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Abstract

Hyperparameters of Deep Learning (DL) pipelines are crucial for their performance.
While a large number of methods for hyperparameter optimization (HPO) have
been developed, they are misaligned with the desiderata of a modern DL researcher.
Since often only a few trials are possible in the development of new DL methods,
manual experimentation is still the most prevalent approach to set hyperparameters,
relying on the researcher’s intuition and cheap preliminary explorations. To resolve
this shortcoming of HPO for DL, we propose PriorBand, an HPO algorithm
tailored to DL, able to utilize both expert beliefs and cheap proxy tasks. Empirically,
we demonstrate the efficiency of PriorBand across a range of DL models and
tasks using as little as the cost of 10 training runs and show its robustness against
poor expert beliefs and misleading proxy tasks.

1 Introduction

The performance of Deep Learning (DL) models are crucially dependent on dataset-specific settings
of their hyperparameters, such as learning rate and weight decay. Therefore, hyperparameter opti-
mization (HPO) is an integral step in the development of DL models. In contrast to the application of
HPO to traditional ML models on fairly small datasets, current DL practitioners have the following
desiderata for a strategy for setting hyperparameters: (i) Strong performance under low budgets: With
ever-increasing resource requirements for training, a handful of model trainings needs to suffice to set
the many hyperparameters of DL pipelines; (ii) Incorporating evaluations of cheap proxy tasks, while
being robust to misleading ones; (iii) Integration of expert beliefs, while being robust to misspecified
ones; (iv) Handling of mixed type search space, i.e., categoricals and numericals; (v) Simplicity: This
includes conceptual simplicity (DL experts used to hand-tune their hyperparameters tend to dislike
complex black-box HPO algorithms) and implementation simplicity (for ease of integration).

Methods for HPO have been explored extensively [Feurer and Hutter, 2019, Bischl et al., 2021].
Nonetheless, all existing HPO methods fail to meet some of the desiderata above and are thus not of
practical relevance for DL developers. To resolve these shortcomings, we introduce PriorBand,
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a multi-fidelity optimization algorithm that integrates an expert’s prior distribution over optimal
hyperparameters in a simple yet efficient manner. The main contributions of our work are as follows:

1. We propose PriorBand, the first HPO algorithm that satisfies the above desiderata of DL
experts (Section 2). In its design, we strive for the smallest possible update to HyperBand
to effectively integrate human expert knowledge and accomplish low-budget efficiency.

2. We demonstrate the efficiency and robustness of PriorBand on a wide suite of DL tasks
using practically feasible compute budgets (Section 3).

In Section 4 we provide an overview of the related literature and in Section 5 we highlight possible
limitations and thus future directions of work. We release the code 2 for reproducing our experiments.

2 An approach for low budget hyperpameter optimization

The problem we consider is the minimization of an expensive to evaluate objective function f , i.e.,
x∗ ∈ argminx∈X f(x), where the search space X may constitute any combination of continuous
and discrete variables, including categorical variables (desideratum (iv)). To take desiderata (i)-(iii)
into account, we modify this basic problem setting to include cheap proxy tasks and expert beliefs.
The minimization of f represents the minimization of the loss of a DL model, the configuration x of
hyperparameters represents a point in the search space X , and the proxy tasks represent for example
the number of epochs used to train the model. To satisfy desideratum (v), we strive for the smallest
effective change to the simple and popular HyperBand algorithm [Li et al., 2018].

Multi-fidelity hyperparameter optimization with expert priors To utilize cheap proxy tasks on
the one hand, we introduce an additional fidelity variable z ∈ [zmin, zmax] to our objective function f ,
where the highest fidelity zmax is the desired fidelity. On the other hand, to incorporate expert beliefs,
we allow experts to define a distribution over the location of the optimum π(x) = P (f(x) is optimal),
i.e., the prior probability that x is optimal according to the user. Therefore, we introduce the problem
of multi-fidelity HPO with expert priors as

x∗ ∈ argmin
x∈X

f(x, zmax) given π, (1)

where f(x, · ) can be queried at the full range of [zmin, zmax]. Thus, we look to solve Equation 1
while adhering to restrictive budget constraints, using cheaper, lower-fidelity approximations where
f(x, z) ≈ f(x, zmax), and the expert prior π can be a valuable source of information to optimize f .

The PriorBand algorithm PriorBand is a minimal modification of the promi-
nent HyperBand algorithm [Li et al., 2017], which is given in Algorithm 1. It
only changes one function (shown in blue at line 5) from HyperBand, namely
get_hyperparameter_configurations, as follows. While HyperBand implements this
function by random sampling, we propose to replace this with a mix of random samples, samples from
the user prior, and samples close to the current best known configuration (the so-called incumbent).
In Algorithm 2, PriorBand starts each new SuccessiveHalving [Jamieson and Talwalkar,
2016] bracket by sampling η configurations from the vicinity of the current incumbent configuration
x̂; This vector of configurations is represented by Xnext in Algorithm 1. Subsequently, a bracket
with ni initial configurations adds the remaining ni/η configurations by sampling from the expert
prior π. The remaining required initial configurations are randomly sampled. We detail the sampling
of neighbors procedure, called sample_from_incumbent in Algorithm 2 in Appendix F.

3 Experiments

We answer three research questions — For details on our experimental setting see Appendix D.

RQ1: Is it enough to replace random samples by samples from the prior? To illustrate the chal-
lenges that may arise when combining expert priors with multi-fidelity optimization, we experiment
with variations of a synthetic function (Hartmann 3D) to study four possible cases: The combination
of good (high π(x∗)) or bad (low π(x∗)) expert priors, and good or bad inter-fidelity correlations.

2https://github.com/automl/mf-prior-exp/tree/vPaper-priorband
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Algorithm 1 The main algorithm for both HyperBand and PriorBand.

1: Input: Distribution over optimum π, halving parameter η, resource bounds [r,R].
2: smax ←− ⌊logη(R/r)⌋
3: for s ∈ {smax, . . . , 0} do
4: n←−

⌈
(smax+1)

s+1
· ηs

⌉
, r ←− Rη−s

5: Xnext ←− get_hyperparameter_configurations(π, η, n) ▷ Algorithm 2
6: x̂←− do_successive_halving(Xnext, s, n, r, R, η)
7: end for

Algorithm 2 PriorBand ensemble sampling
1: Input: Distribution over optimum π, halving parameter η, number of samples n
2: nπ ←− ⌊n/η⌋, nU ←− n− η − nπ ▷ Compute counts of remaining samples
3: if x̂ exists then
4: Xx̂

s ←− sample_from_incumbent(η, x̂) ▷ Draw η neighbors of x̂
5: end if
6: Xπ

s ←− sample_from_prior(nπ, π)
7: XU

s ←− sample_from_uniform(nU )

return
(
Xx̂

s ∪Xπ
s ∪XU

s

)

We first study the simplest extensions of random search (RS) and HyperBand (HB) with expert
priors one can think of: Replacing the uniform sampling of configurations in these approaches by
sampling from the prior. We improve this further by drawing the first sample from the mode of
the expert prior and refer to the resulting algorithms as RS+prior and HB+prior. Figure 1 shows
that this simple way of integrating the expert prior is not very helpful. While the prior boosts
performance when it is well located, it hurts substantially when it is poorly so, for both RS and
HB. This result confirms that simply substituting random sampling with prior-based sampling is
inadequate in handling multi-fidelity optimization.

RQ2: Does PriorBand alleviate the failure mode of prior sampling? Building on the findings
of RQ1, we designed PriorBand to be robust to misspecified expert priors. We compare our
PriorBand against the prior-based variants of random search and HyperBand. In Figure 2 (top
row) we display PriorBand’s ability to handle the extreme cases demonstrated in RQ1 well, while
not being much slower in the presence of a good prior.

In Figure 2 (middle and bottom row) we run a similar comparison but across real-world DL bench-
marks (Appendix D.1) that include joint architecture and hyperparameter spaces [Bansal et al., 2022,
Zimmer et al., 2021] and transformer spaces [Wang et al., 2021]. All configurations are given the
default configuration (on the lowest fidelity where applicable) as the first sample. In almost all cases,
PriorBand outperforms HyperBand with prior sampling. Naturally, this is more apparent in
cases where the user’s prior input is misleading (bottom row of Figure 2).

RQ3: Does PriorBand work in practice? Having seen the improvement over HyperBand in
RQ2, we now pit PriorBand against the commonly used classes of hyperparameter optimizers,
demonstrating its efficacy if used in practice on real DL problems. Here, we repeat the experiments
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Figure 1: Illustrating the 4 extreme cases of multi-fidelity optimization with expert priors on the
synthetic Hartmann 3D function. We show the mean over 50 seeds with the standard error band.
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Figure 2: Comparative performance of PriorBand. For the real-world HPO tasks, we show plots
for a good prior (row 2) and a bad prior (row 3). All algorithms evaluate the mode of the expert prior
distribution first. We show the mean over 50 seeds with the standard error band.

of RQ2 but compare against Bayesian Optimization and πBO [Hvarfner et al., 2022] as strong
black-box optimizers, and against HyperBand and BOHB [Falkner et al., 2018a] as multi-fidelity
optimizers. Random search with priors and πBO are baselines that can take a distribution over optimal
configurations as the input and recover the mode as the first evaluation. The results in Appendix E,
Figure 7 demonstrate the competitiveness of PriorBand against these baselines across benchmarks,
for both settings of good and bad priors. Under a budget as small as 10 max-budget evaluations,
model-based approaches may struggle to build an accurate enough model to make informed decisions.
As such, the model-free PriorBand frequently outperforms model-based methods.

4 Related work

While using expert priors for hyperparameter optimization has been explored previously, few works
considered priors over the optimum [Bergstra et al., 2011, Hvarfner et al., 2022, Souza et al., 2021],
and they all target the single-fidelity setting. The expert priors we consider should not be confused
with the priors natively supported by Bayesian optimization, which represent priors over function
structure through the choice of the kernel [Snoek et al., 2012, Swersky et al., 2013, Oh et al., 2018].

In Deep Learning, training epochs and dataset subsets [Swersky et al., 2014, Klein et al., 2017,
Nguyen et al., 2020] are frequently used as fidelity variables to create cheap proxy tasks, with
input resolution, network width, and depth also occasionally used [Bansal et al., 2022]. Successive
Halving [Jamieson and Talwalkar, 2016] and HyperBand [Li et al., 2018] are effective randomized
policies for multi-fidelity HPO that use early stopping of configurations on a geometric spacing of
the fidelity space and can also be extended to the model based setting [Falkner et al., 2018b]. Our
PriorBand adaptation of HyperBand could potentially also be extended along these lines.

5 Limitations and future work

There are some limitations to PriorBand. The efficacy of our distance measure could be ablated
and improved, and, in principle, PriorBand can be extended with a surrogate model and acquisition
function to potentially build upon the headstart it obtains at low budgets. Finally, studying parallel
versions of PriorBand will help improve efficiency further.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] We

discuss societal and environmental impacts in Appendix B.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] We pub-
lish code for reproducing our experiments at https://github.com/automl/
mf-prior-exp/tree/vPaper-priorband.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We report most hyperparameters in Appendix D.1 and Appendix
D.2, and the rest can be found in our code (see 3.a).

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report the standard error of the mean.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] See Appendix C.
(c) Did you include any new assets either in the supplemental material or as

a URL? [Yes] We train surrogates models which are available https:
//ml.informatik.uni-freiburg.de/research-artifacts/
mfp-bench/vPaper-PriorBand/surrogates.zip and are also avail-
able to download through our code.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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A Resources used

All experiments in the paper were performed on cheap-to-evaluate surrogate benchmarks. We used
several Intel(R) Xeon(R) Gold 6242 CPU @ 2.80GHz to perform our experiments. Running one
seed of one algorithm on one benchmark requires roughly 0.25 core hours. In total, the results we
generated for our final experiments required 10 algorithms, 50 seeds, 22 benchmarks-prior pairs
which totals 11000 runs which equates to 2750 core hours. We also trained surrogates for 2 metrics
on 3 datasets for 4 hours and 8 cores, totalling another 192 core hours. We also estimate that some
preliminary testing runs cost 735 core hours, a quarter of the total final experiment cost. This leads
our total experimental costs to be at roughly 3677 core hours.

B Societal and environmental impact

Here, we discuss the potential societal and environmental impacts our work can have.

Environmental Beyond the experiments we ran, our work can have an impact on the environment
as follows. The contributed algorithm PriorBand is designed to help reduce compute requirements
for finding good performing DL pipelines and thus help reduce carbon emissions for HPO in DL.
However, as PriorBand facilitates the adoption of HPO, there could also be a rebound effect.

Societal Our paper and the contributed algorithm PriorBand is designed to assist a wide range
of DL users in their tasks. The ability of PriorBand to tune DL models under affordable compute
can hopefully enable DL to be used by more people and even non-experts without access to much
compute. The societal impact depends on which task and DL pipeline PriorBand is applied to.

C Licenses

• Our implementations - MIT License

• JAHS-Bench-201 benchmark [Bansal et al., 2022] - MIT License

• YAHPO-Gym benchmark [Zimmer et al., 2021] - Apache License 2.0

• Learning curve benchmark [Zimmer et al., 2021] - Apache License 2.0

• PD1 [Wang et al., 2021] - Apache License 2.0

• BOHB [Falkner et al., 2018a] from HpBandSter - BSD 3-Clause License

D Experiment details

Experiment setup All algorithms were run for the same 50 seeds for each benchmark. We cut
off optimization traces after the equivalent of 10× zmax for a benchmark. Aside from the synthetic
Hartmann function experiments (Appendix D.1.1), all others are experiments using surrogates for
DL models that use epochs as the fidelity variable. For each experiment, the minimum budget (zmin)
was chosen such that HyperBand discretizes the fidelity space into 4 fidelity levels for η = 3. The
incumbent was chosen to be the configuration with the best seen performance across any fidelity.

D.1 Benchmarks

The benchmarks we use are provided by our collected suite of multi-fidelity benchmarks
(mf-prior-bench ) that treats priors as first class citizen. We include our own synthetic Hartmann
functions (D.1.1) extened to the multi-fidelity setting. We wrap JAHS-Bench-201 [Bansal et al.,
2022] (D.1.2) and Yahpo-Gym [Pfisterer et al., 2022] (D.1.4) and provide new surrogate benchmarks
for large models for image and language tasks, trained from optimization data obtained from the
benchmark from HyperBO [Wang et al., 2021] (D.1.3).
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D.1.1 Multi-fidelity synthetic Hartmann (MFH)

The multi-fidelity Hartmann functions follow the design of [Kandasamy et al., 2017], where, for
[0, 1]-scaled z, the fidelity is parameterized as

g(x, z) =

4∑
i=1

(αi − α
′

i(z; b)) exp

−
D∑

j=1

Aij(xj − Pij)
2

 (2)

where for Hartmann-3,

A =

 3 10 30
0.1 10 35
3 10 30
0.1 10 35

 , P = 10−4 ×

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 ,

and for Hartmann-6,

A =

 10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 , P = 10−4×

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


where α

′

i(z; b)) = b(1− zi). In the original paper, the variable which accounts for the bias between
fidelities, b, is set to 0.1. To account for the fact that we only consider a single fidelity variable, we
set zi = z,∀i, and increase the bias terms significantly to create realistic task correlations. For the
good fidelity, we set b = 2.5, and for the bad fidelity task, we set b = 4. The tasks incorporated
half-normally distributed noise with σ = 5(1− z) for the bad fidelity task and σ = 2(1− z) for the
good fidelity correlation.

name type values info

X_0 continuous [0.0, 1.0]
X_1 continuous [0.0, 1.0]
X_2 continuous [0.0, 1.0]

z log integer [3, 100] fidelity

Table 1: Synthetic Multi-Fidelity Hart-
mann search space in 3 dimensions.

name type values info

X_0 continuous [0.0, 1.0]
X_1 continuous [0.0, 1.0]
X_2 continuous [0.0, 1.0]
X_3 continuous [0.0, 1.0]
X_4 continuous [0.0, 1.0]
X_5 continuous [0.0, 1.0]

z log integer [3, 100] fidelity

Table 2: Synthetic Multi-Fidelity Hart-
mann search space in 6 dimensions.

D.1.2 JAHS-Bench-201

The JAHS-Bench-201 [Bansal et al., 2022] is a benchmark consisting of surrogates trained on 140
million data points of Neural Networks train on 3 datasets, namely CIFAR10, Colorectal-Histology
and Fashion-MNIST. They extend the search space beyond the original tabular search space of
NAS-Bench-201 [Dong et al., 2020] consisting of purely discrete architectural choices, introducing
both hyperparameters and multiple fidelities to create the first multi-multi-fidelity benchmark for deep
learning hyperparameter optimization. Each of the three datasets share equal search spaces while we
fix the fidelity parameters, depth N and width W, to their maximum. We further limit Resolution
to a fixed value of 1.0 out of the three original choices {0.25, 0.5, 1.0}. The surrogates provided by
JAHS-Bench-201 do not explicitly model the monotonic constraint that as epoch increase, so should
the training cost. In practice, this was found to be insignificant but we state so for completeness. For
these benchmarks, optimizers minimize 1 - valid_acc.

D.1.3 PD1 (HyperBO )

The PD1 benchmarks consists of surrogates trained on the learning curves of large architectures,
spanning both language and computer vision tasks. The original tabular data is obtainable from the
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name type values info

Activation categorical {ReLU,Hardswish,Mish}
LearningRate continuous [0.001, 1.0] log
N constant 5
Op1 categorical {0,1,2,3,4}
Op2 categorical {0,1,2,3,4}
Op3 categorical {0,1,2,3,4}
Op4 categorical {0,1,2,3,4}
Op5 categorical {0,1,2,3,4}
Op6 categorical {0,1,2,3,4}
Optimizer constant SGD
Resolution constant 1.0
TrivialAugment categorical {True,False}
W constant 16
WeightDecay continuous [1e-05, 0.01] log

epoch integer [3, 200] fidelity

Table 3: The JAHS-Bench-201 search space for all 3 datasets, CIFAR10, Colorectal-Histology and
Fashion-MNIST.

output generated by HyperBO [Wang et al., 2021] and enable us to test our methods and baselines for
low-budget settings, where multi-fidelity methods are most applicable. This tabular data consists of 4
collections of optimization records, one where the authors provide a grid like view of their search
space and ones that their optimizer selected as well as their initial testing run before their full runs. To
maximize the data available to the surrogate, we utilize all of this data but take care to drop duplicated
runs from their test runs.

The original data is a mixed of several datasets, models and their parameters for which we do some
preprocessing. All data-preprocessing is available as part of mf-prior-bench and consists of:

• Splitting the raw data by all available {datasetname,model, batchsize} subsets.

• Identify which columns are hyperparameters by those being marked as such and consist of
more than one unique value.

• Drop all columns which are not hyperparameters or metrics.

• Drop all NaN values for which no metrics are recorded.

• Drop duplicated entries, keeping those from the final experimental runs.

Any further pre-processing required will be specified with each dataset. Once the datasets are
prepared, we then train a single surrogate XGBoost model [Chen and Guestrin, 2016] per metric.
This training was performed using DEHB [Awad et al., 2021], optimizing for the mean R2 loss of 5
fold cross-validation for a total of 4 hours, 8 CPU cores and the seed set to 1. The training procedure
can be found as part of mf-prior-bench but we will soon integrate the surrogates as part of
mf-prior-bench . The benchmarks utilized for our work are listed below with the numbers
(A,B,C,D) the number of entries after A) considering all data available, B) doing dataset specific
cleaning, C) dropping NaN rows and finally, D) dropping duplicate entries.

For these benchmarks, optimizers aim to minimize the valid_error_rate.

• The lm1b_transformer_2048 dataset required dropping entries that recorded train costs
above 10, 000, where most runs maximally achieved < 400. There were 1059 of these runs
with some additionally recording NaN for their valid error rate. The number of available
samples during the preprocessing steps were (69974, 68915, 68915, 68915)
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name type values info

lr_decay_factor continuous [0.010543, 0.9885653]
lr_initial continuous [1e-05, 9.986256]
lr_power continuous [0.100811, 1.999659]
opt_momentum continuous [5.9e-05, 0.9989986]

epoch integer [1, 74] fidelity

Table 4: The lm1b_transformer_2048 search space.

• The translate_xformer_64 contained a substantial amount of duplicated configurations
with only 2738 unique configurations before any cleaning was done. Coupled with the 19
epochs recorded, we would expect a perfect set of non-failing recorded runs to have 52022
entries available. Further dropping NaN rows seems to have dropped this down to a further
1822 unique configurations with any recorded validation error. The number of available
samples during the preprocessing steps were (2608019, 2608019, 2607078, 35544)

name type values info

lr_decay_factor continuous [0.0100221257, 0.988565263]
lr_initial continuous [1.00276e-05, 9.8422475735]
lr_power continuous [0.1004250993, 1.9985927056]
opt_momentum continuous [5.86114e-05, 0.9989999746]

epoch integer [1, 19] fidelity

Table 5: The translatewmt_xformer_64 search space.

D.1.4 Yahpo-Gym

Tha Yahpo-Gym [Pfisterer et al., 2022] collection is a large collection of multi-fidelity surrogates
across a wide range of tasks, including traditional machine learning models with dataset size as a
fidelity as well as Neural Network benchmarks such as LCBench and NAS-Bench-301 [Siems et al.,
2020]. For our experiments, we stick to 2 randomly selected LCBench tasks from 34 from OpenML
[Bischl et al., 2019]. These are provided by a surrogates trained on a shared search space between
these tasks. We ignore the rest of the available benchmarks from Yahpo-Gym as the others consist of
mostly conditional search spaces which we do not account for in this work. For these benchmarks,
we minimize 1 - val_balanced_accuracy. These two tasks were chosen as they repesent
the majority of the LCBench tasks (see fig 5 and most compliment the space of possible correlation
curves as ssen in figure 3.

name type values info

batch_size integer [16, 512] log
learning_rate continuous [0.00010000000000000009, 0.10000000000000002] log
max_dropout continuous [0.0, 1.0]
max_units integer [64, 1024] log
momentum continuous [0.1, 0.99]
num_layers integer [1, 5]
weight_decay continuous [1e-05, 0.1]

epoch integer [1, 52] fidelity

Table 6: The lcbench search space.
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D.2 Baselines

Hyperband We implement our own version of HyperBand[Li et al., 2018] to allow for the
input of priors. We verified our implementation with the HyperBand implementation provided in
BOHB [Falkner et al., 2018b]. We use η = 3 for all experiments with the minimum and maximum
budget coming as an input from the problem to solve, in this case, benchmarks.

Bayesian optimization is a prominent framework for Hyperparameter Optimization [Snoek et al.,
2012, Kiili et al., 2020], hence we choose its GP implementation as a model-based competitor. We
incorporate expert priors to the optimization following the πBO algorithm [Hvarfner et al., 2022]. In
a low-budget setting, model-based search proves challenging for high-dimensional search spaces (e.g.
JAHS-Bench-201 ) as common practices require the number of initial random observations equal to
the search space dimensionality. For our 10× setup, to allow model-based search in BO and πBO we
set their initial design size to 5.

BOHB [Falkner et al., 2018b] incorporates multi-fidelity HyperBand into the Bayesian optimiza-
tion framework by building KDE models on each fidelity level to efficiently guide the search. The
official implementation has no direct way of accepting a distribution over optimal configuration and
incorporate it into search. We keep the other default settings in tact.

D.3 Correlation Curves

We provide a further look at the details of the benchmarks by providing correlation curves, where
each point of a curve shows the spearman correlation of 25 configurations from the current fidelity to
the last. These can vary quite significantly depending on the number of samples taken and the sample
of configurations chosen. By increasing the number of samples, the correlation curve will tend to
converge, but does not illustrate the variety of noisy curves that a given algorithm will experience
during an optimization procedure.
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Figure 3: The correlation curves for all benchmarks used. The x-axis represents proportion of the
total fidelity while the y-axis shows the correlation from the given fidelity percentage to the final
fidelity.

To illustrate this fully, we perform a Monte Carlo estimation strategy, where we repeatedly generate
these curves and calculate their mean, continuing until the mean has converged to being within 0.001
euclidean distance of the previous. We plot the final mean along with the standard deviation for each
of the benchmarks.

We also provide a look in figure 5 at how the correlation curves of the two LCBench tasks we selected
compare to the other 34 that were available as part of Yahpo-Gym [Pfisterer et al., 2022]. We highlight
that the correlation between even just 10% of the total fidelity budget and the final fidelity exhibit a
very strong correlation with most having a correlation above 0.8.

D.4 Generating Priors

To generate both good and bad priors, we randomly sample 25 configurations from each benchmark.
The two configurations with the lowest and highest error at the maximum fidelity are used as the good
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(c) Multi-fidelity synthetic Hartmann (MFH)
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Figure 4: The classes of benchmarks used, separated out for comparison.
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Figure 5: The correlation curves of the 2 selected LCBench tasks, 189862 and 189866 when compared
to the total 34 tasks available.
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and bad prior respectively. For the Hartmann benchmarks, we instead calculate a good prior using
the fact we have analytical access to compute the optimum configuration. To generate a good prior
from this, we simply perturb the optimum, adding uniform noise in [−0.25, 0.25] to each dimension.

To generate both good and bad prior distributions, we construct a multi-variate normal where the
mean is centered at the prior configuration’s hyperparameters and the standard deviations are set
to 25% of each hyperparameter’s total range. For example, if using a prior with a value of x = 5,
x ∈ [1, 10], the distribution arising from this prior would sample x from N (5, 2.5).

In figure 6 we present a violin plot, comparing how using the good and bad configurations as a
distributional prior affects the errors of 1250 sampled configurations. The plot shows that for every
benchmark, the density of errors for configurations sampled from the good prior distribution achieves
a lower mean error when compared to drawing from the bad prior distribution. The one close
exception is seen with the jahs_fashion_mnist benchmark, where both the good and bad prior
distributions achieve a similar mean error. We note however, that still, using the good prior achieves a
much tighter quartile range over that of using the bad prior.
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Figure 6: A violin plot showing showing the errors of 1250 samples from both the good and bad
prior distribution. Each side of a violin has a distribution of equal area, the black line inside the violin
shows the distribution’s mean and the red dotted lines the 25%/75% quartiles.

E Additional experimental results

In Figure 7 we present the results for RQ3 in Section 3.

F Algorithm Details

F.1 Incumbent sampling

For the incumbent-based sampling, sample neighbors uniformly within a hyper-sphere of the incum-
bent. The radius is determined by a modified euclidean distance from the incumbent to its closest
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Figure 7: Comparative performance of PriorBand. We show the mean validation error over 50
seeds and the standard error band.

neighbor. Each continous and integer-valued variable is normalized to [0, 1]-range. For categorical
variables, a scaled Hamming distance is utilized. For two categorical variable xc

i and xc
j , the distance

between them is defined as

d(ci, cj) =

{
1, if xc

i = xc
j

0, otherwise
(3)

and this metric is scaled by 1/
√
|xc| to avoid having the average distance increase with a larger

number of categorical options. As such, we can obtain a distance measure for each categorical
variable in X , and, along with the normalized continuous and integer-valued distance measures, we
are able to compute euclidian distances across the search space.

To perform uniform sampling from the hyper-sphere around the incumbent, we utilize rejection
sampling. As such, points are drawn from the entirety of the search space, and are discarded until we
obtain a sample that is within the desired distance from x∗.

F.2 Ablations

We run multiple ablations on PriorBand, and separate each of the novel components between runs.
The following variants are run:

• PriorBand - the proposed approach with sampling as outlined in Algorithm 2.
• PriorBand without prior - the proposed approach, but replacing the samples from π with

samples drawn uniformly at random.
• PriorBand without incumbent sampling - the proposed approach, but with no samples

drawn around the incumbent. This equates to always to setting the incumbent number of
samples to zero in Algorithm 2.
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Figure 8: Ablations on the synthetic Hartmann-3 and Hartmann-6 functions.
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Figure 9: Ablations on the real world benchmarks.
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