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ABSTRACT

Contrastive learning is a crucial technique in representation learning, producing
robust embeddings by distinguishing between similar and dissimilar pairs. In this
paper, we introduce a novel framework, Gradient-Optimized Contrastive Learning
(GOAL), which enhances network training by optimizing gradient updates during
backpropagation as a bilevel optimization problem. Our approach offers three key
insights that set it apart from existing methods: (1) Contrastive learning can be
seen as an approximation of a one-class support vector machine (OC-SVM) using
multiple neural tangent kernels (NTKs) in the network’s parameter space; (2) Hard
triplet samples are vital for defining support vectors and outliers in OC-SVMs
within NTK spaces, with their difficulty measured using Lagrangian multipliers;
(3) Contrastive losses like InfoNCE provide efficient yet dense approximations of
sparse Lagrangian multipliers by implicitly leveraging gradients. To address the
computational complexity of GOAL, we propose a novel contrastive loss function,
Sparse InfoNCE (SINCE), which improves the Lagrangian multiplier approxi-
mation by incorporating hard triplet sampling into InfoNCE. Our experimental
results demonstrate the effectiveness and efficiency of SINCE in tasks such as
image classification and point cloud completion. Demo code is attached in the
supplementary file.

1 INTRODUCTION

Contrastive learning (Chopra et al.| 2005} Hadsell et al.| [2006)) has become one of the dominant
methods in representation learning. Typically, contrastive learning constructs positive pairs and
negative pairs by creating two augmented views of the same image. The goal is to bring the
embeddings of positive pairs closer and push those of negative pairs apart in the latent space, often
optimized using a loss function such as InfoNCE (Van den Oord et al., 2018};|Chen et al., 2020a).

Motivation. To better understand contrastive learning, we start by analyzing the impacts of positive
and negative samples on the gradients during backpropagation in training. We discover that recent
contrastive losses often result in bounded positive weights for linear combinations of triplet gradient
features in stochastic gradient descent (SGD). For instance, [Tian| (2022) recently proposed a family
of (¢, 1))-contrastive losses defined as £ = >, ¢ (>_,- ¥ (f(z, 27,27 ;w))), where the scalar
functions ¢ and 1) are increasing monotonically and differentiable. The function f(z, 2%, 27 ;w) =
LlIA(z;w) = h(zT;w)||* — ||h(z;w) — h(z~;w)||?] measures the distance difference between the
positive and negative pairs. We list some examples in Table [I| where o, - denotes the weights for
feature combination during learning. As we see, all the «,—’s are positive and the summation over
negative samples for each loss is no greater than one.

This behavior raises concerns about the effectiveness and robustness of the gradients in contrastive
learning because useful (hard) negative samples can be easily buried among many non-useful (easy)
negative samples, leading to similar weights for generating gradients. Such concerns have recently
garnered increased attention. For instance, [Wang & Liu (2021) claimed that “A well-designed
contrastive loss should have some extent of tolerance to the closeness of semantically similar samples,”
and thus proposed an explicitly hard negative sampling method by filtering out uninformative
negative samples. |Chuang et al.| (2020) proposed a debiased contrastive learning method that corrects
for the sampling of same-label datapoints by thresholding in the contrastive loss. Motivated by these
works, in this paper we aim to address the following question:

How should we optimize the gradients in contrastive learning, effectively and efficiently?
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Table 1: Some examples of (¢, 1)-contrastive losses with corresponding analytical expressions.

| Contrastive Loss | o(x) | ¥(x) | o, gradient feature weights |

exp{Lf(z,at,a"w)}
e+3,— exp{ L f(wat,amw)}

MINE (Belghazi et al.,[2018) log(z) exp{z} > cfiig{zf’?:’zﬂi;@}w)}
T exp{Lf(@at,emw)}
exp (=42, - exp{ L f(@at o )}

N + 1 Tuplet (Sohnl [2016) log(1+x) | exp{x} 1+£Xﬁ{£fs{’fc(+f;+;“;)f}w>}

InfoNCE (Van den Oord et al.,[2018) | 7log(e + z) | exp{%}

Soft Triplet (Tian et al.,{2020c) Tlog(l1+4 ) | exp{Z + ¢}

Approach. In contrast to the literature, we propose a novel framework, namely Gradient-Optimized
Contrastive Learning (GOAL), to learn to optimize gradients in backpropagation. Specifically,
we formulate the lower-level optimization problem as a one-class support vector machine (OC-
SVM) (Scholkopf et al. [1999) in a neural tangent kernel (NTK) (Jacot et al., 2018) space to
determine the weights (i.e., Lagrangian multipliers) for the upper-level summation loss over the
triplets. We hypothesize that these weights may be taken as sub-optimal solutions to the dual of
these kernel machines that explicitly learn to maximize the triplet separation in each NTK space.
This interpretation is motivated by the strong connections between the dual form of OC-SVM and
the linear combination weights for the gradients (e.g., o~ in Table[I) in contrastive learning. Our
analysis also implies that truly hard negative samples (in the context of triplets, rather than pairs
as in traditional methods) should be defined as the support vectors and outliers of OC-SVMs in
the NTK spaces, rather than in the spatial domain of images or the output space of the network.
To address the computational issue in GOAL due to the nature of bilevel optimization for large-
scale learning, we further propose a new contrastive loss, namely, Sparse InfoNCE (SINCE), for
better approximations of Lagrangian multipliers based on InfoNCE with hard triplet sampling. We
demonstrate its effectiveness and efficiency in the tasks of image classification and point cloud
completion, with significant improvements.

Contributions. In summary, our key contributions are as follows:

* We propose a new contrastive learning framework, GOAL, based on bilevel optimization that learns
to optimize gradients in backpropagation for training networks. Our approach provides novel
insights to understand contrastive learning from a perspective of sparse kernel machines.

* We propose a new contrastive loss, SINCE, to mitigate the computational issue in bilevel optimiza-
tion by approximating the Lagrangian multipliers using InfoNCE with hard triplet sampling.

* We demonstrate superior performance in both image classification and point cloud completion,
showcasing the effectiveness and efficiency of our approach.

2 RELATED WORK

Contrastive Learning. Learning representations from unlabeled data in a contrastive way has been
one of the most competitive research fields (Van den Oord et al., 2018} |Hjelm et al., [2018}; |Wu et al.,
2018; [Tian et al.l [2020a; Sohnl [2016; (Chen et al., [2020a; Jaiswal et al., 2020; L1 et al., |2020b; [He
et al., [2020; |Chen et al., 2020cib; [Bachman et al.,[2019; Misra & Maaten! |2020; |Caron et al., [2020))
where contrastive loss optimizes data representations by aligning the two views of the same image
(i.e., positive pairs) while pushing different images (i.e., negative pairs) away. A large number of
works in contrastive learning are about how to augment the data. Empirically, positive pairs could be
different modalities of a signal (Arandjelovic & Zisserman, 2018 [Tian et al.; 2020aj  Tschannen et al.,
2020) or different augmented samples of the same image e.g., color distortion and random crop (Chen
et al., [2020afic} |Grill et al., [2020)). Tian et al.| (2020b)) suggested generating positive pairs with the
“InfoMin principle” so that the generated positive pairs maintain the minimal information necessary
for downstream tasks. Selvaraju et al.|(2021)); [Peng et al.|(2022)); Mishra et al.| (2021)); L1 et al.| (2022)
proposed selecting meaningful but not fully overlapped contrastive crops with guidance such as
attention maps or object-scene relations. [Shen et al.[(2020) empirically demonstrated that introducing
extra convex combinations of data as positive augmentation improves representation learning. Similar
mixing data strategies could be found in (Lee et al.| 2020} [Kim et al.,|2020; [Verma et al.l 2021} [Li
et al., [2020a; Ren et al.| 2022)). In addition to exploring positive augmentation, some recent work
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also focuses on negative data selection in contrastive learning. Typically, negative samples are drawn
uniformly from the training data. Based on the argument that not all negatives are true negatives,
Chuang et al.| (2020); [Robinson et al.|(2020) developed debiased contrastive losses to assign higher
weights to “harder” negative samples. Wang & Liu|(2021) proposed an explicit way to select hard
negative samples that are similar to the positives. To provide more meaningful negative samples,
Kalantidis et al.|(2020) studied the Mixup (Zhang et al.| | 2017) strategy in latent space to generate hard
negatives. Hu et al.|(2021) proposed learning a set of negative adversaries directly. |Ge et al.|(2021)
generated negative samples by texture synthesis or selecting non-semantic patches from existing
images. Yue et al.|(2024) studied hard negative samples in the hyperbolic space and proposed a new
contrastive loss by considering both Euclidean and hyperbolic spaces.

Sparse Kernel Machines. A sparse kernel machine is a type of statistical learning algorithm that
focuses on using a subset of training data to make predictions. This approach is beneficial in scenarios
where the dataset is large, as it helps reduce computational complexity and improve efficiency. OC-
SVMs (Scholkopf et al.,|1999; [Tax & Duin, |1999; |Sain, |1996; |Scholkopf et al., 2001; Tax & Duin),
2004; Tax, [2002), a classical one-class learning algorithm, are frequently used in outlier or novelty
detection (Pimentel et al.| 2014; (Chandola, 2007; Ratsch et al.,[2002) to detect if a test sample belongs
to the same distribution of training data. For instance, Tax & Duin|(1999) proposed minimizing the
volume of a hypersphere that contains as many as possible of the “normal” training data, which has
been shown to be equivalent to (Scholkopf et al.,[2001) for certain kernels. Some good surveys are
provided in (Subrahmanya & Shin, 2009; |Li et al.,|2020c). Particularly, max-margin based contrastive
learning (Chen et al 2021} |Shah et al.,|2022) have been studied as well.

Point Cloud Completion. In computer vision, this refers to an important and challenging task of
inferring the complete 3D shape of an object or scene from incomplete raw 3D point clouds. Recently,
many deep learning approaches have been developed for this task. For instance, PCN (Yuan et al.|
2018), the first deep neural network for point cloud completion, extracts global features directly from
point clouds and then generates points using the folding operations from FoldingNet (Yang et al.,
2018). [Zhang et al.|(2020) proposed extracting multiscale features from different network layers
to capture local structures and improve performance. Attention mechanisms such as Transformer
(Vaswani et al., 2017) excel at capturing long-term interactions. Accordingly, SnowflakeNet (Xiang
et al.,[2021), PointTr (Yu et al., 2021)), and SeedFormer (Zhou et al., 2022) accentuate the decoder
component by incorporating Transformer designs. PointAttN (Wang et al.| 2022) is conceived entirely
on Transformer foundations. In particular, Lin et al.|(2023) proposed an InfoCD loss by introducing
contrastive learning into point cloud completion, achieving the state-of-the-art performance.

3 GOAL: GRADIENT-OPTIMIZED CONTRASTIVE LEARNING
3.1 PRELIMINARY

Learning with InfoNCE. We denote z € X,z" € XT,2~ € X~ as an archor sample and
its positive and negative samples, respectively. We further denote h(z;w) : X x © — R% as a
differentiable function that is implemented by a neural network and parametrized by w € €2, and

1 1
f7—77-/(]},.7}+7l‘7;W):*d($+,x;W)—*/d(l‘77]};W) ()
T T

as a distance measure for the triplet (z,x™, 2~ ) with some form of pairwise distance measure d,
where 7, 7/ > 0 denote two predefined scalars. Note that the smaller f, . (z,2", 27 ;w) is, the better
the separation between the positive and negative pairs. By defining d(-, z;w) = ||h(-;w) — h(z;w)]|3
in Equation @ the InfoNCE loss in (Van den Oord et al., 2018) can be written as follows:

lw) =E, [ET(QC; w)} =E, llogz exp{ frr(z, 2", 275w)} ], 2)

where only one positive sample is considered and [E denotes the expectation operator. Now based on
this equation, we can compute the gradients in backpropagation during training as

exp{fr-(z, 2T, 27 ;w)}
Zz* exp{fﬂ-,-(l‘, xt, x_;w)} '

Vi (z;w) = ZafoT,T(x,x*,a:*;w), where a,- = 3)
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Clearly, it holds that 0 < o~ < 1, _ «,- = 1. Therefore, V/,(z;w) computes the mean of
the gradients V f; ,(x, 2", 27 ;w) from all positive and negative samples w.r.t. z, and V{,(w) =
E,[V¥,(z;w)] computes the mean of V., (z;w) over z. All the expressions of «,—’s in Table are
computed in a similar way given different objectives.

Triplet gradient feature

3.2 OUR BILEVEL MODEL
— Tangent space
In Figure [T} we illustrate a geometric view of
SGD based on a local linear approximation of
the loss landscape at each parameter update. The
loss landscape is parameterized by the network
parameter w, and at each update w;, a neural
tangent space is constructed by taking triplets
{(x,xT,27)} as input to generate triplet | parameter spac @es1 = O~ Mebey
gradient features V fr .(z, 2", 27 ;w;), and ) ) o
then the gradient Aw, is computed by a linear Figure 1: Il]gstratlon of local lmegr approximation
combination of such triplet features, i.e., Aw; = of a contrastive lpss landsc.;ape during training w1th
> Ca® Voo (2,2t 2wy SGD. The gradlent Aw is often a.hnear combi-

(zate=) H(aat,am) VITTD T 0 0% pation of triplet gradient features in the tangent
where agi)fr .- stands for a sample weight at ~ space, and we show that such increments may be
the ¢-th iteration in SGD. interpreted as approximations of linear OC-SVMs.

Estimator of
linear classifier

Contrastive
loss landscape

Motivation: Sample weights for gradients and network weights may be fully coupled. When the

calculation of each 0‘8;)1 +.2-) relies on the triplet features V f, ./ (x, 2, 27 ; w;), it becomes evident

that agi) ot z-) is a function of w,. Consequently, training can be iteratively performed by optimizing

w towards a specific objective. Indeed, all the contrastive losses in Table[T]are designed in such a way
that each o, ,+ .- explicitly depends on w, as shown in Equation @ Now the question is:

What if (g 5+ o—) does not have an explicit form of w?

To answer this question, we propose using bilevel optimization (Colson et al.,[2007), where one
problem is embedded (nested) within another, to model the dependency between the sample weights
for gradients and network weights. In this structure, the upper-level (UL) problem is influenced by
the optimal parameters from the lower-level (LL) problem, whereas the LL problem is influenced by
the non-optimal parameters from the UL problem. In our model, we use the UL problem to update
network weights, and the LL problem to learn optimal gradients for SGD.

Upper-level Objective. At the early age of contrastive learning, the losses such as (Chopra et al.,
2005; [Schroff et al., |2015) always favor sparse samples for learning. For instance, the triplet loss

(Schroff et al., [2015) is defined as {4, jpiet(z, T, 27 ;w) = max {0, fia(z, a2 w) + e}, where

€ > 0 1s a predefined parameter to control the minimum offset between distances of similar and
dissimilar pairs. In fact, triplet loss is a variant of the hinge loss commonly used in SVMs. Regarding
gradient calculation, the triplet loss assigns a combination weight of either O or 1 to the gradient of
each triplet, which differs from modern contrastive losses such as InfoNCE. Considering these, we
propose the following UL objective that involves the optimal solution {a;"j i+ from the LL problem to
model the sample weights for gradients explicitly: '

: + .
HBHZ g frr (thi_jvxikvw)a 4)
0,5,k
where i, j, k denote the i-th anchor, its j-th positive and k-th negative samples, respectively. In this
way, we can control the gradients based on these sample weights in SGD.

Lower-level Objective. Recall that at the ¢-th iteration in SGD, the gradient Aw; can be represented as

a linear combination of triplet gradient features V f, .+ (z, ", 27 ; w;) with weights agi{ﬁ,x,). This
reminds us of the classic representer theorem (Dinuzzo & Scholkopt] 2012)) for kernel methods, and
motivates us to learn Aw, based on local linear approximation, namely, fr - (z, 2%, 27w, — Awy) =
fro(myat 275 0) — Awl V7 (z, 27, 27 ;w;) where (-)7 denotes the matrix transpose operator.
We expect that after the update, the value of f, ./ (2,27, 27 ;w; — Aw;) could be no bigger than a
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threshold p;. Motivated by one-class support vector machine (OC-SVM) in (Scholkopf et al., [1999),
we propose the following regularized OC-SVM as our LL objective:

min LAl o+ O Y €0, ©
Awt,pz,{fiji } 1,5,k

s.t. fT,Tr(a:i,a:;;,asi_k;wt) AWIV fr (i, ;S, T we) < pr —&-ﬁ”k,f”k > 0,Vi,Vyj,Vk,Vt,
with a predefined constant C' > 0 and a set of slack variables {§i j k}

Bilevel Formulation. As we discussed before, the sample weights for gradients, «, and the network
weights, w, are coupled, and one can be optimized alternatively by fixing the other (a widely used
technique for solving bilevel optimization (Xiao et al.,[2024)). Therefore, by incorporating our UL
objective in Equation (@) and the dual form of our LL objective in Equation (3], we propose the
following bilevel optimization problem for contrastive learning:

w' e argmin § a:jka,T’ (LUZ',LU,Z;-,EC;]C;UJ), (6)
w =
(N

)1 _
s.t.{a;;;} € argmin 3 Z Qijikwr (Xijis Xijrwr ) Qo — Zaijkff,r’ (xia*x;rjvxik;W*)
{aijr} k'K gk
S.t.zaijk =1,0 < ayp < C, V1, V5, VE,
Jsk
where for simplicity, Xjjr = {z;, 2}, ;. }, Xijiw = {ws, 2, 25, } stand for two triplets, respec-
tively, and K, (X,;jk,, Xij/k/) =V fr (i, xj;, 2wV fro (2, x;;/, x;,.,;w") defines a neural
tangent kernel (NTK) in the network parameter space. Our bilevel formulation also indicates that hard

triplet samples are essential for defining support vectors and outliers in OC-SVMs within NTK spaces,
with their degree of difficulty measured using Lagrangian multipliers {c;;x } as sample weights.

Alternating Optimization. To solve Equation (@) we simply learn {a;; } and w* as follows:
Step 1: Randomly sample triplets from the training dataset;
Step 2: Compute the solution {c} . . of the dual form of the OC-SVM in the LL problem;

Step 3: Update w using SGD as the UL solution w™* based on the solution {afj e
Step 4: Repeat Step 1-3 until the UL objective converges.

3.3 ANALYSIS

Lemma 1 (Contrastive Learning as NTK Regression). Suppose that contrastive learning updates
the model parameter w as w41 = wy — N VW) =we — M D, ik Z]kaTT (xl,x;, W) to
minimize some contrastive loss {(w), where ag L > 0 denotes the sample weight for each training
triplet (x;, x;;, x,;.) at the t-th iteration and function f is differentiable (everywhere). Assuming that

the learning rates, {n}, satisfy im;_,oo 1 = 0, Zfio nm = 00, Zfio n? < oo, then given a test
triplet (Z,3%,%7), it holds that at the T-th iteration,

frm (@87, 5 50r) < me | Y ol b, (w2 o), @30,37) [, @)
t= (N
where A = sup (fT (T, 27,5 wo) + (Zt 0 nt>), provided that fr . (Z,z%, %7 ;wy) for
any triplet (£,Z7,%7) is bounded

Proof. Based on local linear approximation and the assumptions in the lemma, we have
~ o~ ~—. ~ JF ~ o~ ~
fT,T/(xﬂ‘r+7x 7wt+1) f‘r'r (-T $+ xz wt § az]k"{wt xzv i) zk) ( + y L )) .
1,5,k

Now by summing up over ¢ from O to 7" — 1 recursively, we can complete our proof. O
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In practice, a loss function with a neural network as f can be taken as a differentiable function and
Ny = O(%) can easily satisfy the assumption. This lemma also indicates that contrastive learning can
be viewed as an approximation of an OC-SVM with multiple NTKs in the network parameter space.

Relation to Max-Margin Contrastive Learning. To make sure that the distance from the positive
sample, d(x", z;w), is as small as possible compared with that from a negative sample, d(z ™, z;w),
we need to minimize f, ./ (Z,Z1,Z7;wr). Based on Lemma we have a direct result as follows:

. ~ ~ ~— t — ~ o~ ~_
min f, (7,71, ;w EZnt max ZOLE]LKM x“x;;,xik),(x,zﬂx Nel, ®
1,5,k

where the RHS can be viewed as a maximum margin, learned within multiple NTK spaces at each
iteration where each anchor x; introduce a kernel. That is, minimizing the distance between a positive
pair and a negative pair is equivalent to maximizing a (weighted) margin with multiple NTKSs.

Different from the literature of max-margin contrastive learning, such as (Shah et al.| 2022), we aim to
understand the behavior of contrastive learning from a geometric view of local linear approximations
of the loss landscape, and accordingly learn to optimize gradients in backpropagation. To the best of
our knowledge, we are the first to conduct such a study, leading us to different:

* Reproducing Kernel Hilbert Space (RKHS): Due to the gradient, our RKHS is the network parameter
space, while a much smaller network output space is used in (Shah et al.| [2022).

* Kernel Methods: We introduce OC-SVMs to learn optimal gradients with no labels, while (Shah
et al.,[2022)) uses binary SVMs to select hard negative samples.

* Theorems: Our theorem reveals a strong connection between contrastive learning and (max-margin)
kernel methods with multiple NTKs, which is missing in the current literature.

4 SINCE: SPARSE INFONCE L0OSS FOR EFFICIENT SOLUTIONS

Similar to (Shah et al., [2022), tackling our bilevel optimization problem directly in deep learning
proves to be highly challenging in practice. The vast RKHS, with its millions of dimensions, poses
significant computational and storage difficulties on hardware like GPUs. To mitigate this issue, we
introduce a novel contrastive loss, SINCE, designed to approximate the solutions of our GOAL.

Motivation. In fact, since the LL problem in Equation @ is a convex problem, we can use projected
gradient descent (PGD) to compute the dual solution, a* = {a it as follows:

ay 1 = Proja (at’ — A (Ko (7)o — ft(ﬂcz))) = Proj, ()\t'ft(wi) + (I = A K- (%‘))%&’);

)
where at the ¢’ iteration, K- (2;) = [k~ (Xijk, Xij/x)] stands for the NTK matrix for the anchor
x4, Vi, f(x;) = [frr (2, :13:;, x;,.;wy)| for a vector, I for an identity matrix, Ay > 0 for a proper
learning rate, and Proj 5 for the projection-onto-simplex operator that can be conducted efficiently,
e.g.,|Chen & Ye|(2011). However, in our case with very high dimensional RKHS, it is not practical

to use many iterations to compute *. To address these issues, based on |Chen & Ye| (2011) we
alternatively use the one-step approximation of Equation (9) with g = 0 as shown below:

a* o = ProjA(/\Oft(xi)) = max {O, Aofi(x;) — ,utl}, (10)

where yi; is a scalar that is determined by the vector \of;(x;) and 1 is a vector of ones. In summary, the
solution of the OC-SVM can be approximated based on entry-wise rescaling followed by thresholding.

Loss Formulation: InfoNCE with Thresholding. Based on our analysis above, we propose a
strategy of thresholding first and then normalization for InfoNCE to approximate the OC-SVM
solutions. This is equivalent to preserving “harder” triplets with larger f values and removing “easier”
ones, leading to a binary mask for each f;(x;). Accordingly, we formally define our SINCE loss as

lsives =Eq [log Y exp{frr(@at,2750)} 1y L watamwzmy | (D

(zt,x7)
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Table 2: Test accuracy comparison with the linear probe protocol.

| CIFAR-10 | STL-10

# triplets # triplets
20 40 60 80 100 16,256 20 40 60 80 100 16,256

28.56 28.99 23.46 36.91 36.92 57.75 |27.48 28.93 35.58 33.70 35.09 50.65
30.22 34.62 38.79 45.13 49.41 - |31.91 42.70 45.38 44.17 46.66 -
30.28 36.37 25.42 38.14 41.29 58.84 |28.87 30.02 37.67 36.67 37.73 52.65

InfoNCE
GOAL
SINCE

where p,; is a predefined threshold, and 1.y is an indicator function returning 1 if the condition holds,
otherwise, 0. Note that instead of using (s, in our experiments, which has an indeterminate range
of values beforehand, we introduce another predefined parameter, v € [0, 1], to control the ratio of
triplets to be removed. This approach allows us to efficiently construct binary masks in Equation (TT.

Table 3: Performance improvements (%) us-

5 EXPERIMENTS ing SINCE over InfoNCE, with all triplets.
|CIFAR-10 STL-10 ImageNet-100
5.1 IMAGE CLASSIFICATION SImCLR|_ 1.09 200 216
. . . MOCO 2.54 4.19 2.24
We follow the representation learning and linear probe gy 2.69 336 2,53

protocol (Oord et al., 2018} |He et al.,[2016; Yeh et al.,
2021) for image classification to conduct comprehensive experiments on CIFAR-10 (Krizhevsky
et al.,[2009), STL-10 (Coates et al.,|2011)), and ImageNet-100 (Chun-Hsiao Yeh,2022) datasets.

Datasets. We take the labeled part for self-supervised pretraining without label leaking. We create a
toy dataset CIFAR-10-toy by sampling 25% data from the original dataset for pretraining to mitigate
the training overload, while for STL-10 we utilize its training data with no change. The downstream
linear evaluation is made on the original test data in both CIFAR-10 and STL-10. We randomly
sample an ImageNet-100 dataset from the ImageNet-1K dataset (Deng et al.,[2009).

Baselines. We employ SimCLR (Chen et al.| B
2020a), MOCO (He et all 2020), and BYOL ~ o0aaj — P*7)
(Grill et al., 2020) with ResNet-18 (He et al.} 0.12

2016) as the backbone encoder for CIFAR-10

and STL-10, but with ResNet-50 for ImageNet- § 0.10
100. We compare our approach with InfoNCE & 0.08

loss to demonstrate its effectiveness of SINCE.  § 0.06

Training Protocols. In our GOAL and SINCE, 0.04
we utilize Euclidean distances in Equation (T).
We train our approach and baseline methods for
50 epochs with batch size 64, SGD optimizer 0.00
with a momentum of 0.9, and weight decay of 0 20 40 60 80 100 120
10~%. we conduct our experiments on an In- __ ] Triplet m_dex ]
tel(R) Xeon(R) Silver 4214 CPU@2.20GHz and Figure 2: Companson_on gradient feature weights
a single Nvidia Quadro RTX 6000 with 24GB  {rom InfoNCE as p(z~), and our GOAL as a.
memory. We apply CVXOPT (Vandenberghe, 2010) to solve the LL problem in Equation (6] for
GOAL, which runs on the CPU. We implement our algorithm and baseline methods based on the
work of (Peng et al. [2022)). Following the small-scale benchmark (Chen et al., [2020a; |Yeh et al.,
2021} [Peng et al., |2022)), we set both temperatures 7, 7’ to 0.07. We use a cosine-annealed learning
rate of 0.5 for InfoNCE. The hyperparameter C' in Equation (€] is set to 0.15 for CIFAR-10 and 0.17
for STL-10 with slightly fine-tuning. For SINCE, we set v = 0.1 in all the experiments.

0.02

Evaluation Protocols. Following the same setting as in (Peng et al.,2022)) we train a linear classifier
for each method. Specifically, after self-supervised pretraining, we freeze the network except for the
last fully connected layer. We train the last-layer classifier in a supervised way using the full dataset.
The linear classifier is trained for 50 epochs with a learning rate of 10.0, a batch size of 512, and a
momentum of 0.9 in SGD for all experiments. We report the best performance of each method.

Results. We summarize our results from three aspects as follows:
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Figure 3: On ShapeNet-Part using CP-Net: (a) L2-CD vs. point removal ratio (smaller is better); (b)

An illustration of matched point pairs preserved with v = 0.9 for an airplance point cloud.

» Sample Weight Comparison: We illustrate a comparison of sample weights for gradients in InfoNCE
and our GOAL for the same 127 triplets with the same z, 27 in Figure The feature extraction
network is pretrained with 60 samples in each mini-batch on STL-10. As we see, the extremely
high values of p(z~) and « co-occur quite frequently. For instance, the peak values around the
63rd triplet are 0.14 and 0.15 in InfoNCE and GOAL, respectively. Such observations are widely
made when comparing the weights from both approaches. Therefore, the co-occurrences of large
values in p(z~) and « indicate that the triplets that decide the boundaries of SVMs are almost
those that contribute most to the gradient update in contrastive learning. In other words, we observe
that InfoNCE can produce good estimators for the solutions of OC-SVMs in SGD iterations.

e InfoNCE vs. GOAL vs. SINCE: Table|Z| lists our comparison results on CIFAR-10 and STL-10,
where “-” indicates no results using all triples due to the hardware limit and running time. Although
a smaller number of triplets would reduce the top-1 accuracy in the linear probe, our GOAL can
significantly outperform both InfoNCE and SINCE in such cases. Using only 100 triplets per
iteration, our GOAL can achieve performance that is close to both InfoNCE and SINCE with the
full set of triplets. Besides, the performance of GOAL seems to be boosted more significantly than
the other two with increasing number of triplets, which may benefit more for few-shot learning.

* InfoNCE vs. SINCE for Self-Supervised Learning: Table [3|shows the performance improvements
achieved by our SINCE method with various network backbones for self-supervised learning on
several benchmark datasets. In our experiments, we did not observe a significant difference in
running time between the methods, as the number of images was relatively small.

5.2 3D PoINT CLOUD COMPLETION

We demonstrate the effectiveness and efficiency of our SINCE loss by comparing with the recently
proposed InfoCD |Lin et al.[(2023), which achieves the state-of-the-art for point cloud completion. To
apply Equation (TI)) to the formulation of InfoCD, without loss of generality, letting y;, yix’ be two
points in the ground-truth point cloud and z; = [x;;] be the completed point cloud returned by some
network with parameters w, we can define f in Equation (TT)) as follows:

1 . 1 .
fr (Tiy Yik, Yirr s w) = 7 i lzi; — vl — 7 min zij — yirr |- (12)

That is, for each ground-truth point, we search for the nearest neighbor in the point cloud returned by
the completion network, and use the distance difference of an arbitrary pair as function f.

Datasets & Backbone Networks. We conduct our experiments on the five benchmark datasets: PCN
(Yuan et al.,|2018)), MVP (Pan et al., |2021)), ShapeNet-55/34 (Yu et al., 2021), ShapeNet-Part (Y1
et al., [2016)), and KITTI (Geiger et al., |2012). We compare our method using thirteen different
existing backbone networks: FoldingNet (Yang et al.|[2018)), PMP-Net (Wen et al.| 2021}, PoinTr (Yu
et al}2021)), SnowflakeNet (Xiang et al.,[2021)), CP-Net (Lin et al.,[2022)), PointAttN (Wang et al.|
2022), SeedFormer (Zhou et al.; 2022), PCN (Yuan et al.,[2018), PFNet (Huang et al., 2020), TopNet
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Table 5: Results on LiDAR scans from KITTI dataset under the Fidelity and MMD metrics.

|FoldingNet HyperCD+F. InfoCD+F. SINCE+F. |PoinTr HyperCD+P. InfoCD+P. SINCE CD+P.

Fidelity || 7.467 2214 1.944 1.887 | 0.000 0.000 0.000 0.000
MMD | 0.537 0.386 0.333 0.305 | 0.526 0.507 0.502 0.453

(Tchapmi et al.l 2019), MSN (Liu et al., |2020), Cascaded (Wang et al., 2020), and VRC (Pan et al.|
2021)), where we replace the CD loss with our SINCE wherever it occurs.

Training & Evaluation Protocols. We modify the public codeﬂ by replacing the InfoCD loss with our
SINCE loss. For fair comparison, we strictly follow the experimental settings in InfoCD (Lin et al.,
2023)), including the same hyperparameters such as learning rate and its scheduler, regularization
parameter, number of epochs, random seed, and batch size and order. We run all the comparisons
on a server with 10 NVIDIA RTX 2080Ti 11G GPUs. Following the literature, we evaluate the best
performance of all the methods using vanilla CD (lower is better). We also use F1-Score @ 1% (higher
is better) to evaluate the performance on ShapeNet-55/34. For KITTI, we utilize the metrics of
Fidelity and Maximum Mean Discrepancy (MMD) for each method (lower is better for both metrics).

—+—InfoCD
—©-SINCE (v=0.9)

: 4
Results. We first show our performance comparison on 0

the ShapeNet-Part (Yi et al., [2016) dataset using CP-Net
Lin et al.| (2022)) as the backbone network. We illustrate
our results in Figure[3] As we see in (a), it is clear that
thresholding can significantly improve the performance
of InfoCD that is equivalent to our SINCE with v = 0, in
all the tested cases. In (b), we visualize the top 10% pairs
of matched points between a completed point cloud (left)
and its ground truth (right) in terms of Euclidean distance,
which. These points can already capture well the global APPSR S PP
structures of the point clouds, which may lead to a better # Epochs

regularizer in training. Here, we set v = 0.9 in all point  Figure 4: Training loss comparison on
cloud experiments without further tuning. ShapeNet-Part using CP-Net.

w
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Figure 4] illustrates the training loss curves of InfoCD and our SINCE with v = 0.9, where we have
normalized the binary masks for both for fair comparison. As we see, SINCE converges significantly
faster than InfoCD with much lower losses, leading to better performance. As for running time,
InfoCD takes 454.0 4 7.5 seconds per epoch, while SINCE takes 480.0 4= 4.9 seconds per epoch.

We also summarize detailed comparison results in Table[d] Table[5] Table 4: Average per-point L1-
Table[6] Table[7, and Table[8] where SINCE outperforms InfoCD  CDx1000 on PCN.
in all the cases, leading to new state-of-the-art results. Note that

’ Network InfoCD SINCE
for KITTI, we follow (Xie et al.| 2020) to finetune the models on © v&./or S no
ShapeNetCars (Yuan et al.|[2018)) and evaluate them on KITTI. FoldingNet 12.14 1131

PMP-Net 792  7.87
PoinTr 7.24 7.21
6 CONCLUSION SnowflakeNet 6.86  6.82

PointAttN 6.65  6.62
In this paper, we aim to interpret deep contrastive learning froma  SeedFormer  6.52  6.46
geometric perspective by optimizing gradients in backpropagation.
By drawing connections with OC-SVMs, we propose a new gradient-optimized contrastive learning
(GOAL) approach based on bilevel optimization. In this approach, optimal gradients are learned
through OC-SVMs as the lower-level problem, while the upper-level problem updates the network
weights using SGD based on these optimal gradients. We also reveal a strong connection between
contrastive learning and kernel methods with multiple NTKs. Furthermore, we introduce a new SINCE
loss to address the computational challenges of GOAL for large-scale learning. We demonstrate the
superior performance of our approach in the tasks of image classification and point cloud completion.

Limitations. Thresholding in SINCE may introduce additional computational burdens in learning,
and GOAL has not yet reached its full potential in real-world applications such as few-shot learning.
We will investigate both aspects in future work.

'https://github.com/zZhang-VISLab/NeurIPS2023-InfoCD
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Table 6: Completion results on MVP in terms of L2-CD x 10* (}) and EMD x102? ({).

v~ 13} kel

- 5 3 F 5

§§ Aagﬂaé’bgg § &£ 33

9 & s e 5 8 S 3
Methods |8 § & § § & 5 £ & & § 58 § § & % |as
PCN 4.508.83 6.41 13.01 21.33 9.90 12.86 9.46 20.00 10.26 14.63 4.94 1.73 6.17 5.84 5.76| 9.78
InfoCD+PCN (395 882 638 12.03 17.43 9.63 12.41 8.69 18.92 8.75 13.405.02 1.84 6.06 5.81 4.37| 9.41
SINCE+PCN  [3.76 8.65 6.19 11.84 17.24 9.45 12.228.52 18.73 8.56 13.224.84 1.67 5.87 5.68 4.15| 9.23
TopNet  [4.12 9.84 744 13.26 18.64 10.77 12.95 8.98 19.99 921 16.06 547 2.36 7.06 7.04 4.68/10.30
InfoCD+TopNet |3.98 9.81 7.42 1324 17.87 10.52 12.45 893 19.69 8.52 14.62 5.42 2.35 7.05 6.52 421/10.01
CD | SINCE+TopNet |3.74 9.57 7.18 13.02 17.61 10.27 1223 8.68 19.44 832 1439 5.18 2.14 6.86 6.34 3.99( 9.78
MSN 273892 6.50 10.75 1337 9.26 10.177.70 1727 6.64 1210521 1.37 459 4.62 338/ 7.99
InfoCD+MSN  |728 851 6.03 10.18 12.91 8:87 9.72 724 16.82 621 11.67479 091 4.154.17 2.97 7.56
SINCE+MSN [6.98 8.24 5.78 9.92 12.60 855 9.40 7.0116.43 592 11.144.21 0.81 3.86 3.88 2.68| 7.28
Cascaded  [2.548.625.93 8776 11.22 846 920 6.61 14.63 6.09 10.174.95 1.5 434 4.23 3.19| 725
InfoCD-+Cascaded [2.43 8.05 5.73 8.77 1047 8.24 9.18 6.41 1437 6.02 10454.70 1.45 423 4.162.99| 7.12
SINCE+Cascaded|2.327.94 5.62 8.64 10.35 8.16 9.07 6.28 14.25 5.90 10.424.58 1.32 4.10 4.04 2.87| 7.01
VRC 2207.925.60 749 8.15 745 7.52 520 11.90 4.88 7.39 4.53 1.15 3.90 3.44 322/ 6.09
InfoCD+VRC 2,03 7.88 541 7.31 7.92 7.22 7.30 501 11.67 4.65 7.14 430 0.97 4.68 3.19 3.04| 5.87
SINCE+VRC [1.947.435.15 7.03 7.62 7.01 7.03 47511.41 434 6.87 402 0.91 4.41 2.96 2.78| 5.62
PCN 4707.99575 6.90 1199 532 6.60 540 9.84 4.85 7.87 524 10.56 4.93 4.86 5.59| 6.80
InfoCD+PCN (375 559 3.97 523 10.11 442 545 467 729 421 5.55 353 6.12 4.02 470 3.84| 5.17
SINCE+PCN  [3225.033.43 472 9.54 3.88 491 4.12 675 3.65 5.00 3.02 5.57 4.39 4.16 3.29) 4.63
TopNet  [4.89 630407 7.01 10.75 647 7.50 4.68 8.09 6.27 6.80 3.50 421 4.26 6.02 3.49| 6.18
InfoCD+TopNet |4.47 6.023:81 6.82 1021 6.05 7.12 437 7.87 587 6.02 331 4.06 4.115.823.15|5.72
EMD| SINCE+TopNet |4.025.66 343 6.44 9.82 5.67 676 4.01 751 548 5.65 2.95 3.68 4.74 5.45 2.77| 5.35
MSN 275402347 444 628 374 446 382 527 334 428 2.92 2.07 330 3.62 2.21|3.94
InfoCD+MSN  [2118 351 2.97 3.96 577 321 3.92 324 475 2386 3.79 241 1.50 2.81 3.09 2.64| 338
SINCE+MSN (195328273 3.72 553 3.02 3.68 3.02 451 2.62 3.54 2.18 1.27 2.57 2.85 2.41| 3.15
Cascaded  |3.036.82544 5.16 7.55 5.57 473 4.88 685 351 571 581 530 4.304.42 3.44(5.18
InfoCD+Cascaded [2.87 6.23 539 5.06 7.10 545 4.57 479 642 349 5.15 5.72 358 4.19 427 2.91| 501
SINCE+Cascaded|2.52 6.05 5.17 5.01 7.02 532 4.41 4.63 621 3.31 5.2 547 342 4.104.11 2.75| 4.85
VRC 3037.576.14 549 6.15 580 4.65 497 658 345 528 6.59 3.08 4.454.56 3.20| 5.27
InfoCD+VRC  [2.687.265.83 5.15 5.82 549 436 4.68 622 3.13 497 6.26 2.77 4.134.15 289/ 4.97
SINCE+VRC [2.477.075.64 495 5.63 530 4.17 447 596 3.02 476 6.05 2.55 3.914.01 2.78| 478

Table 7: Results on ShapeNet-34 using L2-CDx 1000 (|) and F1 score (1).

Methods 34 seen categories 21 unseen categories
CD-S CD-M CD-H Avg. F1 |[CD-S CD-M CD-H Avg. Fl
FoldingNet 1.86 1.81 338 235 0.139] 276 274 536 3.62 0.095

InfoCD + FoldingNet | 1.54 1.60 3.10 2.08 0.177| 242 249 501 3.31 0.157
SINCE + FoldingNet | 1.47 154 3.02 2.01 0.183| 2.36 243 499 3.26 0.160

PoinTr 076  1.05 188 123 0421| 1.04 1.67 344 2.05 0.384
InfoCD + PoinTr 047 069 135 084 0529| 061 1.06 255 141 0493
SINCE + PoinTr 041 065 128 0.78 0.534| 0.61 1.02 251 137 0.496

SeedFormer 048 070 130 0.83 0452| 0.61 1.08 237 135 0.402
InfoCD + SeedFormer | 0.43  0.63 1.21 0.75 0.581| 0.54 1.01 2.18 1.24 0.449
SINCE + SeedFormer | 041 0.62 120 0.74 0.583 | 0.52 1.02 212 1.21 0452

Table 8: Results on ShapeNet-55 using L2-CDx 1000 ({) and F1 score (1).
Methods | Table Chair Plane Car Sofa|CD-S CD-M CD-H Avg.| Fl

FoldingNet 253 281 143 198 248 2.67 266 4.05 3.12|0.082
InfoCD + FoldingNet | 2.14 237 1.03 155 2.04| 2.17 250 346 2.71]0.137
SINCE + FoldingNet | 2.06 2.28 1.01 143 2.02| 2.14 245 338 2.65|0.141

PoinTr 0.81 095 044 091 0.79| 058 0.88 1.79 1.09 | 0.464
InfoCD + PoinTr 069 0.83 033 080 0.67| 047 0.73 1.50 0.90 | 0.524
SINCE + PoinTr 062 078 032 074 0.62| 040 0.67 143 0.83|0.529

SeedFormer 072 0.81 040 089 0.71| 050 077 149 0920472
InfoCD + SeedFormer | 0.65 0.72 031 0.81 0.62| 043 0.71 1.38 0.84 | 0.490
SINCE + SeedFormer | 0.62 0.71 030 0.75 0.63 | 042 0.68 136 0.82 | 0.493
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