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ABSTRACT 
Facial Expression Recognition (FER) holds significant importance 
in human-computer interactions. Existing cross-domain FER 
methods often transfer knowledge solely from a single labeled 
source domain to an unlabeled target domain, neglecting the 
comprehensive information across multiple sources. Nevertheless, 
cross-multidomain FER (CMFER) is very challenging for (i) the 
inherent inter-domain shifts across multiple domains and (ii) the 
intra-domain shifts stemming from the ambiguous expressions and 
low inter-class distinctions. In this paper, we propose a novel 
Learning with Alignments CMFER framework, named LA-
CMFER, to handle both inter- and intra-domain shifts. Specifically, 
LA-CMFER is constructed with a global branch and a local branch 
to extract features from the full images and local subtle expressions, 
respectively. Based on this, LA-CMFER presents a dual-level inter-
domain alignment method to force the model to prioritize hard-to-
align samples in knowledge transfer at a sample level while 
gradually generating a well-clustered feature space with the 
guidance of class attributes at a cluster level, thus narrowing the 
inter-domain shifts. To address the intra-domain shifts, LA-
CMFER introduces a multi-view intra-domain alignment method 
with a multi-view clustering consistency constraint where a 
prediction similarity matrix is built to pursue consistency between 
the global and local views, thus refining pseudo labels and 
eliminating latent noise. Extensive experiments on six benchmark 
datasets have validated the superiority of our LA-CMFER. 
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1 Introduction 
Facial Expression Recognition (FER) endeavors to discern human 
expressions and emotional states, playing a pivotal role in human-
computer interactions [1]. Nowadays, FER has gained notable 
promotion thanks to diverse deep learning (DL) algorithms [2, 3, 4, 
5, 46, 47, 48] and well-annotated FER datasets [6, 7, 8]. However, 
these FER works [9, 10] typically operate under the assumption that 
both training and testing samples come from the same dataset 
(domain) and inherently share an identical data distribution. In 
practice, their classification accuracy often drops sharply due to the 
great discrepancy in data distribution (i.e., inter-domain shifts) [11, 
12] when applied in different scenes, making them incapable of 
tackling the cross-domain problem settings. 

To alleviate the inter-domain shifts, unsupervised Cross-Domain 
FER (CDFER) [13, 14, 49] has been introduced, aiming to extract 
domain-invariant features from a single labeled source domain to 
accurately classify the samples in an unlabeled target domain. 
Various techniques, such as adversarial learning [11, 15, 16] and 
metric learning [12, 17, 18], have been explored to reduce the 
distribution disparity between the two domains. However, these 
methods primarily focus on leveraging data information from a 
single source, while overlooking the valuable facial knowledge 
buried in multiple source domains. In reality, there are multiple 
labeled source datasets collected with diverse conditions, such as 
different acquisition environments, ethnic characteristics, etc. 
Leveraging these sources can significantly increase the number of 
training samples and further provide more comprehensive and 
discriminative feature representations of facial expressions, thus 
contributing to better generalization ability. Subsequently, 
unsupervised Cross-Multidomain FER (CMFER) [19] is motivated 
to effectively transfer richer facial knowledge from multiple 
labeled source domains to the unlabeled target domain. 

A simple solution to CMFER tasks is to regard different sources 
as a single source and directly apply CDFER methods. Regretfully, 
as the number of sources increases, these approaches often exhibit 
sub-optimal performance or even degradation owing to the growing 

 
Fig. 1. Illustration to the problem setting of CMFER task 
where both inter-domain shifts (different data distributions) 
and intra-domain shifts (ambiguous expressions and low inter-
class distinctions near the target decision boundaries) exist. 
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complexity of data distributions [19, 20]. Therefore, developing a 
well-designed CMFER method is quite imperative. Delving deeply 
into CMFER, there are two main challenges. The first one is the 
above-mentioned inter-domain shifts across different domains due 
to their inherent data distribution difference. Specifically, as shown 
in Fig.1, with different shooting conditions, AffectNet [6] (i.e., 𝑇𝑇) 
contains both gray and color images, while FER-2013 [21] (i.e., 𝑆𝑆𝑚𝑚) 
only includes gray images. Besides, JAFFE [22] (i.e., 𝑆𝑆𝑛𝑛 ) has 
notable racial characteristics where all the facial images come from 
Japanese women. These severe inter-domain shifts disrupt the 
effective extraction of domain-invariant facial expression 
representations and hinder smooth knowledge transfer from source 
domains to the target domain. The second challenge for CMFER is 
the intra-domain shifts that occur within the target domain. As 
shown in Fig.1, the subtle differences and intrinsic ambiguities in 
human expressions (marked by red borders) may lead to lower 
inter-class distinctions. Therefore, the intra-domain shifts are likely 
to cause the model to produce uncertain category predictions and 
acquire inaccurate semantic information, severely damaging the 
prediction robustness. 

In this paper, we propose a novel Learning with Alignments for 
Cross-Multidomain Facial Expression Recognition (LA-CMFER) 
framework to simultaneously tackle the inter- and intra-domain 
shifts. In LA-CMFER, we consider both essential global and local 
features for facial expressions and employ a shared dual-branch 
structure across multiple source domains and the target domain. 
Then, to address the inter-domain shifts, a dual-level (i.e., sample-
level and cluster-level) inter-domain alignment is developed to 
encourage the model to pay more attention to the hard-to-align 
samples with higher uncertainty and generate a more well-clustered 
feature space based on the predicted labels. As for the intra-domain 
shifts, a multi-view intra-domain alignment is devised with a muti-
view clustering consistency constraint to form a discriminative 
target feature space, and a multi-view voting scheme to gain the 
high-quality pseudo labels for an effective information interaction 
between the local and global branches, respectively. Both inter- and 
intra-domain alignments act with united strength to 
comprehensively extract discriminative facial representations from 
multiple source domains and promote the classification in the target 
domain. The main contributions of this paper are three-fold: 

 We present a Learning with Alignments for Cross-
Multidomain Facial Expression Recognition (LA-CMFER) 
framework to tackle both inter- and intra-domain shifts and 
utilize beneficial knowledge from multiple source domains 
to address the challenging CMFER task. 

 To mitigate the inter-domain shift, we introduce a dual-
level inter-domain alignment method that prioritizes hard-
to-align samples and fosters a well-clustered feature space. 
As for the intra-domain shift, we design a muti-view 
clustering consistency constraint between the global and 
local branches to gain a concentrated target feature space 
for alleviating the interference of noisy samples. 

 Extensive experiments on six commonly used FER 
benchmark datasets verify the superior performance of our 
method compared to other state-of-the-art approaches. 

2 Related Works 

2.1  Cross-domain FER 
CDFER follows the fundamental principles of Unsupervised 
Domain Adaptation (UDA) [23], aiming to apply the classifier 
trained with a single labeled source domain to classify samples in 
an unlabeled target domain. Numerous studies have focused on 
CDFER tasks, which can be categorized into two groups: metric-
based approaches vs. adversarial-based approaches. Concretely, 
metric-based approaches [12, 13 17, 18, 24] construct proper 
distance functions to extract more discriminative facial features for 
reducing cross-domain distribution variation. For instance, Ni et al. 
[24] combined metric learning with dictionary learning to alleviate 
the transfer facial expression recognition issue. Zhang et al. [13] 
presented a local-global discriminative subspace transfer learning 
(LGDSTL) method where a local-global graph is used as distance 
metric. Besides, adversarial-based approaches [11, 15, 16, 25] mine 
the domain-invariant facial features with adversarial training. To 
illustrate, Xie et al. [15] embedded a graph representation 
propagation with adversarial learning and presented an adversarial 
graph representation adaptation framework. Considering the 
important local facial features, Ji et al. [11] proposed a region 
attention-enhanced CDFER approach to emphasize the local 
features for minimizing domain discrepancies. Despite their 
promising results, these methods deal with only one single source 
and are not competitive in addressing the complex data 
distributions encountered in cross-multidomain scenarios. 

2.2  Multi-source Domain Adaptation 
Multi-source Domain Adaptation (MDA) [26] holds the 
assumption that data can be gathered from diverse source domains 
with different distributions, which is a more practical but 
challenging task compared to single-source domain adaptation. 
Pioneer studies [27, 28, 50] have theoretically confirmed that the 
target distribution can be represented as a weighted combination of 
source distributions. To further ensure effective adaptation, the key 
lies in overcoming the inter-domain shifts caused by diverse data 
distributions across domains. Along with this philosophy, Zhao et 
al. [29] used adversarial training to align the target and source 
distributions. Zhu et al. [30] developed an MDA framework with 
multiple domain-specific classifiers to mine the domain-invariant 
features and use a maximum mean discrepancy (MMD) loss [31] 
to ease the inter-domain shift. Li et al. [32] devised a feature 
filtration network to selectively align features across domains. 

Unlike existing MDA works in natural image classification, the 
CMFER tasks are more difficult. Besides the inter-domain shifts, 
the subtle differences between facial expressions also bring about 
intra-domain shifts, e.g., low inter-class distinctions in the decision 
boundaries. In the emerging CMFER, only Liu et al. [19] proposed 
a domain-uncertain mutual learning (DUML) network based on 
adversarial learning to consider both inter-domain and intra-
domain uncertainty. In this paper, we present the Learning with 
Alignments framework with dual-level inter-domain alignment and 
multi-view intra-domain alignment to adeptly address two kinds of 
domain shifts with a simpler and lighter architecture. 



  
 

 

3 Methodology 

3.1  Preliminaries and Framework Overview 
In the problem definition of CMFER, there are 𝑁𝑁 labeled source 
domains {𝑆𝑆𝑛𝑛}𝑛𝑛=1𝑁𝑁  and an unlabeled target domain 𝑇𝑇, with a total of 
𝐾𝐾 shared facial expression classes. Concretely, 𝑆𝑆𝑛𝑛 denotes the 𝑛𝑛-th 

FER dataset 𝒟𝒟𝑆𝑆𝑛𝑛 = �(𝑥𝑥𝑖𝑖
𝑠𝑠𝑛𝑛 ,𝑦𝑦𝑖𝑖

𝑠𝑠𝑛𝑛)�
𝑖𝑖=1
|𝑆𝑆𝑛𝑛|

 where 𝑥𝑥𝑖𝑖
𝑠𝑠𝑛𝑛 is the 𝑖𝑖 -th labeled 

source image and 𝑦𝑦𝑖𝑖
𝑠𝑠𝑛𝑛 ∈ {0,1}𝐾𝐾  represents its one-hot real label. 

Correspondingly, the target domain 𝑇𝑇 contains a single unlabeled 

dataset 𝒟𝒟𝑇𝑇 = �𝑥𝑥𝑖𝑖𝑇𝑇�𝑖𝑖=1
|𝑇𝑇|

, where 𝑥𝑥𝑖𝑖𝑇𝑇 denotes the 𝑖𝑖-th unlabeled target 
image. CMFER tries to train a deep model with 𝒟𝒟𝑇𝑇 and {𝒟𝒟𝑆𝑆𝑛𝑛}𝑛𝑛=1𝑁𝑁  
to accurately predict the expression labels of 𝑥𝑥𝑇𝑇 in 𝒟𝒟𝑇𝑇. 

The overview of our LA-CDFER framework is illustrated in Fig. 
2, which includes a shared encoder 𝐸𝐸 with both global and local 
branches. Specifically, the global/local branch is equipped with 
respective global/local feature alignment network 𝐴𝐴𝐺𝐺 / 𝐴𝐴𝐿𝐿  and 
feature classifier 𝐶𝐶𝐺𝐺/𝐶𝐶𝐿𝐿. Notably, 𝐴𝐴𝐺𝐺  and 𝐴𝐴𝐿𝐿 hold different model 
architectures to respectively mine the expression knowledge from 
global and local views. In the training stage, the shared encoder 𝐸𝐸 
first encodes the source image 𝑥𝑥𝑖𝑖

𝑠𝑠𝑛𝑛 from the 𝑛𝑛-th source batch (𝐵𝐵𝑠𝑠𝑛𝑛) 
into compact embedding 𝑒𝑒𝐺𝐺,𝑖𝑖

𝑠𝑠𝑛𝑛 . For the global branch, 𝑒𝑒𝐺𝐺,𝑖𝑖
𝑠𝑠𝑛𝑛  is fed into 

𝐴𝐴𝐺𝐺  to produce the global feature 𝑓𝑓𝐺𝐺,𝑖𝑖
𝑠𝑠𝑛𝑛 and 𝐶𝐶𝐺𝐺 is then utilized to form 

the final prediction 𝑃𝑃𝐺𝐺,𝑖𝑖
𝑠𝑠𝑛𝑛. Meanwhile, we produce a local embedding 

𝑒𝑒𝐿𝐿,𝑖𝑖
𝑠𝑠𝑛𝑛 by cropping and concatenating 𝑒𝑒𝐺𝐺,𝑖𝑖

𝑠𝑠𝑛𝑛  in a grid manner. After the 
processing of 𝐴𝐴𝐿𝐿  and 𝐶𝐶𝐿𝐿, the local feature 𝑓𝑓𝐿𝐿,𝑖𝑖

𝑠𝑠𝑛𝑛  and prediction 𝑃𝑃𝐿𝐿,𝑖𝑖
𝑠𝑠𝑛𝑛 

are obtained. The same process is applied to the target image 𝑥𝑥𝑖𝑖𝑇𝑇, 
yielding its global/local feature 𝑓𝑓𝐺𝐺,𝑖𝑖

𝑇𝑇 / 𝑓𝑓𝐿𝐿,𝑖𝑖
𝑇𝑇  as well as prediction 

𝑃𝑃𝐺𝐺,𝑖𝑖
𝑇𝑇 /𝑃𝑃𝐿𝐿,𝑖𝑖

𝑇𝑇 . To deal with the inter-domain shifts, LA-CMFER uses a 
dual-level inter-domain alignment with loss ℒ𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖  to separately 
align global and local source domain features with the target ones 
at both sample- and cluster-levels. For the intra-domain shifts, 
given 𝑃𝑃𝐺𝐺,𝑖𝑖

𝑇𝑇  and 𝑃𝑃𝐿𝐿,𝑖𝑖
𝑇𝑇 , a multi-view consistency constraint loss ℒ𝑚𝑚𝑚𝑚𝑚𝑚  

is utilized to ensure consistency between the global and local views 
while eliminating latent noise. Besides, a multi-view voting scheme 
is devised after the ℒ𝑚𝑚𝑚𝑚𝑚𝑚  to generate high-quality pseudo labels 𝑦𝑦�𝑖𝑖𝑇𝑇  
and supervise the predictions of the two branches in turn, 
facilitating the knowledge interaction of the two branches. 

3.2 Global and Local Branches 
Given the notable importance of both global and local features, LA-
CMFER adopts a dual-branch architecture. As shown in Fig. 2, fed 
with the source image 𝑥𝑥𝑖𝑖

𝑠𝑠𝑛𝑛 , encoder 𝐸𝐸  first obtains its compact 
embedding 𝑒𝑒𝐺𝐺,𝑖𝑖

𝑠𝑠𝑛𝑛 , which is then processed into a global feature 𝑓𝑓𝐺𝐺,𝑖𝑖
𝑠𝑠𝑛𝑛 

using the alignment network 𝐴𝐴𝐺𝐺 . To capture finer details essential 
for recognizing subtle differences in full-face images, 𝑒𝑒𝐺𝐺,𝑖𝑖

𝑠𝑠𝑛𝑛  is further 
subdivided into four attentional regions: top-left (𝑒𝑒𝑖𝑖𝑡𝑡,𝑖𝑖

𝑠𝑠𝑛𝑛 ), top-right 
( 𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖

𝑠𝑠𝑛𝑛 ), bottom-left ( 𝑒𝑒𝑏𝑏𝑡𝑡,𝑖𝑖
𝑠𝑠𝑛𝑛 ), and bottom-right ( 𝑒𝑒𝑏𝑏𝑖𝑖,𝑖𝑖

𝑠𝑠𝑛𝑛 ). These 
embeddings 𝑒𝑒𝐿𝐿,𝑖𝑖

𝑠𝑠𝑛𝑛 = {𝑒𝑒𝑖𝑖𝑡𝑡,𝑖𝑖
𝑠𝑠𝑛𝑛 , 𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖

𝑠𝑠𝑛𝑛 , 𝑒𝑒𝑏𝑏𝑡𝑡,𝑖𝑖
𝑠𝑠𝑛𝑛 , 𝑒𝑒𝑏𝑏𝑖𝑖,𝑖𝑖

𝑠𝑠𝑛𝑛 }  separately undergo 

 
Fig. 2. Overview of our proposed LA-CDFER framework with a dual-level inter-domain alignment and a multi-view intra-domain 
alignment. Our framework receives samples with labels from |𝑺𝑺𝒏𝒏| sources and tries to classify the target samples in 𝓓𝓓𝑻𝑻. 



  
 

 
 

processing by 𝐴𝐴𝐿𝐿 and are then concatenated to form a local feature 
𝑓𝑓𝐿𝐿,𝑖𝑖
𝑠𝑠𝑛𝑛 . Finally, the classifiers 𝐶𝐶𝐺𝐺  and 𝐶𝐶𝐿𝐿 generate predictions 𝑃𝑃𝐺𝐺,𝑖𝑖

𝑠𝑠𝑛𝑛 =
𝐶𝐶𝐺𝐺(𝑓𝑓𝐺𝐺 ,𝑖𝑖

𝑠𝑠𝑛𝑛) and 𝑃𝑃𝐿𝐿,𝑖𝑖
𝑠𝑠𝑛𝑛 = 𝐶𝐶𝐿𝐿(𝑓𝑓𝐿𝐿,𝑖𝑖

𝑠𝑠𝑛𝑛). Similarly, when processing the target 
image 𝑥𝑥𝑖𝑖𝑇𝑇 , the same procedure is followed, resulting in two 
predictions from the two branches, i.e., 𝑃𝑃𝐺𝐺,𝑖𝑖

𝑇𝑇 = 𝐶𝐶𝐺𝐺(𝐴𝐴𝐺𝐺(𝐸𝐸(𝑥𝑥𝑖𝑖𝑇𝑇)) and 
𝑃𝑃𝐿𝐿,𝑖𝑖
𝑇𝑇 = 𝐶𝐶𝐿𝐿(𝐴𝐴𝐿𝐿(𝐸𝐸(𝑥𝑥𝑖𝑖𝑇𝑇)). These two branches make predictions from 

the complementary global-local views for both source and target 
samples, thus better detecting the beneficial expression knowledge. 

3.3 Dual-level Inter-domain Alignment 
To tackle the inter-domain shifts between source and target 
distributions, LA-CMFER presents the dual-level (sample- and 
cluster-level) inter-domain alignment to comprehensively extract 
the domain-invariant facial features. This is gained by prioritizing 
hard-to-align samples with higher uncertainty and grouping 
samples based on their category information. 
Sample-level Inter-Domain Alignment. Existing CDFER works 
usually use the discrepancy-based constraints (e.g., MMD [30, 31, 
52], triplet loss [4], and adversarial loss [11, 25]) to minimize the 
inter-domain shift. Concretely, given the source distribution 
𝒫𝒫𝑠𝑠𝑛𝑛(𝑥𝑥,𝑦𝑦) and target distribution 𝒫𝒫𝑇𝑇(𝑥𝑥,𝑦𝑦), the traditional MMD 
loss [31] can be formulated as follows: 

ℒ𝑀𝑀𝑀𝑀𝑀𝑀(𝒫𝒫𝑠𝑠𝑛𝑛 ,𝒫𝒫𝑇𝑇) = 𝐷𝐷�𝜘𝜘(𝒫𝒫𝑠𝑠𝑛𝑛 ,𝒫𝒫𝑇𝑇) = �𝜙𝜙�𝑠𝑠𝑛𝑛 − 𝜙𝜙�𝑇𝑇�𝜘𝜘
2 , (1) 

𝜙𝜙�𝑎𝑎 = 1
|𝐵𝐵𝑎𝑎|

∑ 𝜙𝜙𝑖𝑖𝑎𝑎 ,|𝐵𝐵𝑎𝑎|
𝑖𝑖=1   (2) 

where 𝜙𝜙𝑖𝑖𝑎𝑎 denotes the average feature mappings of input samples 
within the batch 𝐵𝐵𝑎𝑎 to the reproducing Kernel Hilbert Space 𝜘𝜘 and 
𝑎𝑎 represents the target domain (𝑇𝑇) or the 𝑛𝑛-th source (𝑆𝑆𝑛𝑛). 

Despite its satisfactory performance, traditional MMD usually 
averages the distances among samples with uniform weights, thus 
neglecting the varying importance of different samples in the 
alignment. In the CMFER task, some hard-to-align samples, 
exhibiting higher uncertainty and located near decision boundaries, 
may offer greater insights into the domain alignment and 
knowledge transfer, thus warranting increased attention. Thus, we 
propose the sample-level inter-domain (SID) alignment with a 
hardness-aware weighting function. Specifically, given an image 
𝑥𝑥𝑖𝑖𝑎𝑎  and its prediction 𝑃𝑃𝑀𝑀,𝑖𝑖

𝑎𝑎  with 𝐽𝐽  probability values {𝑃𝑃𝑀𝑀,𝑖𝑖
𝑎𝑎,𝑗𝑗}𝑗𝑗=1

𝐽𝐽 , 
where 𝑀𝑀 = 𝐺𝐺 𝑜𝑜𝑜𝑜 𝐿𝐿  denotes different branches and 𝐽𝐽  denotes the 
number of classes, we use a measurement term 𝛺𝛺𝑀𝑀(∙) to adaptively 
evaluate the instantaneous hardness of 𝑥𝑥𝑖𝑖𝑎𝑎 in the current iteration: 

𝛺𝛺𝑀𝑀(𝑥𝑥𝑖𝑖𝑎𝑎) = �∑ 𝟙𝟙[𝑃𝑃𝑀𝑀,𝑖𝑖
𝑎𝑎,𝑗𝑗 ≠ 𝑀𝑀𝑎𝑎𝑥𝑥�𝑃𝑃𝑀𝑀,𝑖𝑖

𝑎𝑎 � 𝑜𝑜𝑜𝑜 𝑗𝑗 ≠ 𝑜𝑜𝑟𝑟𝑒𝑒]�𝑃𝑃𝑀𝑀,𝑖𝑖
𝑎𝑎,𝑗𝑗�

2
,𝐽𝐽

𝑗𝑗=1   (3) 

where 𝟙𝟙[∙]  is a binary indicator and 𝑀𝑀𝑎𝑎𝑥𝑥(∙)  represents the 
maximum function. From both local and global views, 𝛺𝛺𝑀𝑀(∙) aims 
to exclude the maximum probability in 𝑥𝑥𝑖𝑖𝑇𝑇  or set the real class 
element (rce) to 0 in 𝑥𝑥𝑖𝑖

𝑠𝑠𝑛𝑛  and then evaluate the 𝐿𝐿2-norm of the 
remaining elements. This prioritizes uncertain target sample 𝑥𝑥𝑖𝑖𝑇𝑇 or 
source sample 𝑥𝑥𝑖𝑖

𝑠𝑠𝑛𝑛  by assigning them with higher weights. 
Subsequently, 𝛺𝛺𝑀𝑀(𝑥𝑥𝑖𝑖𝑎𝑎)  is normalized in 𝐵𝐵𝑎𝑎  to determine the 
relative weights 𝐻𝐻𝑀𝑀(𝑥𝑥𝑖𝑖𝑎𝑎) to facilitate batch-wise optimization: 

𝐻𝐻𝑀𝑀(𝑥𝑥𝑖𝑖𝑎𝑎) =
𝛺𝛺𝑀𝑀(𝑥𝑥𝑖𝑖𝑎𝑎)

∑ 𝛺𝛺𝑀𝑀�𝑥𝑥𝑘𝑘𝑎𝑎�𝑥𝑥𝑘𝑘𝑎𝑎∈𝐵𝐵
𝑎𝑎

. (4) 

Finally, 𝐻𝐻𝑀𝑀(∙) is utilized to modify the traditional MMD loss as 
our sample-level inter-domain alignment loss ℒ𝑠𝑠𝑖𝑖𝑖𝑖𝑀𝑀 : 

ℒ𝑠𝑠𝑖𝑖𝑖𝑖𝑀𝑀 (𝒫𝒫𝑠𝑠𝑛𝑛 ,𝒫𝒫𝑇𝑇) = �𝜙𝜙�𝐻𝐻
𝑠𝑠𝑛𝑛 − 𝜙𝜙�𝐻𝐻𝑇𝑇�𝜘𝜘

2 , (5) 

𝜙𝜙�𝐻𝐻𝑎𝑎 = 1
|𝐵𝐵𝑎𝑎|

∑ 𝐻𝐻𝑀𝑀(𝑥𝑥𝑖𝑖𝑎𝑎) ∙ 𝜙𝜙𝑖𝑖𝑎𝑎.|𝐵𝐵𝑎𝑎|
𝑖𝑖=1   (6) 

Notably, 𝐻𝐻(∙)  can be seamlessly integrated into other 
discrepancy-based constraints in a plug-and-play way for providing 
useful perceptions about sample importance. 
Cluster-level Inter-domain Alignment. Existing discrepancy-
based inter-domain alignments [30, 31] may blindly align samples 
with different classes closer, potentially impeding the model from 
learning discriminative features. Thus, we introduce a cluster-level 
inter-domain alignment to better group samples based on their 
categories. We use the real label 𝑦𝑦𝑖𝑖

𝑠𝑠𝑛𝑛=𝑘𝑘 and pseudo label 𝑦𝑦�𝑖𝑖𝑇𝑇=�̂�𝑑 to 
denote the category attributes of the source sample 𝑥𝑥𝑖𝑖

𝑠𝑠𝑛𝑛 and target 
sample 𝑥𝑥𝑖𝑖𝑇𝑇, respectively. Then, we minimize the distances between 
source-target samples of the same category (�̂�𝑑 = 𝑘𝑘) and maximize 
them for samples of different categories (�̂�𝑑 ≠ 𝑘𝑘). This process is 
summarized as a cluster-level inter-domain alignment loss ℒ𝑚𝑚𝑖𝑖𝑖𝑖: 

ℒ𝑚𝑚𝑖𝑖𝑖𝑖𝑀𝑀 �𝒫𝒫𝑠𝑠𝑛𝑛 ,𝒫𝒫𝑇𝑇� = �𝜙𝜙�𝐻𝐻,𝑘𝑘
𝑠𝑠𝑛𝑛 − 𝜙𝜙�𝐻𝐻,𝑖𝑖�=𝑘𝑘

𝑇𝑇 �
𝜘𝜘

2
− �𝜙𝜙�𝐻𝐻,𝑘𝑘

𝑠𝑠𝑛𝑛 − 𝜙𝜙�𝐻𝐻,𝑖𝑖�≠𝑘𝑘
𝑇𝑇 �

𝜘𝜘

2
, (7) 

𝜙𝜙�𝐻𝐻,𝑘𝑘
𝑠𝑠𝑛𝑛 = 1

�𝐵𝐵𝑘𝑘
𝑠𝑠𝑛𝑛�
∑ 𝜙𝜙�𝐻𝐻,𝑖𝑖

𝑆𝑆𝑛𝑛 ,
�𝐵𝐵𝑘𝑘

𝑆𝑆𝑛𝑛�
𝑖𝑖=1  𝜙𝜙�𝐻𝐻,𝑖𝑖�

𝑇𝑇 = 1
�𝐵𝐵𝑑𝑑�

𝑇𝑇�
∑ 𝜙𝜙�𝐻𝐻,𝑖𝑖

𝑇𝑇 ,�𝐵𝐵𝑑𝑑�
𝑇𝑇�

𝑖𝑖=1   (8) 

where the hardness-aware function 𝐻𝐻(∙) is retained to dynamically 
balance the importance of each sample. As ℒ𝑚𝑚𝑖𝑖𝑖𝑖 optimizes, we can 
achieve a more fine-grained alignment to foster an intra-class 
convergence while promoting inter-class divergence.  

Finally, the dual-level inter-domain alignment is performed in 
both global and local branches at the same time, thus deriving the 
following inter-domain loss ℒ𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖: 

ℒ𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖(𝒫𝒫𝑠𝑠𝑛𝑛 ,𝒫𝒫𝑇𝑇) = ∑ ��ℒ𝑠𝑠𝑖𝑖𝑖𝑖𝐺𝐺 + ℒ𝑠𝑠𝑖𝑖𝑖𝑖𝐿𝐿 � + 𝜆𝜆(ℒ𝑚𝑚𝑖𝑖𝑖𝑖𝐺𝐺 +𝑁𝑁
𝑛𝑛=1

ℒ𝑚𝑚𝑖𝑖𝑖𝑖𝐿𝐿 )�,  
(9) 

where 𝜆𝜆  is a hyper-parameter for balancing these two terms. 
Notably, for all domains, we include only those samples whose 
maximum prediction probability exceeds a predefined reliability 
threshold 𝜖𝜖 , thus preventing unreliable knowledge transfer from 
excessively uncertain samples. 

3.4 Multi-view Intra-domain Alignment 
Multi-view Clustering Consistency Constraint: The intra-
domain shifts within the FER target domain are typically 
characterized by noisy samples near the decision boundary, which 
may lead to a dispersed target feature space, thereby introducing 
prediction bias. To tackle this, we propose a novel multi-view 
clustering consistency constraint, aiming to shape a discriminative 
and concentrated target feature space. In this space, clusters with 
the same class predicted by classifiers of different branches should 
remain similar, while those of different classes should be distinct. 
Specifically, given the predictions 𝑃𝑃𝐺𝐺,𝐵𝐵

𝑇𝑇  and 𝑃𝑃𝐿𝐿,𝐵𝐵
𝑇𝑇  of all target 

samples in the target batch 𝐵𝐵𝑇𝑇 from the global and local branches, 
we build a Multi-view Prediction Consistency (MPC) matrix to 
evaluate the consistency between these predictions with the 
following formulation: 

𝑀𝑀𝑃𝑃𝐶𝐶 = (𝑃𝑃𝐺𝐺,𝐵𝐵
𝑇𝑇 )′ ⊗ 𝑃𝑃𝐿𝐿,𝐵𝐵

𝑇𝑇 .  (10) 



  
 

 

Drawing on the cluster assumption [33], we consider target 
samples in 𝐵𝐵𝑇𝑇  as a specific class (i.e., class 𝑟𝑟 ) and their 
corresponding prediction probabilities in 𝐵𝐵𝑇𝑇 as a batch-wise cluster 
representation for class 𝑟𝑟, which is captured by the 𝑟𝑟-th column in 
𝑃𝑃𝐺𝐺,𝐵𝐵
𝑇𝑇  or 𝑃𝑃𝐿𝐿,𝐵𝐵

𝑇𝑇 . To reach the intra-domain alignment, we enhance the 
consistency among cluster representations for identical class 
assignments (i.e., higher diagonal values in MPC) and 
inconsistency among them with different class assignments (i.e., 
lower off-diagonal values in MPC). This process can be represented 
as the following multi-view clustering consistency loss ℒ𝑚𝑚𝑚𝑚𝑚𝑚: 

ℒ𝑚𝑚𝑚𝑚𝑚𝑚 = 1
2𝑚𝑚
�𝑆𝑆(‖𝑀𝑀𝑃𝑃𝐶𝐶‖ − 𝐼𝐼) + 𝑆𝑆(‖𝑀𝑀𝑃𝑃𝐶𝐶′‖ − 𝐼𝐼)�,  (11) 

where 𝑆𝑆(∙) calculates the sum of absolute values across all matrix 
elements, 𝐼𝐼 ∈ ℝ𝐾𝐾×𝐾𝐾 represents an identity matrix, and ‖∙‖ denotes 
a normalization function [34]. Minimizing ℒ𝑚𝑚𝑚𝑚𝑚𝑚  facilitates the 
well-separated clusters of different expressions in the target feature 
space and encourages consistent predictions from dual branches. 
Multi-view Voting Scheme: Considering the high-quality pseudo 
labels can provide more accurate guidance, we propose a multi-
view scheme with two voting conditions to select them: (i) global 
and local branch makes consistent predictions from different views, 
i.e., 𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥�𝑃𝑃𝐺𝐺,𝑖𝑖

𝑇𝑇 � = 𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥�𝑃𝑃𝐿𝐿,𝑖𝑖
𝑇𝑇 � ; (ii) at least one branch 

achieves higher confidence than a threshold 𝜏𝜏, i.e., 𝑀𝑀𝑎𝑎𝑥𝑥(𝑃𝑃𝐺𝐺,𝑖𝑖
𝑇𝑇 ) > 𝜏𝜏 

or 𝑀𝑀𝑎𝑎𝑥𝑥(𝑃𝑃𝐿𝐿,𝑖𝑖
𝑇𝑇 ) > 𝜏𝜏. When the two points are all satisfied, the high-

quality pseudo-label 𝑦𝑦�𝑖𝑖𝑇𝑇  is selected. Additional supervision is then 
provided to 𝑃𝑃𝐺𝐺,𝑖𝑖

𝑇𝑇  and 𝑃𝑃𝐿𝐿,𝑖𝑖
𝑇𝑇  using a multi-view voting loss ℒ𝑚𝑚𝑚𝑚𝑚𝑚: 

ℒ𝑚𝑚𝑚𝑚𝑚𝑚 = 1
|𝐵𝐵𝑇𝑇|

∑ 𝟙𝟙�𝑀𝑀𝑀𝑀(𝑃𝑃𝐺𝐺,𝑖𝑖
𝑇𝑇 ,𝑃𝑃𝐿𝐿,𝑖𝑖

𝑇𝑇 )� × �𝐶𝐶𝐸𝐸�𝑃𝑃𝐺𝐺,𝑖𝑖
𝑇𝑇 ,𝑦𝑦�𝑖𝑖𝑇𝑇� +�𝐵𝐵𝑇𝑇�

𝑖𝑖=1

𝐶𝐶𝐸𝐸�𝑃𝑃𝐿𝐿,𝑖𝑖
𝑇𝑇 ,𝑦𝑦�𝑖𝑖𝑇𝑇��,  

(12) 

where 𝑀𝑀𝑀𝑀(∙) is a function to determine whether the two voting 
conditions are simultaneously met. By incorporating ℒ𝑚𝑚𝑚𝑚𝑚𝑚  and 
ℒ𝑚𝑚𝑚𝑚𝑚𝑚, LA-CMFER is guided to achieve a meaningful knowledge 

interaction between the two branches, promoting mutual 
enhancement and facilitating the development of a more robust 
target feature space. 

3.5 Training Objective 
The whole training objective contains five parts: (1) supervised loss 
ℒ𝑠𝑠𝑠𝑠𝑠𝑠 for labeled source samples, (2) inter-domain loss ℒ𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖, (3) 
multi-view clustering consistency loss ℒ𝑚𝑚𝑚𝑚𝑚𝑚 , and (4) multi-view 
voting loss ℒ𝑚𝑚𝑚𝑚𝑚𝑚 for unlabeled target samples. 

The supervised loss ℒ𝑠𝑠𝑠𝑠𝑠𝑠 can be represented as follows: 
ℒ𝑠𝑠𝑠𝑠𝑠𝑠 = 1

𝑁𝑁
∑ �𝐶𝐶𝐸𝐸�𝑃𝑃𝐿𝐿,𝑖𝑖

𝑠𝑠𝑛𝑛,𝑦𝑦𝑖𝑖
𝑠𝑠𝑛𝑛� + 𝐶𝐶𝐸𝐸(𝑃𝑃𝐺𝐺,𝑖𝑖

𝑠𝑠𝑛𝑛 ,𝑦𝑦𝑖𝑖
𝑠𝑠𝑛𝑛)�𝑁𝑁

𝑛𝑛=1 ,  (13) 
where 𝐶𝐶𝐸𝐸(∙) denotes the cross-entropy loss. 

Finally, the training objective of LA-CMFER is formulated as: 
ℒ𝑖𝑖𝑡𝑡𝑖𝑖𝑎𝑎𝑡𝑡 = ℒ𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛼𝛼ℒ𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽ℒ𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛾𝛾ℒ𝑚𝑚𝑚𝑚𝑚𝑚,  (14) 

where 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾 are three weighted hyper-parameters. 
The training stage of LA-CMFER is summarized in Algorithm 

1. In the inference stage, we take the prediction with a higher 
probability from the two branches as the final result [51]. 

4 Experiments and Result Analysis 

4.1 Experimental Setup 
Datasets. To verify the performance of the proposed method, we 
follow the experiment settings in [19] and involve six commonly 
used FER datasets, including three lab-controlled datasets CK+ [7], 
JAFFE [22], and Oulu-CASIA [35] and three Internet-collected 
large-scale field datasets AffectNet [6], RAF-DB [8], and FER-
2013 [21]. Specifically, CK+ provides 593 annotated video 
samples from 123 subjects and uses the last three frames with six 
basic emotions (i.e., anger, disgust, fear, surprise, happy, and sad) 
and neutral emotions, finally gaining a total of 1,236 images. 
JAFFE includes 213 facial expression images from 10 Japanese 
women. Oulu-CASIA (Oulu) captures 2988 face images by 
choosing the last three frames with normal lighting for basic 
expressions and the first frame for neutral expressions. AffectNet 
stands as the largest facial expression dataset to date. Following 
[19], we curate up to 5,000 facial images for each emotion category, 
resulting in a total of 33,793 training images and 3,500 testing 
images. RAF-DB is a real-world FER dataset that has 12,271 and 
3,068 images for training and testing, respectively. FER-2013, 
compiled via the Google image search engine, contains 35,887 

Algorithm 1: Training procedure of our LA-CMFER. 
1: Input: |𝑆𝑆𝑛𝑛| source datasets 𝒟𝒟𝑆𝑆𝑛𝑛 = �(𝑥𝑥𝑖𝑖

𝑠𝑠𝑛𝑛 ,𝑦𝑦𝑖𝑖
𝑠𝑠𝑛𝑛)�

𝑖𝑖=1

|𝑆𝑆𝑛𝑛|
 with their 

corresponding expression labels and the single target dataset 
𝒟𝒟𝑇𝑇 = {𝑥𝑥𝑖𝑖𝑇𝑇}𝑖𝑖=1

|𝑇𝑇|  without labels. 
2: Initialize: Initialize the network parameters: 𝜃𝜃𝐸𝐸 for 𝐸𝐸, 𝜃𝜃𝐴𝐴𝐺𝐺 for 𝐴𝐴𝐺𝐺, 

𝜃𝜃𝐴𝐴𝐿𝐿 for 𝐴𝐴𝐿𝐿, 𝜃𝜃𝐶𝐶𝐺𝐺 for 𝐶𝐶𝐺𝐺, 𝜃𝜃𝐶𝐶𝐿𝐿 for 𝐶𝐶𝐿𝐿. 
3: for 𝑗𝑗 = 0 to 𝑖𝑖𝑖𝑖𝑒𝑒𝑜𝑜_𝑖𝑖𝑜𝑜𝑖𝑖𝑎𝑎𝑡𝑡 do 
5:       Take out a batch of samples 𝐵𝐵𝑠𝑠𝑛𝑛  and 𝐵𝐵𝑇𝑇 from (𝑥𝑥𝑖𝑖

𝑠𝑠𝑛𝑛 ,𝑦𝑦𝑖𝑖
𝑠𝑠𝑛𝑛) and 𝒟𝒟𝑇𝑇 

6:        Compute 𝑃𝑃𝐺𝐺,𝑖𝑖
𝑠𝑠𝑛𝑛 = 𝐶𝐶𝐺𝐺(𝐴𝐴𝐺𝐺(𝐸𝐸(𝑥𝑥𝑖𝑖

𝑠𝑠𝑛𝑛)), 𝑃𝑃𝐿𝐿,𝑖𝑖
𝑠𝑠𝑛𝑛 = 𝐶𝐶𝐿𝐿(𝐴𝐴𝐿𝐿(𝐸𝐸(𝑥𝑥𝑖𝑖

𝑠𝑠𝑛𝑛)) 𝑃𝑃𝐺𝐺,𝑖𝑖
𝑇𝑇 =

𝐶𝐶𝐺𝐺(𝐴𝐴𝐺𝐺�𝐸𝐸(𝑥𝑥𝑖𝑖𝑇𝑇)�, and 𝑃𝑃𝐿𝐿,𝑖𝑖
𝑇𝑇 = 𝐶𝐶𝐿𝐿(𝐴𝐴𝐿𝐿(𝐸𝐸(𝑥𝑥𝑖𝑖𝑇𝑇)) 

7:        Compute the relative hardness weights 𝐻𝐻𝑀𝑀(𝑥𝑥𝑖𝑖𝑎𝑎) where 𝑀𝑀 =
𝐺𝐺 𝑜𝑜𝑜𝑜 𝐿𝐿, 𝑎𝑎 = 𝑆𝑆𝑛𝑛 𝑜𝑜𝑜𝑜 𝑇𝑇 with Eq. (4) 

8:        Compute the sample-level inter-domain alignment loss ℒ𝑠𝑠𝑖𝑖𝑖𝑖𝑀𝑀  
where 𝑀𝑀 = 𝐺𝐺 𝑜𝑜𝑜𝑜 𝐿𝐿 with Eq. (5) 

9:        Compute the cluster-level inter-domain alignment loss ℒ𝑚𝑚𝑖𝑖𝑖𝑖𝑀𝑀  
where 𝑀𝑀 = 𝐺𝐺 𝑜𝑜𝑜𝑜 𝐿𝐿 with Eq. (7) 

10:      Compute the total inter-domain loss ℒ𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 with Eq. (9)  
11:      Compute the multi-view clustering consistency loss ℒ𝑚𝑚𝑚𝑚𝑚𝑚 with 

Eq. (11) 
12:       if 𝟙𝟙�𝑀𝑀𝑀𝑀(𝑃𝑃𝐺𝐺,𝑖𝑖

𝑇𝑇 ,𝑃𝑃𝐿𝐿,𝑖𝑖
𝑇𝑇 )� 

13:             Compute 𝑦𝑦�𝑖𝑖𝑇𝑇 and multi-view voting loss ℒ𝑚𝑚𝑚𝑚𝑚𝑚 with Eq. (12) 
14:       Compute the supervised loss ℒ𝑠𝑠𝑠𝑠𝑠𝑠 with Eq. (13) 
15:       Update {𝜃𝜃𝐸𝐸 ,𝜃𝜃𝐴𝐴𝐺𝐺 ,𝜃𝜃𝐴𝐴𝐿𝐿,𝜃𝜃𝐶𝐶𝐺𝐺,𝜃𝜃𝐶𝐶𝐿𝐿} by minimizing Eq. (14) 
16: end for 
 

 

 
Fig. 3. Examples from the six FER datasets. 

(A) CK+ (B) JAFFE (C) Oulu

(D) AffectNet (E) RAF-DB (F) FER-2013



  
 

 
 

images of different facial expressions and uses 28,709 images for 
training and 3,589 images for testing. Intuitively, some samples 
from each dataset are given in Fig. 3. 

For label settings, we select the subset with six basic and neutral 
emotion labels from each dataset, and the training and testing sets 
of the lab-controlled datasets are the same. In our experiments, each 
dataset is sequentially regarded as a domain and we utilize the 
symbol ‘→A’ to represent that dataset A is the target domain while 
other datasets serve as source domains. 
Implementation Details. We conduct all our experiments on two 
GeForce RTX 3090 GPUs with the PyTorch toolbox. Same as [19], 
face images are first detected and aligned by the RetinaFace [36] 
and further resized to 224 ×224. We use the conv1∼conv3 layers 
of ResNet-18 pre-trained on ImageNet [37] as the shared encoder 
𝐸𝐸 . The details of the global and local branches are in 
Supplementary Materials. For all datasets, we train the whole 
framework for 20,000 iterations with a learning rate of 0.01 and a 
batch size of 128. The setting of the optimizer and learning 
schedule are kept the same with [38]. In our experiments, we 
maintain a fixed random seed over 3 runs and report the mean 
results. The hyper-parameter 𝜆𝜆 is empirically set as 0.02. For the 
hyper-parameters in Eq. (14), based on our trial studies, we set 𝛼𝛼 
as 0.4 for FER-2013 and AffectNet and 0.1 for the rest. Besides, we 
set 𝛽𝛽 as 0.5 and 𝛾𝛾 as 0.1. The reliability threshold 𝜖𝜖 is set as 0.4. To 
select reliable pseudo labels, 𝜏𝜏 is set as 0.9 [39, 40]. 

4.2 Comparison Experiments 
To verify the effectiveness of the proposed method, we compare 
our method with state-of-the-art (SOTA) Single-source DA 
methods (SDA) and MDA methods. For SDA methods, two 
protocols are adopted: (1) Single Best, which reports the best result 
among all source domains, and (2) Source Combine, which naively 
combines all source domains and then uses the SDA methods. 
Specifically, Source-Only refers to directly transferring the model 
trained in source domains to the target domain. We select (i) the 
traditional SDA methods: DAN [4], DANN [41], ADDA [42], and 

CD-FER method AGLRLS [14] with both protocols. (ii) The CD-
FER methods: LGDSTL [13], DMSRL [43], and RANDA [11] are 
chosen as additional comparison methods for Single Best. For 
MDA methods, we choose (iii) the typical MDA methods MDAN 
[29], M3 SDA [44], and MJD [45]; and (iv) the latest CMFER 
method DUML [19]. To ensure a fair comparison, the results of 
these methods are obtained either from their respective papers or 
by reimplemented using their released code. 

The comparison results on different FER datasets are reported in 
Tab.1 where our LA-CMFER gains the best average accuracy of 
69.32% and largely surpasses the second-best DUML by 1.59%. In 
particular, all Source Combine methods are relatively unpromising, 
as the inter-domain shifts impair effective knowledge transfer. On 
the ‘→CK+’ and ‘→FER-2013’ tasks, the SOTA CDFER method 
AGLRLS experiences considerable performance degradation (i.e., 
62.40% average accuracy) when adapting from single-source to 
multi-source scenarios. This underscores the impracticality of 
solely relying on the Source Combine strategy to address CMFER 
tasks. Besides, by tackling the inter-domain shifts, MDA methods 
gain better performance where MJD obtains 62.59% average 
accuracy and reaches 68.29% and 63.45% on the ‘→RAF-DB’ and 
‘→Oulu’ task, respectively. As a well-designed SOTA CMFER 
method, DUML achieves the second-best overall performance. 
Compared to it, our LA-CMFER still keeps its leading accuracy. 
Especially, on the challenging ‘→RAF-DB’ task, LA-CMFER 
remarkably surpasses DUML by 4.62%. These experimental results 
have verified the superior performance of our LA-CMFER. 

4.3 Analytical Experiments 
Contributions of Key Components: To study the contributions of 
key components in our LA-CMFER, we progressively conduct 
ablation experiments on all FER datasets. For clarity, ‘Baseline’ 
means directly transferring the dual-branch model trained in the 
source domains to the target domain with only supervised loss ℒ𝑠𝑠𝑠𝑠𝑠𝑠. 
‘MMD’ indicates using the traditional MMD loss to assist the 
network to alleviate the inter-domain shift. The experimental 

Table 1: Comparisons (%) with SOTAs across multidomain FER datasets. 
Protocols Methods Venues →JAFFE →RAF-DB →CK+ →Oulu →AffectNet →FER-2013 Avg 

Single Best 

Source-Only - 59.15 58.74 77.58 54.21 49.31 51.46 55.67 
LGDSTL [13] TAC 2022 - 45.13 66.67 - - 33.88 - 
RANDA [11] TKDE 2021 - 62.48 88.71 - 52.34 - - 
DMSRL [43] TMM 2022 68.54 - 88.51 64.38 52.54 58.63 - 
AGLRLS [14] TMM 2024 61.97 - 87.60 - - 60.68 - 

DAN [4] ICML 2015 59.62 59.35 76.46 56.35 51.57 52.72 59.35 
DANN [41] JMLR 2016 61.03 60.53 77.43 54.23 50.29 54.67 59.67 
ADDA [42] CVPR 2017 62.91 61.47 80.02 57.50 51.89 53.30 61.18 

Source 
Combine 

Source-Only - 53.52 60.10 77.83 58.44 41.86 42.24 55.67 
DAN [4] ICML 2015 54.75 62.32 80.34 59.48 47.46 50.52 59.14 

DANN [41] JMLR 2016 60.56 64.21 79.85 60.78 49.86 51.46 60.95 
ADDA [42] CVPR 2017 61.50 64.77 83.17 62.86 46.23 51.99 61.75 

AGLRLS [14] TMM 2024 60.56 65.32 83.80 61.91 49.54 53.27 62.40 

Multi-Source 

MDAN [29] NIPS 2018 60.09 63.36 79.29 62.24 48.23 51.16 60.73 
M3SDA [44] ICCV 2019 51.17 65.41 72.57 55.26 46.37 47.62 56.40 

MJD [45] PR 2024 61.03 68.29 80.48 63.45 49.83 52.43 62.59 
DUML [19] MM 2023 69.95 73.24 88.57 65.60 52.46 56.56 67.73 

LA-CMFER (ours) 2024 70.42 77.86 90.48 66.50 53.26 57.40 69.32 
 



  
 

 

results are shown in Tab.2 where we use the initial letters of the 
dataset as its reference for the space limitations. As seen, each 
constraint loss positively contributes to performance enhancements 
in most cases. With MMD, (B) achieves 8.29% mean promotion by 
narrowing the inter-domain shift within the dual-branch framework. 
Compared to (B), the sample-level inter-domain alignment with 
hardness-aware weighting function 𝐻𝐻(∙), i.e., (C), further enhances 
the accuracy from 65.11% to 67.03%. Besides, with the additional 
cluster-level alignment, (D) gains notable promotions on ‘→
JAFFE’ (↑1.41%) and ‘→Oulu’ (↑1.33%) tasks, respectively. Then, 
with ℒ𝑚𝑚𝑚𝑚𝑚𝑚  and ℒ𝑚𝑚𝑚𝑚𝑚𝑚 in the multi-view intra-domain alignment, we 
obtain mean accuracies of 68.67% and 69.32%, respectively. 
Impact of Different Inter-domain Alignment Strategies: To 
explore the impact of different inter-domain alignment strategies, 
we compare our dual-level inter-domain alignment with the widely 
used adversarial training strategy [19]. To accomplish adversarial 
training, rather than employing our dual-level inter-domain 
alignment, we use two discriminators following our global and 
local branches to distinguish whether the features come from the 
source domain or the target domain (denoted as ‘Adv variant’). As 
seen in Tab.3, our dual-level inter-domain alignment achieves 
enhancements on all tasks, particularly for the ‘→O’ (↑4.65%), ‘→
A’ (↑ 5.27 %), and ‘→F’ (↑ 5.38%) tasks. These results strongly 
reveal that, unlike adversarial training, which only aligns multiple 
domains at a feature level, our method can prioritize hard samples 
with abundant knowledge and further leverage label information, 
thus enabling a more fine-grained alignment with higher accuracy.  

Further, in the domain alignment, the distances among the data 
distributions of multiple domains can give a direct evaluation of the 

alignment effectiveness. Thus, we adopt several distance metrics, 
involving (A) intra-class L2 distance (intra-L2), (B) intra-class 
variance (intra-var), (C) inter-class L2 distance (inter-L2), and (D) 
distance ratio 𝑜𝑜(𝑜𝑜= inter-L2/intra-L2). The comparisons among the 
Adv variant, DUML [19], and our LA-CMFER are shown in Tab.4. 
As seen, compared to both the Adv variant and DUML, our LA-
CMFER achieves the least intra-class distances (0.69 for sources 
and 1.08 for target) and the largest inter-class distances (1.50 for 
sources and 1.32 for target). Such remarkable superiorities validate 
that our LA-CMFER can effectively promote inter-class variability 
and intra-class compactness, thus reaching the best accuracy 
(69.32%). 
Analysis of the Global-Local Branch Architecture: To capture 
both the global knowledge from the full image and local expression 
details, LA-CMFER is built with a global-local branch architecture. 
To study its superiority, we compared five different architectures: 
(i) only global branch (denoted as ‘Global’), (ii) only local branch 
(denoted as ‘Local’), (iii) domain-fusion design where the features 
from the global and local branches are concatenated and fed into a 
single classifier (denoted as ‘DF Design’), (iv) domain-specific 
design [19, 30] where a global branch, as well as a local branch, are 
adopted to each source domain and the final results come from a 
weighted of all classifiers (denoted as ‘DS Design’), and (v) our 
global-local branch with only a global classifier and a local 
classifier. The results are summarized in Fig. 4. DF Design and DS 
Design sometimes perform worse than Global or Local. This could 
be due to the distortion of important local and global information, 
as well as interference from the differences in distribution among 
multiple sources and their insufficient information interactions. 
Overall, compared to DS Design, like DUML, our design global-
local branch architecture presents a simpler and lighter architecture 
with no additional discriminators and domain-specific modules, 
and can better handle the CMFER task adeptly and effectively 
transfer knowledge across domains. 
Impact of Different Cross-view Consistency Constraints: In the 
intra-domain alignment, the consistency loss enforces the identical 
predictions of the global and local branches. Here, we explore the 
performance disparities by using four multi-view consistency 
constraints in our LA-CMFER network: (i) Kullback-Leibler (KL) 
divergence, (ii) L1 distance (), (iii) Mean Squared Error (MSE), and 
(iv) our proposed multi-view clustering consistency loss (ℒ𝑚𝑚𝑚𝑚𝑚𝑚  ). 
Experimental results on each task are displayed in Fig. 5. As seen, 
KL divergence achieves the second-best accuracies on almost all 
tasks while our ℒ𝑚𝑚𝑚𝑚𝑚𝑚  surpasses it largely. This verifies that ℒ𝑚𝑚𝑚𝑚𝑚𝑚  

Table 3: Comparison results (%) of different inter-domain 
alignment strategies. 

Strategy →J →R →C →O →A →F Avg 
Adv variant 68.54 77.76 89.81 61.85 47.99 52.02 66.33 

Ours 70.42 77.86 90.48 66.50 53.26 57.40 69.32 
 

Table 4: Quantitative analysis of features distances achieved 
by Adv variant, DUML, and our LA-CMFER, respectively. 

Methods Adv variant DUML Ours 
Domain Sources Target Sources Target Sources Target 

Accuracy (%↑) - 66.33 - 67.73 - 69.32 
(A) Intra-L2 (↓) 0.85 1.40 0.78 1.35 0.69 1.08 
(B) Intra-var (↓) 0.02 0.02 0.02 0.02 0.02 0.02 
(C) Inter-L2 (↑) 1.32 1.02 1.48 1.06 1.50 1.32 
(D) 𝑜𝑜 (↑) 1.55 0.73 1.90 0.78 2.17 1.22 
 

Table 2: Ablation studies (%) on the contributions of our key 
components. 

Variants →J →R →C →O →A →F Avg 
(A) Baseline 53.52 60.05 84.76 58.40 41.81 42.35 56.82 
(B) w. MMD 61.03 73.31 89.05 63.92 50.40 52.94 65.11 
(C) w. 𝐻𝐻(∙) 66.67 75.88 89.52 63.59 51.03 55.48 67.03 
(D) w. ℒ𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 68.08 76.38 89.04 64.92 51.43 56.28 67.69 
(E) w. ℒ𝑚𝑚𝑚𝑚𝑚𝑚 69.48 77.37 89.71 65.93 52.69 56.84 68.67 
(F) w. ℒ𝑚𝑚𝑚𝑚𝑚𝑚 70.42  77.86 90.48 66.50 53.26 57.40 69.32 
 

 
Fig. 4. Experimental results about different global or local 
architectures on the (a) ‘→CK+’ and (b) ‘→RAF-DB’ tasks. 

 
 

 



  
 

 
 

better fosters consistency between two branches, thus decreasing 
the prediction uncertainty and promoting intra-domain alignments. 
Impact of the Different Multi-view Pseudo Labeling Strategies: 
In the intra-domain alignment, LA-CMFER designs a multi-view 
voting scheme to provide additional supervision (ℒ𝑚𝑚𝑚𝑚𝑚𝑚) with the 
high-quality pseudo labels which are consistently generated by two 
branches and at least one branch achieves a higher confidence than 
the threshold 𝜏𝜏 . Here, we compare our scheme with a separate 
pseudo labeling (SPL) strategy where each branch is independently 
constrained with high-confidence pseudo labels within the branch. 
The experimental results are given in Tab.6. On the ‘→ CK+’ and 
‘→RAF-DB’ tasks, our multi-view voting scheme gains 5.05% and 
3.46% notable accuracy enhancements, respectively, thus verifying 
its superiority for global-local knowledge interaction. 
Hyper-parameter Sensitivity Tests: In Eq. (14), we utilize hyper-
parameters 𝛼𝛼 , 𝛽𝛽 , and 𝛾𝛾  to balance our four losses. Here, we 
perform hyper-parameter sensitivity tests to determine the optimal 
values of the three parameters, and the results are shown in Fig. 6. 
For the ‘→CK+’ task, when 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾 are respectively set as 0.1, 
0.5, and 0.1, we obtain the highest accuracies. And when 𝛼𝛼, 𝛽𝛽, and 
𝛾𝛾 are respectively set as 0.4, 0.5, and 0.1, the best results are gained 
on the ‘→FER-2013’ task. Thus, we set 𝛼𝛼 as 0.4 for the hard dataset 
FER-2013 and AffectNet while 0.1 for the rest. Besides, we set 𝛽𝛽 
and 𝛾𝛾 as 0.5 and 0.1, respectively. The hyper-parameter 𝜆𝜆 in Eq. (9) 
balances the sample- and cluster-level inter-domain alignment, and 
we try to find its optimal value. Since the cluster-level alignment 
only finetunes the feature space with label information, we select 
the value of 𝜆𝜆 from {0.01, 0.02, 0.04, 0.06, 0.08, 0.10}. As seen in 
Tab. 7, our model is robust to 𝜆𝜆 and when 𝜆𝜆 is set as 0.02, the best 
accuracies are gained. 
Feature visualizations: To assess the transferability of our model, 
we employ t-SNE visualizations to visualize the feature 
embeddings of different models on the ‘→CK+’ task. As illustrated 
in Fig. 7, the feature embeddings of the Baseline present a 

noticeable mismatch with the source domain. With domain-
uncertainty estimations, DUML better aligns the source domains to 
the target one but exhibits relatively poor intra-class compactness 
where the decision boundaries are not clear enough. In contrast, our 
LA-CMFER surpasses both Baseline and DUML, as evidenced by 
the formation of clusters with more distinct boundaries. This 
signifies the superior transferability of our approach which can 
effectively maintain the strong discrimination capability.  

Notably, more additional experiments including ‘Selections of 
Reliability Threshold ϵ’, ‘Number of Source Domains’, and so on 
are given in the Supplementary Materials. 

5 Conclusion 
In this paper, we present the LA-CMFER framework to achieve 

the CMFER task by addressing both inter- and intra-domain shifts. 
We first propose a dual-level (i.e., sample- and cluster-level) inter-
domain alignment method to narrow the inter-domain shifts by 
prioritizing hard-to-align samples and sufficiently using the class 
attributes. Then, to tackle the intra-domain shifts, a multi-view 
intra-domain alignment method is introduced to promote 
consistency between the global and local branches. Extensive 
experiments have verified the superiority of our LA-CMFER. 

 
Fig. 5. Experimental results about different cross-view 
consistency constraints on each task. 
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Table 6: Analytical experiment of different multi-view pseudo 
labeling strategies on the ‘→CK+’ and ‘→RAF-DB’ tasks. 

Strategy →CK+ →RAF-DB Avg 
SPL 85.43 74.40 79.92 
Ours 90.48 77.86 84.17 (↑4.25) 

 
 

 
Fig. 6. Experimental results about sensitivity test of hyper-
parameters 𝜶𝜶, 𝜷𝜷, and 𝜸𝜸. 
 

Table 7: Experimental results about different selections of 
hyper-parameter 𝝀𝝀 on the ‘→CK+’ and ‘→FER-2013’ tasks. 

 Hyper-parameter 𝜆𝜆 
 0.01 0.02 0.04 0.06 0.08 0.10 

Accuracy (%) on ‘→CK+’ 90.19 90.48 90.38 90.29 90.19 89.81 
Accuracy (%) on ‘→FER-2013’ 57.12 57.40 57.26 57.12 56.78 56.26 
 

(a) ‘→CK+’ task (b) ‘→FER-2013’ task

 
Fig. 7. T-SNE visualizations of feature embeddings on the ‘→
CK+’ task. The first row denotes domain information (Orange: 
source domain; Blue: target domain) while the second row 
represents category information (Each color denotes a class). 

(c) Ours(b) DUML(a) Baseline
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