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Abstract

The spectacular results achieved in machine learning, including the recent advances
in generative AI, rely on large data collections. On the opposite, intelligent pro-
cesses in nature arises without the need for such collections, but simply by on-line
processing of the environmental information. In particular, natural learning pro-
cesses rely on mechanisms where data representation and learning are intertwined
in such a way to respect spatiotemporal locality. This paper shows that such a
feature arises from a pre-algorithmic view of learning that is inspired by related
studies in Theoretical Physics. We show that the algorithmic interpretation of the
derived “laws of learning”, which takes the structure of Hamiltonian equations,
reduces to Backpropagation when the speed of propagation goes to infinity. This
opens the doors to machine learning studies based on full on-line information
processing that are based on the replacement of Backpropagation with the proposed
spatiotemporal local algorithm.

1 Introduction

By and large, the spectacular results of Machine Learning in nearly any application domain strongly
rely on large data collections along with associated professional skills. Interestingly, the successful
artificial schemes that we have been experimenting under this framework are far away from the
solutions that Biology seems to have discovered. We have recently seen a remarkable effort in the
scientific community to explore biologically inspired models (e.g. see [31, 16, 30, 18]) where the
crucial role of temporal information processing it is clearly identified.

While this paper is related to those investigations, it is based on more strict assumptions on environ-
mental interactions that might stimulate efforts towards a more radical transformation of machine
learning with emphasis on the temporal domain. In particular, we assume that learning and inference
develop jointly under a nature based protocol of environmental interactions and then we suggest
developing computational learning schemes regardless of biological solutions. Basically, the agent
is not given the privilege of recording the temporal stream, but only to represent it properly by
appropriate abstraction mechanisms. While the agent can obviously use its internal memory for
storing those representations, we assume that it cannot access data collection. Instead, the agent can
only rely on buffers of limited size to retain the information it acquires. From a cognitive perspective,
these small buffers allow the agent to review recent inputs backward in time, implementing a form of
selective attention.

We propose a pre-algorithmic framework which derives from the formulation of learning as an
Optimal Control problem [19] and propose an approach to its solution that is also inspired by
principles of Theoretical Physics. We formulate the continuous learning problem to emphasize
how optimization theory brings out solutions based on differential equations that recall similar laws
in nature. The discrete counterpart [2, p. 2], which is more similar to recurrent neural network
algorithms that are found in the literature, can be derived as a numerical method and applied in
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practical scenarios like lifelong learning with long video streams [4], where an Euler method for the
differential equations can serve as an “optimizer” for RNN weights. Interestingly, we demonstrate that
the online computation described in this paper achieves spatiotemporal locality, thereby contributing
to the longstanding debate on the biological plausibility of Backpropagation [8, 33, 21]. Specifically,
we address the update locking problem and the issue of infinitely fast signal propagation in neural
networks. Finally, the paper shows that the conquest of locality opens up a fundamental problem,
namely that of approximating the solution of Hamilton’s equations with boundary conditions using
only initial conditions. A few insights on the solution of this problem are given for the task of tracking
in optimal control, which opens the doors of a massive investigation of the proposed approach.

2 Recurrent Neural Networks and spatiotemporal locality

We put ourselves in the general case where the computational model that we are considering is based
on a digraph D = (V,A) where V = {1, 2, . . . , n} is the set of vertices and and A is the set of
directed arches that defines the structure of the graph. Let ch(i) denote the set of vertices that are
children of vertex i and with pa(i) the set of vertices that are parents of vertex i for any given i ∈ V .
More precisely we are interested in the computation of neuron outputs over a temporal horizon [0, T ].
Formally, this involves assigning each vertex i ∈ V a trajectory t 7→ xi(t) of outputs that is computed
based on the outputs of other neurons and environmental information. The environmental information
is mathematically represented by a trajectory1 u : [0,+∞) → Rd. We will assume that the output
of the first d neurons (i.e the value of xi for i = 1, . . . , d) matches the value of the components of
the input: xi(t) = ui(t) for i = 1, . . . d and ∀t ∈ [0, T ]. In order to consistently interpret the first d
neurons as input we require two additional property of the graph structure:

pa(i) = ∅ ∀i = 1, . . . , d; (1)
pa({d+ 1, . . . , n}) ⊃ {1, . . . , d}. (2)

Here (1) says that an input neuron do not have parents, and it also implies that no self loops are
allowed for the input neurons. On the other hand (2) means that all input neurons are connected to at
least one other neuron amongst {d+ 1, . . . , n}.
We will denote with x(t) (without a subscript) the ordered list of all the output of the neurons at
time t except for the input neurons, x(t) := (xd+1(t), . . . , xn(t)), and with this definition we can
represent x(t) for any t ∈ [0, T ] as a vector in the euclidean space Rn−d. This vector is usually called
the state of the network since its knowledge gives you the precise value of each neuron in the net. The
parameters of the model are instead associated to the arcs of the graph via the map (j, i) ∈ A 7→ wij

where wij assumes values on R. We will denote with wi∗(t) ∈ R| pa(i)| the vector composed of all
the weights corresponding to arches of the form (j, i). If we let N :=

∑n
i=1 |pa(i)| the total number

of weights of the model we also define RN ∋ w(t) := (w1∗(t), . . . , wn∗(t)) the concatenation of
all the weights of the network. Finally we will assume that the output of the model is computed in
terms of a subset of the neurons. More precisely we will assume that, given a vector of m indices
(i1, . . . , im) with ik ∈ {d + 1, . . . , n}, at each temporal instant the output of the net is a function
π : Rm → Rh of (xi1 , . . . , xim). For future convenience we will denote O = {i1, . . . , im}.

Temporal locality and causality In general we are interested in computational schemes which are
both local in time and causal. Let us assume that we are working at some fixed temporal resolution τ ,
meaning that we can define a partition of the half line (0,+∞), P := {0 = t0τ < t1τ < · · · < tnτ <
. . . } with tnτ = tn−1

τ + τ , then the input signal becomes a sequence of vectors (Un
τ )

+∞
n=0 with Un

τ :=
u(tnτ ) and the neural outputs and parameters can be regarded as an approximation of the trajectories x
and w: Xn

τ ≈ x(tnτ ) and Wn
τ ≈ w(tnτ ), n = 1, . . . ⌊T/τ⌋. A local computational rule for the neural

outputs means that Xn
τ is a function of Xn−l

τ , . . . , Xn
τ , . . . , X

n+l
τ , Wn−l

τ , . . . ,Wn
τ , . . . ,W

n+l
τ and

1In the reminder of the paper we will try whenever possible to formally introduce functions by clearly stating
domain and co-domain. In particular whenever the function acts on a product space we will try to use a consistent
notation for the elements in the various sets that define the input so that we can re-use such notation to denote
the partial derivative of such function. For instance let us suppose that f : A×B → R is a function that maps
(a, b) 7→ f(a, b) for all a ∈ A and b ∈ B. Then we will denote with fa the function that represents the partial
derivative of f with respect to its first argument, with fb the partial derivative of f with respect to its second
argument as a function and so on. We will instead denote, for instance, with fa(x, y) the element of R that
represent the value of fa on the point (x, y) ∈ A×B.
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tn−l
τ , . . . , tnτ , . . . , t

n+l
τ , where l ≪ T/τ can be thought as the order of locality. If we assume that

l ≡ 1 (first order method) then
Xn

τ = F (Xn−1
τ , Xn

τ , X
n+1
τ ,Wn−1

τ ,Wn
τ ,W

n+1
τ , tn−1

τ , tnτ , t
n+1
τ ). (3)

Causality instead expresses the fact that only past information can influence the current state of the
variables meaning that actually (3) should be replaced by Xn

τ = F (Xn−1
τ ,Wn−1

τ , tn−1
τ ). Returning

to the continuous description, this equation can be interpreted as a discretization of a Cauchy problem
for

ẋ = f(x,w, t), (4)
with assigned initial conditions on x(0). Note that the ability to determine the solution by evolving
the state from a specified initial value is fundamentally due to our causality requirement.

Spatial locality Furthermore we assume that such computational scheme is local in time and make
use only on spatially local (with respect to the structure of the graph) quantities as follows:{

xi(t) = ui(t) for i = 1, . . . d and ∀t ∈ [0, T ];

c−1
i ẋi(t) = Ψi(xi(t), PAi(x(t)), INi(w(t))) for i = d+ 1, . . . , n and ∀t ∈ [0, T ].

(5)

Here ci > 0 for all i = d + 1, . . . , n sets the velocity constant that controls the updates of the
i-th neuron, Ψi : R × R| pa(i)| × R| pa(i)| → R for all i = d + 1, . . . , n performs the mapping
(r, α, β) 7→ Ψi(r, α, β) for all r ∈ R, α, β ∈ R| pa(i)|, PAi : Rn−d → R| pa(i)| project the vector ξ ∈
Rn−d 7→ PAi(ξ) on the subspace generated by neurons which are in pa(i) and INi : RN → R| pa(i)|

maps the any vector ω ∈ RN 7→ INi(ω) onto the space spanned by only the weights associated to
arcs that points to neuron i. The assumptions summarized above describe the basic properties of a
RNN or, as sometimes is referred to when dealing with a continuous time computation, a Continuous
Time RNN [32]. The typical form of function Ψi, is the following

Ψi(r, α, β) = −r + σ(β · α), ∀r ∈ R and ∀α, β ∈ R| pa(i)|. (6)

where in this case · is the standard scalar product on R| pa(i)| and σ : R→ R is a nonlinear bounded
smooth function (usually a sigmoid-like activation function). Under this assumption the state equation
in (5) becomes

c−1
i ẋi(t) = −xi(t) + σ(INi(w(t)) · PAi(x(t))) ≡ −xi(t) + σ

( ∑
j∈pa(i)

wijxj(t)
)
, (7)

which is indeed the classical neural computation. Here we sketch a result on the Bounded Input
Bounded Output (BIBO) stability of this class of recurrent neural network which is also important for
the learning process that will be described later.
Propostion 1. The recurrent neural network defined by ODE (7) is (BIBO) stable.

Proof. See Appendix D

3 Learning as a Variational Problem

In the computational model described in Section 2, once the graph D and an input u are assigned,
the dynamics of the model is determined solely by the functions that describes the changes of the
weights over time. Inspired by the Cognitive Action Principle [3] that formulate learning for FNN in
terms of a variational problem, we claim that in an online setting the laws of learning for recurrent
architectures can also be characterized by minimality of a class of functional. In what follows we
will then consider variational problems for a functional of the form

F (w) =

∫ T

0

[
mc

2
|ẇ|2 + cℓ(w(t), x(t;w), t)

]
ϕ(t) dt, (8)

where x(·,w) is the solution of (4) with fixed initial conditions2, ϕ : [0, T ]→ R is a strictly positive
smooth function that weights the integrand, m > 0, ℓ : Rn×RN × [0, T ]→ R+ is a positive function
and finally c :=

∑n
i=d+1 ci/(n − d). We discuss the requirements for making the stationarity

conditions of this class of functional both temporally and spatially local and how they can be
interpreted as learning rules.

2We do not explicitly indicate the dependence on the initial condition to avoid cumbersome notation.

3



3.1 Optimal Control Approach

The problem of minimizing the functional in (8) can be solved by making use of the formalism
of Optimal Control. The first step is to put this problem in the canonical form by introducing an
additional control variable as follow

G(v) =

∫ T

0

[
mc

2
|v|2 + cℓ(w(t;v), x(t;v), t)

]
ϕ(t) dt, (9)

where w(t;v) and x(t;v) solve
ẋ(t) = f(x(t),w(t), t), and ẇ(t) = v(t). (10)

Then, the minimality conditions can be expressed in terms of the Hamiltonian function (see Ap-
pendix A), that is defined for every ξ ∈ RN , ω ∈ Rn, p ∈ RN , q ∈ Rn and t ∈ [0, T ] as:

H(ξ,ω, p, q, t) = − 1

ϕ(t)

q2

2mc
+ cℓ(ω, ξ, t)ϕ(t) + p · f(ξ,ω, t), (11)

via the following general result.
Theorem 1 (Hamilton equations). Let H be as in (11) and assume that x(0) = x0 and w(0) = w0

are given. Then a minimum of the functional in (9) satisfies the Hamilton equations:
ẋ(t) = f(x(t),w(t), t)

ẇ(t) = −pw(t)/(mcϕ(t))

ṗx(t) = −px(t) · fξ(x(t),w(t), t)− cℓξ(w(t), x(t), t)ϕ(t)

ṗw(t) = −px(t) · fω(x(t),w(t), t)− cℓω(w(t), x(t), t)ϕ(t)

(12)

together with the boundary conditions
px(T ) = pw(T ) = 0. (13)

Proof. See Appendix A.

3.2 Recovering spatio-temporal locality

Starting from the general expressions for the stationarity conditions expressed by (12) and (13), we
will now discuss how the temporal and spatial locality assumptions that we made on our computational
model in Section 2 leads to spatial and temporal locality of the update rules of the parameters w.

Temporal Locality The local structure of (10), that comes from the locality of the computational
model that we discussed in Section 2 guarantees the locality of Hamilton’s equations 12. However
the functional in (9) has a global nature (it is an integral over the whole temporal interval) and the
differential term m|v|2/2 links the value of the parameters across near temporal instant giving rise to
boundary conditions in (13). This also means that, strictly speaking (12) and (13) overall define a
problem that is non-local in time. We will devote the entire Section 4 to discuss this central issue.

Spatial Locality The spatial locality of (12) directly comes from the specific form of the dynamical
system in (5) and from a set of assumptions on the form of the term ℓ. In particular we have the
following result:
Theorem 2. Let ℓ(ω, ξ, s) = kV (ω, s) + L(ξ, s) for every (ω, ξ, s) ∈ RN × Rn−d × [0, T ], where
V : RN × [0, T ]→ R+ is a regularization term on the weights3 and L : Rn−d× [0, T ]→ R+ depends
only on the subset of neurons from which we assume the output of the model is computed, that is
Lξi(ξ, s) = Lξi(ξ, s)1O(i), where 1O is the indicator function of the set of the output neurons. Let
Ψi be as in (6) for all i = d + 1, . . . , n, then the generic Hamilton’s equations described in (12)
become 

c−1
i ẋi = −xi + σ

(∑
j∈pa(i) wijxj

)
ẇij = −pijw/(mcϕ)

ṗix = cip
i
x −

∑
k∈ch(i) ckσ

′
(∑

j∈pa(k) wkjxj

)
pkxwki − cLξi(x, t)ϕ

ṗijw(t) = −cipixσ′
(∑

m∈pa(i) wimxm

)
xj − ckVωij (w, t)ϕ

(14)

3a typical choice for this function could be V (ω, s) = |ω|2/2 with k > 0
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Proof. See Appendix B.

Remark 1. Notice (14) directly inherit the spatially local structure from the assumption in (5).

Theorem 2 other than giving us spatio-temporal rules show that the computation of the px has a very
distinctive and familiar property: for each neuron the values of pix are computed using quantities
defined on children’s nodes as it happens for the computations of the gradients in the Backpropagation
algorithm for a FNN. In order to better understand Eq. (14) let us define an appropriately normalized
costate

λi
x(t) :=

σ′(ai(t))

ϕ(t)
pix(t), with ai(t) =

∑
m∈pa(i)

wimxm ∀i = d+ 1, . . . , n, (15)

where we have introduced the notation ai(t) to stand for the activation of neuron i.4 With these
definitions we are ready to state the following result
Propostion 2. The differential system in (14) is equivalent to the following system of ODE of mixed
orders:

c−1
i ẋi = −xi + σ(ai);

ẅij = −
ϕ̇

ϕ
ẇij +

ci
mc

λi
xxj +

k

m
Vωij (w, t);

λ̇i
x =

[
− ϕ̇

ϕ
+

d

dt
log(σ′(ai)) + ci

]
λi
x − σ′(ai)

∑
k∈ch(i)

ckλ
k
xwki − cLξi(x, t)σ

′(ai),

(16)

where λi
x is defined as in (15).

Proof. See Appendix C.

This in an interesting result especially since via the following corollary gives a direct link between
the rescaled costates λx and the delta error of Backprop:
Corollary 1 (Reduction to Backprop). Let ci be the same for all i = 1, . . . , n so that now ci = c,
then the formal limit of the λ̇x equation in the system 16 as c→∞ is

λi
x = σ′(ai)

∑
k∈ch(i)

λk
xwki + Lξi(x, t)σ

′(ai). (17)

Proof. Dividing both sides of the equation for λi
x in Eq. (16) by c we get:

λ̇i
x

c
=

1

c

[
− ϕ̇

ϕ
+

d

dt
log(σ′(ai))

]
λi
x + λi

x − σ′(ai)
∑

k∈ch(i)

λk
xwki − Lξi(x, t)σ

′(ai).

As c→∞, the terms proportional to 1/c vanish, leaving us exactly with Eq. (17).

Notice that Eq. (17) is exactly the update equation for delta errors in backpropagation: when i is an
output neuron the value of λ is directly given by the gradient of the error, otherwise it is express as a
sum on its children (see [13]).

4 From boundary to Cauchy’s conditions

While discussing temporal locality in Section 3, we came across the problem of the left boundary
conditions on the costate variables. We already noticed that these constraints spoil the locality of the
differential equations that describe the minimality conditions of the variational problem at hand. In
general, this prevents us from computing such solutions with a forward/causal scheme.

The following examples should suffice to explain that, in general, this is a crucial issue and should
serve as motivation for the further investigation we propose in the present section.

4We have avoided to introduce the notation until now because we believe that it is worth writing (14) with
the explicit dependence on the variable w and x at least once to better appreciate its overall structure.
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Example 1. Consider a case in which ℓ(ω, ξ, s) ≡ V (ω, s), i.e. we want to study the minimization
problem for

∫ T

0
(m|v(t)|2/2+V (w(t;v), t))ϕ(t)dt under the constraint ẇ = v. Then the dynamical

equation ẋ(t) = f(x(t),w(t)) does not represent a constraint on variational problems for functional
in (9). If we look at the Hamilton equation for ṗx in (12) this reduces to ṗx = −px · fω. We
would however expect px(t) ≡ 0 for all t ∈ [0, T ]. Indeed this is the solution that we would find
if we pair ṗx = −px · fω with its boundary condition px(T ) = 0 in (13). Notice that in general
without this condition a random Cauchy initialization of this equation would not give null solution
for the px. Now assume that ϕ = exp(θt) with θ > 0, and m = 1. Assume, furthermore5 that
V (ω, s) = |ω|2/2. The functional

∫ T

0
(|ẇ|/2 + |w|2/2)eθtdt defined over the functional space6

H1([0, T ];RN ) is coercive and lower-semicontinuous, and hence admits a minimum (see [11]).
Furthermore one can prove (see [20]) that such minimum is actually C∞([0, T ];RN ). This allows
us to describe such minumum with the Hamilton equations described in (12). In particular as we
already commented the relevant equations are only that for ẇ and ṗw that is ẇ(t) = −pw(t)e−θt

and ṗw(t) = −weθt with pw(T ) = 0. This first order system of equations is equivalent to the second
order differential equation ẅ(t) + θẇ(t)−w(t) = 0. Each component of this second order system
will, in general have an unstable behaviour since one of the eigenvalues is always real and positive.
This is a strong indication that when solving Hamilton’s equations with an initial condition on pw we
will end up with a solution that is far from the minimum.

In the next subsection, we will analyze this issue in more detail and present some alternative ideas
that can be used to leverage Hamilton’s equations for finding causal online solutions.

4.1 Time Reversal of the Costate

In Example 1 we discussed how the forward solution of Hamilton’s (12) with initial conditions both
on the state and on the costate in general cannot be related to any form of minimality of the cost
function in (9) and this has to do with the fact that the proper minima are characterized also by left
boundary conditions 13. The final conditions on ṗx and ṗw suggest that the costate equations should
be solved backward in time. Starting from the final temporal horizon and going backward in time is
also the idea behind dynamic programming, which is of the main ideas at the very core of optimal
control theory.

Autonomous systems of ODE with terminal boundary conditions can be solved “backwards” by
time reversal [9, p. 597] operation t→ −t and transforming terminal into initial conditions. More
precisely the following classical result holds:

Propostion 3. Let ẏ(s) = φ(y(t)) be a system of ODEs on [0, T ] with terminal conditions y(T ) = yT

and let ρ be the time reversal transformation maps t 7→ s = T − t, then ŷ(s) := y(ρ−1(s)) = y(t)

satisfies ˙̂y(s) = −φ(ŷ(s)) with initial condition ŷ(0) = yT .

Clearly (12) or (16) are not an autonomous system and hence we cannot apply directly Proposition 3
nonetheless, we can still consider the following modification of (14)

c−1
i ẋi = −xi + σ

(∑
j∈pa(i) wijxj

)
ẇij = −pijw/(mcϕ)

ṗix = −cipix +
∑

k∈ch(i) ckσ
′
(∑

j∈pa(k) wkjxj

)
pkxwki + cLξi(x, t)ϕ

ṗijw(t) = cip
i
xσ

′
(∑

m∈pa(i) wimxm

)
xj + ckVωij

(w, t)ϕ

(18)

which are obtained from (14) by changing the sign to ṗx and ṗw. Recalling the definition of the
rescaled costates in (15) we can cast, in the same spirit of Proposition 2 a system of equations without
pw. In particular we have as a corollary of Proposition 2 that

5The same argument that we give in this example works for a larger class of coercive potentials V .
6These are called Sobolev spaces, for more details see [5].
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Corollary 2. The ODE system in (18) is equivalent to

c−1
i ẋi = −xi + σ(ai);

ẅij = −
ϕ̇

ϕ
ẇij −

ci
mc

λi
xxj −

k

m
Vωij

(w, t);

λ̇i
x =

[
− ϕ̇

ϕ
+

d

dt
log(σ′(ai))− ci

]
λi
x + σ′(ai)

∑
k∈ch(i)

ckλ
k
xwki + cLξi(x, t)σ

′(ai),

(19)

Proof. Let us consider (16). The change of sign of ṗw only affect the signs of λi
xxj and Vωij (w, t)

in the ẅij equation, while the change of sign of ṗx result in a sign change of the term ciλ
i
x,

σ′(ai)
∑

k∈ch(i) ckλ
k
xwki and Lξi(x, t)σ

′(ai) in the equation for λ̇x
i .

Equation 19 is indeed particularly interesting because it offers an interpretation of the dynamics of
the weights w that is in the spirit of a gradient-base optimization method. In particular this allow
us the extend the result that we gave in Corollary 1 to a full statement on the resulting optimization
method:
Propostion 4 (GD with momentum). Let ci be the same for all i = 1, . . . , n so that now ci = c, and
let ϕ(t) = exp(θt) with θ > 0 then the formal limit of the system in (19) as c→∞ is

xi = σ(ai);

ẅij = −θẇij − 1
mλi

xxj − (k/m)Vωij (w, t);

λi
x = σ′(ai)

∑
k∈ch(i) λ

k
xwki + Lξi(x, t)σ

′(ai).

(20)

Remark 2. This result shows that at least in the case of infinite speed of propagation of the signal
across the network (c→∞) the dynamics of the weights prescribed by Hamilton’s equation with
the costate dynamics that is reversed (the sign of ṗx and ṗw is changed) results in a gradient flow
dynamic (heavy-ball dynamics) that it is interpretable as a gradient descent with momentum in the
discrete. This is true since the term λi

xxj in this limit is exactly the Backprop factorization of the
gradient of the term L with respect to the weights.

In view of this remark we can therefore conjecture that also for c fixed:
Conjecture 1. Equation 19 is a local optimization scheme for the loss term ℓ.

Such result would enable us to use (19) with initial Cauchy conditions as desired.

4.2 Continuous Time Reversal of State and Costate

Now we show that another possible approach to the problem of solving Hamilton’s equation with
Cauchy’s conditions is to perform simultaneous time-reversal of both state and costate equation.
Since in this case the sign flip involves both the Hamiltonian equations the approach is referred to as
Hamiltonian Sign Flip (HSF). In order to introduce the idea let us begin with the following example.
Example 2 (LQ control). Let us consider a linear quadratic scalar problem where the functional in (9)
is G(v) =

∫ T

0
qx2/2 + rv2/2 dt and ẋ = ax + bv with q, r positive and a and b real parameters.

The associated Hamilton’s equations in this case are
ẋ = ax− sp, ṗ = −qx− ap, (21)

where s ≡ −b2/r. These equation can be solved with the ansatz p(t) = θ(t)x(t), where θ is some
unknown parameter. Differentiating this expression with respect to time we obtain

θ̇ = (ṗ− θẋ)/x, (22)

and using the (21) into this expression we find θ̇ − sθ2 − 2aθ − q = 0 which is known as Riccati
equation, and since p(T ) = 0, because of boundary (13) this implies θ(T ) = 0. Again if instead
we try to solve this equation with initial condition we end up with an unstable solution. However
θ solves an autonomous ODE with final condition, hence by Proposition 3 we can solve it with 0
initial conditions as long as we change the sign of θ̇. Indeed the equation θ̇ + sθ2 + 2aθ + q = 0
is asymptotically stable and returns the correct solution of the Riccati algebraic equation. Now the
crucial observation is that, as we can see from (22), the sign flip of θ̇ is equivalent to the simultaneous
sign flip of ẋ and ṗ.
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In Example 2, as we observe from (22), the sign flip of θ̇ is equivalent to the simultaneous sign flip of
ẋ and ṗ. Inspired by the fact, let us associate the general Hamilton’s equation ((12)), to this system
the Cauchy problem ẋ(t)

ẇ(t)
ṗx(t)
ṗw(t)

 = s(t)

 f(x(t),w(t), t)
−pw(t)/(mcϕ(t))

−px(t) · fξ(x(t),w(t), t)− cℓξ(w(t), x(t), t)ϕ(t)
−px(t) · fω(x(t),w(t), t)− cℓω(w(t), x(t), t)ϕ(t)

 (23)

where for all t ∈ [0, T ], s(t) ∈ {0, 1}. Here we propose two different strategies that extends the sign
flip discussed for the LQ problem.

Hamiltonian Track The basic idea is enforce system stabilization by choosing s(t) to bound both
the Hamiltonian variables. This leads to define a Hamiltonian track:
Definition 1. Let S(ξ,ω, p, q) ⊂ (Rn−d×RN )2 for every (ξ,ω, p, q) ∈ (Rn−d×RN )2 be a bounded
connected set and let t 7→ X(t) any continuous trajectory in the space (Rn−d × RN )2, then we refer
to

{(t, S(X(t)) : t ∈ [0, T ]} ∈ [0, T ]× (Rn−d × RN )2

as Hamiltonian track (HT).

Then we define s(t) as follow

s(t) =

{
1 if (x(t),w(t), px(t), pw(t)) ∈ S((x(t),w(t), px(t), pw(t)))

−1 otherwise
. (24)

For instance if we choose S(ξ,ω, p, q) = {(ξ,ω, p, q) : |ξ|2 + |ω|2 + |p|2 + |q|2 ≤ R}
we are constraining the dynamics of (23) to be bounded since each time the trajectory t 7→
(x(t),w(t), px(t), pw(t)) moves outside of a ball of radius R we are reversing the dynamics by
enforcing stability.

Hamiltonian Sign Flip Strategy and time reversal We can easily see that the sign flip driven
by the policy of enforcing the system dynamics into the HT corresponds with time reversal of the
trajectory, which can nicely be interpreted as focus of attention mechanism. A simple approximation
of the movement into the HT is that of selecting s(t) = sign(cos(ω̄t)), where ω̄ = 2πf̄ is an
appropriate flipping frequency which governs the movement into the HT. In the discrete setting of
computation the strategy consists of flipping the right-side of Hamiltonian equations sign with a given
period. In the extreme case the sign flip takes place at any Euler discretization step. Here we report
the application of the Hamiltonian Sign Flip strategy to the classic Linear Quadratic Tracking (LQT)
problem by using a recurrent neural network based on a fully-connected digraph. The purpose of the
reported experiments is to validate the HSF policy, which is in fact of crucial importance in order to
exploit the power of the local propagation presented in the paper, since the proposed policy enables
on-line processing.

The pre-algorithmic framework proposed in the paper, which is based on ODE can promptly give rise
to algorithmic interpretations by numerical solutions. In the reported experiments we used Euler’s
discretization (see Appendix E for both architectural and algorithmic details).

Sinusoidal signals: The effect of the accuracy parameter. In this experiment we used a sinusoidal
target and a recurrent neural network with five neurons, while the objective function was G(v) =∫ T

0
q(x0 − z)2/2 + r|v|2/2 + rw|w|2 dt, where we also introduced a regularization term on the

weights. Here, x0 denotes the neuron designated as the output (see Appendix E) and q, r and rw are
positive parameters. The HSF policy gives rise to the expected approximation results. In Fig. 1–2 we
can appreciate the effect of the increment of the accuracy term.

Tracking under hard predictability conditions. This experiment was conceived to assess the capa-
bilities of the same small recurrent neural network with five neurons to track a signal which was
purposely generated to be quite hard to predict. It is composed of patching intervals with cosine
functions with constants.

The experimental analysis on this and related examples confirms effectiveness of the HSF policy
shown in Fig. 3. Figure 4 shows the behavior of the Lagrangian and of the Hamiltonian term, with
the latter providing insights into the energy exchange with the environment.
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Figure 1: Recurrent net with 5 neurons, q = 10 (accuracy term), rw = 1 (weight regularization term),
r = 0.1 (derivative of the weight term).
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Figure 2: Recurrent net with 5 neurons, q = 1000 (accuracy term), rw = 1 (weight regularization
term), r = 0.1 (derivative of the weight term).

5 Related Work

Optimal control. Optimal control theory primarily studies minimality problems for dynamical
systems [1, 6]. The two main complementary approaches to the problem are the Pontryagin Maximum
Principle [10] and dynamic programming. Additionally, as a general minimization problem, both
approaches significantly intersect with the calculus of variations [12]. Optimal control for discrete
problems is also a classic topic [2, p. 2].

Neural ODE. Recent works, such as [7] and subsequent studies [17, 24] have applied results
from optimal control to develop learning algorithms based on differential equations. However, these
approaches differ significantly from the continual online learning considered in this work, as the time
variable in the class of ODEs they examine is not tied to the input signal that represents the flow of
the learning environment.

Online. On the other hand several works propose to formulate the learning problems online and
from a single stream of data [22, 34]. The classical approach to learn RNNs online is RTRL [15];
several approaches has been since proposed to reduce the high space/time complexities due to the
progressive update of a Jacobian matrix [23]. In our method no storing of Jacobian matrices happens,
hence the proposed method is not a generalization/reformulation of RTRL not related approaches
like [35].

Nature-inspired computations. The primary distinction of our approach in discussing the biologi-
cal plausibility of backpropagation lies in our development of a theory grounded entirely in temporal
analysis within the environment and the concept of learning over time. While several classical [28]
and recent approaches [29, 25, 26, 27, 14] share certain locality properties outlined here, they are
primarily inspired by brain physiology. Similarly, most works that examine the biological plausibility
of backpropagation [8, 33, 21] overlook the role of time in the sense that we present in this work.
Here, we propose laws of neural propagation where connections are updated progressively over time,
mirroring processes observed in nature.

6 Conclusions

This paper is motivated by the idea of a proposing learning scheme that, like in nature, arises without
needing data collections, but simply by on-line processing of the environmental interactions. The
paper gives two main contributions. First, it introduces a local spatiotemporal pre-algorithmic
framework that is inspired to classic Hamiltonian equations. It is shown that the corresponding
algorithmic formalization leads to the interpretation of Backpropagation as a limit case of the
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Figure 3: Tracking a highly-unpredictable signal: number of neurons: 5, q = 100 (accuracy), weight
reg = 1, derivative of weight reg = 0.1.
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Figure 4: Evolution of the Lagrangian and of the Hamiltonian function for the experiment whose
tracking is shown in Fig. 3.

proposed diffusion process in case of infinite velocity. This sheds light on the longstanding discussion
on the biological plausibility of Backpropagation, since the proposed computational scheme is local
in both space and time. This strong result is indissolubly intertwined with a strong limitation. The
theory enables such a locality under the assumption that the associated ordinary differential equations
are solved as a boundary problem. The second result of the paper is that of proposing a method for
approximating the solution of the Hamiltonian problem with boundary conditions by using Cauchy’s
initial conditions. In particular we show that we can stabilize the learning process by appropriate
schemes of time reversal that are related to focus of attention mechanisms. We provide experimental
evidence of the effect of the proposed Hamiltonian Sign Flip policy for problems of tracking in
automatic control. While the proposed local propagation scheme is optimal in the temporal setting
and overcomes the limitations of classic related learning algorithms like BPTT and RTRL, the
given results show that there is no free lunch: The distinguishing feature of spatiotemporal locality
needs to be sustained by appropriate movement policies into the Hamiltonian Track. We expect
that other solutions better than the HSF policy herein proposed can be developed when dealing with
real-word problems and may offer potential approaches to classic challenges in lifelong learning,
such as forgetting, that remain open and are not fully addressed by the current framework. This
paper must only be regarded as a theoretical contribution which offers a new pre-algorithmic view of
neural propagation. While the provided experiments support the theory, the application to real-world
problems need to activate substantial joint research efforts on different application domains.
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A Optimal Control

The classical way in which Hamilton’s equations are derived is through Hamilton-Jacobi-Bellman
theorem. So let enunciate this theorem in a general setting. Here we use the notation y = (x,w) to
stand for the whole state vector and p = (px, pw). We will also denote with α the control parameters.
Moreover to avoid cumbersome notation in this appendix we will override the notation on the symbols
n and N and we will use them here to denote the dimension of the state and of the control parameters
respectively.

A.1 Hamilton Jacobi Bellman Theorem

Consider the classical state model

ẏ(t) = f(y(t), α(t), t), t ∈ (t0, T ] (25)

f : Rn × RN × [t0, T ]→ Rn is a Lipschitz function, t 7→ α(t) is the trajectory of the parameters of
the model, which is assumed to be a measurable function with assigned initial state y0 ∈ Rn, that is

y(t0) = y0. (26)

Let us now pose A := {α : [t0, T ]→ RN : α is measurable} and given a β ∈ A, and given an initial
state y0, we define the state trajectory, that we indicate with t 7→ x(t;β, y0, t0), the solution of (25)
with initial condition (26).

Now let us define a cost functional C that we want to minimize:

Cy0,t0(α) :=

∫ T

t0

Λ(α(t), y(t;α, y0, t0), t) dt, (27)

where Λ(a, ·, s) is bounded and Lipshitz ∀a ∈ RN and ∀s ∈ [t0, T ]. Then the problem

min
α∈A

Cy0,t0(α) (28)

is a constrained minimization problem which is usually denoted as control problem [1], assuming
that a solution exists. The first step to address our constrained minimization problem is to define the
value function or cost to go, that is a map v : Rn × [t0, T ]→ R defined as

v(ξ, s) := inf
α∈A

Cξ,s(α), ∀(ξ, s) ∈ Rn × [t0, T ]

and the Hamiltonian function H : Rn × Rn × [t0, T ]→ R as

H(ξ, ρ, s) := min
a∈RN

{ρ · f(ξ, a, s) + Λ(a, ξ, s)}, (29)

being · the dot product. Then Hamilton-Jacobi-Bellman theorem states that
Theorem 3 (Hamilton-Jacobi-Bellman). Let us assume that D denotes the gradient operator with
respect to ξ. Furthermore, let us assume that v ∈ C1(Rn × [t0, T ],R) and that the minimum of Cξ,s,
Eq. (28), exists for every ξ ∈ Rn and for every s ∈ [t0, T ]. Then v solves the PDE

vs(ξ, s) +H(ξ,Dv(ξ, s), s) = 0, (30)

(ξ, s) ∈ Rn × [t0, T ), with terminal condition v(ξ, T ) = 0, ∀ξ ∈ Rn. Equation 30 is usually referred
to as Hamilton-Jacobi-Bellman equation.

Proof. Let s ∈ [t0, T ) and ξ ∈ Rn. Furthermore, instead of the optimal control let us use a constant
control α1(t) = a ∈ RN for times t ∈ [s, s + ϵ] and then the optimal control for the remaining
temporal interval. More precisely let us pose

α2 ∈ argmin
α∈A

Cy(s+ε;a,ξ,s),s+ε(α).

Now consider the following control

α3(t) =

{
α1(t) if t ∈ [s, s+ ε)

α2(t) if t ∈ [s+ ε, T ] .
(31)
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Then the cost associated to this control is

Cξ,s(α3) =

∫ s+ε

s

Λ(a, y(t; a, ξ, s), t) dt

+

∫ T

s+ε

Λ(α2(t), y(t;α2, ξ, s), t) ds

=

∫ s+ε

s

Λ(a, y(t; a, ξ, s), t) dt

+ v(y(s+ ε; a, ξ, s), s+ ε)

(32)

By definition of value function we also have that v(ξ, s) ≤ Cξ,s(α3). When rearranging this
inequality, dividing by ε, and making use of the above relation we have

v(y(s+ ε; a, ξ, s), s+ ε)− v(ξ, s)

ε
+

1

ε

∫ s+ε

s

Λ(a, y(t; a, ξ, s), t) dt ≥ 0

(33)

Now taking the limit as ε→ 0 and making use of the fact that y′(s, a, ξ, s) = f(ξ, a, s) we get
vs(ξ, s) +Dv(ξ, s) · f(ξ, a, s) + Λ(a, ξ, s) ≥ 0. (34)

Since this inequality holds for any chosen a ∈ RN we can say that
inf

a∈RN
{vs(ξ, s) +Dv(ξ, s) · f(ξ, a, s) + Λ(a, ξ, s)} ≥ 0 (35)

Now we show that the inf is actually a min and, moreover, that minimum is 0. To do this we simply
choose α∗ ∈ argminα∈A Cξ,s(α) and denote a∗ := α∗(s), then

v(ξ, s) =

∫ s+ε

s

Λ(α∗(t), y(t;α∗, ξ, s), t) dt

+ v(y(s+ ε;α∗, ξ, s).

(36)

Then again dividing by ε and using that y′(s;α∗, ξ, a) = f(ξ, a∗, s) we finally get
vs(ξ, s) +Dv(ξ, s) · f(ξ, a∗, s) + Λ(a∗, ξ, s) = 0 (37)

But since a∗ ∈ RN and we knew that infa∈RN {vs(ξ, s) +Dv(ξ, s) · f(ξ, a, s) + Λ(a, ξ, s)} ≥ 0 it
means that

inf
a∈RN

{vs(ξ, s) +Dv(ξ, s) · f(ξ, a, s) + Λ(a, ξ, s)} =

min
a∈RN

{vs(a, s) +Dv(ξ, s) · f(ξ, a, s) + Λ(a, ξ, s} = 0.
(38)

Recalling the definition of H we immediately see that the last inequality is exactly (HJB).

A.2 Hamilton Equations: The Method of Characteristics

Now let us define p(t) = Dv(y(t), t) so that by definition of the value function p(T ) = 0 which
gives (13). Also by differentiating this expression with respect to time we have

ṗk(t) = vξkt(y(t), t) +

n∑
i=1

vξkξi(y(t), t) · ẏi. (39)

Now since v solves (30), if we differentiate the Hamilton Jacobi equation by ξk we obtain:

vtξk(ξ, s) = −Hξk(ξ,Dv(ξ, s), s)−
n∑

i=1

Hρi(ξ,Dv(ξ, s), s) · vξkξi(ξ, s).

Once we compute this expression on (y(t), t) and we substitute it back into (39) we get:

ṗk(t) = −Hξk(y(t), Dv(y(t), t), t) +

n∑
i=1

[
ẏi(t)−Hρi

(y(t), Dv(y(t), t), t)
]
· vξkξi(y(t), t).

Now if we choose yso that it satisfies ẏ(t) = Hρ(y(t), p(t), t) the above equation reduces to
ṗ = −Hξ(y(t), p(t), t).

Applying these equations to the Hamiltonian in (11) we indeed end up with (12).
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B Proof of Theorem 2

From (7) and the hypothesis on ℓ we have that

fk
ξi = −ciδik + ckσ

′
( ∑
j∈pa(k)

wkjxj

) ∑
m∈pa(k)

wkmδmi, ℓξ = Lξi(x, t)

fk
ωij

= ckσ
′
( ∑
m∈pa(k)

wkmxm

) ∑
h∈pa(k)

δikδjhxh, ℓωij = kVωij .

Then (12) becomes
c−1
i ẋi = −xi + σ

(∑
j∈pa(i) wijxj

)
ẇij = −pijw/(mcϕ)

ṗix = cip
i
x −

∑n
k=d+1

∑
m∈pa(k) ckp

k
xσ

′
(∑

j∈pa(k) wkjxj

)
wkmδmi − cLξi(x, t)ϕ

ṗijw(t) = −
∑n

k=d+1 ckp
k
xσ

′
(∑

m∈pa(k) wkmxm

)∑
h∈pa(k) δikδjhxh − ckVωij

(w, t)ϕ

(40)

Now to conclude the proof it is sufficient to apply the following lemma to conveniently rewrite and
switch the sums in the ṗ equations.

Lemma 1. Let A be the set of the arches of a digraph as in Section 2, and let (2) be true, then

A = { (m, k) ∈ A : k ∈ {d+ 1, . . . , n} } = { (m, k) ∈ A : m ∈ {1, . . . , n} }.

Equivalently we may say that
∑n

k=d+1

∑
m∈pa(k) =

∑n
m=1

∑
k∈ch(m).

Proof. It is an immediate consequences of the fact that the first d neurons are all parents of some
neuron in {d+ 1, . . . , n} ((2)) and that they do not have themselves any parents ((1)).

C Proof of Proposition 2

The first equation of (16) is a simple rewriting of the first expression in (14), utilizing the definition
of activation from Eq. (15). We obtain the second equation in (16) by combining the second and last
equations in Eq .(14):

ẅij = −ṗijw/(mcϕ) + pijwϕ̇/(mcϕ2).

The expression for ṗijw can be substituted from the last equation in Eq. (14), with pijw = −mcϕẇij . Fi-
nally, pix = ϕσ′(ai)λ

i
x from Eq. (15). To derive the second equation in (16), we start by differentiating

λi
x as defined in Eq. (15), obtaining:

λ̇i
x =

σ′′(ai)

ϕ
pix − σ′(ai)

ϕ̇

ϕ2
pix +

σ′(ai)

ϕ
ṗix.

We then substitute pix = ϕσ′(ai)λ
i
x as above and use the third equation in (14) for ṗix. This equation,

with all px terms converted to λx as per pix = ϕσ′(ai)λ
i
x, yields the exact expression for λi

x in
Eq. (16).

D Proof of Proposition 1

Let µ(t) := σ
(∑

j∈pa(i) wijxj(t)
)

be. From the boundedness of σ(·) we know that there exists
B > 0 such that |µ(t)| ≤ B. Now we have

xi(t) = xi(0)e
−αt +

∫ t

0

e−α(t−τ)u(τ)dτ ≤ xi(0) +B

∫ t

0

e−α(t−τ)dτ

≤ xi(0) +
B

α
(1− e−t) < xi(0) +

B

α
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Figure 5: Architecture used in the experiments. The red neuron is the one that is used as output and it
is forced to follow the reference (target) signal.

E Architectural and Algorithmic details

Figure 5 illustrates the network architecture used in the experiments described in in Section 4.2.
Algorithm 1 provides a detailed explanation of the Hamiltonian Sign Flip method, which is also
discussed in the same section and applied in all the experimental results presented.

Algorithm 1 Hamiltonian Sign Flip. In red the change of signs due to HSF. The locality of the
method is evident from the loop on time t while the spatial locality depends on the structure of each
update rule for the states and costates. (what we propose is valid also for unevenly spaced data).

Init x0 = rand, w0 = rand, p0x = 0, p0w = 0. Select c > 0 and choose function ϕ.
while t < T do

Compute st using Eq. (24).
ẋt ← f(xt,wt, t), ẋt ← stẋt

ẇt ← −ptw/(mcϕt), ẇt ← stẇt

ṗtx ← −ptx · fξ(xt,wt, t)− cℓξ(w
t, xt, t)ϕt, ṗtx ← stṗtx

ṗtw ← −ptx · fu(xt,wt, t)− cℓu(w
t, xt, t)ϕt, ṗtw ← stṗtw

xt+τ = xt + τ ẋt

wt+τ = wt + τẇt

pt+τ
x = ptx + τ ṗtx

pt+τ
w = ptw + τ ṗtw

t = t+ τ
end while
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: -

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The main limitation of this paper are described in the Conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All claims are properly stated and proofs are provided either in the main paper
or in the appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code with instructions to reproduce the experiments is provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code with instructions to reproduce the experiments is provided, no
external data is needed to reproduce the experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experiments only assess a qualitative behaviour of a newly introduced
learning rules.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Computing requirements of the experiment are so modest that any modern
laptop can sustain it.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics and in our opinion we are not in
violation of any norm therein contained.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no direct clear foreseeable either positive or negative social impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: -

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: -
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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