In the transductive setting, the
entire graph, including test points, is accessible during the base model training. In this scenario,
for any trained permutation-equivariant function (e.g. GNN) trained on a set of training/validation
nodes, the scores produced on the calibration set and test set are exchangeable, thus enabling CP to
be applied (H. Zargarbashi et al., 2023; Huang et al., 2024).

2.2 FAIRNESS METRICS

Statistical/group fairness metrics aim to observe bias in the predictions of a model between different
groups (defined by a sensitive attribute e.g., gender, race, ethnicity) in a dataset. This work considers
several popular fairness metrics, including equal opportunity, equalized odds, demographic parity,
predictive equality, and predictive parity. For generality, we define the metrics for the multiclass set-
ting with an n-ary sensitive attribute. Let Y+ denote the set of advantaged labels (e.g., “is approved”
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in a loan approval task), Y be the true label, and Ŷ be the predicted label from a model. Let G be the
set of all groups for the sensitive attribute(s). Table A1 discusses the formal definitions of different
fairness metrics considered in this work.

Achieving exact fairness (i.e., equality in Table A1) can be challenging and, in some cases, impos-
sible (Barocas et al., 2023). Often, regulatory requirements focus on the differences across groups
for a given positive label. For example, while exact Demographic Parity is challenging to achieve,
many regulatory bodies instead focus on Disparate Impact. Disparate Impact considers the ratio

between the groups – rather than the difference.

3 CONFORMAL FAIRNESS (CF) FRAMEWORK

In this section, we propose a theoretically well-founded framework using conformal predictors to
control for the gaps in coverage between different sensitive groups. The framework is motivated by
the standard CP algorithm to determine the conditional coverage given a score threshold, �. The
conditional coverage for each sensitive group and each advantaged label is leveraged to evaluate if
fairness is achieved for some closeness threshold c for different fairness metrics (can also be user-
specified). By searching over a set ⇤, we can provide an optimal threshold �opt for fairness to be
achieved.

3.1 EXEMPLAR CONFORMAL FAIRNESS (CF) METRICS

We define metrics for conformal fairness by levering popular fairness metric definitions for the
multiclass setting in Table A1. Essentially achieved by replacing equivalence to the prediction,
· = Ŷ , with membership in the prediction set, · 2 C�(X), as shown in Table 1.

Table 1: Conformal Fairness Metrics.

Metric Definition

Demographic (or Statistical) Parity Pr
h
y 2 C�(X)

��� X 2 ga
i
= Pr

h
y 2 C�(X)

��� X 2 gb

i
, 8ga, gb 2 G, 8y 2 Y+

Equal Opportunity Pr
h
y 2 C�(X)

��� Y = y,X 2 ga
i
= Pr

h
y 2 C�(X)

��� Y = y,X 2 gb

i
, 8ga, gb 2 G, 8y 2 Y+

Predictive Equality Pr
h
y 2 C�(X)

��� Y 6= y,X 2 ga
i
= Pr

h
y 2 C�(X)

��� Y 6= y,X 2 gb

i
, 8ga, gb 2 G, 8y 2 Y+

Equalized Odds Equal Opp. and Pred. Equality

Predictive Parity Pr
h
Y = y

��� y 2 C�(X), X 2 ga
i
= Pr

h
Y = y

��� y 2 C�(X), X 2 gb

i
, 8ga, gb 2 G, 8y 2 Y+

3.2 CONFORMAL FAIRNESS (CF) THEORY

Before presenting our framework, we first lay out the necessary theoretical groundwork. Detailed
proofs are in Appendix B. For ease of exposition, we may equivalently control for either coverage
or miscoverage.

Filtering Dcalib: Each fairness metric is evaluated on a subset of the population, defined by a
condition on the data (i.e., membership in a group, true label value). We filter Dcalib based on the
corresponding fairness metric for the necessary guarantees. By doing so, we can provide probabilis-
tic bounds to satisfy the required conditional miscoverages as stated in Lemma 3.1.
Lemma 3.1. Calibrating on Dcalib \R, where R ⇢ D serves as filter, guarantees that:

↵� 1

|Dcalib \R|+ 1
< Pr[yn+1 62 C�(xn+1) | (xn+1, yn+1) 2 D \R]  ↵ (2)

Adhering to standard notation, it is implicit the test point is in D so we will omit it and write:

Pr[yn+1 62 C�(xn+1) | (xn+1, yn+1) 2 R].

Prior work (Ding et al., 2024; Vovk et al., 2005; Lei et al., 2016) focused on the upper bound;
however, for our framework, the lower bound is necessary.

Inverse Quantile: In standard CP, given a miscoverage level, ↵, we can get a threshold by com-
puting the (1 � ↵)-quantile on the non-conformity scores of Dcalib. This threshold is then used

3
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Algorithm 1 Conformal Fairness Framework

1: procedure CONFORMAL FAIRNESS(Dcalib, Y , Y+, G, c, ⇤, filter fn)
2: satisfying lambdas = [� for � 2 ⇤

if SATISFY LAMBDA(Dcalib,Y,Y+,G, c,�, filter fn)]
3: �opt = min {satisfying lambdas}

return �opt
4: end procedure
5:
6: procedure SATISFY LAMBDA(Dcalib, Y , Y+,G, c,�, filter fn)
7: label miscoverages = [0](Gi,y)2G⇥Y
8: interval widths = [0](Gi,y)2G⇥Y
9: for (g, y) 2 G ⇥ Y+ do

10: Dcalib(g,y) = filter fn(Dcalib, (g, y))
11: S(g,y) =

⇥
s(xi, yi) for (xi, yi) 2 Dcalib(g,y)

⇤

12: interval widths[(g, y)] = 1

|Dcalib(g,y)|+1
. Uses Lemma 3.1

13: label miscoverages[(g, y)] = Q�1(�,S(g,y)) . Uses Lemma 3.2
14: end for
15: for y 2 Y+ do . Uses Lemma 3.3
16: ↵min = min(label miscoverages[(·, y)] � interval widths[(·, y)])
17: ↵max = max(label miscoverages[(·, y)])
18: if ↵max � ↵min > c then return False
19: end if
20: end for

return True
21: end procedure

to construct prediction sets for test points. Here, given a threshold, �, we want to determine the
corresponding miscoverage level ↵. We achieve this by computing an inverse �-quantile. Formally,
if (xn+1, yn+1) is a test point, then the inverse �-quantile is:

Q�1(�, S) := Pr[s(xn+1, yn+1)  �].

Lemma 3.2 asserts that the miscoverage level is within a bounded interval of length 1
|Dcalib|+1 .

Lemma 3.2. For � 2 [0, 1] and n = |Dcalib|,
Pn

i=1 1[s(xi, yi) > �]

n+ 1
< Pr[yn+1 62 C�(xn+1)] <

Pn
i=1 1[s(xi, yi) > �] + 1

n+ 1
, (3)

CF for a Fixed Label: Unlike standard CP, where miscoverage is w.r.t the correct label, yi, the CF
metrics are concerned with the miscoverage of a fixed advantaged label, ỹ 2 Y+, as seen in Table 1.
Lemma 3.3 asserts that we can perform CP using a fixed label and get the same coverage guarantees.
Lemma 3.3. Equation 1 holds if we replace {(xi, yi)} with {(xi, ỹ)} for a fixed ỹ 2 Y .

Connecting Theory to the Framework: For a particular fairness metric, we can filter the calibra-
tion set based on the conditional from Table 1 and achieve bounds on the conditional miscoverage
with Lemma 3.1. By Lemma 3.3, the bounds continue to hold when considering the conditional mis-
coverage for a fixed positive label. We can use Lemma 3.2 to perform an inverse quantile to compute
the miscoverage under various � thresholds. With the miscoverages for a fixed positive label and
each sensitive group, we can compute the worst pairwise coverage gap across the groups using the
bounds given by Lemma 3.3 to evaluate and control fairness at the desired closeness threshold.

3.3 CORE CONFORMAL FAIRNESS (CF) ALGORITHM

Input: The input to the core CF algorithm 1, include the calibration set, Dcalib, the set of (positive)
labels, the set of sensitive groups, G, a closeness threshold, c, a lambda threshold search space, ⇤,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

and a filtering function. The filtering function is defined based on the conditional event for the cor-
responding fairness metric in Table 1. For example, for Demographic Parity and Equal Opportunity,
the function would filter the calibration set where x 2 g and (xi 2 g) \ (yi = y), respectively.

Choosing ⇤: The algorithm accepts a user-provided search space, ⇤, which avoids degen-
erate thresholds and can guarantee desirable conditions. For our experiments, we set ⇤ =
[q̂,max{Scalib}], where Scalib = {s(xi, yi) : (xi, yi) 2 Dcalib} is the set of non-conformity scores.
This ensures that �opt � q̂(↵), guaranteeing the 1 � ↵ coverage level for the correct label. Since
�opt � q̂(↵), the miscoverage decreases for larger thresholds and still satisfies the ↵ miscoverage
requirement. That is, ↵ � Pr

⇥
yn+1 62 Cq̂(↵)(xn+1)

⇤
� Pr

⇥
yn+1 62 C�opt(xn+1)

⇤
.

Procedure: For each � 2 ⇤ and (g, y) 2 G ⇥ Y+, Dcalib is filtered with the filter fn and the non-
conformity scores are, S(g,y), are computed. The inverse quantile is computed with the � threshold
on S(g,y)[{s(xn+1, yn+1)}. We then compare the conditional coverages for a fixed y 2 Y+ across
the different sensitive groups and check if the worst-case violation (i.e., the maximum difference in
conditional coverage for a fixed label) is within our desired closeness threshold. If it isn’t, then that
particular � is rejected. Of all the accepted �s, we choose the minimum to minimize the prediction
set size (i.e. get the best efficiency). For fairness metrics with multiple conditions (e.g. Equalized
Odds), the framework is first executed for each condition. Then, the optimal lambda is chosen from
the intersection of the satifying lambdas.

Using multiple � thresholds: We also consider a classwise approach where we choose a
[�0

opt, . . . ,�
k�1
opt ] = �opt 2 RK for each of the K classes. �i

opt is only required to satisfy the
closeness threshold for the ith class, thus allowing for smaller �i

opt to be chosen for most classes.
In theory, you can choose different lambdas for each (g, y) 2 G ⇥ Y pair; however, in an online
setting where data comes in as a stream, knowledge of the sensitive attribute may be unavailable.
This setting is interesting as one may use it even if the sensitive information is explicitly removed.
For example, loan applications may be race or gender-blind to enforce fairer judgment.

3.4 FRAMEWORK EXTENSIBILITY

Algorithm 1 can be directly applied to control for the coverage difference with Demographic Par-
ity, Equal Opportunity, Predictive Equality, and Equalized Odds. The following modifications are
necessary to accommodate Disparate Impact, Predictive Parity, and some user-defined variants.

Disparate Impact: The standard criterion for Disparate Impact is the 80% Rule (EEOC, 1979;
Feldman et al., 2015). To control Disparate Impact to adhere to the Four-Fifths Rule, we change
Line 18 to check if ↵min/↵max < c, where c = 0.8. The rest of the algorithm stays the same.

Predictive Parity: Predictive Parity seeks to balance the Positive Predictive Value (PPV) across the
different sensitive groups (Verma & Rubin, 2018). It differs from the other fairness metrics in Table
1 as it is conditioned on the prediction set. Given the objective of balancing conditional coverage,
using the definition of predictive parity, and Bayes’ theorem, we get

Pr[Y = y | y 2 C�(X), X 2 ga] =
Pr[y 2 C�(X) | Y = y,X 2 ga]

Pr[y 2 C�(X) | X 2 ga]| {z }
Equal Opportunity over Demographic Parity

· Pr[Y = y | X 2 ga]| {z }
Conditional Label Probability

,

for y 2 Y+ and ga 2 G. A solution is guaranteed for any choice of Y+ ✓ Y if c is greater than the
maximum pairwise total variation distance of the group-conditioned label distribution. Formally,
Theorem 3.4. Let W be a random variable for a label distribution over Y . Let Wi ⇠ W |(X 2 gi)
– the label distribution conditioned on group membership. Then there exists � such that for c �
max{DTV (Wi,Wj) | i, j 2 {1, . . . , |G|}}, where DTV is the total variation distance, the coverage

difference for Predictive Parity is satisfied.

One can define a modified total variation distance as

D+
TV (Wi,Wj) := sup

k2Y+

|Pr[Wi = k]� Pr[Wj = k]|,

and use this in place of DTV in Theorem 3.4 for a weaker assumption about c, which still gives a
satisfying �.

5
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Since Equal Opportunity, Demographic Parity, and Conditional Label Probability are all bounded
within intervals, we can compute an interval for which Predictive Parity is satisfied and then use
our framework to find �s where the coverages satisfy the coverage difference requirement. More
theoretical details about the interval guarantees and a proof of Theorem 3.4 are in Appendix C.

To control for arbitrarily small values of c, we can either assume that the label distribution is in-
dependent of group membership or use the following Predictive Parity Proxy (an example of a
user-defined metric). For all ga, gb 2 G, y 2 Y+

��(Pr[Y = y | y 2 C�(X), X 2 ga]� Pr[Y = y | X 2 ga])

� (Pr[Y = y | y 2 C�(X), X 2 gb]� Pr[Y = y | X 2 gb])
�� < c (4)

Proofs and technical details on these modifications can be found in Appendix C.

3.5 LEVERAGING THE CF FRAMEWORK FOR FAIRNESS AUDITING

Using the Conformal Fairness Framework, one can audit if the disparity of a conformal predictor
between multiple groups violates a user-specified fairness criterion. Specifically, we have thus far
focused on fairness criteria concerning bounding the disparity between groups using the fairness
metrics described in Table 1 by some closeness threshold, c. It is straightforward to support user-
defined fairness metrics concerning label coverage. While Algorithm 1, as presented, gives a method
of finding an optimal � threshold which satisfies the fairness guarantees using Lemmas 3.1, 3.2,
and 3.3, the same satisfy lambda procedure can be leveraged to check if a given � used by
a conformal predictor satisfies the same fairness guarantees. Notably, the CF framework can also
be leveraged even if the conformal predictor is treated as a black-box model. In this case, we can
construct a Daudit set exchangeable with the calibration data used for the conformal predictor. Using
Daudit, we can determine if the conformal predictor satisfies the corresponding fairness guarantee
given the fairness metric and the � threshold used.

3.6 NON-CONFORMITY SCORES

There are several choices for the non-conformity score for performing fair conformal prediction with
classification tasks. We currently implement TPS (Sadinle et al., 2019), APS (Romano et al., 2019),
DAPS (H. Zargarbashi et al., 2023), and CFGNN (Huang et al., 2024) in the CF framework, though
any non-conformity score can be used. More details on the specifics of each non-conformity score
can be found in Appendix D.2.

4 EXPERIMENTS

4.1 SETUP

Datasets: To evaluate the CF Framework, we used five multi-class datasets Pokec-n (Takac &
Zabovsky, 2012), Pokec-z (Takac & Zabovsky, 2012), Credit (Agarwal et al., 2021), ACSIncome
(Ding et al., 2021), and ACSEducation (Ding et al., 2021) (see Table 2 for details). For each dataset,
we use a 30%/20%/25%/25% stratified split of the labeled points for Dtrain/Dvalid/Dcalib/Dtest.

Table 2: Dataset Statistics. T refers to Tabular and G refers to Graph.

Name Type Size # Labeled # Groups # Classes
ACSIncome T 1, 664, 500 ALL race(9) 4

ACSEducation T 1, 664, 500 ALL race(9) 6

Name Type (|V|, |E|) # Labeled # Groups # Classes
Credit T/G (30, 000, 1, 436, 858) ALL age(2) 4

Pokec-n G (66, 569, 729, 129) 8, 797 region(2), gender(2) 4
Pokec-z G (66, 569, 729, 129) 8, 797 region(2), gender(2) 4

Models: For the graph datasets, we evaluated with GCN (Kipf & Welling, 2017), Graph-
SAGE (Hamilton et al., 2017), or GAT (Veličković et al., 2018) as the base model (results reported

6
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are for the highest performing base model). For Credit, we evaluated additionally considered XG-
Boost (Chen & Guestrin, 2016) (i.e., ignoring the graph structure) as we empirically observed this
approach to outperform the graph neural network baselines in terms of efficiency for this dataset.
The choice of ignoring edge information while training Credit on XGBoost does not prohibit us
from using CFGNN or DAPS - which utilize the edge information. The conformal predictor simply
requires the softmax logits from the base model (i.e. XGBoost) but is otherwise model agnostic. For
ACSIncome and ACSEducation, we used an XGBoost model. Each model’s hyperparameters were
tuned as discussed in Appendix D.3.

Baseline: For each dataset and CP non-conformity score, we built a conformal predictor. Then, we
assess fairness according to the specific fairness metric using the conformal quantile, q̂, using the
90% quantile (↵ = 0.1) from the calibration phase.

Evaluation Metrics: We report the worst fairness disparity and efficiency. For Disparate Impact,
the worst fairness disparity is the minimum ↵min/↵max across the positive labels. For the remaining
metrics, we record the maximum ↵max � ↵min across the positive labels.

4.2 RESULTS

For each figure, we use a black line to indicate the base conformal predictor’s average worst-case

fairness disparity across different thresholds, the bar plot for the worst fairness disparity using the
CF Framework, and a black dot to denote the desired fairness disparity. We report the average base
performance for simplicity and readability of the figures. In every experiment, except for Figure
2, the CF framework was better than the average base conformal predictor. We provide a more
granular version of Figure 2 in Figure E4, where it is clear that the framework performs better for
every closeness threshold.

Controlling for Fairness Disparity: For different closeness thresholds, our CF Framework effec-
tively controls the fairness disparity for several metrics compared to the base conformal predictor. In
Figure 1 and 2, we can observe that in terms of fairness disparity, our CF Framework precisely (note
step-wise change with c on violations) improves upon the baseline conformal predictor. As with al-
gorithmic fairness, a trade-off is involved in that there is a slightly worse efficiency. From Figure 2,
we continue to observe this for both standard and graph-based conformal predictors. Furthermore,
if the base conformal predictor is already “fair” according to our fairness disparity criterion, then the
CF Framework will report the results accordingly. This phenomenon is observed with the CFGNN
results in Figure 2, where the CF Framework matches the baseline regarding both evaluation met-
rics. This behavior of the CF Framework makes it suitable to leverage for black box fairness auditing
(as noted previously). We present additional results, for example, the disparity results for the CF
Framework without classwise lambdas in Appendix E. Notably, the prediction set sizes are more
prominent due to selecting a larger � than the classwise approach (see Figure E3 vs Figure 1).

Controlling for Disparate Impact: For Disparate Impact, we present results for the standard
80% Rule. In Table 3, we see that using the CF Framework can significantly improve upon the base
conformal predictor for the 80% Rule. For the base conformal predictor, the disparate impact value
is far below the desired 0.8, and in some cases less than 0.4 as with Credit with TPS and ACSIncome
dataset. Our framework, however, is close to the 0.8 value and in some cases surpasses it, like in
Credit with CFGNN, with minor effects on the efficiency for both datasets.

Table 3: 80% Rule for Credit and ACSIncome. Our framework surpasses the base conformal pre-
dictor achieving a disparate impact value of 0.80 or higher

APS TPS CFGNN DAPS
Base CF Base CF Base CF Base CF

Credit Disp. Impact 0.646 0.821 0.252 0.793 0.922 0.922 0.539 0.809
Efficiency 2.326 2.513 2.268 2.558 2.202 2.202 2.254 2.526

ACSIncome Disp. Impact 0.397 0.797 0.356 0.798 N/A N/A N/A N/A
Efficiency 2.212 2.674 2.109 2.679 N/A N/A N/A N/A
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Agnostic to Non-Conformity Score: As discussed earlier, the CF Framework can support a va-
riety of non-conformity scores, emphasizing the agnostic nature of our framework. We achieved
effective results for conformal predictors with different underlying non-conformity score functions
for all the experiments. Further results can be found in Appendix E.

Figure 1: ACSIncome. The left two plots are efficiency results, while the right two are the fairness disparities
for (a) APS and (b) TPS. In all cases, our framework gives results at or better than the desired threshold and
better than the baseline.

Figure 2: Credit. The top four plots are efficiency results, while the bottom four are the fairness disparities
for (a) APS, (b) CFGNN, (c) DAPS, and (d) TPS. In all cases, our framework achieves the desired coverage
gap better than the baseline, with a minor impact on efficiency.

Intersectional Fairness: When characterizing data points into groups, we are not limited to a sin-
gle sensitive attribute. In many applications, there can be multiple sensitive attributes (e.g., race and
gender) that need to be considered. Our CF Framework is not limited to analyzing a single sensitive
attribute. To demonstrate this, we conduct an experiment with the Pokec-n dataset. Pokec-n has two
sensitive attributes, namely region and gender. We treat each combination of region and gender as
a separate sensitive group and apply the CF framework to control for fairness disparities. Figure 3
shows that the CF framework improves upon the base conformal predictor regarding fairness dispar-
ity. This improvement is starker with the graph-based conformal predictors, CFGNN, and DAPS as
seen in Figure 3 plots (b) and (c).

One challenge intersectional fairness introduces is the multiplicative increase in the number of
groups that must be calibrated and evaluated (combinations of sensitive attributes and classes). This
places a stronger requirement on the number of data points necessary to meet the coverage guar-
antees we discussed in Section 3.2 (guarantees are more challenging to meet as the size of D(g,y)
gets smaller). This problem is exacerbated (in empirical results) for datasets with only a few labeled
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points such as Pokec-n. For Pokec-n, using a standard data split, the calibration set has around
2200 data points. The calibration set is then further split to get the conditional positive label cov-
erage for each positive label and group pair. This results in the calibration being done with sets
of fewer than a few hundred points, which is much lower than the suggested 1000 points in the
literature (Angelopoulos & Bates, 2021). In Figure 3, the effect of this challenge is seen with the
fairness disparity given by the CF Framework being slightly above the desired closeness threshold
for c = 0.1. However, despite this disadvantage for many metrics, the guarantees are still being met,
even for intersectional fairness.

Figure 3: Pokec-n using both sensitive attributes. The top four plots are the efficiency results, while the
bottom four are the fairness disparities for (a) APS, (b) CFGNN, (c) DAPS, and (d) TPS. We observe that
CFGNN (b) and DAPS (c) achieve the desired fairness coverage thresholds better than standard CP methods.

Predictive Parity Proxy: As discussed, the CF framework is extensible to user-defined fairness
notions. We consider the Predictive Parity Proxy in Equation 4 as an example of a user’s ability to
provide a reasonable fairness measure (Disparate Impact, above is another example). An experiment
on ACSEducation in Table 4 demonstrates we can control for arbitrarily small values of c, unlike
the standard notion of Predictive Parity. Additionally, it empirically illustrates that we can control
for disparities of probabilities conditioned on the prediction set. This metric can also be applied in
the graph setting, as seen in Appendix E.

Table 4: ACSEducation. The worst-case fairness disparity, based on the Predictive Parity Proxy, with our
method is below the desired c threshold, while the avearge baseline disparity is much higher (> 0.30) than all
of the c thresholds we consider.

Closeness Threshold (c) 0.05 0.10 0.15 0.20 Base (Average)

TPS Max Fairness Disparity 0.038 0.091 0.167 0.199 0.319
Efficiency 4.551 3.761 3.348 3.210 2.828

APS Max Fairness Disparity 0.044 0.093 0.152 0.166 0.411
Efficiency 5.185 3.975 3.499 3.374 2.982

4.3 DISCUSSION

Very few prior efforts study fairness and conformal prediction (Wang et al., 2024; Lu et al., 2022;
Liu et al., 2022). One line of work has focused on applying fairness notions toward CP problems for
regression tasks, explicitly focusing on Demographic Parity (Liu et al., 2022) and Equal Opportunity
(Wang et al., 2024), respectively. Our work differs in its breadth and flexibility (supporting a range
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of fairness metrics and conformity scores) and its focus on classification. While our work does not
address the regression tasks directly, this is a potential direction for future work. Another line of
work focuses on applying the notion of Overall Accuracy Equality for CP (Lu et al., 2022). This
effort considers a specific medical application of detecting malignant skin conditions and applies
group-balanced CP (Vovk, 2012). Our CF framework generalizes group-balanced CP to consider
the notion of coverage for a particular label, thus allowing us to evaluate disparity based on classical
fairness metrics in a manner that does not require knowledge of group membership at prediction
time (or in an online setting), unlike in Lu et al. (2022) which relies on having the group membership
information a priori.

5 CONCLUSION

In this work, we formalize the notion of Conformal Fairness using conformal predictors and pro-
pose a novel and comprehensive Conformal Fairness (CF) Framework. We provide a theoretically
grounded algorithm that can be used to control for the gaps in conditional coverage, defined based
on different fairness metrics, across sensitive groups. We conduct experiments with conformal pre-
dictors for both tabular and graph datasets, leveraging the exchangeability assumption of (graph)
conformal prediction. We present results for Conformal Fairness based on various classical and
user-defined fairness metrics on conformal predictors with various non-conformity score functions.
We further present results on the framework’s effectiveness in evaluating intersectional fairness with
conformal predictors. We further describe how the CF framework can be practically leveraged for
applications, including fairness auditing of conformal predictors. Future work could include expand-
ing the CF framework to control for coverage gaps for regression tasks and enhancing the theory to
loosen assumptions of conformal prediction and look at non-exchangeable variations.
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