
Enhancing Cross-Language Code Translation via
Task-Specific Embedding Alignment in

Retrieval-Augmented Generation

Manish Bhattarai
Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM 87544

ceodspspectrum@lanl.gov

Minh Vu
Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM 87544

mvu@lanl.gov

Javier E. Santos
Earth & Environmental Science Division

Los Alamos National Laboratory
Los Alamos, NM 87544
jesantos@lanl.gov

Ismael Boureima
Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM 87544
iboureima@lanl.gov

Daniel O’ Malley
Earth & Environmental Science Division

Los Alamos National Laboratory
Los Alamos, NM 87544
omalled@lanl.gov

Abstract

We propose a method to improve Fortran-to-C++ code translation by aligning
task-specific embeddings within a Retrieval-Augmented Generation (RAG) frame-
work. Unlike traditional retrieval approaches using generic embeddings, we align
the retrieval model directly with the goal of maximizing translation quality as
measured by the CodeBLEU metric, ensuring that embeddings are semantically
and syntactically meaningful for this task. Utilizing 25,000 Fortran code snippets
from the Stack-V2 dataset and their C++ translations generated by llama3.1-8b,
we compute pairwise CodeBLEU scores to capture fine-grained similarities. These
scores serve as supervision in a contrastive learning framework to optimize the
embedding model for retrieving the most beneficial Fortran-C++ pairs. Integrating
these CodeBLEU-optimized embeddings into the RAG framework significantly
enhances both retrieval accuracy and code generation quality. Without fine-tuning
the language model, our method improves the average CodeBLEU score from 0.64
to 0.73 (a 14% improvement) on the HPC Fortran2C++ dataset and from 0.52 to
0.60 (a 15% improvement) on the Numerical Recipes dataset, demonstrating the
effectiveness and practicality of our approach.

1 Introduction

Cross-language code translation is a critical task in modern software development, especially as
legacy programming languages, such as Fortran, continue to be prevalent in scientific computing,
while more contemporary languages like C++ are favored for their performance and versatility in
production environments. The goal of automatic translation from Fortran to C++ is to preserve the

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

functionality and structure of legacy code while benefiting from the optimizations and ecosystem of
C++. However, achieving high-quality translations that adhere to the syntax and semantic norms of
the target language remains a challenging problem, particularly when there is a lack of large, aligned
datasets or evaluation metrics that cover both source and target languages effectively. Traditional
approaches to cross-language translation, such as Retrieval-Augmented Generation (RAG) Lewis et al.
[2020] typically involve two phases: first, retrieving relevant examples from a database, followed
by a language model generating code conditioned on both the query and the retrieved examples.
In prior efforts, the retrieval models in RAG systems have relied on general-purpose embedding
models Bhattarai et al. [2024], Li et al., which are not tailored to the specific nuances of code
translation. These embeddings aim to retrieve relevant pairs from the source and target languages
but do not directly optimize for the quality of the generated code. As a result, while the retrieved
examples may be relevant in a broad sense, they often fail to guide the language model towards
producing translations that maximize fidelity to the ground truth in the target language.

This gap is particularly problematic in scenarios where explicit metrics, such as Code-
BLEU—designed to assess both syntactic and semantic correctness of translated code—are only
available for the target language (e.g., C++ in this case). Without aligning the retrieval mechanism to
such a task-specific metric, the system may retrieve suboptimal examples, leading to poor code gener-
ation performance. The inability to leverage task-relevant quality metrics during retrieval weakens
the overall system, limiting its effectiveness in high-accuracy code translation tasks. To address these
limitations, we propose a novel contrastive learning framework that aligns the retrieval phase of the
RAG system with the goal of maximizing the CodeBLEU Feng et al. [2020] score for the generated
C++ code. We collect a dataset of 25,000 Fortran code examples from Stack V2 Lozhkov et al. [2024]
and use the llama3.1-8b Touvron et al. [2023] model to generate corresponding C++ translations.
In the absence of ground truth C++ translations, we evaluate the quality of these translations using
pairwise CodeBLEU similarity scores. This metric captures both syntactic correctness and semantic
fidelity, providing a robust signal for aligning the retrieval model through contrastive learning.

Our approach directly addresses the shortcomings of general-purpose embedding models by inte-
grating task-specific metrics into the retrieval optimization process. By aligning the retrieval model
with the downstream task of producing high-quality C++ code, our method ensures that the examples
retrieved during inference are not just broadly similar but are semantically and syntactically aligned
in a way that enhances the LLM’s generative performance. The result is a significant improvement in
translation quality, as measured by CodeBLEU, over previous methods that lack such alignment.

2 Related Work

Historically, code translation strategies before the advent of large language models (LLMs) relied
heavily on rule-based and statistical machine translation (SMT) systems Koehn [2009]. These systems
used predefined rules or statistical mappings between the source and target programming languages,
such as tree-based translation approaches that mapped syntax trees between languages. While these
methods provided structured and interpretable outputs, they were limited in their ability to handle the
semantic complexities of different programming languages and struggled with code diversity, edge
cases, and idiomatic translations. With the rise of deep learning and LLMs, fine-tuning models on
large datasets became the go-to method for improving code translation. Models like Codex Chen
et al. [2021] and CodeBERT Feng et al. [2020], when fine-tuned on specific language pairs, improved
translation quality by leveraging vast amounts of parallel code data. However, the main limitation
of LLM fine-tuning lies in the resource-intensive process. Fine-tuning requires substantial amounts
of labeled data and computational resources, making it impractical for niche or legacy languages
like Fortran, where parallel data may be scarce. As a next step, task-specific alignment of LLMs
emerged to improve translation by better guiding the model’s output. While alignment techniques
help improve output fidelity, they still necessitate fine-tuning or explicit modification of the LLM
itself, which can be resource-intensive and may still fall short of generalization when translating
between languages with significant structural differences Mishra et al. [2024].

RAG introduced a more flexible approach by allowing LLMs to retrieve and condition their outputs
on example pairs from a relevant dataset. While RAG improves translation by augmenting the
model’s input, the effectiveness of this strategy depends on the quality and relevance of the retrieved
examples. In an example case Bhattarai et al. [2024], the retrieval step relies on general-purpose
embeddings like Nomic-Embed or CodeBERT, which, although effective at retrieving semantically

2

𝐹!

𝐹!

StarEncoder

𝐶"

𝐶!

CodeBleu

𝐶𝐵 𝐶" , 𝐶!

𝑒" , 𝑒!

i. Embedding model Alignment

StarEncoder

St
ac

k-
V2

𝐹90 𝐶𝑃𝑃

ii. Translation based on aligned RAG retreival with LLM

Figure 1: Overview of the proposed pipeline. i) The LLM generates pairwise code translations,
which are evaluated using the CodeBLEU metric. ii) The resulting similarity scores are used to guide
contrastive learning for semantic alignment of the embedding model.

similar code, are not optimized for specific downstream metrics like CodeBLEU. As a result, the
LLM might not always retrieve the examples that would best assist in producing translations aligned
with target-specific quality metrics.

3 Methods

Our method improves cross-language code translation from Fortran to C++ by aligning a Fortran
embedding model using contrastive learning based on CodeBLEU similarity scores and integrating it
within a RAG framework (Figure 1).

Code Generation and Similarity Measurement: Given a dataset of Fortran code snippets Df =

f1, . . . , fN , we generate corresponding C++ translations Ĉ = ĉ1, . . . , ĉN using a pre-trained language
model G without retrieval:

ĉi = G(fi), ∀i. (1)
In the absence of ground truth translations, we compute pairwise CodeBLEU similarity scores cij
between the generated translations:

cij = CodeBLEU(ĉi, ĉj). (2)

CodeBLEU Ren et al. [2020] extends the traditional BLEU metric by incorporating syntactic and
semantic features specific to code, providing a comprehensive similarity measure. Embedding
Function: We define an embedding function E that maps Fortran code snippets to d-dimensional
embeddings:

efi = E(fi) ∈ Rd. (3)

Embedding Alignment with Modified InfoNCE Loss: To align these embeddings with the semantic
similarities from CodeBLEU (Figure 1I), we employ a modified InfoNCE loss van den Oord et al.
[2018]. We normalize the embeddings hi = efi/|efi | and compute pairwise cosine similarities
scaled by a temperature parameter τ > 0:

sij =
h⊤
i hj

τ
. (4)

3

The loss function is defined as:

L = − 1

N

N∑
i=1

N∑
j=1

cij log

(
exp(sij)∑N
k=1 exp(sik)

)
. (5)

Minimizing L encourages embeddings of semantically similar code snippets (with higher cij) to be
closer in the embedding space.

Retrieval-Augmented Generation: With the optimized embedding model E∗, we enhance code
translation via a RAG framework (Figure 1II). For a query Fortran code snippet fq, we compute
its embedding efq = E∗(fq) and retrieve the top-k similar snippets frj from Df based on cosine
similarity:

sim(efq , ef) =
e⊤fqef

|efq ||ef |
, ∀f ∈ Df . (6)

Their corresponding C++ code snippets crj augment the input to the language model G, which then
generates the translated C++ code ĉq:

ĉq = G
(
fq, (frj , crj)

k

j=1

)
. (7)

By incorporating retrieved examples, the model produces translations that are more accurate and
semantically aligned with the desired output.

4 Experiments and Results

We evaluated our method using three datasets: the HPC Fortran2CPP dataset Lei et al. [2023] with 315
Fortran-C++ code pairs, the Numerical Recipes dataset Press et al. [1988] containing 298 Fortran-C++
pairs, and the Stack-V2 dataset Lozhkov et al. [2024] comprising over 500,000 Fortran code snippets.
To prepare for embedding alignment, we sampled 25,000 high-quality Fortran code snippets from
Stack-V2 by selecting files larger than 500 bytes with high star and fork counts, indicating relevance
and popularity. Since Stack-V2 lacks Fortran-C++ pairs, we used the llama3.1-70b model to extract
executable Fortran code and the llama3.1-8b model to translate these snippets into C++ code. We
computed pairwise CodeBLEU scores between the generated C++ code snippets to quantify syntactic
and semantic similarities. Using these CodeBLEU metrics as supervision signals, we employed the
InfoNCE loss function (Equation 5) with a temperature of 0.1 to align the embeddings from the
Fortran codes, effectively training the embedding model to map semantically similar code snippets
closer in the embedding space. After alignment, we integrated the optimized embedding model into
the RAG pipeline, storing the Fortran-C++ pairs and corresponding embeddings in a vector database.
We evaluated performance using the llama3.1-8b and llama3.1-70b models in zero-shot, 1-shot,
2-shot, and 3-shot scenarios on the HPC Fortran2C++ and Numerical Recipes datasets, following
settings similar to Bhattarai et al. [2024]. CodeBLEU scores for both aligned and unaligned models
were obtained by comparing the RAG-augmented generated C++ translations to the ground truth C++
code.

Table 1: Delta in Mean CodeBLEU scores between Zero- and Few-Shot prompts. The values are
presented as Unaligned/Aligned scores.

∆ in CodeBLEU scores (Unaligned / Aligned)
Dataset Model Zero-shot 1-shot 2-shot 3-shot
HPC Fortran2++ llama3.1 70b 0.364 +0.262/+0.346 +0.275/+0.371 +0.281/+0.377

llama3.1 8b 0.342 +0.237/+0.346 +0.261/+0.376 +0.252/+0.374
numerical_receipe llama3.1 70b 0.280 +0.232/+0.313 +0.243/+0.329 +0.243/+0.317

llama3.1 8b 0.276 +0.181/+0.268 +0.195/+0.292 +0.201/+0.289

Figure 2 presents scatter plots of CodeBLEU scores for code samples generated using RAG retrieval
with aligned versus unaligned embeddings derived from StarEncoder. In these plots, each data
point represents a single Fortran code snippet from the test set, with symbols—crosses, pluses, and
triangles—indicating evaluations using 1-shot, 2-shot, and 3-shot methods, respectively. The red

4

0.0 0.2 0.4 0.6 0.8 1.0
One-shot CodeBLEU (Unaligned)

0.0

0.2

0.4

0.6

0.8

1.0

On
e-

sh
ot

 C
od

eB
LE

U
(A

lig
ne

d)

Avg Unaligned: 0.64 ± 0.19
Avg Aligned: 0.73 ± 0.17

Model: llama3.1 70b, Dataset: HPC Fortran2C++
Shots

1-shot
2-shot
3-shot
y = x

0.0 0.2 0.4 0.6 0.8 1.0
One-shot CodeBLEU (Unaligned)

0.0

0.2

0.4

0.6

0.8

1.0

On
e-

sh
ot

 C
od

eB
LE

U
(A

lig
ne

d)

Avg Unaligned: 0.52 ± 0.19
Avg Aligned: 0.60 ± 0.19

Model: llama3.1 70b, Dataset: Numerical Recipe

0.0 0.2 0.4 0.6 0.8 1.0
One-shot CodeBLEU (Unaligned)

0.0

0.2

0.4

0.6

0.8

1.0

On
e-

sh
ot

 C
od

eB
LE

U
(A

lig
ne

d)

Avg Unaligned: 0.59 ± 0.18
Avg Aligned: 0.71 ± 0.16

Model: llama3.1 8b, Dataset: HPC Fortran2C++

0.0 0.2 0.4 0.6 0.8 1.0
One-shot CodeBLEU (Unaligned)

0.0

0.2

0.4

0.6

0.8

1.0

On
e-

sh
ot

 C
od

eB
LE

U
(A

lig
ne

d)

Avg Unaligned: 0.47 ± 0.18
Avg Aligned: 0.56 ± 0.19

Model: llama3.1 8b, Dataset: Numerical Recipe

Figure 2: Scatter plots comparing the unaligned and aligned One-shot CodeBLEU scores across
different shot counts (1-shot, 2-shot, 3-shot) for two models (llama3.1 70b and llama3.1 8b) and
two datasets (Numerical Recipe and HPC Fortran2C++ Dataset). Each point represents a shot count,
and the red dashed line represents the reference where the unaligned and aligned scores are equal.
The text box in each subplot displays the average CodeBLEU performance and standard deviation for
aligned vs. unaligned RAG translation across the few-shot configurations.

dashed line in each scatter plot denotes the boundary where the aligned and unaligned models yield
identical CodeBLEU scores. Data points above the red line signify instances where the aligned
embedding model produces translations with higher CodeBLEU scores compared to the unaligned
model, indicating translations closer to the ground truth C++ code. Conversely, points below the red
line represent cases where the unaligned model performs better. The observation that the majority of
data points lie above the red line across all configurations demonstrates that the aligned embedding
model consistently outperforms the unaligned model in translation quality. Specifically, on the HPC
Fortran2C++ dataset, averaged over all shot counts and models, the aligned embeddings achieved an
average CodeBLEU score of 0.73, whereas unaligned embeddings achieve 0.64. On the Numerical
Recipes dataset, aligned embeddings yielded an average CodeBLEU score of 0.60, outperforming the
unaligned case at 0.52.

Table 1 details the variations in mean CodeBLEU scores between zero-shot and few-shot prompting
strategies for both unaligned and aligned embedding models. A key observation is that aligned models
consistently exhibit greater improvements in CodeBLEU scores when transitioning from zero-shot to
few-shot settings. For instance, on the HPC Fortran2C++ dataset with the llama3.1-70b model,
the aligned embedding model achieves a delta increase of +0.346 in the 1-shot scenario, surpassing
the unaligned model’s increase of +0.262. At the 3-shot setting, the aligned model attains a delta of
+0.377, exceeding the unaligned model’s delta of +0.281. Similar patterns are observed with the
llama3.1-8b model and on the Numerical Recipes dataset.

5

5 Conclusion

We presented a novel method to enhance Fortran-to-C++ code translation by aligning embeddings
within a RAG framework using contrastive learning based on CodeBLEU similarity scores. This
alignment brings code snippets that yield high-quality translations closer in the embedding space,
enabling more effective retrieval of examples to guide the language model during code generation.
Our approach significantly improved translation quality without fine-tuning the language model.
Aligned embeddings increased the average CodeBLEU score from 0.64 to 0.73 (a 14% improvement)
on the HPC Fortran2C++ dataset and from 0.52 to 0.60 (a 15% improvement) on the Numerical
Recipes dataset. Larger models (llama3.1-70b) outperformed smaller ones (llama3.1-8b), and
performance gains plateaued beyond two-shot prompting. By optimizing the retrieval mechanism
through task-specific embedding alignment, our method enhances code translation efficiently and
is adaptable to other tasks, especially when aligned datasets are limited or evaluation metrics like
CodeBLEU are critical. Future work includes extending this strategy to more programming languages
and integrating additional evaluation metrics to further improve translation quality.

References
Manish Bhattarai, Javier E Santos, Shawn Jones, Ayan Biswas, Boian Alexandrov, and Daniel

O’Malley. Enhancing code translation in language models with few-shot learning via retrieval-
augmented generation. arXiv preprint arXiv:2407.19619, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained model for programming and
natural languages. In Trevor Cohn, Yulan He, and Yang Liu, editors, Findings of the Association for
Computational Linguistics: EMNLP 2020, pages 1536–1547, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.139. URL https://
aclanthology.org/2020.findings-emnlp.139.

Philipp Koehn. Statistical machine translation. Cambridge University Press, 2009.

Bin Lei, Caiwen Ding, Le Chen, Pei-Hung Lin, and Chunhua Liao. Creating a dataset for high-
performance computing code translation using llms: A bridge between openmp fortran and c++. In
2023 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–7. IEEE, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Chuangji Li, Shizhuo Li, and Alan Wang. Retrieval-augmented multi-hop code generation with
codellama and unlimiformer.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adriana Meza So-
ria, Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep Singh, et al. Gran-
ite code models: A family of open foundation models for code intelligence. arXiv preprint
arXiv:2405.04324, 2024.

William H Press, William T Vetterling, Saul A Teukolsky, and Brian P Flannery. Numerical recipes.
Cambridge University Press, London, England, 1988.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis.
arXiv preprint arXiv:2009.10297, 2020.

6

https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

7

	Introduction
	Related Work
	Methods
	Experiments and Results
	Conclusion

