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ABSTRACT

Intelligent agents based on large language models have demonstrated certain pro-
gramming abilities, but there is still significant room for improvement in com-
plex project-level debugging tasks. Previous work has utilized general multi-agent
workflows to enhance performance but has the following issues: 1) excessive re-
liance on the reasoning capabilities of large language models without debugging
and detailed analysis of the code; 2) lack of intrinsic code information, such as
call relationships and dependencies; 3) insufficient analysis and optimization of
critical stages, especially the code search capability in fault localization, which
directly affects the effectiveness of subsequent stages. Based on the SWE-bench
dataset, we first isolate the fault localization capability for separate analysis and
experiments, and introduce program call graphs to demonstrate the effectiveness
of this information for debugging. Furthermore, during the debugging phase, we
propose a simulated debugging mode that enables large language models to sim-
ulate program debugging without relying on other debugging tools. Compared
to the real machine debugging mode, our experiments prove the effectiveness and
generality of the simulated debugging mode. We conducted experiments on SWE-
bench and improved the resolution rate by approximately 27.3%, demonstrating
the potential of this method.

1 INTRODUCTION

In recent years, the development of large language models (LLMs) has revolutionized the field
of artificial intelligence, enabling intelligent agents with remarkable language understanding and
generation capabilities. These LLM-based agents have shown promising results in programming
tasks, including code generation, comprehension, and completion (Brown et al., 2020; Chen et al.,
2021). However, when it comes to complex project-level debugging tasks, the performance of these
agents still falls short of human expert level (Feng et al., 2020).

Previous work has explored the use of generic multi-agent workflows to enhance the performance
of LLM-based programming agents. For example, OpenAI’s Codex (Chen et al., 2021) and Deep-
Mind’s AlphaCode (Li et al., 2022) have demonstrated impressive code generation capabilities by
leveraging large-scale pre-training on code repositories. However, these approaches heavily rely
on the reasoning capabilities of LLMs without conducting in-depth code analysis and debugging.
Moreover, they often overlook intrinsic code information, such as call relationships and dependen-
cies, which can provide valuable insights for debugging (Allamanis et al., 2014).

Another key limitation of existing approaches is the lack of focused analysis and optimization of
critical stages in the debugging process. In particular, the code search capability in fault localization
plays a crucial role in determining the effectiveness of subsequent debugging stages (Wong et al.,
2016). Previous research on automated software debugging has emphasized the importance of fault
localization techniques, such as spectrum-based fault localization (Abreu et al., 2007) and learning-
to-rank methods (Xuan & Monperrus, 2014), in improving debugging efficiency. However, the
integration of these techniques with LLM-based programming agents remains largely unexplored.

To address these limitations, we propose a novel approach that leverages program semantic informa-
tion to enhance the performance of LLM-based programming agents in complex debugging scenar-
ios. Our work builds upon the growing body of research on intelligent code analysis and automated
software debugging (Pradel & Sen, 2018; Dinella et al., 2020), aiming to investigate the potential
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Figure 1: comparison on strategy between different large language models based agent for issue
problem solving

of incorporating intrinsic code information and optimizing critical debugging stages to improve the
overall effectiveness of intelligent programming agents.

The evaluation of our approach will be based on the SWE-bench (Jimenez et al., 2024) dataset,
which is a comprehensive collection of real-world software engineering problems and provides an
ideal testing platform for assessing the programming and debugging performance of LLM-based
agents. Through an in-depth analysis of the fault localization capability in this dataset, we can iden-
tify key areas for improvement. As shown in Figure 1, in contrast to previous frameworks such as
SWE-Agent (Yang et al., 2024), which employs a generic agent-computer tool interoperation inter-
face, our approach addresses the limitations in code search capabilities that hinder the performance
of fault localization. AutoCodeRover (Zhang et al., 2024) introduces new code search tools and
incorporates AST from the perspective of program semantics, resulting in enhanced fault localiza-
tion capabilities. Inspired by previous frameworks, we find that integrating program call graphs can
significantly enhance the debugging process, as it provides the agent with a clearer map of code exe-
cution paths and potential fault propagation points. Furthermore, we aim to enable agents to perform
software debugging like humans while avoiding the difficulties of debugging large-scale software.
To this end, we propose a simulated debugging mode that allows LLMs to simulate the debugging
process without relying on external tools. This approach stands in contrast to traditional on-machine
debugging methods and has been proven to be more effective through our experiments.

The contributions of our paper are as follows:

1. Integration of Program Call Graphs We integrate program call graphs to provide a more
comprehensive view of code execution flow, which has been shown to be effective in de-
bugging complex software issues.

2. Simulated Debugging Mode We propose a simulated debugging mode that enables LLMs
to simulate the debugging process without the need for external debugging tools, enhancing
the autonomy and versatility of the debugging process.
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3. Improved Resolution Rate Our experiments on the SWE-bench dataset have demonstrated
a improvement in resolution rate, showcasing the potential of our approach in significantly
enhancing software debugging.

In summary, our work represents a significant advancement in the field of LLM-based programming
assistance. By enhancing semantic understanding of code and integrating a simulated debugging
mode, we aim to push the boundaries of current LLM technology. Our experiments on the SWE-
bench dataset have yielded promising results, indicating the potential of our approach to transform
the paradigm of agent-based software debugging.

2 METHOD

Figure 2: Overview of our proposal method.

Our proposed method as shown in figure 2 aims to enhance the performance of large language
models based agents in complex project-level debugging tasks. The method consists of three main
stages: Fault Localization, Patch Generation. Below, we detail the approaches and algorithms used
in each stage.

2.1 FAULT LOCALIZATION

Fault localization is the first critical stage in our debugging framework, where we aim to identify the
parts of the codebase that are most likely to contain faults. We achieve this through a multi-faceted
approach that incorporates Abstract Syntax Trees (ASTs), Call Graphs, and Spectrum-Based Fault
Localization (SBFL).

2.1.1 SYMBOL INDEXING CONSTRUCTION

We construct an AST for the given codebase to understand its syntactic structure. Each node in
the AST represents a symbol or a construct in the code. We create an index for these symbols to
facilitate quick lookup and retrieval of relevant code segments.

The use of ASTs and symbol indexing allows for efficient code analysis and navigation, enabling
the agent to quickly identify relevant code segments based on the issue description and test case
information.
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2.1.2 CALL GRAPH CONSTRUCTION

We generate a call graph to capture the reference relationships between different parts of the code.
This graph helps in understanding the flow of execution and the dependencies between functions
and methods.

The call graph provides crucial information for fault propagation analysis and helps the agent in
tracing the root cause of the issue. By understanding the dependencies between code components,
the agent can efficiently navigate through the codebase and identify potential fault locations.

2.1.3 SPECTRUM-BASED FAULT LOCALIZATION (SBFL)

Using the test cases, we apply SBFL to pinpoint the fault locations. SBFL assigns a suspiciousness
score to each line of code based on its association with failing test cases.

Si =

∑
t∈Tfail

wi,t∑
t∈Tall

wi,t
(1)

where Si is the suspiciousness score of line i, Tfail is the set of failing test cases, Tall is the set of
all test cases, and wi,t is the weight of line i with respect to test case t.

SBFL leverages the execution information from test cases to guide the fault localization process. By
prioritizing code segments that are more likely to be associated with failing test cases, SBFL helps
the agent focus on the most suspicious parts of the codebase.

2.1.4 REFINEMENT OF FL PERFORMANCE

In order to enhance the accuracy of fault localization, we have researched how to better understand
and utilize the information recalled by SBFL. Our goal is to improve the precision and recall of the
fault localization process.

To improve recall rate, we focus on refining symbol indexing and reference analysis techniques, by
accurately mapping the problem description to relevant code segments and understanding the depen-
dency relationships between code components, we can reduce false positives in fault localization.

To improve precision rate, our goal is to score and rank candidate code segments through SBFL,
giving priority to code segments that are most associated with failing test cases.

2.2 PATCH GENERATION

In the patch generation phase, once the faulty code blocks have been identified, we proceed to the
stage of generating patches. Previous approaches at this stage primarily involved direct generation
based on context by Large Language Models (LLMs), which, however, fall short in conducting a
detailed internal analysis of the program. Therefore, we simulate a debugging process to create fixes
for the identified issues.

2.3 VIRTUAL EXECUTION DEBUGGING

For each identified code block, we locate the corresponding test cases and determine the entry points
of the blocks. We then carry out virtual execution debugging to analyze the behavior of the code.
Virtual execution debugging allows the agent to step through the code and analyze the program state
at each step. By simulating the execution flow and observing key variable values and control flow,
the agent can gain a deeper understanding of the code behavior and identify the root cause of the
issue.

Based on the debugging process, we identify logical errors and regenerate the code blocks to fix these
errors. The logical patch generation process involves comprehending the intended behavior of the
code and producing a fix that aligns with the specifications. By leveraging the knowledge obtained
from virtual execution debugging, along with the issue description and test case information, the
agent can propose patches that address the identified logical errors.
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2.4 FEEDBACK-DRIVEN IMPROVEMENT

Algorithm 1 Iterative Debugging
Input: Codebase C, Issue Description I , Test Cases T
Output: Fixed Codebase C ′

while not fixed do
F ← FaultLocalization(C, I, T )
P ← PatchGeneration(F )
C ′ ← ApplyPatch(C,P )
R← RunTests(C ′, T )
if R passes then

fixed← True
else
T ← UpdateTests(R)

end if
end while
return C ′

To further enhance the debugging capabilities of LLM-based agents, we introduce a continuous
improvement phase. In this stage, we utilize feedback from the generated patches and the outcomes
of the repaired code to refine the fault localization and patch generation processes.

We collect feedback on the generated patches, including their effectiveness in fixing the issues and
any additional test cases that the patches might trigger. Employing an iterative debugging approach,
the agent repeatedly applies the fault localization and patch generation stages until a satisfactory fix
is achieved. Each iteration builds upon the knowledge gained from the previous one, allowing the
agent to refine its understanding of the issue and produce more accurate patches.

The iterative debugging process enables the agent to gradually improve the quality of the generated
patches. By integrating the results of the repaired code and updating the test cases, the agent can
identify any remaining issues and generate more comprehensive fixes.

By integrating these stages and adopting continuous improvement techniques, our method aims to
significantly enhance the debugging capabilities of LLM-based agents, leading to higher resolution
rates in complex software engineering tasks.

3 EXPERIMENTS

To evaluate the effectiveness of our proposed method, we conduct experiments on the SWE-bench
dataset. The experiments are designed to assess the performance of our LLM-based agent in resolv-
ing real-world software engineering issues.

3.1 DATASET

To evaluate the effectiveness of our proposed methods, we conduct experiments using the SWE-
bench and SWE-bench lite datasets Jimenez et al. (2024). SWE-bench is a comprehensive bench-
mark consisting of 2,294 real-life software engineering task instances collected from the repositories
of 12 popular large Python projects. Each task instance contains a pair of GitHub issue and corre-
sponding pull request, where the issue either reports a bug to be fixed or requests a new feature to
be implemented.

3.2 EXPERIMENTAL SETUP

We compare our proposed method with two baselines:

• SWE-agent: A generic multi-agent workflow that utilizes an agent-computer tool interop-
eration interface for debugging.

• AutoCodeRover: An approach that introduces new code search tools and incorporates
AST for enhanced fault localization.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

We evaluate the performance of the agents using the following metrics:

• Resolution Rate: The percentage of task instances successfully resolved by the agent.

• Fault Localization Precision: The percentage of identified faulty lines that are actually
faulty.

• Fault Localization Recall: The percentage of actually faulty lines that are identified by
the agent.

3.3 MAIN RESULTS

3.3.1 RESOLUTION RATE

We compare the resolution rates of our proposed method with the baselines on the SWE-bench
testing set. The results are shown in Table 1.

Method Resolution Rate
SWE-agent 18.0% (54)

AutoCodeRover 22.0% (78)
Our Method 28.0% (84)

Table 1: Resolution rates of different methods on the SWE-bench lite testing set.

Our proposed method shows a improvement over the baselines. The integration of program call
graphs and the simulated debugging mode contribute to the enhanced performance of our agent in
resolving complex software engineering issues.

3.3.2 FAULT LOCALIZATION EVALUATION

We individually assess the performance of various methods during the fault localization stage, which
has been neglected in previous studies. We use the actual code segments that are fixed in the test set
as the target for fault localization and treat this phase as a retrieval system for research. We evaluate
two metrics: precision and recall. The results are presented in Table 2.

Method Precision Recall Accuracy
SWE-agent 40.0% 85.3% 40.7%

AutoCodeRover 64.0% 96.4% 62.7%
Our Method 70.6% 97.2% 72.3%

Table 2: Fault localization accuracy of different methods on the SWE-bench lite testing set.

Our method achieves higher precision and recall compared to the baselines. The refinement strate-
gies employed in our fault localization stage, such as improved symbol indexing, reference analysis,
and enhanced test case coverage, contribute to the increased accuracy in identifying faulty code
segments. This demonstrates the importance of program semantics in supplementing context. By
utilizing call graphs, we can achieve higher recall rates while effectively supplementing information,
thereby improving the precision of fault localization.

3.3.3 ABLATION STUDY

To understand the impact of different components in our method, we perform an ablation study. We
evaluate the performance of our method with and without the program call graphs and the simulated
debugging mode. The results are presented in Table 3.

The results show that both the program call graphs and the simulated debugging mode contribute to
the improved performance of our method. Removing either component leads to a decrease in the
resolution rate, fault localization precision, and repair rate.
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Method Resolution Rate FL Accuracy
Our Method 28.0% 72.3%

w/o Call Graphs 27.3% 62.7%
w/o Simulated Debugging 26.3% 72.3%

Table 3: Ablation study results on the SWE-bench testing set.

3.4 DISCUSSION

The experimental results demonstrate the effectiveness of our proposed method in enhancing the de-
bugging capabilities of LLM-based agents. The integration of program call graphs provides valuable
information about code execution flow and dependencies, enabling more accurate fault localization.
The simulated debugging mode allows the agent to analyze code behavior and generate logical
patches without relying on external debugging tools.

The ablation study highlights the importance of both the program call graphs and the simulated
debugging mode in our method. The call graphs help in understanding the relationships between
code components and tracing the root cause of issues, while the simulated debugging mode enables
the agent to reason about the code behavior and generate effective patches.

Our method achieves significant improvements over the baselines in terms of resolution rate, fault
localization accuracy, and repair rate. The continuous improvement techniques employed in our
method, such as feedback-driven refinement and iterative debugging, contribute to the agent’s ability
to learn from previous iterations and generate more accurate and comprehensive fixes.

However, there are still challenges that need to be addressed in future work. One limitation of our
method is the reliance on test cases for fault localization and patch evaluation. In real-world sce-
narios, test cases may not always be available or may not cover all possible program behaviors.
Developing techniques to generate meaningful test cases or leverage alternative sources of informa-
tion for debugging could further enhance the applicability of our method.

Another challenge is the scalability of our method to larger codebases and more complex software
engineering tasks. As the size and complexity of the codebase increase, the fault localization and
patch generation stages may become more computationally expensive. Investigating techniques to
efficiently navigate and analyze large codebases while maintaining the accuracy of debugging is an
important direction for future research.

Despite these challenges, our method represents a significant step towards enabling LLM-based
agents to autonomously debug and improve software. The integration of program semantic informa-
tion and the simulated debugging mode opens up new possibilities for intelligent code analysis and
automated software engineering.

4 CONCLUSION

In this paper, we proposed a novel method for enhancing the debugging capabilities of large lan-
guage model (LLM)-based agents in complex software engineering tasks. Our method integrates
program semantic information, such as AST and call graphs, and introduces a simulated debugging
mode to enable LLMs to effectively localize faults and generate accurate patches. We conducted
experiments on the SWE-bench dataset, demonstrating significant improvements in resolution rate,
fault localization precision, recall, and repair rate compared to state-of-the-art baselines. Our work
represents a significant advancement in LLM-based programming assistance and paves the way for
more effective and efficient automated software debugging. By addressing the limitations of existing
approaches and introducing novel techniques, we believe our method is a step towards realizing the
vision of autonomous software engineering, where LLMs can actively assist developers in resolving
complex software issues.
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Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Push-
meet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, 2022. doi: 10.1126/science.abq1158.
URL https://www.science.org/doi/abs/10.1126/science.abq1158.

8

https://api.semanticscholar.org/CorpusID:8923739
https://api.semanticscholar.org/CorpusID:8923739
https://doi.org/10.1145/2635868.2635883
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:213089769
https://api.semanticscholar.org/CorpusID:213089769
https://aclanthology.org/2020.findings-emnlp.139
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://www.science.org/doi/abs/10.1126/science.abq1158


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Michael Pradel and Koushik Sen. Deepbugs: a learning approach to name-based bug detection.
Proc. ACM Program. Lang., 2(OOPSLA), October 2018. doi: 10.1145/3276517. URL https:
//doi.org/10.1145/3276517.

W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey on software fault
localization. IEEE Transactions on Software Engineering, 42(8):707–740, 2016. doi: 10.1109/
TSE.2016.2521368.

Jifeng Xuan and Martin Monperrus. Learning to combine multiple ranking metrics for fault local-
ization. In 2014 IEEE International Conference on Software Maintenance and Evolution, pp.
191–200, 2014. doi: 10.1109/ICSME.2014.41.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement, 2024.

9

https://doi.org/10.1145/3276517
https://doi.org/10.1145/3276517

	Introduction
	Method
	Fault Localization
	Symbol Indexing Construction
	Call Graph Construction
	Spectrum-Based Fault Localization (SBFL)
	Refinement of FL Performance

	Patch Generation
	Virtual Execution Debugging
	Feedback-Driven Improvement

	Experiments
	Dataset
	Experimental Setup
	Main Results
	Resolution Rate
	Fault Localization Evaluation
	Ablation Study

	Discussion

	Conclusion

