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ABSTRACT

Recent progress in the reasoning capabilities of multimodal large language mod-
els (MLLMs) has empowered them to address more complex tasks such as scien-
tific analysis and mathematical reasoning. Despite their promise, MLLMs’ rea-
soning abilities across different scenarios in real life remain largely unexplored
and lack standardized benchmarks for evaluation. To address this gap, we intro-
duce MMR-Life, a comprehensive benchmark designed to evaluate the diverse
multimodal multi-image reasoning capabilities of MLLMs across real-life scenar-
ios. MMR-Life consists of 2,676 multiple-choice questions based on 19,367 im-
ages primarily sourced from real-world contexts, comprehensively covering seven
reasoning types: abductive, analogical, causal, deductive, inductive, spatial, and
temporal. Unlike existing reasoning benchmarks, MMR-Life does not rely on
domain-specific expertise but instead requires models to integrate information
across multiple images and apply diverse reasoning abilities. The evaluation of
37 advanced models highlights the substantial challenge posed by MMR-Life.
Even top models like GPT-5 achieve only 58% accuracy and display consider-
able variance in performance across reasoning types. Moreover, we analyze the
reasoning paradigms of existing MLLMs, exploring how factors such as think-
ing length, reasoning method, and reasoning type affect their performance. In
summary, MMR-Life establishes a comprehensive foundation for evaluating, an-
alyzing, and improving the next generation of multimodal reasoning systems.

Broad Reasoning Types Reasoning in Real-life Senarios SOTA MLLM’s Evaluation
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AccGPT-5: Look at the couple on the 
right side (man holding a white 
jacket and woman in a pink coat). 
In image 4 they are far back on 
the right aisle. In image 2 they 
are closer to the center. In image 
1 they are even nearer to the palm. 
In image 3 they are at the front 
right, closest to the camera. The 
man in a pink T-shirt also moves 
forward from image 4 to image 2 
and then is gone by images 1 and 
3, consistent with this progression. 
Thus the correct chronological 
sequence is 4-2-1-3. #Answer: E

Q: What is the correct temporal 
sequence of these images?

(A) 3-1-2-4 (B) 3-2-4-1 (C) 2-3-1-4 
(D) 3-2-1-4 (E) 4-2-1-3 

Abductive
Multi-hop Attribution,

Interaction Attribution…

Analogical

Composition Deduction,
Step Deduction…

Causal

Multi-hop Prediction,
Counterfactual…

Similarity Inference,
Relation Inference…

Inductive

Deductive

Spatial

Temporal Timeline Reconstruction,
Sequence Prediction…

Position Estimation,
Route Planning…

Feature Induction,
Disease Induction…

Figure 1: Overview of the MMR-Life. Left: 7 reasoning types and 21 tasks. Middle: A typical
example of multi-image reasoning in real-life scenarios. Right: Extensive evaluation reveals a gap
between humans and SOTA MLLMs on some real-life reasoning tasks.

1 INTRODUCTION

Reasoning is the process of generalizing from known premises to new conclusions, and it is con-
sidered a key capability for AI systems on the path to artificial general intelligence (AGI) (Li et al.,
2025c; Jin et al., 2024; Zhu et al., 2025). Recently, with the great success of reasoning large language
models (RLLMs) in tasks such as mathematical reasoning (DeepSeek-AI et al., 2025; Muennighoff
et al., 2025; Li et al., 2025d), there has been a widespread exploration of transferring this reasoning-
enhanced paradigm to multimodal large language models (MLLMs). Representative models such as
Gemini-2.5-Pro (Comanici et al., 2025), Claude-Sonnet-4 (Anthropic, 2025b), and GPT-5 (OpenAI,
2025b) leverage long Chain-of-Thought (CoT) (Wei et al., 2022) style reasoning to capture key vi-
sual information, decompose complex problems, thereby achieving or even surpassing human-level
performance in diverse reasoning scenarios.
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With the advancement of MLLM reasoning capabilities, there has been an increasing demand for
more challenging and realistic multimodal reasoning benchmarks. Recent work mainly evaluates
the reasoning ability of MLLMs through two approaches: One line of research collects expert-
level domain-specific problems to assess the model’s reasoning based on knowledge in areas such
as scientific knowledge answering (Tie et al., 2025; Xi et al., 2025; Yue et al., 2024) and math
problem solving (Wang et al., 2025b; He et al., 2024). The other line of research attempts to separate
knowledge from reasoning by using synthetic problems like symbolic puzzles to assess reasoning
capabilities across different difficulty levels (Song et al., 2025; Yuan et al., 2025; Chia et al., 2024).

Despite significant progress, current benchmarks still exhibit a considerable deviation from real-life
reasoning scenarios. (1) From the task design perspective, the tasks in existing benchmarks are
not commonly encountered in everyday reasoning. Both knowledge-intensive tasks and synthe-
sized puzzle-based tasks remain misaligned with the authentic reasoning demands that arise in ev-
eryday situations. For the former, daily reasoning seldom relies on expert-level knowledge, whereas
for the latter, the symbolic input images differ substantially from those encountered in real-world
scenarios. (2) From the perspective of input images, current benchmarks fail to include multi-
image inputs that span a diverse range of reasoning types. A large portion of multimodal gen-
eral reasoning benchmarks focus exclusively on single-image inputs (Yue et al., 2024; 2025a; Song
et al., 2025), which contrasts with real-world conditions where we perceive visual information as a
sequence of images rather than a single one. For multi-image benchmarks, existing work either in-
corporates non-reasoning tasks or focuses on a limited reasoning type (Cheng et al., 2025; Kil et al.,
2024; Liu et al., 2024; Meng et al., 2025b), making it difficult to support further comprehensive
evaluation of MLLM reasoning performance.

To address these issues, we introduce MMR-Life, a comprehensive benchmark designed to evaluate
the multimodal multi-image reasoning capability of MLLMs across real-life scenarios. MMR-Life
contains 2,676 carefully curated questions, covering 7 distinct reasoning types (see Figure 1, 2),
which broadly encompass the reasoning abilities necessary for everyday situations. In MMR-Life,
each question is associated with a set of images, primarily taken in real-world scenarios. The an-
swers do not require domain-specific expertise but instead ask models to extract key information
from multiple real-life images and derive new conclusions. This design aligns MMR-Life more
closely with the reasoning types found in everyday life. Figure 1 shows an example from MMR-
Life. To address the temporal ordering problem, the model needs to detect individuals recurring
across different surveillance images and track their movements, selecting the correct order.

Extensive evaluations on 37 advanced MLLMs demonstrate that the real-world reasoning scenarios
in MMR-Life remain highly challenging. As illustrated in Figure 1, even the most advanced mod-
els, including GPT-5 and Gemini-2.5-Pro, reach only 58.48% and 56.58% accuracy on MMR-Life,
falling short of human performance by 14%. Besides, the evaluation results demonstrate substantial
performance disparities across reasoning types. Existing MLLMs perform relatively well on ana-
logical, deductive, and inductive reasoning, but encounter notable bottlenecks in causal, spatial, and
temporal reasoning. Based on MMR-Life, we conduct an analysis of MLLM reasoning paradigms
and obtain several key findings, including that long thinking benefits only limited reasoning types,
RL’s weaker generalization in small models, and the clustering of reasoning types into patterns.

In summary, our contributions include: (1) We propose MMR-Life, the first comprehensive bench-
mark for evaluating multimodal multi-image reasoning in real-life scenarios across seven reasoning
types. (2) Through an extensive evaluation of 37 state-of-the-art MLLMs on MMR-Life, we find
that existing models struggle considerably in real-life reasoning, especially in causal, spatial, and
temporal tasks. (3) Based on MMR-Life, we conduct an in-depth analysis of current MLLM reason-
ing paradigms, revealing key findings such as the limited effectiveness of long thinking to certain
reasoning types, the weaker generalization of RL on small models, and the presence of pattern clus-
tering across reasoning types.

2 THE MMR-LIFE BENCHMARK

2.1 OVERVIEW

We introduce the Multimodal Multi-image Reasoning benchmark under real-Life scenarios (MMR-
Life), a novel benchmark meticulously curated to evaluate the ability of MLLMs to perform diverse
types of reasoning in everyday situations. MMR-Life consists of 2,676 multiple-choice questions

2
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Analogical 

Deductive

Inductive

SpatialAbductive 

Q:  Why does the girl 
open the fridge? 
Please choose the 
best explanation.
(A) To get snacks to eat. 
(B) To get ingredients 
for cooking. 
(C) To retrieve an item. 
(D) To check its contents 
for her kitchen task. 
(E) To prepare for 
related activity.

Causal

Q:  Given that the 
silver cube hit the 
silver ball, what is the 
outcome?

(A) The gray cube came 
from below  
(B) The green cube moves
(C) The brown ball moved 
(D) The cyan cube moves 
(E) The green cylinder 
comes in from the left

Q:  I want to 
make Lemon 
Drizzle Cake, 
please choose 
the correct order.

(A) 6-2-1-3-5-4 
(B) 6-5-1-2-3-4 
(C) 6-1-2-3-5-4 
(D) 6-5-1-2-3-4 
(E) 6-1-2-3-4-5

Q:  What were the rotation 
angles of the camera? 

(A) Clockwise 45°, then 
clockwise 45°
(B) Clockwise 30°, then 
clockwise 45°
(C) Clockwise 45°, then 
clockwise 135°
(D) Counterclockwise 45°, then 
counterclockwise 45°
(E) Clockwise 30°, then 
clockwise 60°

Q:  Choose a 
fourth animal 
image such that 
the analogy 
between the first 
two images 
corresponds to 
the analogy 
between the last 
two images.

(A)

(B)

(C)

(D)

(E)

Temporal

Q:  Please choose 
the image that is 
most likely to 
appear at the 
next moment 
from the options.

(A)

(B)

(C)

(D)

(E)

Q:  Given the 
sports displayed, 
determine which 
sport from the 
provided options 
should appear in 
the next position.

(A)

(B)

(C)

(D)

(E)

Image Type: Physical Phenomenon
Sub Task: Mult-hop Casual Prediction

Image Type: Domestic Life
Sub Task: Human Activity Attribution

Image Type: Daily Dining
Sub Task: Recipe Step Deduction

Image Type: Everyday Objects
Sub Task: Camera Rotation Estimation

Image Type: Natural Creatures
Sub Task: Animal Relation Inference

Image Type: Sports Activities
Sub Task: Animal Relation Inference

Image Type: Traffic Scene
Sub Task: Driving Sequence Prediction

Figure 2: MMR-Life examples from each reasoning type.

based on 19,367 images, comprehensively covering 7 reasoning types (i.e., abductive, analogical,
causal, deductive, inductive, spatial, and temporal) and 21 tasks. Each task is based on a set of
multi-images, predominantly sourced from real-life contexts, such as domestic life, daily dining,
and sports activities. See Figure 2 for examples in MMR-Life and Table 1 for dataset statistics. We
further discuss the key concepts (e.g., real-life scenarios) of our benchmark in Appendix B.

2.2 DATA CURATION PIPELINE

Table 1: Key statistics of MMR-Life.

Statistics Number

Total Questions 2,676
Total Reasoning Types/Tasks 7/21
Image Types 15

Reasoning Type
- Abductive Reasoning 308 (11.51%)
- Analogical Reasoning 578 (21.60%)
- Causal Reasoning 263 (9.83%)
- Deductive Reasoning 283 (10.58%)
- Inductive Reasoning 444 (16.59%)
- Spatial Reasoning 255 (9.53%)
- Temporal Reasoning 545 (20.37%)

Text Options 1459 (54.52%)
Image Options 1217 (45.48%)

Average Image Counts 7.24
Average Question Length 282

Data Collection. We initiate our pipeline by collecting
real-life images from a variety of sources, including: (1)
Public image datasets: We select high-resolution real-
world image datasets from Kaggle (Kaggle, 2025), en-
suring that the images within each dataset are related
(e.g., temporal relationships), to facilitate the construc-
tion of multi-image inputs for our questions. (2) Open
web resources: We take screenshots from publicly avail-
able web resources to collect real-world multi-image data.
For example, we obtain bird distribution density images
from the eBird website (eBird, 2025). (3) Public video
sources: Given the inherent correlation between frames
in a video, they are ideal for multi-image data. We ex-
tract frames from publicly available video datasets to
create images, while ensuring the clarity of each frame.
(4) Other existing benchmarks: Finally, we collect
data from existing multi-image or video reasoning bench-
marks, extract frames from the videos, and remove images with low quality. The detailed collection
protocol and data sources for each task are reported in Appendix C.1.

Task Design. To make our benchmark more aligned with real-life scenarios, we aim to cover a
broader range of reasoning types, reflecting diverse everyday situations. Specifically, based on the
collected images, we design 7 distinct reasoning types (see Figure 2 for examples): (1) Abductive
Reasoning (Abd): Given the observed event, inferring the most plausible explanation for why the
event occurred. (2) Analogical Reasoning (Ana): Inferring conclusions about a new situation by
identifying similarities with a known case. (3) Causal Reasoning (Cau): In contrast to abductive
reasoning, based on the cause, inferring the effect. (4) Deductive Reasoning (Ded): Based on
general rules or premises, drawing logically certain conclusions about specific cases. (5) Inductive
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Table 2: The comparison between MMR-Life and other existing benchmarks. W (Web), T (Text-
book), A (Annotated), E (Existing datasets), and Avg Img.# (average image counts each question).

Dataset Size Images Reason Source Knowledge Avg Img.#

MMMU (Yue et al., 2024) 11.5K Hybrid - W+T+A High 1
MME-Reasoning (Yuan et al., 2025) 1.2K Symbolic 3 Types W+T+A+E Low 1
VisualPuzzles (Song et al., 2025) 1.1K Symbolic 5 Types W+T+A Low 1
MMLU-Reason (Tie et al., 2025) 1.1K Hybrid 6 Types W+T+E Medium 1.85
MEGA-Bench (Chen et al., 2025) 8K Hybrid - A Medium 2
MME-COT (Jiang et al., 2025) 1.1K Hybrid 6 Types E Medium 2.10
MV-MATH (Wang et al., 2025b) 2K Symbolic 1 Type W+A High 3.02
MMRB (Cheng et al., 2025) 4.8K Hybrid 3 Types E Medium 6.17
MMIU (Meng et al., 2025b) 11.6K Hybrid - A Medium 6.64

MMR-Life (Ours) 2.7K Natural 7 Types A Low 7.24

Reasoning (Ind): Generalizing rules or patterns from specific observations. (6) Spatial Reasoning
(Spa): Understanding and reasoning about the locations, movement, and spatial relations of objects.
(7) Temporal Reasoning (Tem): Reasoning about the order, duration, and timing of events.

Question-Answer Generation. We generate question-answer pairs using either automatic synthe-
sis or manual annotation, depending on the task type. In some cases, the explicit information con-
tained within the multi-image set we collect is already sufficient to fulfill the task’s requirements.
For example, in the temporal reasoning example of Figure 2, the images themselves contain sequen-
tial information, which is sufficient for the sequence prediction task. In these cases, we can define
heuristic rules and use code to automate the synthesis of question-answer pairs using the informa-
tion. However, some tasks require reasoning over implicit information in images. For instance, in
the abductive reasoning example of Figure 2, we need to identify causal event pairs within the scene
to construct the questions. In these cases, we manually design question-answer pairs according to
the reasoning type to ensure the quality of the data. This process leads to the creation of a diverse
set of 3.2K questions from multiple sources. See Appendix C.2 for detailed annotation guidelines
and Appendix E for task details.

Negative Option Generation. Given that many reasoning tasks do not have a single correct an-
swer (e.g., providing a plausible explanation in abductive reasoning), we design all questions in a
multiple-choice format, where the model must choose the most appropriate answer from five op-
tions. Each option is presented as either an image or text (with the distribution provided in Table 1).
For image options, we use heuristic rules to sample incorrect candidates. As an example, in the tem-
poral reasoning example in Figure 2, we construct negative options by choosing frames that either
precede the input images or occur at much later time steps. For text options, we invoke GPT-5-mini
(OpenAI, 2025b), GPT-4o (OpenAI, 2024), and Qwen2.5-VL-32B (Bai et al., 2025) to generate
responses (see prompts in Appendix C.3). From all generated incorrect responses, we manually
choose the four highest-quality erroneous options to serve as the final incorrect choices.

Data Quality Control. To further control the quality of our data, we perform three steps of data
filtering. (1) Difficulty filtering: We employ three smaller models, Qwen2.5-VL-7B (Bai et al.,
2025), Gemma3-4B (Kamath et al., 2025), and InternVL3.5-8B (Wang et al., 2025d), to generate
answers for each question. If all models answer correctly, this suggests that the questions are too
easy for existing MLLMs, and they are therefore filtered out. (2) Format filtering: The model-
generated incorrect options may have significant format differences (e.g., length) compared to the
human-constructed correct answers, which may result in the model relying on shortcuts. To mitigate
this effect, we manually revise the options with substantial format differences. (3) Quality filtering:
Finally, we distribute the problems among different co-authors, filtering out questions that exhibit
semantic ambiguity, have multiple correct answers, or require domain-specific expertise.

2.3 COMPARISONS WITH EXISTING BENCHMARKS

To further distinguish the difference between MMR-Life and other existing ones, we provide de-
tailed comparisons in Table 2. From the image type perspective, most existing datasets include a
large proportion of symbolic images such as charts and puzzles, which creates a gap from the natural
images encountered in daily life. Our benchmark excludes such images, making the evaluation more
closely aligned with real-life scenarios. From the source perspective, all questions in our dataset are
newly annotated rather than sampled directly from existing datasets, textbooks, or the web, which
reduces the risk of data contamination.
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Table 3: Performance comparison of SOTA MLLMs on MMR-Life. The highest and lowest scores
for each model type across reasoning types are highlighted in green and red , respectively. The
highest performance achieved by the model in each type is indicated in bold.

Model Abd Ana Cau Ded Ind Spa Tem Avg

Human 79.76 57.65 75.00 70.59 63.41 79.76 79.76 72.28

Closed-source & Thinking
GPT-5 53.57 78.37 41.06 79.86 77.25 17.25 41.47 58.48
Gemini-2.5-Pro 54.22 73.36 36.99 79.15 72.30 25.10 35.60 56.58
Gemini-2.5-Flash 46.10 74.57 34.22 71.38 73.42 23.92 30.64 53.03
o4-mini 41.23 73.01 27.38 71.02 67.12 19.22 32.48 50.30
GPT-5-mini 44.81 69.55 32.32 74.91 68.02 12.16 29.36 49.70
Claude-Sonnet-4 36.84 60.55 44.11 66.78 55.63 15.69 28.07 45.11

Closed-source & No Thinking
GPT-4.1 44.16 71.11 22.43 67.14 69.37 13.73 27.16 48.09
Claude-3.7-Sonnet 33.44 66.09 35.36 59.72 59.01 20.78 25.87 44.96
GPT-4o 46.75 65.22 25.86 51.24 65.32 11.37 25.87 44.62
GPT-4.1-mini 32.79 60.90 30.80 51.94 64.64 16.47 30.46 43.95
Doubao-1.5-vision 37.01 53.29 31.18 59.36 54.50 12.16 22.94 39.99

Open-source & Thinking
VL-Rethinker-72B 36.36 50.52 33.84 55.83 57.88 15.29 21.65 39.80
QVQ-72B-Preview 31.17 41.18 38.40 47.70 30.86 14.12 16.51 31.13
MM-Eureka-Qwen-32B 23.70 42.56 25.48 49.12 28.83 16.86 17.98 29.67
MiMo-VL-7B-RL 38.31 26.47 28.14 62.90 25.23 13.33 20.73 29.22
VL-Rethinker-7B 30.84 40.48 21.29 28.62 43.02 13.73 11.93 28.29
Keye-VL-1.5-8B 19.48 21.63 23.19 13.78 19.59 13.73 23.30 19.96
Skywork-R1V-38B 24.03 9.52 16.35 24.03 11.04 9.80 10.28 13.83

Open-source & No Thinking
Qwen2.5-VL-72B 35.06 55.02 35.36 51.94 54.73 12.94 23.67 40.02
Gemma3-27B 35.71 57.79 36.88 31.80 60.81 13.33 18.72 38.75
Gemma3-12B 24.35 51.21 15.97 28.27 43.47 10.59 16.15 29.93
Qwen2.5-VL-32B 24.35 42.73 21.67 50.18 26.58 14.90 16.51 28.66
Qwen2.5-VL-7B 25.97 35.64 21.29 22.26 40.32 9.02 12.48 25.22
InternVL3.5-30B-A3B 48.05 18.17 33.08 37.46 13.29 13.33 13.39 22.87
InternVL3.5-8B 35.71 9.86 19.01 32.16 10.14 13.33 17.43 18.01

3 MAIN EXPERIMENT

3.1 EXPERIMENTAL SETTINGS

Multi-modal Language Models without Thinking. We first evaluate the performance of SOTA
non-thinking MLLMs on our benchmark. These models have not undergone additional reasoning-
enhancement training and lack long CoT capabilities. Open-source models include Qwen2.5-
7/32/70B (Bai et al., 2025), Gemma3-12/27B (Kamath et al., 2025), InternVL3.5-8B/30B-A3B
(Wang et al., 2025d). Closed-source models include GPT-4.1-mini, GPT-4.1 (OpenAI, 2025a),
GPT-4o (OpenAI, 2024), Claude-3.7-Sonnet (without thinking) (Anthropic, 2025a) and Doubao-
1.5-vision (ByteDance Seed Team, 2025).

Multi-modal Language Models with Thinking. To study the effect of long CoT patterns on
the reasoning abilities of MLLMs, we introduce several advanced thinking models into the evalu-
ation. Open-source models include VL-Rethinker-7/72B(Wang et al., 2025a), MM-Eureka-Qwen-
32B (Meng et al., 2025a), MiMo-VL-7B-RL (Yue et al., 2025c), Keye-VL-1.5-8B (Team et al.,
2025), QVQ-72B-Preview (Qwen Team, 2024). Closed-source models include o4-mini (OpenAI,
2025c), Claude-Sonnet-4-Thinking (Anthropic, 2025b), Gemini-2.5-Flash (Comanici et al., 2025),
Gemini-2.5-Pro (Comanici et al., 2025), GPT-5-mini and GPT-5 (OpenAI, 2025b). We provide
complete experiments and results for a total of 37 models in Appendix F.2.

Human Level Performance. We employ 12 students with varying degrees and academic back-
grounds. Then, we extract 10 questions from each task to form a mini test set of 210 unique ques-
tions. From this pool, we repeatedly sample 50 questions at a time and assign them to one of 12

5
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students, yielding a total of 600 valid human answers. These students are instructed not to use
external knowledge sources such as the internet or books.

Implementation Details. We employ the same zero-shot CoT prompt as input for all models in
the main experiments to perform reasoning. To minimize random variation, we conduct five runs
for every open-source model and use the average performance as the final outcome. All experiments
are performed using 8 NVIDIA A100 GPUs. The detailed experimental parameters and prompts are
provided in Appendix F.1.

3.2 MAIN RESULTS

Table 3 presents MLLMs’ performance on MMR-Life, from which we draw several critical insights:

Our MMR-Life benchmark poses significant challenges for MLLMs. Despite achieving nearly
90% accuracy (OpenAI, 2025b) on complex multimodal reasoning tasks like GPQA (Rein et al.,
2023) and MMMU (Yue et al., 2024), GPT-5 only achieved an accuracy of 58.48% on MMR-Life,
with a 14% gap compared to human performance. Moreover, almost all open-source models have
an accuracy rate below 40%, with some of the most recent models, such as Keye-VL-1.5-8B and
InternVL3.5-8B, performing worse than random guessing (20%). This suggests that, although
MMR-Life does not include complex knowledge requirements, our real-life reasoning scenar-
ios still present a significant challenge for current MLLMs. Future model training and optimiza-
tion should focus more on these real-world situations.

MLLMs exhibit large disparities across different types of reasoning. While current models
perform well in analogical, deductive, and inductive reasoning tasks, they still have substantial room
for improvement in causal, spatial, and temporal reasoning tasks. We observe that all models per-
form poorly in spatial reasoning, with the highest accuracy being only 25.10%, compared to the
human accuracy of 79.76%. In contrast, for tasks like analogical reasoning, most closed-source
models outperform human performance. Current models can easily acquire abilities such as analogy
and deductive reasoning through feature associations or by memorizing explicit reasoning paths.
However, they struggle to learn more abstract world representations, such as spatial and tem-
poral reasoning. This bias is one that future model training should seek to correct.

Current open-source thinking models bring limited improvement. When evaluating the effect
of adding a thinking mode to MLLMs, we find that closed-source thinking models generally out-
perform closed-source no-thinking models. However, for open-source models, the thinking mode
does not show improved reasoning capabilities. In Table 3, the open-source no-thinking model
achieves an average accuracy of 29.07%, whereas the thinking model achieves only 27.41% on av-
erage. This implies that there is substantial potential for improving the reasoning abilities of current
open-source thinking models, particularly in their ability to generalize to real-world contexts.

4 THINKING PATTERN ANALYSIS

4.1 IS LONGER THINKING ALWAYS BETTER?

From Table 3, we find that closed-source thinking models perform best on MMR-Life. An important
question then arises: Is this superior performance associated with the longer reasoning processes?

Reasoning Performance Scales Logarithmically With Thinking Length. To investigate the
question, we first present the semi-log plot of average response token count versus average accu-
racy over 14 models (see Figure 3). The overall trend shows that models with longer outputs tend to
achieve higher scores, indicating that reasoning capabilities scale roughly in proportion to the loga-
rithm of the reasoning length. However, there are notable exceptions. Certain open-source thinking
models, including Mimo-VL-7B-RL and QVQ-72B-Preview, are located in the lower-right region
of Figure 3, demonstrating that balancing reasoning efficiency and model effectiveness remains a
major challenge for future open-source MLLMs.

Longer Thinking Is Not All You Need. We conduct a more fine-grained analysis to investigate
the relationship between model performance and thinking length across distinct reasoning types.

6
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Figure 3: Response tokens vs. Accuracy.
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Figure 4: Performance: without CoT vs. with CoT.
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Figure 5: Performance comparison under different thinking budgets.

Specifically, for no-thinking models, we follow prior work by comparing their reasoning perfor-
mance with and without CoT (Li et al., 2025e; Sprague et al., 2025) (see Figure 4). For thinking
models, we select those with a controllable reasoning budget and vary the budget (minimal, medium,
and high) to gradually increase CoT length, thereby comparing performance across different think-
ing lengths (see Figure 5). From both figures, it is evident that longer thoughts do not lead to better
performance for all reasoning types. For reasoning types like inductive reasoning, the performance
with CoT is worse in no-thinking models (see Figure 4) and using more reasoning budget does not
lead to better performance in thinking models (see Figure 5). Conversely, for reasoning types such
as analogical reasoning, the incorporation of CoT or longer CoT results in a noticeable performance
improvement. We hypothesize that this is because longer CoT may only be suitable for tasks re-
quiring step-by-step reasoning, while types like inductive reasoning may benefit more from faster
thinking (Li et al., 2025e).

4.2 DO GENERALIZABLE REASONING ENHANCEMENT METHODS EXIST?

From the inception of CoT (Wei et al., 2022) to the broad application of GRPO (DeepSeek-AI et al.,
2025), the reasoning-enhancement techniques have undergone substantial evolution. In this section,
we analyze and compare the generalizability of these approaches.

Failure of Enhancement Methods in Larger Models. We select four representative reasoning-
enhancement methods for comparison: CoT, Self-Consistency (SC), Best-of-N (BoN), and GRPO.
To evaluate the generalizability of these methods, we directly use previously trained models for in-
ference without any training on MMR-Life. Specifically, we adopt the Skywork-VL Reward (Wang
et al., 2025e) as the reward model for BoN and the VL-Rethinker series (Wang et al., 2025a) as the
GRPO-trained models. As shown in Table 4, the results demonstrate that: Across model scales from
7B to 72B, the average performance difference between other methods and CoT consistently de-
creases, while an increasing number of subtypes transition from performance gains to performance
drops (from green to red). Strikingly, on Qwen-2.5-VL-72B, the performance of BoN and GRPO
falls short of simply applying CoT. According to previous works (Yue et al., 2025b), we hypothesize
that this is because these methods primarily improve sampling efficiency towards correct reason-
ing paths. For larger models, the likelihood of sampling correct paths is naturally higher, which
diminishes the gains from reasoning-enhancement methods.
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Table 4: Performance across different methods. Scores higher and lower than the base model’s CoT
performance are marked in green and red . The highest score in each column is in bold.

Model Method Abd Ana Cau Ded Ind Spa Tem Avg (∆)

Qwen2.5-VL-7B

CoT 27.92 37.20 21.29 21.55 39.19 9.02 11.38 25.30
SC@8 27.92 39.27 23.57 25.09 45.72 10.98 13.03 27.95 (+2.65)
BoN@8 27.55 44.29 22.81 25.44 47.97 13.33 13.03 29.54 (+4.24)
GRPO 30.84 40.48 21.29 28.62 43.47 13.73 11.74 28.33 (+3.03)

Qwen2.5-VL-32B

CoT 24.68 42.91 22.43 49.82 25.45 14.90 16.51 28.59
SC@8 25.97 44.98 23.95 51.59 28.38 16.47 17.80 30.42 (+1.83)
BoN@8 25.70 44.81 19.39 55.12 30.18 16.47 19.45 30.88 (+2.29)
GRPO 23.84 41.70 25.10 49.12 30.41 15.69 18.72 29.73 (+1.14)

Qwen2.5-VL-72B

CoT 35.06 55.19 34.98 51.94 54.73 12.94 23.67 40.02
SC@8 35.06 55.71 35.36 51.94 54.73 12.94 24.22 40.28 (+0.26)
BoN@8 34.09 52.77 32.70 51.59 56.76 13.73 24.59 39.72 (-0.30)
GRPO 36.36 50.87 33.08 55.83 57.66 15.69 22.20 39.91 (-0.11)
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Figure 6: Comparison of BoN and
RL performance on different models.
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Figure 7: Analysis of correlations across different reasoning
types (averaged across all models we evaluate).

RL Generalizes Worse than BoN on Small Models. Reinforcement learning methods, exempli-
fied by GRPO, have gained wide adoption for their strong reasoning generalization (DeepSeek-AI
et al., 2025). Nevertheless, our results in Table 4 reveal that on two smaller-scale models, GRPO
exhibits weaker generalization compared to BoN. To further validate this finding, we conduct ex-
periments on additional small MLLMs (see Appendix G for details), comparing the performance of
BoN@8 applied to base models with that of RL-trained models. The results in Figure 6 show that
across different model architectures and training datasets, RL-trained models consistently underper-
form compared to BoN inference on the corresponding base models. In some cases, RL models
even perform worse than the base models using CoT. This calls for a reconsideration of RL tech-
niques: Do RL methods on small models merely lead to overfitting on specific datasets? We leave
this question open for further exploration in future work.

4.3 DO DIFFERENT REASONING TYPES CORRELATE?

Former findings demonstrate significant differences in model performance across types. In this
section, we aim to capture the underlying relationships among these categories.

Correlations Between Reasoning Types. We compute the accuracy of all models across reason-
ing types, calculate the Pearson correlation coefficients between them, and present the results in
Figure 6a. It demonstrates substantial differences in correlations across these types. Some cate-
gories, such as inductive and analogical reasoning, exhibit very high correlations (0.97), while some
others, such as spatial and inductive reasoning, show low correlations (0.40).

Uncovering Pattern Clusters in Reasoning. Furthermore, we normalize the negative of the cor-
relation coefficient as the distance between categories and perform hierarchical clustering. In Figure
6b, we observe clusters formed by similar reasoning types (e.g., Ana–Ind), suggesting the exis-
tence of higher-order reasoning patterns in MLLMs. For example, both analogical and inductive
reasoning rely on a shared pattern of abstracting general rules from concrete features. Conversely,
reasoning types with greater distances suggest that they involve relatively disjoint patterns. As an
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example, spatial reasoning is distant from all other categories, suggesting that the capabilities it re-
quires (e.g., location, distance estimation) are difficult to learn from non-spatial tasks. In conclusion,
MMR-Life enables us to uncover a higher-level hierarchy of reasoning patterns, facilitating a deeper
understanding of reasoning generalization across diverse tasks.

5 ERROR ANALYSIS
Perception Error
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Reasoning Error
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Abstraction Error
19%

Hallucination Error
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Knowledge Error
16%
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(a) GPT-5
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Figure 8: Error distribution over 140 errors for
each model on MMR-Life.

This section focuses on the errors made by
GPT-5 and Gemini-2.5-Pro, the two strongest
models on MMR-Life. For each model, we ran-
domly select 20 incorrect examples from each
reasoning type and identify the root causes of
the model’s erroneous responses. The distribu-
tion of these errors is shown in Figure 8, with a
selection of notable 42 cases and detailed anal-
yses provided in the Appendix H. The results
reveal that reasoning errors dominate at 32%,
with the model frequently making basic logical
mistakes such as causal inversion (24%), tem-
poral confusion (42%), and missing key steps (24%) during reasoning. In addition, abstraction errors
(17%), which reflect the model’s short-term thinking capabilities, such as the ability to make associ-
ations, are also notable. Knowledge errors (17%) and perception errors (12%) constitute substantial
portions of failures, indicating challenges in recalling the correct knowledge for reasoning, as well
as difficulties in identifying static attributes of objects (e.g., color, shape) and dynamic changes (e.g.,
movement). By systematically examining these failures, we not only expose critical shortcomings in
current MLLMs but also derive actionable insights that can inform the next generation of MLLMs.

6 RELATED WORK

Multimodal Reasoning Enhancement Methods. The development of methods in multimodal
reasoning closely follows the approaches established in pure language processing. Inspired by its
success in text-only settings, CoT has recently been extended to MLLMs, leading to the development
of prompt-guided multimodal reasoning. Studies such as IPVR (Chen et al., 2023), CCoT(Mitra
et al., 2024), and VisualSketchpad (Hu et al., 2024) combine reasoning with perception, enhancing
the reliability of the reasoning process. After that, the search-based inference method brings reward
models into the multimodal reasoning process, training a scoring model to evaluate and select the
best reasoning path (Wang et al., 2025c; Zang et al., 2025; Wang et al., 2025e). Recently, following
the success of Deepseek-R1 GRPO (DeepSeek-AI et al., 2025), a group of thinking MLLMs like
VL-Rethinker (Wang et al., 2025a), MM-Eureka (Meng et al., 2025a), and MiMo-VL (Yue et al.,
2025c) have emerged. Our benchmark comprehensively evaluates different methods and MLLMs,
aiming to guide their further optimization.

Multimodal Reasoning Benchmarks. There exists a number of multimodal benchmarks testing
MLLMs’ reasoning abilities. Several studies combine world knowledge with reasoning and assess
the reasoning capabilities of MLLMs across various STEM fields, such as GPQA (Rein et al., 2023),
OlympiadBench (He et al., 2024), MME-CoT (Jiang et al., 2025), and MMLU-Reason (Tie et al.,
2025). Other works argue that reasoning should be decoupled from knowledge, using symbolic
patterns to evaluate the model’s logical reasoning abilities, such as PuzzleVQA (Chia et al., 2024),
VisualPuzzles (Song et al., 2025), and MME-Reasoning (Yuan et al., 2025). However, both types of
benchmarks exhibit deviations from real-life reasoning scenarios due to the expert-level knowledge
and symbolic images. Although recent work on spatial reasoning meets real-life requirements (Yang
et al., 2025a; Li et al., 2025b; Yang et al., 2025b), it covers only a limited set of reasoning types. Our
MMR-Life benchmark covers seven different reasoning types and introduces real-life multi-image
input, addressing former gaps.

7 CONCLUSION

We present MMR-Life, a novel benchmark designed to evaluate the multimodal reasoning abil-
ities of current MLLMs across seven distinct reasoning types using multiple real-life images as
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inputs. Through careful and diverse data curation, our dataset provides a comprehensive evaluation
of MLLMs’ reasoning performance across various real-life scenarios, which shows that existing
MLLMs still face significant challenges and exhibit notable performance imbalances across differ-
ent reasoning types. We conduct a further analysis of the reasoning paradigms of these models,
uncovering the relationship between the thinking length, enhancement methods, and reasoning abil-
ities of MLLMs, which lays the foundation for the development of more generalizable AI systems.

ETHICS STATEMENT

In constructing our benchmark, we ensure strict adherence to copyright and licensing regulations,
explicitly avoiding data from sources that prohibit copying or redistribution. Besides, we avoid the
images that contain any private information or harmful content. The data in our MMR-Life are not
intended to replace, nor are they capable of replacing, the original data source. Therefore, we assert
that their inclusion does not affect the market value or utility of the original materials. We did not
employ external crowdsourcing or paid annotation platforms. All participants volunteered, with a
complete understanding of the research goals, procedures, and the intended use of the data.

REPRODUCIBILITY STATEMENT

We have taken several steps to improve the reproducibility of our research. Regarding the data, we
provide a thorough description of the data sources for each task, along with links, in Appendix C.1.
A subset of 210 items, including the questions and their corresponding images, is also uploaded
in the supplementary materials. Additionally, we describe the dataset construction process and the
prompts used in both §2.2 and Appendix C. On the experimental side, we offer a detailed account
of the model versions, parameter settings, and prompts used in the experiments, which are outlined
in Appendix F.1. The full experimental code is also uploaded in the supplementary materials. We
commit to making all data and code open source if the paper is accepted.
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A THE USE OF LARGE LANGUAGE MODELS

In this study, a large language model (LLM) was employed as a tool to assist in the refinement and
enhancement of the manuscript’s language. The specific usages of the LLM include:

• Grammar and Syntax Improvement: The LLM helped to correct grammatical errors and
improve sentence structures, contributing to greater clarity and fluency in the writing.

• Conciseness and Precision: It provided suggestions for more concise and precise wording,
aiding in the refinement of certain sections without altering their meaning.

It is important to note that while the LLM contributed to the refinement of the manuscript’s language,
the research ideas, data analysis, and conclusions were independently conceived and developed by
the authors. The LLM’s contributions were exclusively related to text refinement and did not extend
to the conceptual aspects of the study.

B KEY CONCEPTS IN MMR-LIFE

We begin by discussing key concepts in the benchmark to clearly define the core problems and
design principles that our work addresses.

B.1 REASONING IN REAL-LIFE SCENARIO

As real-life reasoning is a fundamental design principle of our benchmark, we provide a brief defi-
nition of it:
Definition 1 (Reasoning in Real-life Scenarios). Reasoning in real-life scenarios refers to the
process of applying diverse reasoning capabilities to solve problems from everyday situations, which
are defined by a set of images and textual descriptions that satisfy the following conditions:

(i) Multiple natural images: The input must contain multiple images, each depicting objects
or events that either objectively exist in real life or are realistically simulated to resemble
real-world conditions. Purely abstract diagrams or symbolic renderings are excluded.

(ii) Commonsense solvability: The answer to the problem must not rely on complex domain-
specific knowledge. Instead, it should be solvable using only basic human commonsense
reasoning and general logic.

As mentioned in §1, the two existing benchmark types do not fully adhere to the above definition,
as they often incorporate unnatural images, such as charts and synthetic puzzles, and may require
specialized domain knowledge. In contrast, MMR-Life is constructed in strict accordance with the
above definition, emphasizing the evaluation of reasoning in real-life scenarios from the outset. It
should be noted that this definition is not intended to be broadly applicable but serves as the guiding
principle for the design of this study.

B.2 MULTI-IMAGE VS. VIDEO

In §1, we noted that real-life images are continuous, which led us to adopt multi-image input. How-
ever, a natural question arises: why not use continuous videos instead? In the following, we compare
and discuss this choice. Overall, we opt not to use video as our input format for the following rea-
sons:

• Low Reasoning Types Coverage: The relationship between multiple images in a video is
typically limited to temporal sequencing. In this context, it is difficult to design reasoning
tasks, such as analogy or inductive reasoning, since these tasks often require a parallel
relationship between the images, which cannot be fully captured by a video input.

• Low Data Diversity: From a data perspective, as discussed in §2.2, real-world videos are
only a subset of our image sources. If all inputs were required to be videos, we would lose
a significant variety of data sources, such as natural photographs, thereby reducing data
diversity.
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Table 5: Data sources and image types of different tasks in MMR-Life

Reasoning Type Task Type Image Type Data Source

Abductive
Human Activity Attribution Domestic Life TVbench (Cores et al., 2025)
Character Interaction Attribution Human Animation Tom & Jerry Cartoon (Parmar et al., 2024)
Multi-Hop Collision Attribution Physical Phenomenon CLEVRER-Humans (Mao et al., 2022)

Analogical
Animal Relation Inference Natural Creatures Kaggle (sanadalali, 2025)
Product Similarity Inference Product Shots Kaggle (Gégénava, 2025)
Artwork Style Inference Human Artwork Kaggle (ikarus777, 2019)

Causal
Character Interaction Prediction Human Animation Tom & Jerry Cartoon (Parmar et al., 2024)
Multi-Hop Collision Prediction Physical Phenomenon CLEVRER-Humans (Mao et al., 2022)
Counterfactual Fluid Prediction Physical Phenomenon ContPhy (Zheng et al., 2024)

Deductive
Material Composition Deduction Everyday Objects MathVisa (Lu et al., 2024)
Card Winner Deduction Game Symbols Kaggle (patricklford, 2025)
Recipe Step Deduction Daily Dining RecipeQA (Yagcioglu et al., 2018)

Inductive
Bird Migration Induction Migration Map eBird (eBird, 2025)
Plant Disease Induction Pathology Photos Kaggle (vipoooool, 2024)
Sport Feature Induction Sports Activities Kaggle (Piosenka, 2022)

Spatial
Relative Position Estimation Interior Views ViewSpatial-Bench (Li et al., 2025a)
Camera Rotation Estimation Everyday Objects NAVI (Jampani et al., 2023)
Navigation Route Planning Interior Views ViewSpatial-Bench (Li et al., 2025a)

Temporal
Crowd Timeline Reconstruction Crowd Surveillance Kaggle (fmena14, 2025)
Driving Sequence Prediction Traffic Scene Drivingdojo (Wang et al., 2024)
Human Activity Localization Domestic Life TVBench (Cores et al., 2025)

• High Noise in Input: In video-based benchmarks, frames are typically sampled from
videos and input into the model, which can introduce many irrelevant frames that inter-
fere with reasoning. While this setup is closer to real-world scenarios, our benchmark
aims to directly assess the model’s reasoning abilities, minimizing interference from other
factors.

C DETAILS OF ANNOTATION PROTOCOLS

This section presents additional details of our task annotation pipeline and protocols, providing
complete details for §2.2 of the main paper.

C.1 DATA SOURCES OF DIFFERENT TASKS

Table 5 presents the data sources for all the tasks included in MMR-Life. During the data collection
phase, all annotators strictly adhere to copyright and licensing regulations on the source sites or
datasets. Moreover, following Definition 1, we limit the dataset strictly to natural images, explicitly
excluding symbolic diagrams and other non-photographic forms.

C.2 ANNOTATION GUIDELINES

During the annotation of questions and golden answers, all annotators were given the following
guidelines:

• All questions must contain multiple images (at least two images).
• All questions should be written in English.
• All questions should be solvable without complex domain-specific knowledge.
• The question should not be ambiguous and can be answered with one option.
• The questions should adhere to the definitions of the respective reasoning types (see §2.2),

ensuring clear differentiation between tasks of different reasoning types.

C.3 PROMPTS FOR NEGATIVE OPTION GENERATION

We list our negative option generation prompts from Figure 11 to Figure 17.
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D DATA DIVERSITY OF MMR-LIFE

We demonstrate the diversity of data in MMR-Life in this section, where Figure 9 visualizes the
variety of image types and Figure 10 presents the distribution of input image counts. The various
types of tasks included in our study are illustrated in Appendix E.

E TASK DETAILS

In this section, we give a detailed description of each task presented in MMR-Life.

E.1 ABDUCTIVE REASONING

E.1.1 HUMAN ACTIVITY ATTRIBUTION

Task Description. This task tests a model’s reasoning about human behavior motivations. By
observing people’s behavior in a given context, the model must analyze environmental clues and
behavior cues to select the most plausible motivation among candidate explanations.

Examples. See Figure 19, 20.

E.1.2 CHARACTER INTERACTION ATTRIBUTION

Task Description. This task requires the model to understand causal relationships between charac-
ters (e.g., in Tom & Jerry). Given a scene of interaction, the model must analyze character behaviors
and situational factors to infer the most reasonable cause for a specific event or outcome.

Examples. See Figure 21, 22.

E.1.3 MULTI-HOP COLLISION ATTRIBUTION

Task Description. This task assesses a model’s causal reasoning in complex physical collision
chains. In scenes involving multiple objects colliding, the model must trace the collision chain and
identify the root cause or triggering event for a given outcome.

Examples. See Figure 23, 24.

E.2 ANALOGICAL REASONING

E.2.1 ANIMAL RELATION INFERENCE

Task Description. This task requires models to understand visual analogical relationships between
animals. Given three animal images, the model must recognize the relational pattern between the
first two animals and then select a fourth animal from the options so that the relation between the
third and fourth animals matches the original pattern.

Examples. See Figure 25, 26.

E.2.2 PRODUCT SIMILARITY INFERENCE

Task Description. This task assesses a model’s reasoning about product style preference. Based
on a person’s owned or disliked product samples, the model must analyze design features and style
preferences to recommend, from candidate options, a product that best suits their intentions or tastes.

Examples. See Figure 27, 28.
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E.2.3 ARTWORK STYLE INFERENCE

Task Description. This task evaluates a model’s understanding and recognition of artistic style.
Given multiple sample works from the same artist, the model must learn the distinctive stylistic
features and then identify which candidate option is most likely also created by that artist.

Examples. See Figure 29, 30.

E.3 CAUSAL REASONING

E.3.1 CHARACTER INTERACTION PREDICTION

Task Description. This task tests a model’s ability to predict outcomes of interactions between
animated characters. Given a specific behavior or event by a character, the model must use contextual
understanding and character relations to predict the most likely follow-up reaction or result.

Examples. See Figure 31, 32.

E.3.2 MULTI-HOP COLLISION PREDICTION

Task Description. Given a sequence of consecutive images capturing object motion from initial to
current time, the model must reason about the underlying physics and simulate possible multi-stage
collision propagation, ultimately predicting the most likely next collision event or chain reaction.

Examples. See Figure 33, 34.

E.3.3 COUNTERFACTUAL FLUID PREDICTION

Task Description. This task examines a model’s counterfactual reasoning ability in fluid dynam-
ics. The model must analyze how a fluid flows and, if a barrier is removed, predict how the flow
would change (i.e., determine the altered flow paths) and final positions under the new condition.

Examples. See Figure 35, 36.

E.4 DEDUCTIVE REASONING

E.4.1 MATERIAL COMPOSITION DEDUCTION

Task Description. This task requires complex combinatorial reasoning about material composi-
tion. Given different types and quantities of material components and the material requirements for
certain products, the model must calculate how many products can be produced under the current
material constraints.

Examples. See Figure 37, 38.

E.4.2 CARD WINNER DEDUCTION

Task Description. This task examines a model’s understanding of Texas Hold ’em poker rules and
logical reasoning. In a multiplayer poker game, each player has hole cards and there are community
cards on the board; based on these, the model must analyze the best possible hand for each player
and determine the winner.

Examples. See Figure 39, 40.

E.4.3 RECIPE STEP DEDUCTION

Task Description. This task requires understanding the logical order of cooking processes. Given
a dish name and a set of unordered images depicting stages of preparation, the model must deduce
the correct cooking sequence based on ingredient states, tool usage, and causal relationships.
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Examples. See Figure 41, 42.

E.5 INDUCTIVE REASONING

E.5.1 BIRD MIGRATION INDUCTION

Task Description. This task requires the model to analyze temporal distribution changes of birds.
By observing how bird distributions change over past years, the model must infer migration patterns
and predict the likely distribution in the upcoming year.

Examples. See Figure 43, 44.

E.5.2 PLANT DISEASE INDUCTION

Task Description. This task evaluates a model’s ability to learn disease patterns in plants. Given
samples of leaves afflicted with a particular disease, the model must learn the visual features and
then identify which candidate leaves also suffer from the same disease.

Examples. See Figure 45, 46.

E.5.3 SPORT FEATURE INDUCTION

Task Description. This task tests the model’s ability to induce patterns in sports characteristics.
Given a series of images depicting sports with certain patterns or rules, the model must understand
the characteristic relationships and choose the next sport that best matches the pattern.

Examples. See Figure 47, 48.

E.6 SPATIAL REASONING

E.6.1 RELATIVE POSITION ESTIMATION

Task Description. This task tests a model’s spatial relationship reasoning. Given the relative
positions of some objects in an indoor scene, the model must infer the relative positions of others
and judge directional relationships (e.g. east, west, north, south).

Examples. See Figure 49, 50.

E.6.2 CAMERA ROTATION ESTIMATION

Task Description. This task requires the model to analyze viewpoint changes between consecutive
images. By comparing the same scene from different angles in the image sequence, the model must
accurately estimate the camera’s rotation angles and directions at each step.

Examples. See Figure 51, 52.

E.6.3 NAVIGATION ROUTE PLANNING

Task Description. This task tests a model’s spatial reasoning and path planning capability. A
robot must navigate in a given indoor environment from a start point to a goal point. Only 90° or
180° turns and forward moves are allowed, and obstacles must be avoided. The model must plan the
correct sequence of moves.

Examples. See Figure 53, 54.
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E.7 TEMPORAL REASONING

E.7.1 CROWD TIMELINE RECONSTRUCTION

Task Description. This task assesses a model’s understanding of temporal sequences in complex
scenes. Given a set of unordered images of crowd activities, the model must use cues from people’s
positions, actions, and environmental changes to infer the correct chronological order.

Examples. See Figure 55, 56.

E.7.2 DRIVING SEQUENCE PREDICTION

Task Description. This task evaluates a model’s ability to predict time-varying driving scenes.
Given a sequence of images from a front-facing cockpit (driver’s perspective) view, the model must
integrate road geometry, vehicle motions, traffic participants, and environmental cues to predict the
most likely next frame.

Examples. See Figure 57, 58.

E.7.3 HUMAN ACTIVITY LOCALIZATION

Task Description. This task asks the model to locate when in a video sequence a particular human
activity occurs. Given a video and a description of an activity, the model must precisely predict
which time segment (start, middle, end, or throughout) the activity takes place.

Examples. See Figure 59, 60.

F DETAILS OF MAIN EXPERIMENT

F.1 DETAILED EXPERIMENTAL SETUP

Multimodal Language Models. Here, we list all the models used in our experiment and pro-
vide the corresponding version (if available): gpt-5-2025-08-07 (OpenAI, 2025b), gpt-5-mini-2025-
08-07 (OpenAI, 2025b), gpt-4.1-2025-04-14 (OpenAI, 2025a), gpt-4.1-mini-2025-04-14 (Ope-
nAI, 2025a), gpt-4o-2024-11-20 (OpenAI, 2024), gpt-4o-mini-2024-07-18 (OpenAI, 2024), o4-
mini-2025-04-16 (OpenAI, 2025c), claude-sonnet-4-20250514 (Anthropic, 2025b), claude-3-7-
sonnet-20250219 (Anthropic, 2025a), gemini-2.5-flash (Comanici et al., 2025), gemini-2.5-pro (Co-
manici et al., 2025), doubao-1-5-vision-pro-32k (ByteDance Seed Team, 2025), Kimi-VL-A3B-
Thinking-2506 (Du et al., 2025), Keye-VL-1.5-8B (Team et al., 2025), MiMo-VL-7B-RL-2508
(Yue et al., 2025c), MiMo-VL-7B-SFT-2508 (Yue et al., 2025c), MM-Eureka-Qwen-7B (Meng
et al., 2025a), MM-Eureka-Qwen-32B (Meng et al., 2025a), OpenVLThinker-7B-v1.2 (Deng et al.,
2025), OpenVLThinker-7B-v1.2-sft-iter3 (Deng et al., 2025), Qwen2.5-VL-7B-Instruct (Bai et al.,
2025), Qwen2.5-VL-32B-Instruct (Bai et al., 2025), Qwen2.5-VL-72B-Instruct (Bai et al., 2025),R1-
Onevision-7B (Yang et al., 2025c), R1-Onevision-7B-RL (Yang et al., 2025c), Skywork-R1V-38B
(Peng et al., 2025), VL-Rethinker-7B (Wang et al., 2025a), VL-Rethinker-32B (Wang et al., 2025a),
VL-Rethinker-72B (Wang et al., 2025a), InternVL3 5-8B (Wang et al., 2025d), InternVL3 5-30B-
A3B (Wang et al., 2025d), InternVL3 5-38B (Wang et al., 2025d), gemma-3-4b-it (Kamath et al.,
2025), gemma-3-12b-it (Kamath et al., 2025), gemma-3-27b-it (Kamath et al., 2025), QVQ-72B-
Preview (Qwen Team, 2024).

Parameters. For parameters during the model’s inference. We set the temperature to 0.5, top p to
0.5, and seed to 17.

Prompts. The prompt used in the main experiments are illustrated in Figure 18.

F.2 FULL EXPERIMENTAL RESULTS

We demonstrate full evaluation results on 37 MLLMs in Table 6.
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Table 6: Full performance comparison of SOTA MLLMs on MMR-Life.

Model Abd Ana Cau Ded Ind Spa Tem Avg
gpt-5 53.57 78.37 41.06 79.86 77.25 17.25 41.47 58.48
gemini-2.5-pro 54.22 73.36 36.99 79.15 72.30 25.10 35.60 56.58
gemini-2.5-flash 46.10 74.57 34.22 71.38 73.42 23.92 30.64 53.03
o4-mini 41.23 73.01 27.38 71.02 67.12 19.22 32.48 50.30
gpt-5-mini 44.81 69.55 32.32 74.91 68.02 12.16 29.36 49.70
gpt-4.1 44.16 71.11 22.43 67.14 69.37 13.73 27.16 48.09
claude-sonnet-4-thinking 36.84 60.55 44.11 66.78 55.63 15.69 28.07 45.11
claude-3.7-sonnet 33.44 66.09 35.36 59.72 59.01 20.78 25.87 44.96
gpt-4o 46.75 65.22 25.86 51.24 65.32 11.37 25.87 44.62
gpt-4.1-mini 32.79 60.90 30.80 51.94 64.64 16.47 30.46 43.95
claude-sonnet-4 35.39 56.40 38.02 64.66 55.41 14.51 25.69 42.64
Qwen2.5-VL-72B 35.06 55.02 35.36 51.94 54.73 12.94 23.67 40.02
doubao-1.5-vision 37.01 53.29 31.18 59.36 54.50 12.16 22.94 39.99
VL-Rethinker-72B 36.36 50.52 33.84 55.83 57.88 15.29 21.65 39.80
Gemma3-27B 35.71 57.79 36.88 31.80 60.81 13.33 18.72 38.75
gpt-4o-mini 24.35 55.71 19.01 32.51 63.51 10.98 17.25 35.24
QVQ-72B-Preview 31.17 41.18 38.40 47.70 30.86 14.12 16.51 31.13
Gemma3-12B 24.35 51.21 15.97 28.27 43.47 10.59 16.15 29.93
VL-Rethinker-32B 23.84 41.70 25.10 49.12 30.41 15.69 18.72 29.73
MM-Eureka-Qwen-7B 31.17 42.04 20.91 36.04 38.06 13.73 17.25 29.67
MM-Eureka-Qwen-32B 23.70 42.56 25.48 49.12 28.83 16.86 17.98 29.67
MiMo-VL-7B-RL 38.31 26.47 28.14 62.90 25.23 13.33 20.73 29.22
R1-Onevision-7B 29.22 37.20 24.33 26.86 42.79 14.51 18.90 28.96
Qwen2.5-VL-32B 24.35 42.73 21.67 50.18 26.58 14.90 16.51 28.66
VL-Rethinker-7B 30.84 40.48 21.29 28.62 43.02 13.73 11.93 28.29
MiMo-VL-7B-SFT 36.69 22.32 24.71 62.90 23.65 14.12 17.80 27.02
Qwen2.5-VL-7B 25.97 35.64 21.29 22.26 40.32 9.02 12.48 25.22
InternVL3 5-30B-A3B 48.05 18.17 33.08 37.46 13.29 13.33 13.39 22.87
R1-Onevision-7B-RL 23.70 33.04 22.81 23.67 28.83 11.76 10.83 22.72
InternVL3 5-38B 46.43 16.26 28.90 40.64 7.43 13.73 18.90 22.38
Gemma3-4B 13.31 29.07 22.81 25.80 23.20 12.55 17.25 21.34
Keye-VL-1.5-8B 19.48 21.63 23.19 13.78 19.59 13.73 23.30 19.96
InternVL3 5-8B 35.71 9.86 19.01 32.16 10.14 13.33 17.43 18.01
OpenVLThinker-7B-v1.2 16.88 19.38 20.91 12.01 18.24 17.25 18.17 17.83
OpenVLThinker-7B-v1.2-sft 16.23 19.20 21.29 13.78 18.24 17.65 17.06 17.75
Kimi-VL-A3B-Thinking-2506 22.40 11.07 17.11 37.10 11.94 11.37 18.72 17.45
Skywork-R1V-38B 24.03 9.52 16.35 24.03 11.04 9.80 10.28 13.83
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G DETAILS OF THINKING PATTERN ANALYSIS

For the base setting, we use MiMo-VL-7B-SFT, RL-Onevision, Qwen-2.5-VL-32B and Qwen-2.5-
VL-7B (with CoT prompting). For the RL setup, we use the model corresponding to the RL training
version for CoT: MiMo-VL-7B-RL, RL-Onevision-RL, MM-Eureka-32B, and VL-Rethinker-7B.
These models are trained on various datasets to illustrate the generalizability of our conclusions.

H CASE STUDY

We further provide additional case studies as shown from Figure 19 to Figure 60, showing both
correct and incorrect responses by GPT-5 and Gemini-2.5-Pro.
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Figure 9: Image type distribution in MMR-Life.
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    Negative Option Generation Prompt Ⅰ

[Task]

Please act as a reasoning expert to answer the given 

multimodal reasoning questions based on multiple 

images. The last line of your response should be of 

the following format: 

[Output]

Answer:

Let's think step by step before answering.

Figure 11: Negative option generation prompt.
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    Negative Option Generation Prompt Ⅱ

[Task]

Please act as a reasoning expert to answer the given 

multimodal reasoning questions based on multiple 

images. The last line of your response should be of 

the following format: 

[Output]

Answer: (Event 1, Event 2)

Let's think step by step before answering.

Figure 12: Negative option generation prompt.
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    Negative Option Generation Prompt Ⅲ

[Task]

Please act as a reasoning expert to answer the given 

multimodal reasoning questions based on multiple 

images. The last line of your response should be of 

the following format: 

[Output]

Answer: x-x-x-x-x..., where 'x' is the number 

corresponding to the image.

Let's think step by step before answering.

Figure 13: Negative option generation prompt.
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    Negative Option Generation Prompt Ⅳ

[Task]

Please act as a reasoning expert to answer the given 

multimodal reasoning questions based on multiple 

images. The last line of your response should be of 

the following format: 

[Output]

Answer: Rotate clockwise/counterclockwise about x 

degrees(, then clockwise/counterclockwise about x 

degrees)(, and finally counterclockwise about x 

degrees), where x represents the degrees.

Let's think step by step before answering.

Figure 14: Negative option generation prompt.
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    Negative Option Generation Prompt Ⅴ

[Task]

Please act as a reasoning expert to answer the given 

multimodal reasoning questions based on multiple 

images. The last line of your response should be of 

the following format: 

[Output]

Answer:  DIRECTION, where  DIRECTION 

represents the eight common directions.

Let's think step by step before answering.

Figure 15: Negative option generation prompt.
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    Negative Option Generation Prompt Ⅵ

[Task]

Please act as a reasoning expert to answer the given 

multimodal reasoning questions based on multiple 

images. The last line of your response should be of 

the following format: 

[Output]

Answer:  1 .  ACTION 2.  ACTION . . . ,  where 

ACTION is limited to the following actions: Turn 

Left, Turn Right, Turn Back, Go forward until the 

xxx. You should add numbering (e.g., 1., 2., 3. ...) 

before each action in the answer.Answer: 1. 

ACTION 2. ACTION ..., where ACTION is limited 

to the following actions: Turn Left, Turn Right, 

Turn Back, Go forward until the xxx. You should 

add numbering (e.g., 1., 2., 3. ...) before each action 

in the answer.

Let's think step by step before answering.

Figure 16: Negative option generation prompt.
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    Negative Option Generation Prompt Ⅶ

[Task]

Please act as a reasoning expert to answer the given 

multimodal reasoning questions based on multiple 

images. The last line of your response should be of 

the following format: 

[Output]

Answer:  COLOR st ick/container( ,  COLOR 

stick/container)(, COLOR stick/container), where 

COLOR represents different colors.

Let's think step by step before answering.

Figure 17: Negative option generation prompt.
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    Question Answer With CoT Prompt 

[Task]

Please act as a reasoning expert to choose the 

correct option of the given multimodal reasoning 

questions based on multiple images. The last line of 

your response should be of the following format: 

[Output]

Answer: A/B/C/D/E. 

Let's think step by step before answering.

Figure 18: Prompt used in the main experiment.
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Question: Why does the man look to the left after shaving? Please choose the best 
explanation based on the given images.
Options: 
(A) To check his shave.
(B) He looks to the left after shaving to ensure thorough grooming. 
(C) He likely looks to the left after shaving because he is preparing to leave the area. 
(D) He looks to the left to grab his shirt to put on after shaving.
(E) He likely looks to respond to something in his environment.

 

Abductive：Human Activity Attribution

<input images>

Gemini-2.5-Pro: Step 1: Analyze the initial action. The first four images show a person 
sitting in front of a mirror, engaged in what appears to be a grooming activity, 
possibly shaving or applying something to their face. They are focused on their 
reflection. Step 2: Identify the key change in action. In the fourth image, the person 
turns their head to the left, away from the mirror. The question asks for the reason 
for this specific action. Step 3: Observe the subsequent actions. The fifth and sixth 
images show what happens immediately after the person looks to the left. They get up, 
and in the fifth image, they are seen grabbing a light-colored shirt or piece of 
clothing that was located to their left. The sixth image shows them walking away with 
this item of clothing. Step 4: Connect the look to the subsequent action. The person's 
look to the left directly precedes the action of getting up and grabbing the shirt from 
that same direction. This indicates a clear cause-and-effect relationship: they looked 
towards the object they intended to interact with next. Step 5: Evaluate the given 
options based on the evidence. A. To check his shave: This is unlikely, as he turned his 
head away from the mirror, which is necessary for checking one's shave. B. He looks 
to the left after shaving to ensure thorough grooming: Similar to A, looking away from 
the mirror would not help with grooming. C. He likely looks to the left after shaving 
because he is preparing to leave the area: This is partially true, but it's not the most 
specific reason. His immediate action is not just leaving, but grabbing something first. 
D. He looks to the left to grab his shirt to put on after shaving: This is the most 
precise explanation. The images clearly show him looking left and then immediately 
grabbing a shirt from that location. This action is a direct follow-up to his look. E. He 
likely looks to respond to something in his environment: While possible, there is no 
evidence in the images of an external stimulus (like a sound or another person). The 
most direct evidence points to his own planned action. Step 6: Conclude the best 
option. Option D provides the most accurate and specific explanation for why the man 
looked to the left, as it is directly supported by the visual sequence of events shown in 
the images.# Answer: D

Ground Truth: (D) He looks to the left to grab his shirt to put on after shaving.

Figure 19: A correct example of Human Activity Attribution task.
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Question: Why does the man reach for the table? Please choose the best explanation 
based on the given images.
Options: 
(A) To set his drink down on the table.
(B) To use it as a surface to hold or manage items.
(C) To either obtain a detergent for mopping
(D) To pick up the cup with milk. 
(E) To gain balance while handling the broom.

Abductive：Human Activity Attribution

<input images>

GPT-5: The sequence shows the man sweeping with a broom.- Then he appears 
holding a drink in one hand while still handling the broom.- He leans toward the 
small table with the drink in his hand, consistent with placing it down so he can 
continue sweeping.- There’s no sign of detergent, balancing, or milk specifically.# 
Answer: A"

Error Category: Perception Error（Motion and State Confusion）
Error Reason: Instead of perceiving the man picking up the cup (the correct 
action), GPT-5 incorrectly perceives him as placing the cup down.

Ground Truth: (D) To pick up the cup with milk.
Explanation: From the next three frames we can see that the man reaches into 
the table because he wants to pick up a glass of milk, not put the drink down.

Figure 20: An error example of Human Activity Attribution task.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Question: Why did Tom cover its eyes and start smoking in the end? Please choose 
the best explanation based on the given images. 
Options: 
(A) Tom covered his eyes and started smoking simply to imitate a cowboy stereotype, 
not because of the bull’s attack. 
(B) Tom covered his eyes because he got dust and sand in them during the scuffle, 
and smoking was just an unrelated gag added afterward.
(C) Because he was upset and embarrassed (defeated by Jerry), so he covered his 
eyes in shame and lit a cigarette to calm himself.
(D) Because Tom had no way out and wanted to calmly wait for the cow's 
impact./Tom covered his eyes and started smoking due to being overwhelmed and 
stressed after narrowly escaping the charging bull. 
(E) Tom covered his eyes and smoked because he thought the show was over and 
wanted to make a dramatic, theatrical exit like an old Western movie character.
 

Abductive：Character Interaction Attribution

<input images>

Gemini-2.5-Pro: Step 1: Analyze the sequence of events in the images. Image 1 
shows a very angry bull charging. This establishes a clear and immediate danger. 
Image 2 shows Tom running away in extreme fear. His expression and posture 
indicate he is being chased by the bull from the first image. Image 3 shows Tom 
hiding behind a wooden fence, peeking over with a look of continued fear and 
anxiety. He has found temporary refuge, but the threat is likely still present. Image 
4 shows a shift in Tom's behavior. He is now dressed as a cowboy, smoking a 
cigarette in a feigned cool and nonchalant manner. However, he is simultaneously 
covering his eyes with his other hand. Step 2: Interpret Tom's final action in 
Image 4.   The act of smoking, especially in a cowboy outfit, is a trope for 
appearing cool and unfazed. The act of covering one's eyes is a classic gesture of 
fear, indicating an inability or unwillingness to watch a terrifying event unfold. 
Combining these two contradictory actions creates a comedic effect. Tom is trying 
to pretend he is calm and in control, but his underlying terror from the bull chase 
is so overwhelming that he can't even bear to look. He has narrowly escaped the 
immediate danger by getting behind the fence, but the stress and the lingering 
threat (the bull is likely about to smash through the fence) have pushed him to this 
state. =Step 3: Evaluate the given options based on the analysis. A:   This option is 
incomplete. While he is imitating a cowboy stereotype, it's a direct reaction to the 
bull's attack, which is the primary motivator for his actions.   B:   There is no visual 
evidence to suggest dust or sand in his eyes. The gesture is a clear \"I can't look\" 
pose, not one of irritation.   C:   The images provided do not include Jerry. The 
conflict shown is solely between Tom and the bull. Attributing his actions to Jerry is 
an assumption not supported by the evidence.   D:   This option accurately 
captures the duality of Tom's state. He has narrowly escaped but is still in 
immense danger or at least suffering from the extreme stress of the chase. He is 
\"overwhelmed and stressed.\" The smoking is an attempt at a calm facade, while 
covering his eyes reveals his true terror, as he anticipates the bull's impact or is 
simply unable to process the stressful situation. This aligns perfectly with the visual 
narrative.   E:   This is a meta-interpretation that breaks the fourth wall. The 
character's actions are driven by the in-story events (the bull), not by an 
awareness of being in a cartoon. Step 4: Conclude the best explanation.   Option D 
provides the most logical and comprehensive explanation for Tom's behavior. It 
correctly identifies the cause (the charging bull), the emotional state (overwhelmed 
and stressed), and the meaning behind his contradictory actions (feigning calm 
while being terrified).  # Answer: D"

Ground Truth: （D）Because Tom had no way out and wanted to calmly wait for 
the cow's impact./Tom covered his eyes and started smoking due to being 
overwhelmed and stressed after narrowly escaping the charging bull. 

Figure 21: A correct example of Character Interaction Attribution task.
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Question: Why did the appearance of the yellow cat change? Please choose the best 
explanation based on the given images.
Options: 
(A) The yellow cat’s appearance changed because it got tangled in the toy plane’s 
propeller, twisting its body into a distorted shape. 
(B) The yellow cat’s appearance changed because paint or slime from the toy 
splattered onto it, making it look different and exaggerated. 
(C) Because it was squashed/hit by the falling toy (plane/balloon), which flattened and 
deformed its appearance. 
(D) The yellow cat’s appearance changed because it got wrapped inside the toy 
plane’s parachute, puffing it up in a cloth-like covering. 
(E) It swallowed the watermelon that was used to attack them, and its body 
transformed into the shape of a watermelon. 

Abductive：Character Interaction Attribution

<input images>

Gemini-2.5-Pro: Step 1: Analyze the first image. The first image shows Tom the cat 
in a red toy airplane, flying indoors. A large green watermelon is attached to the 
bottom of the plane, positioned as if it's a bomb to be dropped. Tom is wearing 
pilot goggles and has a mischievous look, suggesting he is on a mission. Step 2: 
Analyze the second image. The second image shows three kittens and Jerry the 
mouse on the floor, looking up in alarm and scrambling to get away. Their 
expressions and postures indicate that something is coming down towards them 
from above. This links directly to the first image, where Tom is flying above.Step 3: 
Analyze the third image. The third image shows one of the yellow/orange kittens 
from the second image. Its body has been drastically altered; it is now extremely 
flat and elongated, almost like a pancake. It has a dazed expression. The 
background is the same room, confirming it's the same scene. Step 4: Synthesize 
the information and evaluate the options. We can infer a sequence of events: Tom, 
in his plane (Image 1), drops the watermelon on the kittens below. The kittens see 
it coming and try to flee (Image 2). One of the kittens is hit by the falling object, 
resulting in it being squashed flat (Image 3). Option A: The cat is flattened, not 
twisted as if by a propeller. This is incorrect. Option B: The cat's shape is changed, 
it's not just covered in paint or slime. This is incorrect. Option C: This option states 
the cat was squashed/hit by a falling toy (the watermelon from the plane), which 
flattened and deformed its appearance. This perfectly matches the logical 
sequence of events inferred from the images. The cause (falling object) and the 
effect (flattened cat) are consistent with the visual evidence. Option D: The cat is 
flattened, not puffed up or wrapped in a parachute. This is incorrect. Option E: The 
cat is flat, not round like a watermelon. It clearly didn't swallow the watermelon. 
This is incorrect. Step 5: Conclude the best explanation. Based on the step-by-step 
analysis, the most logical and accurate explanation for the yellow cat's change in 
appearance is that it was hit and flattened by the watermelon dropped from Tom's 
toy plane #Answer: C

Error Category: Perceptual Error（Color and Visual Confusion）
Error Reason: The cat ends up being round like a watermelon, not flat. However, 
the image information that Gemini-2.5-Pro didn’t analyze says the exact opposite.

Ground Truth: (E) It swallowed the watermelon that was used to attack them, and 
its body transformed into the shape of a watermelon. 
Explanation: We can see in Figure 1 that Tom wants to attack Jerry with a 
watermelon, and then in Figure 3 Jerry's body becomes an oval (the shape of a 
watermelon).

Figure 22: An error example of Character Interaction Attribution task.
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Question: What event is responsible for the silver cylinder moves to the left? 
Options: 
(A) The green ball collides with the cyan cylinder
(B) The gray cylinder bumps into the brown ball 
(C) The brown ball was pushed to the west
(D) The green ball came from the right
(E) The blue ball collides with the silver cylinder

 

Abductive：Multi-Hop Collision Attribution

<input images>

GPT-5: Initially, the silver cylinder is in the center, the brown ball is on its left, and the 
green ball is on the far right.- A cyan cylinder appears to the right and pushes the 
green ball leftward.- The green ball approaches from the right and presses against 
the silver cylinder.- This contact causes the silver cylinder to shift left, later nearing 
the brown ball.Therefore, the event responsible is the green ball coming from the 
right and pushing the silver cylinder leftward. # Answer: D

Ground Truth: (D) The green ball came from the right

Figure 23: A correct example of Multi-Hop Collision Attribution task.
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Question: What event was the catalyst for the green cylinder moves?
Options: 
(A) The red cylinder bumps into the gray ball
(B) The purple sphere slows down a bit
(C) The red cylinder collides with the purple ball
(D) The red cylinder moves away. 
(E) The purple cylinder bumps into the gray ball.

Abductive：Multi-Hop Collision Attribution

<input images>

GPT-5: Initially, the objects are static along a diagonal: purple sphere (matte) at 
left, then the red cylinder, gray ball, and finally the green cylinder. The red cylinder 
and gray ball are already near each other, but the green cylinder doesn’t move. 
When the purple sphere reaches and collides with the red cylinder, it pushes the 
red cylinder, which in turn pushes the gray ball into the green cylinder. This chain 
reaction causes the green cylinder to start moving. # Answer: C"

Error Category: Reasoning Error（Flawed Causal Reasoning）
Error Reason: When the purple sphere arrives and collides with the red cylinder, 
the green cylinder has already started moving, confusing cause and effect.

Ground Truth: (A) The red cylinder bumps into the gray ball
Explanation: As can be seen from the picture, after the red cylinder comes out 
from the upper right corner, it first collides with the gray ball, and then the gray 
ball collides with the green cylinder, causing the green cylinder to start moving.

Figure 24: An error example of Multi-Hop Collision Attribution task.
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Question: You are presented with three animal pictures. Select the most appropriate 
fourth animal so that the relationship between the first pair is analogous to the 
relationship between the second pair.
Options: 

Analogical：Animal Relation Inference

<input images>

Gemini-2.5-Pro: Step 1: Analyze the relationship between the first pair of images. The 
first image shows sharks, which are large, predatory, vertebrate animals living in a 
marine environment. They are high on the food chain. The second image shows 
oysters, which are small, invertebrate (mollusk) animals. They are filter feeders, low on 
the food chain, and often consumed as food. They also live in a marine environment. 
The core relationship is between a large, predatory vertebrate and a small, 
invertebrate food source from the same general habitat (marine). Step 2: Analyze the 
third image.   The third image shows a brown bear, which is a large, omnivorous 
(often predatory), vertebrate animal living in a terrestrial environment. It is high on 
the food chain. Step 3: Apply the relationship from Step 1 to the third image to find 
the fourth image.   We are looking for an animal that has a similar relationship to the 
bear as the oyster has to the shark. Following the analogy, we need a small, 
invertebrate food source from a terrestrial environment. Step 4: Evaluate the given 
options.  Option A (Caterpillar):   A caterpillar is a small, terrestrial invertebrate 
(insect larva). Bears are omnivores and are known to eat insects, including 
caterpillars and grubs. This fits the analogy perfectly: large terrestrial vertebrate (bear) 
vs. small terrestrial invertebrate food source (caterpillar).   Option B (Impala):   An 
impala is a large herbivorous vertebrate. While it could be prey for some predators, it 
does not fit the invertebrate or small size criteria established by the first pair.   Option 
C (Badger):   A badger is a medium-sized omnivorous vertebrate. It is not an 
invertebrate and does not fit the \"small food source\" role relative to a bear.   
Option D (Bat):   A bat is a small flying vertebrate. It is not an invertebrate.   Option E 
(Bear):   This is another bear. The relationship in the first pair is between two very 
different types of animals, not the same type. Step 5: Conclude the best fit.   The 
relationship is: Large Vertebrate Predator : Small Invertebrate Food Source. Pair 1: 
Shark (Large Marine Vertebrate) : Oyster (Small Marine Invertebrate). Pair 2: Bear 
(Large Terrestrial Vertebrate) : Caterpillar (Small Terrestrial Invertebrate). Option A is 
the only one that maintains this analogous relationship.# Answer: A"

Ground Truth: (A) 

<options images（A-E）>

Figure 25: A correct example of Animal Relation Inference task.
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Question: Consider a sequence of three animal images. Identify which animal should 
appear as the fourth image to maintain the same relational pattern observed between 
the first two and the last two images.
Options: 

Analogical：Animal Relation Inference

<input images>

Gemini-2.5-Pro: Step 1: Analyze the relationship between the first two images. The 
first image shows a wolf. A wolf is a carnivorous predator. The second image shows 
mice. Mice are small mammals that are often prey for various predators, including 
wolves (though not their primary food source, the predator-prey relationship 
exists). Therefore, the relationship between the first and second images is 
Predator : Prey. Step 2: Apply this relationship to the third and fourth images. The 
third image shows a bald eagle. A bald eagle is a bird of prey, a predator.   
Following the established pattern, the fourth image should depict a common prey 
animal for a bald eagle. Step 3: Evaluate the options as potential prey for a bald 
eagle. Bald eagles are known for their diet, which primarily consists of fish. They 
also eat other birds, small mammals, and carrion. Option A (Springbok): This is a 
medium-sized antelope found in Africa. It is not prey for a bald eagle, which is 
native to North America. Option B (Pigeons): While eagles might occasionally hunt 
pigeons, they are not their primary food source. Option C (Badger): A badger is a 
formidable mammal and is not prey for a bald eagle. Option D (Bat): Bats can be 
prey for some raptors, but they are not a typical or primary food source for bald 
eagles. Option E (Bear with a fish): This image depicts a bear that has caught a 
fish (likely a salmon). Fish, especially salmon, are the primary and most iconic 
food source for bald eagles. Although the image also shows another predator (a 
bear), it is the only option that clearly features the main prey of a bald eagle. The 
logical connection is between the eagle (predator) and the fish (prey). Step 4: 
Conclude the best fit. The relationship is Predator (Wolf) : Prey (Mice). To maintain 
this relationship, we need Predator (Eagle) : Prey. The most fitting prey for an 
eagle among the options is the fish shown in image E.# Answer: E

Error Category: Perceptual Error（Color and Visual Confusion）
Error Reason: Gemini-2.5-Pro may focus only on local details (e.g., a fish) while 
ignoring broader image relationships

Ground Truth: (B) 
Explanation: The relationship between wolf and mouse, hawk and dove is 
essentially one of predator and prey.

<options images（A-E）>

Figure 26: An error example of Animal Relation Inference task.
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Question: Since my friend already owns these shoes but wants a comparable pair, 
which of the following should I give him?
Options: 
 

Analogical：Product Similarity Inference

<input images>

Gemini-2.5-Pro: Observe the original shoes: black, low-top skate style with a white star 
and two white side stripes — the Converse One Star/Academy style.- Compare options:  
- A: White tennis shoe (Stan Smith) — different silhouette and branding.  - B: Retro 
runner — different style and sole.  - C: Adidas Samba — soccer-inspired with three 
stripes, not a star.  - D: High-top Nike Dunk — different cut and look.  - E: Black low-
top with the same star-and-bars design — essentially the same/contemporary 
comparable pair.Therefore, the most comparable choice is E.# Answer: E

Ground Truth: (E) 

<options images（A-E）>

Figure 27: A correct example of Product Similarity Inference task.
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Question: My friend already owns these pairs of shoes, but he prefers other styles. 
Which of the following shoes would be the best gift for him?
Options: 

Analogical：Product Similarity Inference

<input images>

GPT-5: The first image shows the pair he already owns: a Nike Dunk-style low-top 
leather sneaker. - He prefers other styles, as suggested by the subsequent images 
(running shoe, high-top Jordan, minimalist Stan Smith). - Among the options:   - A is 
another Dunk (same style he already has) — not ideal.   - D is a Jordan 1 — 
silhouette is very similar to a Dunk.   - E is a white leather Stan Smith with velcro — 
closer in feel to his current low-top leather style and also a bit off due to velcro.   - B 
is an Adidas performance running shoe — clearly a different style he prefers.   - C 
(New Balance) isn’t among the shown preferences.  So the best gift that matches a 
different preferred style is the Adidas running shoe.   # Answer: B

Error Category: Understanding Error（Rule or Question Misunderstanding）
Error Reason: GPT-5 limits the scope of interpretation by narrowing “other styles” to 
“preferences shown only in the figure,” without considering that option C (New 
Balance) is actually the correct “other styles” given in the question.

Ground Truth: (C) 
Explanation: We can see that the shoes in the first and fourth pictures in the options 
are similar to the friend’s first and third pairs of shoes, while the second and fifth 
pairs of shoes in the options are similar to the friend’s second and fourth pairs of 
shoes respectively, so only the third pair of shoes meets the different styles.

<options images（A-E）>

Figure 28: An error example of Product Similarity Inference task.
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Question: Here are some paintings from one artist. Choose the option that you think 
was painted by the same artist.
Options: 

Analogical：Artwork Style Inference

<input images>

GPT-5: The given set includes ballet dancers and jockeys on horseback, both 
hallmark subjects of Edgar Degas. The loose, sketch-like brushwork, unusual 
cropping, and muted palette further point to Degas, who also painted occasional 
historical scenes.- Among the options, E shows dancers backstage with the same 
impressionist handling and composition typical of Degas.- The other choices 
match different artists: A (Modigliani), B (Magritte), C (Klee), D (Delacroix).# 
Answer: E"

Ground Truth: (E) 

<options images（A-E）>

Figure 29: A correct example of Artwork Style Inference task.
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Question: You are given a set of paintings from a particular artist. Based on the 
following choices, select the artwork that best matches this artist’s style.
Options: 

Analogical：Artwork Style Inference

<input images>

GPT-5: The set of reference images share characteristics of Paul Gauguin: post—
Impressionist color, simplified forms with dark contours, Breton/Tahitian themes (e.g., 
riders and horses), and an early-period interior/landscape. - Among the options:  - 
A shows the elongated, stylized portrait style of Modigliani.   - B is a Surrealist still 
life linked to Magritte.   - C is geometric abstraction, unlike Gauguin.   - D is an 
Orientalist scene in the manner of Delacroix.   - E depicts a garden with 
impressionistic brushwork and palette, consistent with Gauguin‘s early landscapes.  
Therefore, the artwork that best matches the artist’s style is E.  # Answer: E

Error Category: Abstraction Error（Incorrect Abstraction and Analogy）
Error Reason: GPT-5's misidentification of "E" as Gauguin likely stems from a style 
match based on superficial similarity: it's drawn to Impressionist-style natural 
landscapes and localized tones and textures, while overlooking Gauguin's key stylistic 
elements: Synthetism/Cloisonnism, which emphasizes the flattening of large blocks of 
color, heavy outlines, and a weakening of perspective and gradients.

Ground Truth: (C) 
Explanation: Option C demonstrates Gauguin's core grammar: replacing volumetric 
modeling with flattened large blocks of color, separating color fields with clear (often 
dark) outlines, simplifying/decorating forms, and weakening perspective and light 
and shadow gradients—these are exactly the stylistic points he established in 
Synthetism/Cloisonnism.

<options images（A-E）>

Figure 30: An error example of Artwork Style Inference task.
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Question: The yellow cat was attacked by the watermelon. Based on the given images, 
what is the most likely consequence of this event?
Options: 
(A) The cat is likely to be involved in a scuffle with other cats.
(B) The result after the cat being attacked by the watermelon would be that the cat is 
very full and feeling a bit sluggish or satisfied. 
(C) The orange cat is now tired, upset, or in a state of defeat. 
(D) The result is that the cat is left alone and distressed or tired due to the 
commotion. 
(E) The appearance of the yellow cat changed.
 

Causal：Character Interaction Prediction

<input images>

GPT-5: tom is flying a toy plane carrying a green watermelon-like object.- the 
prompt says the yellow cat was attacked by the watermelon.- after the attack, the 
third image shows the yellow cat looking swollen and deformed compared to its 
normal shape.- therefore, the most direct consequence is a noticeable change in 
the yellow cat’s appearance due to the impact.# answer: E

Ground Truth: (E) The appearance of the yellow cat changed.

Figure 31: A correct example of Character Interaction Prediction task.
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Question: The little mouse has a higher emotional intelligence, but the big mouse 
knows how to survive. Based on the given images, what is the most likely consequence 
of this event?
Options: 
(A) The big mouse ( Tom ) will maintain control and benefit from the situation.
(B) The cat and mouse form a truce or temporary friendship, with the mouse's 
emotional intelligence and the cat's survival instincts creating mutual respect. 
(C) The little mouse tricks the cat into wearing the bell, so the mouse stays safe while 
the cat is foolishly burdened.
(D) The little mouse will likely outsmart and continue to manipulate the big mouse 
due to its higher Emotional Intelligence.
(E) Tom had completely different attitudes towards the two mice. 

Causal：Character Interaction Prediction

<input images>

GPT-5: In the first images, Tom is hostile toward Jerry and tries to catch him. - Then 
a smaller mouse (Nibbles) offers Tom a gift. Inside is a bell with a ribbon. - Using 
charm and innocence (emotional intelligence), the little mouse convinces Tom to put 
the bell on himself. - With the bell on Tom’s neck, his movements will be noisy and 
predictable, keeping the mouse safe while Tom is handicapped.  Therefore, the likely 
consequence is that the little mouse tricks the cat into wearing a bell so he stays safe.  
# Answer: C

Error Category: Hallucination Error（ Fabrication without Basis）
Error Reason: GPT-5’s answer fully constructs a causal chain of the “bell plot”: the 
mouse coaxes → Tom wears the bell → the mouse is safe.

Ground Truth: (E) Tom had completely different attitudes towards the two mice. 
Explanation: Because Jerry used the traditional confrontation method to get along 
with Tom, while the little mouse used gifts to show his friendship to Tom, Tom's 
attitude towards them was completely different.

Figure 32: An error example of Character Interaction Prediction task.
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Question: After the blue cylinder came from the right, what will be the result?
Options: 
(A) The green cube collides with the yellow cube. 
(B) The orange cylinder moved west. 
(C) The orange cylinder collides with the green cube. 
(D) The yellow cylinder moved west. 
(E) The yellow cube comes from the side. 

Causal：Multi-Hop Collision Prediction

<input images>

Gemini-2.5-Pro: Step 1: Analyze the initial scene. The first image shows five objects on 
a grey surface: a green cube, a yellow cylinder, a cyan cylinder, a purple cylinder, and 
a blue cylinder. Step 2: Observe the sequence of events. The images show a 
progression of actions: In the second image, the blue cylinder, which was in the upper 
right, has moved closer to the yellow cylinder. In the third image, the blue cylinder 
collides with the yellow cylinder. In the fourth image, the impact has pushed the yellow 
cylinder to the left (which can be interpreted as \"west\" in this 2D projection), 
causing it to collide with the green cube. In the fifth image, a new object, a yellow 
cube, appears from the bottom left of the frame. This appears to be a separate event, 
not directly caused by the previous collisions. Step 3: Evaluate the question. The 
question asks for the \"result\" of the blue cylinder coming from the right. This 
implies we need to identify a consequence of the blue cylinder's movement and 
subsequent impact. The direct consequences are the movement of the yellow cylinder 
and its collision with the green cube. Step 4: Analyze the given options based on the 
observed events. A. The green cube collides with the yellow cube: This is incorrect. The 
green cube collides with the yellow cylinder, not a yellow cube. B. The orange cylinder 
moved west: This is incorrect. There is no orange cylinder in the scene; the cylinder 
in question is yellow. C. The orange cylinder collides with the green cube: This is 
incorrect for the same reason as B; the cylinder is yellow, not orange. D. The yellow 
cylinder moved west: This is correct. After being struck by the blue cylinder, the yellow 
cylinder is pushed to the left, which is a westward direction in this context. This is a 
direct result of the action described in the question. E. The yellow cube comes from 
the side: While a yellow cube does appear in the last image, it's not presented as a 
direct physical result of the blue cylinder's action. It seems to be an independent 
event. The question asks for the result of the collision, making the movement of the 
yellow cylinder a more direct and logical answer. Step 5: Conclude the best option. 
Based on the analysis, option D is the only statement that is both factually correct 
according to the images and describes a direct consequence of the action mentioned 
in the question. The blue cylinder's movement causes the yellow cylinder to move 
west.# Answer: D

Ground Truth: (D) The yellow cylinder moved west.

Figure 33: A correct example of Multi-Hop Collision Prediction task.
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Question: In the wake of the gray ball comes, what transpires?
Options: 
(A) The cyan cylinder tagged the cyan cylinder. 
(B) The green ball hit the cyan cylinder. 
(C) The cyan ball hit the cyan cylinder. 
(D) The green cylinder moved. 
(E) The blue ball moved. 

Causal：Multi-Hop Collision Prediction

<input images>

GPT-5: The gray ball rolls forward and makes contact with the shiny green ball. 
This pushes the green ball toward the nearby cyan cylinder. In the last frames, the 
green ball reaches and hits the cyan cylinder, while the other objects (cyan ball, 
blue cylinders) do not move notably.# Answer: B

Error Category: Perceptual Error（Color and Visual Confusion）
Error Reason: GPT-5 mistook the cyan sphere for a green sphere.

Ground Truth: (C) The cyan ball hit the cyan cylinder.
Explanation: We can see that after the gray ball appears from below, it first hits 
the cyan metal ball, and then the cyan metal ball hits the cyan cylinder. There is 
no green ball in the whole scene.

Figure 34: An error example of Multi-Hop Collision Prediction task.
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Question: If the pink stick were removed, which container would pink fluid flow into?
Options: 
(A) Orange container, Green container
(B) Green container, Red container 
(C) Pink container 
(D) Green container
(E) Green container, Pink container

 

Causal：Counterfactual Fluid Prediction

<input images>

GPT-5: The pink fluid drops from the right spout. Some of it always falls along the 
right side guided by the black bar and ends up in the right green container.- The 
rest runs left along the gray ramp. If the pink stick is removed, the stream from 
the gray ramp drops directly onto the green ramp below.- The green ramp 
launches this stream leftward into the left pink container.So, with the pink stick 
removed, pink fluid goes into both the green container and the pink container.# 
Answer: E

Ground Truth: (E) Green container, Pink container

Figure 35: A correct example of Counterfactual Fluid Prediction task.
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Question: If the black stick were removed, which stick would green fluid pass?
Options: 
(A) Pink stick, Blue stick 
(B) Blue stick, Yellow stick 
(C) Blue stick 
(D) Pink stick
(E) Yellow stick 

Causal：Counterfactual Fluid Prediction

<input images>

Gemini-2.5-Pro: Step 1: Analyze the initial flow of the green fluid. The images show 
a sequence of fluids being poured. We need to trace the path of the green fluid 
The first green source is the leftmost one In the second image, the green fluid is 
released and lands on the pink stick It flows down the pink stick and, as seen in 
the third and fourth images, it then falls onto the blue stick From the blue stick, 
the fluid is directed towards and hits the black stick After the black stick, it hits the 
red stick and then falls into the containers below So, the original path for the 
green fluid is: Pink stick -> Blue stick -> Black stick -> Red stick. Step 2: 
Hypothesize the new flow with the black stick removed. The question asks what 
would happen if the black stick were removed The initial part of the path would 
remain the same. The green fluid would still fall from its source, land on the pink 
stick, and then flow onto the blue stick The change occurs after the fluid leaves the 
blue stick. In the original setup, it hits the black stick If the black stick is removed, 
the fluid will continue to fall from the end of the blue stick Looking at the positions 
of the other sticks, the yellow stick is located directly below the black stick, in the 
path of the fluid falling from the blue stick Therefore, without the black stick to 
intercept it, the fluid would fall from the blue stick directly onto the yellow stick 
Step 3: Determine the complete new path and evaluate the options. The new path 
for the green fluid would be: Pink stick -> Blue stick -> Yellow stick The question 
asks \"which stick would green fluid pass?\". We need to choose the best option 
from the list The fluid passes the pink, blue, and yellow sticks in this new scenario 
Let's look at the options: A. Pink stick, Blue stick: This is true, but incomplete. B. 
Blue stick, Yellow stick: This is also true, but incomplete. C. Blue stick: True, but 
incomplete. D. Pink stick: True, but incomplete. E. Yellow stick: This is also true 
Since multiple options are technically correct subsets of the full path, we must 
infer the question's intent. The question is about the  consequence  of removing 
the black stick. The interactions with the pink and blue sticks are unchanged. The 
crucial change is that the fluid, instead of hitting the black stick, now hits the yellow 
stick. Therefore, the most significant and defining part of the new path is the 
interaction with the yellow stick. This makes \"Yellow stick\" the most logical and 
informative answer.# Answer: E"

Error Category: Hallucination Error（ Misinformation and Confusion）
Error Reason: even if the black stick is removed, the green liquid will not flow 
through the yellow stick, but the model's analysis is wrong, causing Gemini-2.5-Pro 
to justify itself and exclude the correct answer, even though the model's previous 
analysis was correct.

Ground Truth: (A) Pink stick, Blue stick 
Explanation: We can see that after the gray ball appears from below, it first hits 
the cyan metal ball, and then the cyan metal ball hits the cyan cylinder. There is 
no green ball in the whole scene.

Figure 36: An error example of Counterfactual Fluid Prediction task.
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Question: You are tasked with building toy robots. Each robot requires 2 spheres, 2 
cubes, and 1 cylinder. You can source spheres from both Image 1 and Image 2, 
cubes only from Image 2, and cylinders only from Image 1. What is the maximum 
number of complete robots you can build? 
Options: 
(A) 1
(B) 2 
(C) 3 
(D) 4
(E) None of the above

 

Deductive：Material Composition Deduction

<input images>

Gemini-2.5-Pro: Here is a step-by-step breakdown of the reasoning:1.  Identify the 
requirements for one robot: 2 spheres 2 cubes 1 cylinder2.  Count the available parts 
according to the sourcing rules: Spheres (from Image 1 and Image 2): Image 1 has 2 
spheres (one large gold, one small silver). Image 2 has 2 spheres (one large gold, 
one small green). Total available spheres = 2 + 2 = 4. Cubes (only from Image 2): 
Image 2 has 6 cubes (one large cyan, two small red, one small brown, one small blue, 
one small grey). Total available cubes = 6. Cylinders (only from Image 1): Image 1 has 
3 cylinders (one green, one purple, one brown). Total available cylinders = 3.3.  
Calculate the maximum number of robots that can be built based on each part type 
(this identifies the limiting factor): Based on Spheres: You have 4 spheres, and each 
robot needs 2. So, 4 / 2 = 2 robots. Based on Cubes: You have 6 cubes, and each 
robot needs 2. So, 6 / 2 = 3 robots. Based on Cylinders: You have 3 cylinders, and 
each robot needs 1. So, 3 / 1 = 3 robots.4.  Determine the overall maximum: The 
number of complete robots you can build is limited by the part that runs out first. In 
this case, you only have enough spheres to build 2 robots. Even though you have 
enough cubes and cylinders for 3 robots, you will run out of spheres after completing 
the second one.Therefore, the maximum number of complete robots you can build is 
2.# Answer: B

Ground Truth: (B) 2

Figure 37: A correct example of Material Composition Deduction task.
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Question: Each explorer-bot requires 1 sphere, 1 cube, and 2 cylinders. Spheres can 
be taken only from Figure 1, cubes only from Figure 2, and cylinders from either 
figure. After building as many complete explorer-bots as possible, how many cylinders 
are left unused? 
Options: 
(A) 1
(B) 2 
(C) 3 
(D) 4 
(E) None of the above 

Deductive：Material Composition Deduction

<input images>

GPT-5: from figure 1: spheres = 2 (teal and brown), cylinders = 5. - from figure 2: 
cubes = 4 (yellow, two blue, green), cylinders = 3. - total cylinders available = 5 + 3 = 8.  
each explorer-bot requires 1 sphere, 1 cube, and 2 cylinders. - max bots possible = 
min(2 spheres, 4 cubes, 8/2 cylinders) = min(2, 4, 4) = 2 bots. - cylinders used = 2 
bots × 2 = 4.  cylinders left unused = 8 − 4 = 4.  # answer: d

Error Category: Perceptual Error（Color and Visual Confusion）
Error Reason: GPT-5 correctly identified that there were 5 cylinders in Figure 1, but it 
misidentified the number of cylinders in Figure 2. There were actually 4 cylinders, but 
the model only identified 3, resulting in an incorrect answer.

Ground Truth: (E) None of the above 
Explanation: We can see that there are 5 and 4 cylinders in Figure 1 and Figure 2 
respectively. Since at most 2 explorer-bots can be made, and each explorer-bot 
requires two 2 cylinders, there are 5 cylinders left at the end.

Figure 38: An error example of Material Composition Deduction task.
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Question: We have 5 players in a poker game. Each player has 2 hole cards, and 
there are 5 community cards on the table. Determine the winner based on the best 
5-card hand formed using any combination of hole cards and community cards. 
Hand rankings (from highest to lowest): 1. Royal Flush: Five consecutive cards of the 
same suit, from 10 to Ace (10-J-Q-K-A). 2. Straight Flush: Five consecutive cards of 
the same suit. 3. Four of a Kind: Four cards of the same rank. 4. Full House: Three 
cards of one rank and two cards of another rank. 5. Flush: Five cards of the same 
suit that are not in sequential order. 6. Straight: Five consecutive cards of different 
suits. 7. Three of a Kind: Three cards of the same rank. 8. Two Pair: Two cards of one 
rank and two cards of another rank. 9. One Pair: Two cards of the same rank. 10. 
High Card: A hand that doesn't fit into any of the above categories. The input images 
are in the following order: the community cards, Player 1's hole cards, Player 2's hole 
cards, Player 3's hole cards, Player 4's hole cards, and Player 5's hole cards. Please 
evaluate each player's hand strength and determine the winner.
Options: 
(A) Player 1 
(B) Player 2 
(C) Player 3 
(D) Player 4
(E) Player 5 

Deductive：Card Winner Deduction

<input images>

GPT-5: community cards: q♠ , 6♠ , 4♣ , 3♣ , 3♥ .- player 1 (9♦  5♠ ): best hand is 
one pair — 3s with q, 9, 6 kickers.- player 2 (7♥  7♦ ): two pair — 7s and 3s with q 
kicker.- player 3 (a♣  4♥ ): two pair — 4s and 3s with a kicker.- player 4 (3♦  3♠ ): 
four of a kind — four 3s with q kicker.- player 5 (a♦  j♣ ): one pair — 3s with a, q, j 
kickers.the strongest hand is player 4’s four of a kind (3s).  # answer: D

Ground Truth: (D) Player 4

Figure 39: A correct example of Card Winner Deduction task.
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Question: We have 5 players in a poker game. Each player has 2 hole cards, and 
there are 5 community cards on the table. Determine the winner based on the best 
5-card hand formed using any combination of hole cards and community cards.Hand 
rankings (from highest to lowest):1. Royal Flush: Five consecutive cards of the same 
suit, from 10 to Ace (10-J-Q-K-A).2. Straight Flush: Five consecutive cards of the 
same suit.3. Four of a Kind: Four cards of the same rank.4. Full House: Three cards of 
one rank and two cards of another rank.5. Flush: Five cards of the same suit that are 
not in sequential order.6. Straight: Five consecutive cards of different suits.7. Three of 
a Kind: Three cards of the same rank.8. Two Pair: Two cards of one rank and two 
cards of another rank.9. One Pair: Two cards of the same rank.10. High Card: A hand 
that doesn't fit into any of the above categories.The input images are in the following 
order: the community cards, Player 1's hole cards, Player 2's hole cards, Player 3's 
hole cards, Player 4's hole cards, and Player 5's hole cards.Please evaluate each 
player's hand strength and determine the winner.  
Options: 
(A) Player 1
(B) Player 2 
(C) Player 3 
(D) Player 4
(E) Player 5 

Deductive：Card Winner Deduction

<input images>

GPT-5: "Let’s read the cards:  Community cards: A♦ , Q♦ , 4♥ , 2♥ , 9♣ .  - Player 1: 
7♦  9♠  → Makes pair of 9s using 9♣  + 9♠  with kickers A♦ , Q♦ , 7♦ . - Player 2: 
K♦  3♦  → No pair; best is high card A (A♦ , K♦ , Q♦ , 9♣ , 4♥ ). - Player 3: J♥  10♠  
→ No pair; best is high card A (A♦ , Q♦ , 10♠ , 9♣ , 4♥ ). - Player 4: 6♦  8♣  → No 
pair; best is high card A (A♦ , Q♦ , 9♣ , 8♣ , 6♦ ). - Player 5: 9♥  K♠  → Makes pair 
of 9s using 9♣  + 9♥  with higher kickers A♦ , K♠ , Q♦ .  Compare the best hands: 
Player 1 and Player 5 both have a pair of 9s, but Player 5’s kickers (A, K, Q) beat 
Player 1’s (A, Q, 7). Therefore, Player 5 wins.   # Answer: E"

Error Category: Perceptual Error（Color and Visual Confusion）
Error Reason: GPT-5 misidentified the suit and value of the playing cards.

Ground Truth: (D) Player 4
Explanation: Although Player 1 also has a pair of 6s, Player 4 has a stronger kicker 
(8) and therefore beats the other player (high card).

Figure 40: An error example of Card Winner Deduction task.

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

Question: I want to make Bundt Bread With Nuts And Chocolate, please generate the 
correct order of the images to make a complete recipe.
Options: 
(A) 9-3-5-2-7-1-4-8
(B) 8-1-3-2-5-7-4-6 
(C) 8-3-2-5-9-7-1-4
(D) 8-3-5-7-2-1-4-6
(E) 8-3-2-5-7-1-4-6

 

Deductive：Recipe Step Deduction

<input images>

Gemini-2.5-Pro: Here is a step-by-step analysis of the images to determine the 
correct order for making Bundt bread with nuts and chocolate:1.  Image 8: Gather all 
ingredients. This is the classic \"mise en place\" step, where all necessary ingredients 
and tools are laid out before starting. We can see bags of flour, sugar, chocolate, nuts, 
eggs, and the Bundt pan itself. This is logically the first step. Therefore, the correct 
sequence must start with 8. This eliminates option A.2.  Image 1: Prepare the baking 
pan. The Bundt pan is shown greased, floured, and with chopped walnuts sprinkled on 
the bottom. Preparing the pan is an early step, often done right after gathering the 
ingredients, to ensure it's ready when the batter/dough is mixed.3.  Image 3: Measure 
dry ingredients. A yellow bowl contains a pile of white powder, which is likely flour and 
sugar, key dry ingredients for the bread. This is another preparatory step. The order 
of preparing the pan (1) and measuring ingredients (3) can sometimes be swapped, 
but both are done before mixing begins. The sequence 8-1-3 represents a very 
organized start.4.  Image 2: Mix the initial dough. A stand mixer with a dough hook is 
kneading a plain, smooth dough in a white bowl. This is the base dough before any 
solid additions like nuts or chocolate are mixed in. This step must follow the 
measurement of ingredients (3).5.  Image 5: Add chocolate to the dough. The same 
mixer and bowl are shown, but now dark chunks, clearly identifiable as chocolate, are 
being incorporated into the dough. This step logically follows the creation of the base 
dough (2).6.  Image 7: The final mixed dough. The dough is shown in the mixing bowl 
(mixer arm removed). We can see both the dark chocolate chunks and lighter brown 
pieces of nuts distributed throughout the dough. This indicates that the nuts were 
added after the chocolate, and the mixing process is now complete. This step must 
follow step 5.7.  Image 4: Transfer the dough to the pan. The fully mixed dough from 
step 7 is now being placed into the prepared Bundt pan from step 1. The dough does 
not yet fill the pan completely.8.  Image 6: Let the dough rise. The final image shows 
the dough in the Bundt pan, but it has risen significantly, now filling the pan almost to 
the top. This is the final proofing stage before the bread goes into the oven. This step 
must follow the transfer of dough into the pan (4).Based on this logical progression, 
the correct sequence is: 8 → 1 → 3 → 2 → 5 → 7 → 4 → 6.Let's check this 
sequence against the given options:   A. 9-3-5-2-7-1-4-8: Incorrect start and contains 
an invalid image number (9).   B. 8-1-3-2-5-7-4-6: This matches our derived logical 
sequence perfectly.   C. 8-3-2-5-9-7-1-4: Contains an invalid image number (9).   D. 
8-3-5-7-2-1-4-6: Incorrect mixing order (5 before 2).   E. 8-3-2-5-7-1-4-6: This 
sequence suggests preparing the pan (1) after the dough is completely mixed (7). 
While possible, it's a less conventional and less efficient workflow than preparing the 
pan as part of the initial setup (as in option B). The \"mise en place\" approach 
shown in B is more standard.Therefore, option B provides the most logical and 
standard order for the baking process shown in the images.# Answer: B

Ground Truth: (B) 8-1-3-2-5-7-4-6

Figure 41: A correct example of Recipe Step Deduction task.
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Question: I want to make Boeuf Bourguignon Modern Fusion, please generate the 
correct order of the images to make a complete recipe. 
Options: 
(A) 5-4-2-6-3-7-1-8
(B) 5-4-2-6-3-1-7-8 
(C) 5-4-2-1-6-3-7-8 
(D) 4-5-2-6-1-3-7-8 
(E) 4-5-6-2-1-3-7-8 

Deductive：Recipe Step Deduction

<input images>

Gemini-2.5-Pro: : Step 1: Ingredient Preparation.   The first step in any recipe is to 
gather and prepare the ingredients. Image 4 shows the raw meat (a cut of beef 
shank, also known as osso buco) in a bowl. Image 5 shows the vegetables (carrots, 
onions, potato, tomatoes, mushrooms) prepped on a cutting board. The logical start is 
preparing both meat and vegetables. So the sequence begins with 4 and 5. Step 2: 
Searing the Meat.   To build flavor, the meat is seared in a hot pan. Image 2 shows a 
piece of meat being browned in the pan. This step creates a flavorful crust on the 
meat and leaves browned bits (fond) in the pan. This must happen after the meat is 
prepped (4) and before other ingredients are cooked in the pan. So, the sequence is 
4-5-2. Step 3: Sautéing the Vegetables.   After the meat is seared and removed from 
the pan, the vegetables are typically sautéed in the remaining fat and fond. Image 6 
shows the chopped carrots, onions, potatoes, and mushrooms being cooked in the 
same pan. This step follows the searing of the meat. The sequence is now 4-5-2-6. 
Step 4: Deglazing and Adding Liquid.   After the vegetables are softened, a liquid 
(often wine in Boeuf Bourguignon) is added to deglaze the pan, lifting the flavorful 
fond from the bottom. The seared meat is then returned to the pan. Image 1 shows 
the meat back in the pan, simmering in a red liquid, which represents this stage. The 
sequence becomes 4-5-2-6-1. Step 5: Combining and Simmering.   All the ingredients 
are combined to cook together. Image 3 shows the meat, all the sautéed vegetables, 
plus the chopped tomatoes and a bay leaf, simmering in the braising liquid. This is 
the beginning of the long, slow cooking process. The sequence is now 4-5-2-6-1-3. 
Step 6: Reducing and Finishing.   The stew is simmered for an extended period, 
allowing the flavors to meld, the meat to become tender, and the sauce to reduce and 
thicken. Image 7 shows the dish after this process. The liquid level is lower than in 
Image 3, the colors are deeper, and the ingredients look fully cooked and tender. 
This is the final stage of cooking before serving. The sequence is 4-5-2-6-1-3-7.   
Step 7: Plating.   The final step is to serve the finished dish. Image 8 shows the Boeuf 
Bourguignon plated and ready to eat. This is the last image in the sequence.   
Conclusion:   The complete and logical order of the images to make the recipe is 4-
5-2-6-1-3-7-8. This matches option D.  # Answer: D"

Error Category: Other Error
Error Reason: Gemini-2.5-Pro sometimes overlook crucial information necessary 
to solve a problem. when analyzing a recipe, it fails to grasp the cues of variations 
in the appearance of the same side dish, such as a steak changing from rare to 
well-done

Ground Truth: (C) 5-4-2-1-6-3-7-8
Explanation: The reason for choosing C is that it follows the complete cooking 
process - ingredient preparation → frying meat → adding vegetables → stewing and 
reducing the sauce → serving.

Figure 42: An error example of Recipe Step Deduction task.
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Question: .Looking at the observed yearly changes in bird distribution shown in the 
images, predict the most likely distribution pattern for next year.
Options: 

Inductive：Bird Migration Induction

<input images>

Gemini-2.5-Pro: Step 1: Analyze the input images to identify the pattern of bird 
distribution over time. The four provided images show the distribution of a bird 
species over what is implied to be four consecutive years. In all four images, the 
distribution is widespread across North America. The birds are consistently found 
in high concentrations in the eastern half of the United States and southern 
Canada. There is also a consistent, though less dense, presence along the West 
Coast and in the mountainous regions of the western US. Step 2: Determine the 
trend from the observed patterns. By comparing the four images, we can see 
that the overall geographic range of the birds is remarkably stable. While there 
might be minor year-to-year fluctuations in which specific grid squares are 
occupied or the density within those squares, the fundamental distribution 
pattern does not change. There is no clear evidence of a large-scale migration 
shift, expansion, or contraction of the overall range. The pattern is one of 
consistency. Step 3: Formulate a prediction based on the identified trend. Since 
the observed trend over the past four years is stability, the most logical 
prediction for the next year is that the distribution will continue to be stable and 
will look very similar to the patterns seen in the input images. Step 4: Evaluate 
the given options against the prediction. Option A: Shows a significant 
contraction of the range. The birds are almost entirely absent from the western 
half of the continent. This contradicts the stable, widespread distribution seen in 
the input images. Option B: Shows a distribution pattern that is highly consistent 
with the four input images. It displays a widespread presence across the eastern 
US, southern Canada, and parts of the western US. This matches the prediction 
of stability. Option C: Shows a noticeable northward and westward shift in the 
concentration of the birds, with a denser population in the Canadian prairies and 
a sparser one in the southeastern US. This represents a significant change, not 
stability. Option D: Shows a severe contraction of the range, even more so than 
Option A, with birds mainly in the northeastern and southeastern US. This is a 
drastic change. Option E: Shows the most extreme contraction, with the 
population limited to a small area in the northeastern US and Great Lakes 
region. This is completely inconsistent with the historical data. Step 5: Select the 
best option. Option B is the only one that represents a continuation of the stable 
distribution pattern observed in the input images. Therefore, it is the most likely 
prediction for the next year.# Answer: B"

Ground Truth: (B) 

<options images（A-E）>

Figure 43: A correct example of Bird Migration Induction task.
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Question: Looking at the observed yearly changes in bird distribution shown in the 
images, predict the most likely distribution pattern for next year.
Options: 

Inductive：Bird Migration Induction

<input images>

Gemini-2.5-Pro: First, compare the four yearly maps from earliest to latest (top-left 
to bottom-right).  There is a clear monotonic increase in the number of purple grid 
cells (occupied/observed areas), with the strongest growth in the south 
(Argentina–Chile) and along coastlines. The fourth year shows the highest density, 
especially expanding into Patagonia and around the coasts, while the Amazon 
interior remains relatively less occupied. Extrapolating this trend to next year 
suggests further densification, with even more cells filled across the southern cone 
and coastal areas, while still keeping the Amazon comparatively lighter. Among the 
options, D best matches this continued expansion and densification pattern.# 
Answer: D

Error Category: Knowledge Error（Over-reliance on Internal Knowledge）
Error Reason: Gemini-2.5-Pro does not perform analysis based on image 
information, but instead reasons based on internal geographical knowledge. And 
without any quantitative verification or comparison with the candidate images, D 
was finally selected based on the inertial cognition of "continuous expansion", while 
ignoring the actual inflection point changes in the image.

Ground Truth: (E) 
Explanation: Because the four-year input images show that although the 
distribution of birds has gradually expanded, it has reached saturation by the 
fourth year, with only a slight increase in marginal areas such as the southern and 
eastern coasts; E just continues this "slight expansion" trend, rather than over-
extrapolating it into a full-scale outbreak like D.

<options images（A-E）>

Figure 44: An error example of Bird Migration Induction task.
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Question: The leaves in the images are affected by a disease I already recognize. 
Which of the option leaves share the same infection?
Options: 
 

Inductive：Plant Disease Induction

<input images>

Gemini-2.5-Pro: Step 1: Analyze the initial set of images.   The three images at the top 
show leaves, which appear to be from a tomato plant, exhibiting specific disease 
symptoms.  The common symptoms across these three leaves are a mottled or 
mosaic pattern of yellow and green patches.  The yellowing (chlorosis) is not uniform 
but appears as irregular blotches and spots across the leaf surface.  In the third 
image, some of these yellow areas are starting to turn brown (necrosis).  This pattern 
is characteristic of a viral disease, most likely Tomato Mosaic Virus (ToMV) or a 
similar virus.   Step 2: Evaluate each option against the identified symptoms.  Option A: 
This leaf is uniformly green and appears healthy. It does not show any mottling, 
yellowing, or spots. It also has a different shape from the tomato leaves in the initial 
images. This does not match.  Option B: This leaf shows large, whitish-gray patches, 
which are typical of a fungal disease like powdery mildew. While there is some 
yellowing and necrosis, the primary symptom is different from the mosaic pattern in 
the initial images. This does not match.  Option C: This leaf is dark green but has a 
severely puckered and bumpy texture. It does not exhibit the characteristic yellow and 
green mottling. This symptom is different from the one in the initial images. This does 
not match.  Option D: This leaf is clearly a tomato leaf. It displays a distinct yellow and 
green mottled pattern, very similar to the leaves in the initial images. There are 
irregular yellow patches and some developing brown/necrotic spots. This is a strong 
match for the symptoms of the same disease.  Option E: This leaf is mostly green with 
some slight discoloration and curling. The symptoms are not as pronounced or clear 
as in the initial images or in Option D. It does not clearly show the same mosaic 
pattern.   Step 3: Conclude the best match.  Comparing all the options, the leaf in 
Option D exhibits the most similar and characteristic symptoms to the leaves in the 
initial set of images. The yellow and green mosaic pattern is the key feature, and it is 
clearly present in both the initial images and Option D.# Answer: D

Ground Truth: (D) 

<options images（A-E）>

Figure 45: A correct example of Plant Disease Induction task.
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Question: The images include leaves that show the same disease I’ve noticed earlier. 
From the options, which leaf is infected by the same disease?
Options: 

Inductive：Plant Disease Induction

<input images>

Gemini-2.5-Pro: Step 1: Analyze the symptoms in the initial set of four images. The 
leaves in the first four images share a very distinct primary symptom: they are 
severely wrinkled, crinkled, and have a bumpy or blistered texture. This is often 
referred to as \"savoying\". The leaves are also distorted in shape and appear 
curled or misshapen. Some of the leaves show discoloration, such as yellowing or 
a mosaic pattern of light and dark green (e.g., image 2 and the blurry image 3), 
but the most consistent and dramatic feature is the severe textural abnormality. 
Step 2: Evaluate each option against the identified symptoms. Option A: This leaf 
has a textured surface and serrated edges, but it lacks the severe, deep wrinkling 
and distortion seen in the initial images. Its overall shape is relatively normal. 
Option B: This leaf's primary symptoms are yellowing (chlorosis) and small, dark, 
necrotic spots. The leaf surface is mostly flat. This represents a spotting disease, 
which is different from the disease in the initial images. Option C: This leaf shows 
large patches of what appears to be fungal growth or blight (dark, fuzzy areas). 
This is a completely different symptom. Option D: This leaf is somewhat misshapen 
and has a slightly uneven, leathery texture, but it does not have the characteristic 
deep, blister-like crinkling of the initial set. Option E: This leaf perfectly matches 
the symptoms from the initial set. It is dark green, severely wrinkled, crinkled, and 
distorted. The texture is bumpy and blistered, identical to the disease pattern 
shown in the first four images. Step 3: Conclude based on the comparison. The 
disease shown in the initial images is characterized by severe leaf wrinkling and 
distortion. Option E is the only image that displays this same set of characteristic 
symptoms. # Answer: E"

Error Category: Abstraction Error（Lack of Abstraction）
Error Reason: Gemini-2.5-Pro failed to correctly generalize key features or 
patterns in an image and thus failed to identify key characteristics of a disease.

Ground Truth: (B) 
Explanation: We can see that all four leaves in the input have yellowing symptoms, 
but only B has obvious yellowing.

<options images（A-E）>

Figure 46: An error example of Plant Disease Induction task.
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Question: Given the sports displayed, determine which sport from the provided 
options should appear in the next position.
Options: 
 

Inductive：Sport Feature Induction

<input images>

Gemini-2.5-Pro: Step 1: Analyze the initial set of images to identify a common theme. 
The first image shows a person on a snowmobile, which is a motorized vehicle used 
for racing on snow or ice. This is a form of motorsport. The second image shows a 
Formula 1 race car on a track. This is a high-speed, open-wheel motorsport. The third 
image shows a stock car, typical of NASCAR racing, on a racetrack. This is another 
form of motorsport. The unifying theme across these three images is **motorsports**, 
which are competitive sporting events involving motorized vehicles. Step 2: Evaluate 
each option to see which one fits the identified theme. **Option A:** This image shows 
several people racing on motorcycles. Motorcycle racing is a well-known category of 
motorsport. This option fits the theme. **Option B:** This image shows amputee 
football (soccer). This is a team sport and a parasport, but it does not involve 
motorized vehicles. It does not fit the theme. **Option C:** This image shows fencing. 
This is a combat sport and does not involve motorized vehicles. It does not fit the 
theme. **Option D:** This image shows field hockey. This is a team sport played with 
sticks and a ball, not motorized vehicles. It does not fit the theme. **Option E:** This 
image shows wheelchair basketball. This is a team sport and a parasport, but it does 
not involve motorized vehicles. It does not fit the theme. Step 3: Conclude which 
option is the correct choice. Based on the analysis, only Option A continues the theme 
of motorsports established by the first three images.# Answer: A

Ground Truth: (A) 

<options images（A-E）>

Figure 47: A correct example of Sport Feature Induction task.
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Question: From the given figure of sports, identify the appropriate choice for the next 
sport among the options.
Options: 

Inductive：Sport Feature Induction

<input images>

GPT-5: Identify the sports in the given sequence:  1) Fishing (water activity)  2) 
Powerboat racing (water, motorized)  3) Rowing (water, human-powered)  4) 
Chariot/Chuckwagon racing (equestrian, land)- The first three are water-based; the 
fourth shifts to equestrian racing on land. The logical continuation is another 
equestrian race, i.e., horse racing.# Answer: E

Error Category: Abstraction Error（Incorrect Abstraction and Analogy）
Error Reason: When solving the problem, GPT-5 did not extract abstract patterns, but 
instead over-reliant on the intuitive semantics of the nearest image, simply 
analogizing chuckwagon racing to another "race between man and horse", and thus 
chose E (horse racing).

Ground Truth: (B) 
Explanation: Because B (sailboat) continues the pattern of "water sports/racing 
events" in the input image, it best matches the previous events.

<options images（A-E）>

Figure 48: An error example of Sport Feature Induction task.
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Question: The washing machine is south of the microwave. In which direction is the 
carpet relative to the electric kettle?
Options: 
(A) North
(B) Southeast 
(C) East
(D) Southwest
(E) South

 

Spatial：Relative Position Estimation

<input images>

GPT-5: From the statement, the washing machine is south of the microwave. In the 
images, the washing machine is below the microwave, so “down” corresponds to south 
and “right” to east.- The electric kettle is on the left side of the counter (northwest 
area of the scene).- The carpet is on the floor near the door, to the right of the 
washing machine and lower in the scene.- Relative to the kettle, the carpet is both to 
the right (east) and lower (south).# Answer: B

Ground Truth: (B) Southeast

Figure 49: A correct example of Relative Position Estimation task.
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Question: The chair is to the east of the Hello Kitty plush toy. Where is the Minion 

plush toy positioned relative to the pony plush toy? 

Options: 
(A) Southeast 
(B) North 
(C) Northwest 
(D) Northeast 
(E) West

Spatial：Relative Position Estimation

<input images>

Gemini-2.5-Pro: Step 1: Establish the cardinal directions. The problem states that 
\"The chair is to the east of the Hello Kitty plush toy.\" Image 1 shows a black chair 
with a wooden frame on the left side of the scene. Image 4 shows the Hello Kitty 
plush toy on the bed, inside a purple tent, which is to the right of the chair's initial 
position. The camera pans from left to right, moving from the chair towards the Hello 
Kitty toy. This means the chair is physically to the left of the Hello Kitty toy. Given that 
the chair is to the EAST of the Hello Kitty toy, we can establish our directional 
mapping: East = Left (in the direction of the chair from Hello Kitty) West = Right , 
North = Towards the back wall, South = Towards the foreground/camera Step 2: 
Locate the Minion plush toy and the pony plush toy.   The Minion plush toy is visible 
in Image 3. It is a yellow, one-eyed character sitting on the red bed, near the white 
headboard (which is against the back wall). The pony plush toy (a large white and 
pink unicorn) is visible in Image 5. It is on the floor, to the right of the bed. Step 3: 
Determine the relative position of the Minion to the pony.   We need to find the 
position of the Minion  relative to  the pony. The Minion is near the back wall, making 
it NORTH of the pony, which is further out on the floor. The Minion is on the bed, 
which is to the left of where the pony is on the floor. Since \"left\" is EAST, the 
Minion is to the EAST of the pony. Combining these two directions, the Minion is to 
the NORTH and to the EAST of the pony. Step 4: Conclude the final direction.   A 
position that is both North and East is Northeast. Therefore, the Minion plush toy is 
positioned to the Northeast of the pony plush toy.# Answer: D"

Error Category: Knowledge Error（ Directional and Positional Confusion） 
Error Reason: Gemini-2.5-Pro lacks common sense of orientation and reverses left to 
west and right to east.

Ground Truth: (A) Southeast
Explanation: Since the chair is east of Hello Kitty, the Minion plush toy are next to the 
chair, and pony plush toy is next to Hello Kitty, the Minion plush toy are southeast of 
pony plush toy.

Figure 50: An error example of Relative Position Estimation task.
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Question: From the continuous sequence of images, what were the degrees of 
rotation the camera made?
Options: 
(A) Rotation clockwise about 90 degrees. 
(B) Rotate clockwise about 180 degrees. 
(C) Rotate clockwise about 90 degrees. 
(D) Rotate counterclockwise about 145 degrees. 
(E) Rotate clockwise 120 degrees. 

Spatial：Camera Rotation Estimation

<input images>

GPT-5: Observe the toy bunny on the scanner bed. - In the first image, the bunny 
faces the camera (front with the “3” visible). - In the second image, the camera 
view shows the back of the bunny. - Seeing the front then the back implies the 
camera moved to the opposite side of the object, a rotation of about 180 degrees 
around it (direction doesn’t matter for 180°; clockwise is equivalent).  # Answer: B"

Ground Truth: (B) Rotate clockwise about 180 degrees.

Figure 51: A correct example of Camera Rotation Estimation task.
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Question: Given the continuous images, what were the successive rotation angles of 

the camera?

Options: 
(A) Rotate clockwise about 30 degrees, then clockwise about 45 degrees 
(B) Rotate clockwise about 30 degrees, then clockwise about 30 degrees 
(C) Rotate clockwise about 30 degrees, then counterclockwise about 150 degrees 
(D) Rotate counterclockwise about 30 degrees, then counterclockwise about 60 

degrees 
(E) Rotate clockwise about 45 degrees, then clockwise about 45 degrees 

Spatial：Camera Rotation Estimation

<input images>

GPT-5:  We compare the shark toy’s orientation relative to the frame and the car’s 
edges.- From the first to the second image, the scene is rotated slightly clockwise: the 
shark’s head points more downward-right and the window edge tilts a bit, indicating a 
small clockwise roll (~30°).- From the second to the third image, the rotation 
continues in the same (clockwise) direction and by a larger amount: the shark is now 
viewed closer to a frontal-right angle, roughly an additional ~45°.# Answer: A

Error Category: Knowledge Error（Rotation and Viewpoint Confusion） 
Error Reason: GPT-5 misinterpreted a counterclockwise rotation of approximately 
150° as a continued clockwise rotation of a small angle, ignoring the direction 
reversal evidence provided by the absolute reference.

Ground Truth: (C) Rotate clockwise about 30 degrees, then counterclockwise about 
150 degrees 
Explanation: First, from the right side of the shark to the shark's tail, you need to 
rotate clockwise about 30 degrees, and then to the shark's head, you need to rotate 
counterclockwise 150 degrees.

Figure 52: An error example of Camera Rotation Estimation task.
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Question: You are a robot beginning at the refrigerator and facing the refrigerator. 
You want to navigate to the recycling bin. You can only make 90-degree or 180-
degree turns and go forward, and you have to go around obstacles. What actions 
should you perform? 
Options: 
(A) 1. Turn right 2. Go forward until the round table 3. Turn left 4. Go forward until the 
recycling bin
(B) 1. Turn left 2. Go forward until the round table with red chairs 3. Turn right 4. Go 
forward until the recycling bin 
(C) 1. Turn back 2. Go forward until the round table 3. Turn left 4. Go forward until 
the recycling bin
(D) 1. Turn left 2. Go forward until the table 3. Turn left 4. Go forward until the 
recycling bin
(E) 1. Turn left 2. Go forward until the suitcase 3. Turn left 4. Go forward until the 
printer 5. Turn right 6. Go forward until the recycling bin

 

Spatial：Navigation Route Planning

<input images>

GPT-5: Start at the refrigerator facing it; the recycling bin is across the room near 
the printers and the round table in the back corner.- First, turn left to align with the 
counter area and move forward along it until you reach the green suitcase on the 
floor.- Turn left again to head across the room toward the printers against the 
opposite wall.- Go forward until you reach the printer, then turn right to face the 
corner with the blue bin.- Move forward to the recycling bin.# Answer: E

Ground Truth: (E) 1. Turn left 2. Go forward until the suitcase 3. Turn left 4. Go 
forward until the printer 5. Turn right 6. Go forward until the recycling bin

Figure 53: A correct example of Navigation Route Planning task.
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Question: You are a robot beginning at the door, facing the window. You want to 

navigate to the refrigerator. You can only make 90-degree or 180-degree turns and 

go forward, and you have to go around obstacles. What actions should you perform? 

Options: 
(A) 1. Turn right 2. Go forward until the refrigerator 
(B) 1. Turn left 2. Go forward until the stove 3. Turn right 4. Go forward until the 

refrigerator
(C) 1. Go forward until reaching the gas cooker. 2. Turn left. 3. Go forward until 

reaching the fridge. 
(D) 1. Turn right 2. Go Forward until the counter 3. Turn right 4. Go Forward until the 

refrigerator 
(E) 1. Go forward until the end of the counter. 2. Turn right. 3. Go forward until the 

refrigerator

Spatial：Navigation Route Planning

<input images>

GPT-5: From the doorway you’re facing the window with the counter and stove along 
your left side.- Move straight ahead down the aisle beside the counter.- When you 
reach the end of the counter, the refrigerator is positioned to the right.- Turn right 
and go straight to the fridge.# Answer: E"

Error Category: Knowledge Error（Directional and Positional Confusion） 
Error Reason: GPT-5 had a poor understanding of the kitchen's spatial perception in 
the image. It made the wrong choice because it ignored obstacles like the stove and 
counter, mistakenly assuming it could go straight and then turn right to the 
refrigerator, leading to an oversimplification of spatial reasoning.

Ground Truth: (B) 1. Turn left 2. Go forward until the stove 3. Turn right 4. Go 
forward until the refrigerator
Explanation: Since you are at the door and facing the window at the beginning, you 
need to turn left first instead of going directly to the kitchen counter.

Figure 54: An error example of Navigation Route Planning task.
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Question: In what order do these images appear chronologically?
Options: 
(A) 3-1-4-2
(B) 1-3-2-4 
(C) 4-1-2-3 
(D) 3-1-2-4
(E) 4-3-1-2

 

Temporal：Crowd Timeline Reconstruction

<input images>

Gemini-2.5-Pro: Step 1: Identify Key Moving Subjects. To determine the 
chronological order, we need to track the movement of people across the four 
images. Several individuals and groups can be used as reference points: 1.  A 
group of four people (a man in a dark jacket, a woman in a light top, a man in a 
plaid shirt pushing a stroller, and a woman in a brown coat) walking away from 
the camera on the right side of the mall. 2.  A man in a yellow t-shirt walking 
towards the camera on the right side. 3.  A woman in a red coat walking away 
from the camera on the left side. 4.  A woman in a dark outfit who walks from 
right to left in front of the people sitting around the palm tree. Step 2: Track the 
Group of Four with the Stroller. This group is walking away from the camera. Their 
position further down the hall indicates a later time. In Image 3, this group is the 
closest to the camera. The stroller is just beginning to pass the circular seating 
area. In Image 1, the group has moved slightly further away from the camera. In 
Image 4, the group has moved even further down the hall. In Image 2, the group 
is the furthest away from the camera among the four images. This tracking gives 
the order: 3 -> 1 -> 4 -> 2. Step 3: Track the Man in the Yellow T-shirt. This man is 
walking towards the camera. His position closer to the bottom of the frame 
indicates a later time. In Image 3, he is the furthest away, near the top right of the 
frame. In Image 1, he has walked closer to the camera. In Image 4, he is even 
closer than in Image 1. In Image 2, he is the closest to the camera, near the 
bottom right corner. This tracking also gives the order: 3 -> 1 -> 4 -> 2. Step 4: 
Track the Woman in the Red Coat. This woman is walking away from the camera 
on the left. Her position further down the hall indicates a later time. In Image 3, 
she is closest to the camera, near the bottom left. In Image 1, she has moved 
further up the walkway. In Image 4, she is further still. In Image 2, she is the 
furthest away of the four images. This tracking confirms the order: 3 -> 1 -> 4 -> 2. 
Step 5: Track the Woman in the Dark Outfit. This woman walks from right to left in 
front of the seating area. In Image 3, she is not yet visible in that area. In Image 1, 
she appears on the right side of the seating area. In Image 4, she is in the middle, 
directly in front of the seated people. In Image 2, she has passed the seated 
people and is on the left side. This tracking also supports the order: 3 -> 1 -> 4 -> 
2. Step 6: Conclude the Order. All key subjects' movements consistently point to 
the same chronological sequence. The images, in order, show the progression of 
these people through the mall. The correct sequence is 3, then 1, then 4, and 
finally 2. Step 7: Match with the Options. The determined order is 3-1-4-2, which 
corresponds to option A.# Answer: A"

Ground Truth: (A) 3-1-4-2

Figure 55: A correct example of Crowd Timeline Reconstruction task.
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Question: What is the correct chronological sequence of these images? 
Options: 
(A) 5-3-2-4-1
(B)  5-3-1-4-2
(C)  2-4-1-3-5
(D)  1-2-3-4-5
(E)  4-1-2-3-5

Temporal：Crowd Timeline Reconstruction

<input images>

Gemini-2.5-Pro: Here is a step-by-step analysis to determine the chronological order 
of the images:1.  Identify Key Moving Elements:   The images depict a busy shopping 
mall with many people moving around. To establish a timeline, we can track the 
positions of specific individuals or groups across the different frames. Let‘s focus on a 
few distinct groups Group A (Right Side):   A group of four people, including a woman 
holding the hand of a small child in a red coat. They are walking away from the 
camera, down the right-hand corridor Group B (Center):   A couple, a man in a dark 
top and a woman in a light top, walking towards the camera in the upper-middle part 
of the scene Person C (Left Side):   A woman in a light-colored jacket and dark pants, 
walking from the upper left towards the bottom left of the frame.  2. Track the 
Movement of Group A (Child in Red): Image 5:   This group is the furthest away from 
the camera, just entering the circular area around the central planter Image 3:   
They have moved forward. The woman holding the child’s hand is now roughly level 
with the right side of the planter Image 1:   They have moved further still. They are 
now past the planter and closer to the bottom right of the frame. Images 4 and 2:   
This group is no longer visible, indicating they have walked out of the frame. This 
tracking establishes the sequence: 5 -> 3 -> 1. Images 4 and 2 must come after these.  
3. Track the Movement of Person C (Woman in Light Jacket): Image 5:   This woman 
is not yet visible Image 3:   She first appears in the upper left, beginning her walk 
Image 1: She has moved further along her path, towards the bottom left Image 4:   
She is even further along, closer to the bottom left corner Image 2:   She is at the 
very edge of the frame, about to exit. This tracking confirms the sequence:   (5) -> 3 
-> 1 -> 4 -> 2 .  4. Track the Movement of Group B (Central Couple): Image 5:   This 
couple is the furthest away, in the upper middle of the scene Image 3:   They have 
walked closer to the camera Image 1:   They are even closer Image 4:   They have 
walked past the central planter and are now moving towards the kiosk on the left 
Image 2:   They are even closer to the kiosk. This tracking also confirms the 
sequence:   5 -> 3 -> 1 -> 4 -> 2  .  5. Conclusion:   By consistently tracking the 
movement of multiple people and groups, we can confidently determine the 
chronological order. The people in the scene are furthest away in Image 5 and 
progressively move closer or across the frame through Images 3, 1, 4, and finally 2.  
Therefore, the correct chronological sequence is 5-3-1-4-2.  # Answer: B

Error Category: Reasoning Error（ Temporal and Sequential Confusion）
Error Reason: Gemini-2.5-Pro can use a certain reference point to sort the events, 
but there are too many reference points. In this example, the model sorting result is 
completely opposite to the correct answer.

Ground Truth: (C) 2-4-1-3-5 
Explanation: In these images, we can use the little girl in red and her surrounding 
behavior as a reference point. She is holding her parent's hand and can be seen 
moving further and further away from the camera.

Figure 56: An error example of Crowd Timeline Reconstruction task.
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Question: Which of the images in the options is most likely to be the next one to 
occur?
Options: 
 

Temporal：Driving Sequence Prediction

<input images>

GPT-5: Observe the sequence: the dashcam car inches forward while the scooter on 
the left moves out from under the tent toward the street (rightwards each frame).  - 
The pedestrians on the right shift slightly toward the sidewalk, and the small child at 
the lower-right remains visible.  - The next frame should therefore show the left 
scooter further into the road and the right-side pedestrians a bit farther right.Option 
E best matches this continued motion: the left scooter advances further right and the 
pedestrians are slightly more to the side, consistent with the progression.# Answer: E

Ground Truth: (E) 

<options images（A-E）>

Figure 57: A correct example of Driving Sequence Prediction task.
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Question: Which image in the options is most likely to appear in the next moment?
Options: 

Temporal：Driving Sequence Prediction

<input images>

GPT-5:  We have five consecutive frames showing a girl on the left starting to move 
away to the left, while the boy and the robot remain nearly stationary.- From frame to 
frame, the girl’s position shifts progressively leftward; by the last provided frame she 
has begun running and is nearing the left edge.- The most likely next moment should 
show her even farther left (still partly in frame), with the rest of the scene largely 
unchanged.Among the options:- A and B show her still standing near the robot 
(earlier state).- C shows her already almost out of frame (likely a later moment).- E 
shows minor movement only.- D shows her continuing to run left, slightly farther than 
in the last frame, matching the immediate next step.# Answer: D

Error Category: Reasoning Error（ Temporal and Sequential Confusion）
Error Reason: GPT-5 did not correctly analyze the little girl's movement trend. She 
was almost out of the frame.

Ground Truth: (C) 
Explanation: We can see from the last image input that the little girl is almost 
running out of the picture, so only option C fits the sequence of events.

<options images（A-E）>

Figure 58: An error example of Driving Sequence Prediction task.
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Question: Can you identify when the action 'a person walks through the doorway' 
happens in the sequence?
Options: 
(A) Throughout the entire sequence.
(B) At the end of the sequence. 
(C) In the middle of the sequence. 
(D) At the beginning of the sequence.
(E) Not shown in the sequence.
 

Temporal：Human Activity Localization

<input images>

GPT-5: First frame: door is open with no person present.- Second frame: a person 
appears, stepping out of the doorway with a mug.- Subsequent frames: the person 
stands near the doorway and drinks, not walking further.Therefore, the walking 
through the doorway occurs right at the beginning of the sequence. # Answer: D."

Ground Truth: (D) At the beginning of the sequence.

Figure 59: A correct example of Human Activity Localization task.
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Question: During which part of the sequence does the action 'a person puts a coffee 

cup on a shelf' occur?
Options: 
(A) Throughout the entire sequence.
(B) At the end of the sequence.
(C) In the middle of the sequence.
(D) At the beginning of the sequence.
(E) Not shown in the sequence.

Temporal：Human Activity Localization

<input images>

GPT-5: Look at the sequence: the person opens a kitchen cabinet and reaches 
toward items inside.- The shelves contain jars and possibly packets; the person then 
holds a packet or tray-like item.- At no point is a coffee cup being placed onto a shelf; 
the actions are opening, reaching, and holding items, likely taking them out.# Answer: 
E.

Error Category: Perceptual Error（Color and Visual Confusion） 
Error Reason: GPT-5 fails to capture key visual information, such as the coffee cup in 
the first few frames.

Ground Truth: (D) At the beginning of the sequence.
Explanation: We can see the first 5 frames, where the little boy puts the coffee cup on 
a shelf.

Figure 60: An error example of Human Activity Localization task.
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