
Product of Experts with LLMs:
Boosting Performance on ARC Is a Matter of Perspective

Daniel Franzen * 1 2 Jan Disselhoff * 1 2 David Hartmann * 3 2

Abstract
The Abstraction and Reasoning Corpus (ARC-
AGI) poses a significant challenge for large lan-
guage models (LLMs), exposing limitations in
their abstract reasoning abilities. In this work,
we leverage task-specific data augmentations
throughout the training, generation, and scoring
phases, and employ a depth-first search algo-
rithm to generate diverse, high-probability can-
didate solutions. Furthermore, we utilize the
LLM not only as a generator but also as a scorer,
using its output probabilities to select the most
promising solutions. Our method achieves a
score of 71.6% (286.5/400 solved tasks) on the
public ARC-AGI evaluation set, demonstrating
state-of-the-art performance among publicly avail-
able approaches. While concurrent closed-source
work has reported higher scores, our method dis-
tinguishes itself through its transparency, repro-
ducibility, and remarkably low inference cost, av-
eraging only around 2ct per task on readily avail-
able hardware.1

1. Introduction
Large Language Models (LLMs) have demonstrated ex-
traordinary capabilities across diverse tasks, from natural
language processing to code generation. Even so, evaluating
the extent to which these systems possess abstract reasoning
abilities continues to pose a major challenge in the artificial
intelligence community. The Abstraction and Reasoning
Corpus (ARC-AGI), introduced by Chollet (2019) and de-
signed to assess core knowledge and the ability to generalize
in AI, exemplifies this difficulty. Although these tasks (as

*Equal contribution 1Johannes Gutenberg University Mainz
2Members of “the ARChitects” Kaggle team. 3Lambda, Inc..
Correspondence to: Daniel Franzen <dfranzen.it@gmail.com>,
Jan Disselhoff <JanDissel.it@gmail.com>, David Hartmann
<davidh@lambda.ai>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1We assume a price of 36ct/hour for a Nvidia 4090 GPU

Figure 1. Example of a typical ARC-AGI task.

illustrated in Figure 1) may appear straightforward to hu-
mans, both traditional algorithmic approaches (Wind, 2020)
and contemporary neural architectures (Li et al., 2024) have
struggled to achieve significant success on ARC-AGI, high-
lighting potential limitations in current artificial reasoning
methods.
Although scaling up models has undoubtedly yielded sub-

stantial performance gains on many tasks, size alone does
not fully address the core limitations evident in challenges
like ARC-AGI. Indeed, the rapid evolution of open-source
systems – such as LLaMA-3.2-3B (Dubey et al., 2024) and
Nvidia NeMo-Minitron-8B (Sreenivas et al., 2024) – demon-
strates that significant capabilities can emerge even at more
modest scales. This aligns with mounting evidence that
many perceived shortcomings in large language models
stem from implementation details or suboptimal data repre-
sentations rather than from fundamental reasoning deficits
(Singh & Strouse, 2024; Bostrom & Durrett, 2020; Sun
et al., 2023). For instance, Allen-Zhu & Li (2025) observe
that models may be aware of their mistakes without being
able to correct them, while Allen-Zhu & Li (2024) highlight
how subtle data modeling choices can impede fine-tuning
progress. Collectively, these insights suggest that models of-
ten possess the latent capacities needed to tackle ARC-AGI;

1

Product of Experts with LLMs: Boosting Performance on ARC Is a Matter of Perspective

Table 1. Performance comparison of related work. We distinguish
between solutions where the underlying model weights are open-
source or proprietary.

Model Public Eval Open
Name Accuracy [%] Source

o1-preview (Kamradt, 2024) 21 ✗
Ryan Greenblatt (Greenblatt, 2024) 42 ✗
Jeremy Berman (Berman, 2024) 58.5 ✗
GPT o3 (arcprize.org, 2025) 82.8 ✗

Avg. Human (LeGris et al., 2024) 60.2 ?

TTT (Akyürek et al., 2024) 53.5 ✓
BARC (Li et al., 2025) 56.75 ✓
TTT+BARC (Akyürek et al., 2024) 62.8 ✓
Ours 71.6 ✓

the real challenge is creating the conditions under which
these capacities can be reliably expressed.

Building on these insights, we developed an approach specif-
ically tailored to the ARC dataset. Our method achieves
SOTA performance for open source models of 71.6% (or
points) on the public ARC-AGI evaluation set and surpasses
average human performance of 60.2%, as measured by
LeGris et al. (2024).

In particular, we employ a depth-first search (DFS) al-
gorithm on LLM predictions to generate diverse, high-
probability solutions, and re-use the same LLM also as
a product of experts (see Section 4.1) to select the best can-
didate. This dual role allows us to rank candidate solutions
via augmented likelihood estimates, effectively amplifying
the model’s latent reasoning abilities. Compared to more
heavily scaled or closed-source systems, our method stands
out for its transparency, reproducibility, and low inference
cost of around 0.02$ per task, in stark comparison to 17$
per task for o3 (arcprize.org, 2025). This demonstrates that
abstract reasoning on ARC-AGI is not exclusively the do-
main of massive proprietary models.
In the sections that follow, we detail our data modeling
and training strategies, describe our DFS-based solution
exploration, and provide comprehensive results and ablation
studies.

Our final model, along with the training and inference code,
is publicly available on GitHub.

2. Related Work
The Abstraction and Reasoning Corpus (ARC) has played
a central role in advancing research on abstract reasoning
in artificial intelligence, inspiring a wide range of studies
focused on its dataset, competitive benchmarks, and the
development of solutions driven by resource constraints.

Visual Representation of a Task Instance:
Input Output

Compact String Format of same Instance:
<bos> A ... Z a ... z I 2 1 1 0 1 2 1 LF

1 2 1 0 2 2 2 LF

2 1 1 0 1 1 1 LF

O 1 1 1 LF

1 3 1 LF

1 1 1 LF
<eos>

Figure 2. Our standard tokenization approach. Note that we use
one token per cell instead of compressing the problem more. We
also try to not include any unnecessary delimiters. The Pre-prompt
(the alphabet in upper then lower case, i.e. “A...Za...z”) is only in-
cluded for the first example. Depending on the model and run there
might be some small changes to the pre-prompt and input/output
prefix tokens.

The Original ARC Dataset: The Abstraction and Rea-
soning Corpus (ARC-AGI) introduced by Chollet (2019)
challenges the idea that language models can efficiently
generalize from a small number of examples, often referred
to as few-shot prompting. The original ARC-AGI dataset
consists of 900 reasoning tasks, divided into 400 training
tasks, 400 public evaluation tasks, and 100 private and thus
unpublished evaluation tasks. Each task involves input and
output grids of varying sizes, ranging from 1x1 to 30x30
and utilize a palette of ten distinct colors.
The objective of each individual ARC task is to discern the
transformation rule from input to output from the examples
and apply it to new input grids to generate the correct out-
puts. A task is considered successfully solved when the
model produces the accurate output within a maximum of
two attempts. Designed to be straightforward for humans
yet challenging for machine learning systems, the tasks high-
light the current limitations of AI in abstract reasoning. In a
study by LeGris et al. (2024), the average human was able to
correctly solve 60.2% of the evaluation tasks, while 97.8%
of the tasks were solved by at least one participant using
two guesses.

Competition-driven Progresses: Since ARC’s introduc-
tion in 2019, several competitions with hundreds of partici-
pants have sought to develop solutions with strong perfor-
mance on the dataset. Approaches up to 2024 frequently
employed program search over domain-specific languages
(DSLs), and have yielded a score of 39% using Top-3 scor-
ing (Wind, 2020).
In 2024, ARC-AGI hosted another Kaggle competition,
where for the first time large language model (LLM) ap-

2

https://github.com/da-fr/Product-of-Experts-ARC-Paper

Product of Experts with LLMs: Boosting Performance on ARC Is a Matter of Perspective

proaches dominated the leaderboard. One popular method
was test-time training (TTT). This approach was first in-
troduced in Sun et al. (2020), first suggested for ARC by
Cole (2024) and later popularized by Akyürek et al. (2024).
Test-time training leverages the few examples provided in
each challenge as a small dataset. By fine-tuning on these
examples before generating an answer, LLMs can achieve
a substantial increase in performance. In Akyürek et al.
(2024), the authors demonstrate that TTT more than doubles
their performance on ARC-AGI. TTT is particularly effec-
tive in competition settings like ARC, as it allows models to
extract additional training data from the limited examples
available, enhancing their ability to generalize and solve
new tasks.

Notable Mentions: Other approaches explored various
strategies for utilizing LLMs. In Li et al. (2025), the au-
thors classify two different avenues: Induction, where a
LLM infers a function that can solve the problem which is
then applied (often using python or a DSL), and Transduc-
tion, where the LLM directly generates the solution using
a tokenized description of the problem (see Figure 2). The
authors argue that these approaches solve different kinds of
problems, despite using the same underlying architecture. In
their experiments, induction and transduction solve roughly
the same amount of problems (38% and 43% respectively),
which can be increased to 56.75% by employing ensembles.
Additionally, they use the induction network to generate a
large set of novel challenges, dubbed ARC-Heavy. Some
approaches make use of alternative ARC datasets, such as
ConceptARC (Moskvichev et al., 2023). The most notable -
and only additional dataset we use - is the well-known RE-
ARC dataset. Hodel (2024) introduced this dataset, which
implements generators for all 400 tasks of the public train-
ing dataset. Their code can be used to produce an arbitrary
amount of training data for these tasks, but does not intro-
duce novel challenges. All other datasets might include
challenges that mimic the evaluation challenges - thereby re-
ducing the difficulty of those challenges immensely. By only
using the RE-ARC dataset, we still increase our training
data immensely, but stay close to solving the ARC challenge
as intended.
Data augmentation has been a common approach in previ-
ous ARC-AGI competitions (Akyürek et al., 2024; Li et al.,
2025). However, our method extends beyond traditional
dataset augmentation, applying transformations throughout
our approach, during training (initial finetuning as well as
test time training), inference and selection.

Table 1 compares recent ARC approaches, revealing that
OpenAI-o3, a closed-source method, currently reports the
highest score but lacks reproducible details. Further, o3 uses
an immense amount of computation for each task, using
17$ of compute for a single challenge (arcprize.org, 2025).

In contrast, TTT+BARC is fully open-source and notably
the first public approach to surpass the average human per-
formance on ARC, showcasing the benefits of transparent
methodology in advancing abstract reasoning research.

3. Notations and Setup
To ground our approach formally, we adopt a Bayesian per-
spective on puzzle-solving, treating each puzzle as a partial
observation from an underlying distribution of solutions.

We consider a collection of tasks (for example drawn from
the ARC benchmark), where each task is denoted by p ∈ P ,
and P represents the space of all possible tasks. For each
task p, there exists an associated solution space Sp.

Problem Representation. Throughout this paper, we use
the terms task, puzzle, and problem interchangeably, all
referring to a specification given by a small set of k input-
output examples and a single test input. Concretely, we
write

p =
(
(xi, yi)

k
i=1, x̂

)
,

where (xi, yi) indicates the ith input-output example pair
and x̂ is the test input for which we seek the correct output.
Although not explicitly observed, each problem p admits at
least one correct solution s∗p ∈ Sp.

We assume the existence of a true probability distribution

P (s | p)

over candidate solutions s ∈ Sp. If exactly one possi-
ble valid answer exists the distribution P (· | p) would be
sharply peaked at s∗p. While this is the case for most chal-
lenges, we will keep our theory more general, assuming
multiple valid answers might exist. This can also arise from
insufficient information in the given example pairs, which
in the worst case prevents us from uniquely inferring the
correct solution based solely on the provided data. Exam-
ples for this are sometimes found in ARC-AGI, which fre-
quently results in an update of the dataset (Neoneye, 2024;
RubenKelevra, 2024).

Hence, P (· | p) may be spread out over several plausible
hypotheses. Identifying s∗p from Sp typically requires lever-
aging priors or additional constraints (e.g., knowledge of
how ARC tasks are designed). Formally, one may write a
posterior

P (s | p) =
P (p | s)P (s)

P (p)
,

where P (s) encodes how we believe solutions are structured
a priori, and P (p | s) measures how well s explains the
limited observed examples. The goal is to select

s∗p = argmax
s∈Sp

P (s | p),

3

Product of Experts with LLMs: Boosting Performance on ARC Is a Matter of Perspective

101 102
0.4

0.5

0.6

0.7

0.8

Runtime per Task (Seconds)

So
lu

tio
ns

Fo
un

d

Search Performance Comparison

DFS T=20% (ours)
DFS T=9% (ours)
DFS T=0.5% (ours)
Beam search (2x)
Beam search (4x)
Greedy sampling

Figure 3. Number of solutions found by various sampling algo-
rithms as a function of runtime. The different values for each
sampling variant are calculated using 1 (identity), 2 (reflections),
4 (rotation), 8 (reflections+rotation) and 16 augmentations. Addi-
tionally, colors and the order or examples are randomly permuted
in each augmented version of a task. For almost any runtime
budget, we find that a DFS variant discovers the most solutions.

but in practice we do not have direct access to P . Instead,
we train a model to approximate it, yielding P̂ as a stand-in
for the true distribution.

Finally we define a family of problem transformations (“aug-
mentations”),

Φ = {ϕ1, . . . , ϕm},

where each ϕj transforms both a problem p and its solutions
s such that

P (s | p) = P
(
ϕj(s)

∣∣ϕj(p)
)

for all (p, s).

For the ARC puzzles, such augmentations include rotations
and reflections of each task, shuffling of the example order
and permutation of colors. The augmentations in Φ define
parts of the prior P (s) by encoding invariances that are
expected to hold for all valid solutions.

4. Methods
Our approach trains a large language model (LLM) to ap-
proximate the true solution distribution P (· | p). Given a
task p and some solution candidate s, we tokenize both and
use the trained LLM to calculate probabilities for each token.
By aggregating the probabilities of the solution tokens, we
can define a probability function P̂ (s | p) that describes
the probability of sampling s given p as a prefix, setting the
stage for subsequent sampling and search-based refinement.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Confidence Threshold (-log(prob))

A
cc

ur
ac

y
(P

ro
po

rt
io

n
So

lv
ed

)

Accuracy for Different Selection Methods

Generation Accuracy

Product-of-Experts
∏

j P̂j (ours)

Mean Probability 1
N

∑
j P̂j

Max Generation Probability

Selection Accuracy
Overall Accuracy

Figure 4. Top-2 accuracy and coverage of different selection meth-
ods as a function of the confidence threshold T . Solid colored lines
denote the fraction of tasks solved using a specific selection algo-
rithm. The solid black line shows the fraction of tasks where the
correct solution was among the sampled candidates, and thereby
provides an upper bound for the performance of the selection algo-
rithms. The dotted lines evaluate the performance of our selection
algorithms, compared to this upper bound: What percentage of
correct candidates are actually selected when they are present? It
shows that even when using low DFS probabilities - and therefore
sampling a high number of candidates - PoE is able to select the
correct solution among all candidates with high specificity.

(1) Augmentations. While naive multinomial sampling
from P̂ can already produce favorable candidate solutions,
we enhance the model’s robustness further by leveraging
augmented training data.
These augmentations diversify the training distribution
without altering correct solutions, effectively shaping the
model’s learned prior.

The trained LLM then provides us with a probability dis-
tribution P̂ (· | p) over solutions Sp. Using multinomial
sampling, this allows us to sample s ∼ P̂ (· | p) However,
sampling repeatedly from P̂ may be expensive and does
not ensure coverage of high-probability solutions. In con-
trast, enumerating Sp in full would provide us with full
knowledge of P̂ (s) but is impractical. Instead, we rely on a
more systematic procedure to select promising candidates
by deriving a candidate set of high-probability solutions
via threshold-based search. Subsequently, we refine their
probabilities by aggregating over multiple problem augmen-
tations.

(2) Candidate Generation. To address the mentioned
challenges of multinomial sampling, we propose a threshold-
based search mechanism. Instead of mere random sampling,

4

Product of Experts with LLMs: Boosting Performance on ARC Is a Matter of Perspective

0

100

200

G
en

.R
an

k

Correct Solution Rank Improvement

0 50 100 150 200 250 300 350
0

10

20

Problem Index (sorted by Inference Rank)

Se
l.

R
an

k

Worse Rank Equal Rank Better Rank

Figure 5. Comparing the rank of the correct solution using the gen-
erative model P̂ and the ensemble selection P among candidates
Cp,T . If possible, our ensemble almost always improves the rank
of the correct solution, increasing the chance of selecting it. For
readability we clip the lower plot at a rank of 25.

we systematically explore the space of solutions via a depth-
first search (DFS) algorithm.
Given a test problem p, we derive a set of candidate so-
lutions by sampling under all valid augmentations ϕj(p).
Concretely, we define

Cp,T :=
{
s ∈ Sp | ∃ϕj ∈ Φ : P̂

(
ϕj(s) | ϕj(p)

)
> T

}
,

where T > 0 is a threshold on the LLM’s probability es-
timates. In practice, we run a Depth-First Search over the
space of potential solutions, pruning any partial path whose
accumulated probability falls below T . If multiple augmen-
tations yield the same solution (up to augmentation), we
merge them into a single candidate. By caching intermediate
computations during inference, this DFS-based approach
can rapidly pinpoint all likely solutions above the thresh-
old T . This guarantees that solutions with sufficiently high
P̂ (s | p) are not overlooked and solutions with low P̂ (s | p)
are never considered.

(3) Candidate Ranking via Product of Experts How-
ever, once we have generated the set Cp,T , the highest-
probability solution according to a single augmentation is
not always correct.

This limitation is partially caused by the autoregressive
architecture, as models can only attend to previously gener-
ated tokens when predicting the next token. This constraint
means optimal decisions sometimes require information that
becomes available only in later predictions. In the Sudoku
experiment (Section 5.6), for instance, the model may need
to solve the entire puzzle internally before predicting the
first cell, potentially leading to confident but incorrect early
predictions. Once an error occurs, the model cannot recover

since subsequent predictions build on the incorrect founda-
tion. The model lacks training for stability under prediction
errors, causing cascading mistakes with unexpectedly high
confidence scores. This explains why the highest probability
sequence from a single forward pass may not correspond to
the globally optimal solution.

We can mitigate this issue, and even benefit from it, by
re-augmenting each candidate s under every ϕj ∈ Φ and
computing its likelihood using P̂ provided by the LLM.
Unlike in the previous step, this phase does not rely on
generative sampling; instead, it directly evaluates the log-
likelihood of s’s tokens for each augmented input ϕj(p).
Using these re-augmented candidates, we form a single
aggregate score by taking the product of probabilities across
all augmentations:

scoreagg(s) =
∏

ϕj∈Φ

P̂
(
ϕj(s) | ϕj(p)

)
.

This product-based approach is sensitive to outliers, filtering
solutions that seem unlikely from a different augmentation
perspective. As a result, this approach, on average, outper-
forms a randomly selected augmentation, as we prove in the
following section. Finally, we select the solution

s∗p = argmax
s∈Cp,T

scoreagg(s),

as the final answer for problem p.

This two-step approach; (1) DFS-based generation with
single-augmentation pruning and (2) post-hoc multi-
augmentation scoring, ensures that we systematically ex-
plore high-probability solutions and then refine their rank-
ings, accounting for LLM inconsistencies across problem
representations. In practice, even if several solutions enter
Cp,T , their final ranks can vary greatly. By consolidating
evidence from multiple perspectives, the correct solution
often stands out and becomes easier to pinpoint.

4.1. Product of Expert Augmentations

We next analyze the performance of our ensemble method
in terms of the KL divergence of the ensemble distribution
P compared to the true distribution P . Let each valid aug-
mentation ϕj induce approximations of the true augmented
distributions P (ϕj(s) | ϕj(p)) by the LLM, denoted as

P̂j(s) := P̂
(
ϕj(s) | ϕj(p)

)
.

Since the LLM may be inconsistent across augmentations
(in contrast to the true distribution P), our approach de-
scribed in the last section combines them by the geometric-
mean ensemble:

P (s) :=
1

Z

m∏

j=1

[
P̂j(s)

] 1
m ,

5

Product of Experts with LLMs: Boosting Performance on ARC Is a Matter of Perspective

where Z is the normalization constant. A value of Z = 1
represents the case that the LLM is consistent across all
augmentations, Pi = Pj for all (i, j). Intuitively, P places
low probability on those s for which even a few P̂j(s) are
low probability.

We aim to show that if each P̂j is close to the true dis-
tribution P in terms of KL divergence, then P provides -
in expectation - a better estimate of P than any randomly
chosen P̂j . We formalize this idea in the following well-
established theorem known from literature (Hinton, 1999;
2002).

Theorem 4.1 (Error Bound for Log-Pooled Augmentations).
Suppose we have m valid augmentations {ϕ1, . . . , ϕm} in
the sense of preserving solution distribution, and define

P̂j(s) := P̂
(
ϕj(s) | ϕj(p)

)
, for each j = 1, . . . ,m.

Assume each single-augmentation predictor P̂j has a
bounded KL divergence from P , i.e.,

Dj := KL
(
P ∥ P̂j

)
≤ δj .

Now define the “geometric-mean” ensemble

P (s) :=
1

Z

m∏

j=1

[
P̂j(s)

] 1
m ,

where

Z =
∑

u∈Sp

m∏

j=1

[
P̂j(s)

] 1
m ,

Then the KL divergence between P and P is given by the
average of the single-augmentation divergences and Z:

KL
(
P
∥∥∥P

)
=

1

m

m∑

j=1

KL
(
P ∥ P̂j

)
+ logZ

With logZ ≤ 0, and equality iff P̂i = P̂j for all i, j.

See Appendix C for a proof of Theorem 4.1. The key take-
away is that logZ ≤ 0 becomes smaller whenever aug-
mentations disagree, which can improve the ensemble in
expectation relative to any random single-augmentation pre-
dictor. As a result, this approach performs especially well
when different experts disagree - a state which naturally
arises in our case, due to the causal autoregressive nature of
the LLMs.

Practical Implications In practice, a product of experts
approach often shines when different augmentations catch
different errors. As long as the true solution does not get
zero probability under any single augmentation, it remains
viable. Hence, while disagreements between augmentations

can prune out plausible-but-incorrect candidates, correct
ones accumulate strength across viewpoints. This synergy
typically yields more reliable predictions than relying on a
single representation of the problem alone.

5. Experiments
Our approach to solving ARC-AGI combines data expan-
sion, multi-stage fine-tuning of language models, and spe-
cialized solution evaluation. Below, we explain how these
components work together to improve the model’s perfor-
mance while keeping computational costs manageable.

5.1. Data Modeling

In order to apply LLMs to ARC-AGI puzzles, we need
to tokenize the data in a manner suitable for our model.
This process requires careful consideration of two main
challenges:

First, due to the limited context size in typical LLM archi-
tectures, an increase of inference time and decline in perfor-
mance on long context tasks (Liu et al., 2024), we require
a representation that minimizes the number of tokens the
model needs to process. Secondly, it is widely recognized
that numerous common failure modes in Large Language
Models (LLMs) stem from tokenization (Singh & Strouse,
2024; Bostrom & Durrett, 2020; Sun et al., 2023). For
instance, standard tokenization techniques group numbers
(some but not all combinations) of one, two or three suc-
ceeding digits into dedicated “grouped-digit tokens” (Singh
& Strouse, 2024). These kinds of merges would complicate
the puzzles unnecessarily.

To address this, we opted to simplify the token set available
to the model. In particular, we reduced the number of tokens
available from over 120.000 to 64 tokens (see Table 5 in the
Appendix).
This reduction offers key benefits. It significantly decreases
the model size, as we can remove the majority of rows from
the embedding layer. Further, token merges that typically
occur during text tokenization are no longer possible. This
ensures that the model can focus precisely on the data with-
out the interference of digit separators.
As illustrated in Figure 2, we add a small number of ex-
tra tokens to the start of a task. Surprisingly, this addition
slightly improves the model’s performance. We believe that
during fine-tuning (where the embedding layers are also
trained), the model learns to use these extra tokens as a form
of computational buffer, which influences every subsequent
token, thereby enhancing overall performance.

5.2. Training the models

Choosing a suitable large language model (LLM) was es-
sential for achieving strong performance. After evaluating

6

Product of Experts with LLMs: Boosting Performance on ARC Is a Matter of Perspective

Table 2. Two-guess-accuracy on the ARC-AGI public evaluation set when adding parts of our method. Baseline score shows performance
of our network after initial fine-tuning, generating two samples with stochastic sampling. TTT adds test-time training. 16xAug samples
one solution candidate for each of 16 random augmentations of each task, choosing the two with highest sampling probability as guesses.
PoE uses the product of experts to select the two best of the 16 sampled candidates, again using 16 (different) random augmentations to
calculate the PoE score. Finally, DFS leverages our custom depth-first-search sampling scheme with T = 9% for candidate generation.

Model Baseline + TTT + 16xAug + PoE + DFS

Llama-3.2-3B 14.9% 40.9% 52.9% 59.5% 61.4%
NeMo-Minitron-8B 18.3% 44.5% 62.5% 67.6% 71.6%

various models, we identified Mistral-NeMo-Minitron-8B-
Base (Sreenivas et al., 2024) as exhibiting the strongest
performance in our experiments. Given the model’s size,
efficient fine-tuning methods were necessary for effective
utilization.
Therefore, we used Low-Rank Adaptation (LoRA) (Hu et al.,
2022), 4-bit quantization and gradient checkpointing, all
supported by the unsloth library. We applied the LoRA
adaptations to all layers of the network, including the input
and output embeddings.

For each task

p =
(
(xi, yi)

k
i=1, x̂

)
,

with solution s∗p, we computed gradients only on the out-
puts yi for i > 1 and s∗p. This approach ensures that the
model is never tasked with predicting an input grid, and
acknowledges that correctly predicting the first output grid
is impossible without at least one example. To increase the
amount of training data, and to better align the LLM with
the data prior, we train on augmented data, adding all D8

symmetries of any given task as well as color permutations
and re-ordering of the examples.

Initial fine-tuning: The initial fine-tuning used a LoRA
rank of 256 and was done on a single H100 GPU. While
several ARC-like datasets exist, such as ConceptARC
(Moskvichev et al., 2023) and ARC-Heavy (Li et al., 2025),
we elect to only use RE-ARC (Hodel, 2024) for training.
This is done to minimize ”conceptual leakage”, where a par-
ticular type of problem might be present in the training data,
reducing the difficulty of the evaluation tasks substantially
in a way that was not intended. Instead, we train only on
replications of the training examples of the offical ARC-
AGI training set (i.e. RE-ARC), minimizing this effect and
making sure that our results are robust.

Test-time training: Secondary training was time-
constrained and focused solely on the evaluation set, us-
ing a LoRA rank of 32 and running for 64 training steps
with batch size 1. Just using test-time training increases
the percentage of correctly solved tasks significantly, as can
be seen in Table 2. Varying training parameters only had
marginal effects.

The initial fine-tuning took 98 GPU hours on a Nvidia H100,
while test-time training takes (on average) 51 seconds for a
single task on a Nvidia RTX 4090 GPU. For an overview of
our training parameters, see Table 4 in the Appendix.

5.3. Solution Inference

As introduced in Section 4, we generate potential solution
candidates using DFS-based sampling to produce the set
Cp,T . The goal here is to generate a small set of candi-
dates with a high chance of containing the correct solution
- and doing so quickly. Our set of augmentations Φ in-
cludes 16 functions per task - each D8 symmetry is used
twice but with different, randomly chosen color permuta-
tions and example re-orderings. Note that this is the same
class of augmentations as used in training, but each color
permutation and example ordering is newly randomized.
Table 3 provides a comparison between DFS, Beam-search,
multinomial and greedy sampling. DFS sampling is able
to quickly and efficiently find a high quality set of candi-
dates, while having low computational overhead compared
to stochastic sampling for generating multiple solutions and
using substantially less VRAM than beam search. In addi-
tion, it exhibits a lower false positive rate. While DFS with
T = 9% finds less correct solutions than 4x Stochastic sam-
pling (76.0% vs 77.3%), it still results in a better selection
score, as it, on average, only returns about half as many false
positives. Moreover, DFS accomplishes this using only a
fourth of the inference time (9:32h vs 39:47h).

Comparison to beam search: While beam search with 4
beams can achieve the same accuracy as DFS with T = 9%,
it requires roughly twice the amount of VRAM (7.3GB vs
14GB), as it explores four paths simultaneously, while DFS
only needs to keep a single path in memory at any time. It
also takes four times as long (37:36h vs 9:32h) for the can-
didate generation step. The speed advantage of DFS comes
mostly from early pruning of low probabilty paths. In Beam
Search, the same amount of paths is explored each time,
regardless of their cumulative sampling probability, while
DFS stops when the cumulative sampling probability falls
beyond the chosen threshold, thereby reducing unnecessary
computations. Additionally, for all augmentations after the
first one, we pass the most promising solution candidate

7

Product of Experts with LLMs: Boosting Performance on ARC Is a Matter of Perspective

Table 3. Comparison of sampling and selection strategies on the 400 tasks of the ARC-AGI public evaluation set: Under “Candidate
generation”, we list the percentage of correct solutions sampled with different strategies using 16 augmented versions (reflections,
rotations, and randomly permuted colors and examples) of each task. We also list the average number of candidates generated per task,
the runtime of the sampling process on the full dataset and the maximum video memory consumption. Under “Selection”, we compare the
accuracy of various selections strategies, performed on the scores calculated in a subsequent scoring process on 16 additional random
augmentations. Total runtime includes the test-time fine-tuning on a task’s examples (see Table 4 in the appendix), as well as the candidate
generation and selection process. All experiments were performed with the NeMo-Minitron-8B model on a Nvidia RTX 4090 GPU.

Sampling Candidate generation Selection (2-guess accuracy) Total
method solutions avg. cand. runtime max. using 16 augmentations runtime

found per task [hh:mm] VRAM max P̂j min P̂j

∑
P̂j

∏
P̂j [hh:mm]

Greedy 70.8% 6.7 9:39 7.0 GB 63.3% 65.8% 66.1% 67.6% 18:52
Stochastic (2x) 74.5% 11.2 19:53 7.0 GB 64.5% 67.6% 66.9% 69.9% 34:08
Stochastic (4x) 77.3% 17.6 39:47 7.0 GB 63.5% 68.8% 67.1% 70.8% 58:55

Beam search (2x) 75.0% 15.9 29:33 9.6 GB 63.1% 65.9% 65.0% 69.9% 47:27
Beam search (4x) 79.0% 34.7 37:36 14.0 GB 61.9% 67.9% 65.0% 71.6% 71:39

DFS T=20% (ours) 73.5% 4.9 5:58 7.3 GB 63.5% 68.1% 66.4% 70.0% 14:12
DFS T=9% (ours) 76.0% 9.3 9:32 7.3 GB 63.5% 68.8% 66.6% 71.6% 20:50
DFS T=0.5% (ours) 83.5% 84.7 80:56 7.3 GB 63.3% 69.1% 66.9% 71.8% 134:43

found so far as an inital guess to the DFS and process it in a
single forward pass before starting backtracking, which is
much faster than token-by-token generation. Note that these
comparisons should be interpreted with caution, as the beam
search algorithm is not implemented in the unsloth library
used for the other experiments, which might provide some
time savings. However, even when accounting for those
savings, beam search still requires far more time overall,
as it returns a significant amount of false positives, which
increase the runtime required in the subsequent selection
process, where each candidate is evaluated under different
augmentations.

As we do not know the sampling probability of the correct
solution beforehand, we have to treat the probability bound
T as a hyper-parameter. We found that values between
T = 5% to T = 20% provided a reasonable compromise
between inference time and number of correct solutions,
but the exact parameter depends on the model and training
procedure used. Similarly, due to the way probability mass
is distributed on the solution tree, DFS is faster when the
model has a higher degree of certainty in its predictions.

We compare the number of candidate sets that contain the
correct solution for different values of T in Figure 4. This
function is monotonically increasing in T , but so are infer-
ence costs and the size of the set Cp,T , making the selection
of the correct candidate harder. Our final results are calcu-
lated using T = 9%, as it uses roughly the same amount of
inference time as greedy sampling.

We provide pseudo-code for our DFS sampling algorithm
in Algorithm 1 in the Appendix.

5.4. Selection Strategies

Up to this point, our method generates candidates likely
to include the correct solution. However, solving the task
requires identifying it among the candidates, using at most
two guesses.

As introduced in Section 4.1, we again use a set of aug-
mentations Φ to calculate the results of a product of expert
ensemble P . A candidate s ∈ Cp,T is selected for one of
the two guesses if it has the (second-)highest probability
according to P . In Figure 5, we compare the rank of the
correct solution before and after using this augmentation
procedure. In most cases where the correct solution does
not start at rank 1, this augmentation leads to a better rank
for the correct solution, increasing our chance to solve a
given task. In Theorem 4.1, we proved that our product of
experts approach is superior to selecting one augmentation
at random, which can clearly be seen in Table 3. Here, we
compare different sampling methods and different aggrega-
tion methods. In all cases, using the product of probabilities
leads to an increase in score, with minPi taking second
place for most sampling methods and maxPi performing
the worst. For our T = 9% DFS inference, PoE increases
the final score by 5% compared to averaging the probabilites
(66.6% vs 71.6%).

5.5. ConceptARC

To make sure we do not overfit on the original ARC data, we
further evaluate our method on ConceptARC (Moskvichev
et al., 2023) - an ARC-like dataset containing tasks sorted
into specific conceptual categories. Our method achieves

8

Product of Experts with LLMs: Boosting Performance on ARC Is a Matter of Perspective

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Confidence Threshold (-log(prob))

A
cc

ur
ac

y
(P

ro
po

rt
io

n
So

lv
ed

)

Accuracy for Different Selection Methods
for the 3M Sudoku Dataset (1000 samples)

Generation Accuracy

Product-of-Experts
∏

j P̂j (ours)

Mean Probability, 1
N

∑
j P̂j

Max Generation Probability

Selection Accuracy
Overall Accuracy

Figure 6. Results of the Sudoku experiments (plot equivalent to
Figure 4, but showing top-1 accuracy instead of top-2). We can
see that our product of experts approach increases the accuracy
substantially to 53% solved Sudoku puzzles over simply selecting
the generated solution with the highest sampling probability. Note
that generation accuracy completely coincides with product of
experts probability, showing that if a correct solution is sampled,
our approach consistently selects it.

73.3% 2-guess accuracy on ConceptARC (using the exact
same hyperparameters as DFS T=9%), showing that we gen-
eralize well to other ARC-like datasets of similar difficulty.

5.6. Sudoku

We further test our approach on the Sudoku 3M dataset
(Radcliffe, 2020) to evaluate generalizability of the method
to different domains. Since the underlying ”rules” of Su-
doku remain consistent between tasks, we do not use any
test-time training in this case. Instead, we start out with
our Llama 3B model pre-trained on ARC, which we then
finetune again on 128000 Sudoku tasks. As the Sudoku
tasks never have any ambiguity, we report top-1 accuracy
rather than top-2. To handle the increased complexity for
the LLM compared to ARC, we use DFS with a threshold of
T=1%, which provides a good trade-off between accuracy
and runtime (see Figure 6). This setup reaches 53% accu-
racy on 1000 randomly chosen unseen Sudoku puzzles, far
better than state-of-the-art LLMs, which have a solve-rate
less than 3% on comparable benchmarks (Seely et al., 2025).
Notably, if the correct solution of a puzzle is sampled, we
select it in 100% of cases. This is caused by the fact that Su-
doku correctness is simple to evaluate. Using our standard
augmentations described in Section 5.3 on the predictions,
the model can identify errors more frequently, thereby sig-
nificantly reducing the likelihood of false positives.

6. Discussion
Our method builds on familiar techniques – data augmenta-
tion, Bayesian modeling, and product of experts scoring –
but tailors them specifically for ARC-like puzzles.

At our methods’ core, we use a single fine-tuned LLM
in two roles: as a generator, it proposes solutions for each
puzzle augmentation; as a scorer, it re-scores each generated
candidate across all augmentations by taking the product
(geometric mean) of likelihoods. The benefit is twofold.
First, a candidate solution must be jointly plausible under
every valid transformation to rank preferably, making it
harder for the model to latch onto spurious correlations
found in just one representation. Second, this log-linear
pooling approach naturally acts as an ensemble method, as
we show in Section 4.1.

Despite ARC’s reputation for complexity, our two-phase
“generate-then-re-score” routine achieves SOTA results
among open models. While only a single closed-source
solution (arcprize.org, 2025) posts a higher absolute score
at $17 per task, our fully open-source process stands out
for its transparency, reproducibility and, above all, its cost-
effectiveness of only 0.02$ per task.

By applying these ideas to ARC, we underline a broader
principle: when dealing with structured or abstract rea-
soning tasks, the key factor is to exploit valid semantic-
preserving transformations, forcing a model to remain con-
sistent across multiple views of the same problem. This
allows us to use a single model as an ensemble of experts.
We believe this perspective can generalize to more complex
symbolic reasoning challenges, wherever such transforma-
tions can be defined. Our results demonstrate that large lan-
guage models, properly steered in inference and supported
by prior aware scoring, can go beyond default sampling
approaches to capture deeper structures in abstract domains.

6.1. Future Work

Building upon our insights, several promising directions
emerge for future investigation. First, it would be valuable
to further explore the generalizability of using a single large
language model as a Product-of-Experts through augmenta-
tions beyond ARC-specific transformations. In particular,
text-based augmentations such as linguistic reformulations
or stylistic variations present possible paths to extend our
method to a broader array of natural language reasoning
tasks. Second, the effectiveness of our depth-first search
(DFS) candidate-generation strategy warrants evaluation
beyond ARC-like puzzles; exploring tasks such as logical
reasoning, program synthesis, or mathematical problem-
solving could yield insights into its broader applicability
and effectiveness in structured problem-solving domains.

9

Product of Experts with LLMs: Boosting Performance on ARC Is a Matter of Perspective

Acknowledgement
We would like to express our sincere gratitude to Lambda,
for providing computational resources essential for optimiz-
ing our pipeline. Specifically, they supplied us with a server
equipped with 8xH100 GPUs, enabling rapid iteration on
our ideas. Their support was instrumental in winning the
ARC Kaggle Competition 2024 using the approach shown
in this paper.

This work has been supported by the ”Research Center
for Algorithmic Intelligence as an Emergent Phenomenon”
(funded by the Carl-Zeiss-Stiftung) and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion), project 233630050 (Collaborative Research Center
TRR 146).

Generative AI language tools were used for text editing; all
AI-generated output was subsequently reviewed, revised,
and validated by the authors, who assume full responsibility
for the final revision.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Akyürek, E., Damani, M., Qiu, L., Guo, H., Kim, Y., and

Andreas, J. The surprising effectiveness of test-time
training for abstract reasoning, 2024. URL https://
arxiv.org/abs/2411.07279.

Allen-Zhu, Z. and Li, Y. Physics of language mod-
els: Part 3.1, knowledge storage and extraction,
2024. URL https://openreview.net/forum?
id=5x788rqbcj.

Allen-Zhu, Z. and Li, Y. Physics of language models: Part
3.2, knowledge manipulation, 2025. URL https://
openreview.net/forum?id=oDbiL9CLoS.

arcprize.org. OpenAI o3 Breakthrough High Score on
ARC-AGI-Pub — arcprize.org. https://arcprize.
org/blog/oai-o3-pub-breakthrough, 2025.
[Accessed 25-01-2025].

Berman, J. How I came in first on ARC-AGI-
Pub using Sonnet 3.5 with Evolutionary Test-
time Compute — jeremyberman.substack.com.
https://jeremyberman.substack.com/p/
how-i-got-a-record-536-on-arc-agi,
2024. [Accessed 25-01-2025].

Bostrom, K. and Durrett, G. Byte pair encod-
ing is suboptimal for language model pretraining,
2020. URL https://doi.org/10.18653/v1/
2020.findings-emnlp.414.

Chollet, F. On the measure of intelligence. CoRR,
abs/1911.01547, 2019. URL http://arxiv.org/
abs/1911.01547.

Cole, J. Community Interview Jack Cole – Lab42
— lab42.global. https://lab42.global/
community-interview-jack-cole/, 2024.
[Accessed 29-01-2025].

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A.,
Letman, A., Mathur, A., Schelten, A., Yang, A., Fan, A.,
Goyal, A., Hartshorn, A., Yang, A., Mitra, A., Sravanku-
mar, A., Korenev, A., Hinsvark, A., Rao, A., Zhang, A.,
Rodriguez, A., Gregerson, A., Spataru, A., Rozière, B.,
Biron, B., Tang, B., Chern, B., Caucheteux, C., Nayak, C.,
Bi, C., Marra, C., McConnell, C., Keller, C., Touret, C.,
Wu, C., Wong, C., Ferrer, C. C., Nikolaidis, C., Allonsius,
D., Song, D., Pintz, D., Livshits, D., Esiobu, D., Choud-
hary, D., Mahajan, D., Garcia-Olano, D., Perino, D., Hup-
kes, D., Lakomkin, E., AlBadawy, E., Lobanova, E., Di-
nan, E., Smith, E. M., Radenovic, F., Zhang, F., Synnaeve,
G., Lee, G., Anderson, G. L., Nail, G., Mialon, G., Pang,
G., Cucurell, G., Nguyen, H., Korevaar, H., Xu, H., Tou-
vron, H., Zarov, I., Ibarra, I. A., Kloumann, I. M., Misra,
I., Evtimov, I., Copet, J., Lee, J., Geffert, J., Vranes, J.,
Park, J., Mahadeokar, J., Shah, J., van der Linde, J., Bil-
lock, J., Hong, J., Lee, J., Fu, J., Chi, J., Huang, J., Liu,
J., Wang, J., Yu, J., Bitton, J., Spisak, J., Park, J., Rocca,
J., Johnstun, J., Saxe, J., Jia, J., Alwala, K. V., Upasani,
K., Plawiak, K., Li, K., Heafield, K., Stone, K., and et al.
The llama 3 herd of models. CoRR, abs/2407.21783,
2024. doi: 10.48550/ARXIV.2407.21783. URL https:
//doi.org/10.48550/arXiv.2407.21783.

Greenblatt, R. Getting 50% (SoTA) on ARC-AGI with
GPT-4o — redwoodresearch.substack.com. https:
//redwoodresearch.substack.com/p/
getting-50-sota-on-arc-agi-with-gpt,
2024. [Accessed 25-01-2025].

Hinton, G. E. Products of experts. In 9th International
Conference on Artificial Neural Networks: ICANN ’99.
IEE, 1999.

Hinton, G. E. Training products of experts by
minimizing contrastive divergence. Neural Com-
put., 14(8):1771–1800, 2002. doi: 10.1162/
089976602760128018. URL https://doi.org/10.
1162/089976602760128018.

10

https://lambda.ai/
https://arxiv.org/abs/2411.07279
https://arxiv.org/abs/2411.07279
https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=oDbiL9CLoS
https://openreview.net/forum?id=oDbiL9CLoS
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://arcprize.org/blog/oai-o3-pub-breakthrough
https://jeremyberman.substack.com/p/how-i-got-a-record-536-on-arc-agi
https://jeremyberman.substack.com/p/how-i-got-a-record-536-on-arc-agi
https://doi.org/10.18653/v1/2020.findings-emnlp.414
https://doi.org/10.18653/v1/2020.findings-emnlp.414
http://arxiv.org/abs/1911.01547
http://arxiv.org/abs/1911.01547
https://lab42.global/community-interview-jack-cole/
https://lab42.global/community-interview-jack-cole/
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt
https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt
https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/089976602760128018

Product of Experts with LLMs: Boosting Performance on ARC Is a Matter of Perspective

Hodel, M. Addressing the abstraction and reasoning corpus
via procedural example generation, 2024. URL https:
//arxiv.org/abs/2404.07353.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adapta-
tion of large language models, 2022. URL https:
//openreview.net/forum?id=nZeVKeeFYf9.

Kamradt, G. Testing o1-preview on ARC-
AGI, 2024. URL https://www.
kaggle.com/code/gregkamradt/
testing-o1-preview-on-arc-agi. Accessed:
2024-11-10.

LeGris, S., Vong, W. K., Lake, B. M., and Gureckis, T. M.
H-arc: A robust estimate of human performance on the
abstraction and reasoning corpus benchmark, 2024. URL
https://arxiv.org/abs/2409.01374.

Li, W., Xu, Y., Sanner, S., and Khalil, E. B. Tackling the
abstraction and reasoning corpus with vision transform-
ers: the importance of 2d representation, positions, and
objects, 2024. URL https://arxiv.org/abs/
2410.06405.

Li, W., Hu, K., Larsen, C., Wu, Y., Alford, S., Woo, C.,
Dunn, S. M., Tang, H., Zheng, W., Pu, Y., and Ellis, K.
Combining induction and transduction for abstract rea-
soning, 2025. URL https://openreview.net/
forum?id=UmdotAAVDe.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua,
M., Petroni, F., and Liang, P. Lost in the middle: How
language models use long contexts. Trans. Assoc. Comput.
Linguistics, 12:157–173, 2024. doi: 10.1162/TACL\ A\
00638. URL https://doi.org/10.1162/tacl_
a_00638.

Moskvichev, A., Odouard, V. V., and Mitchell, M. The con-
ceptarc benchmark: Evaluating understanding and gener-
alization in the ARC domain. Trans. Mach. Learn. Res.,
2023, 2023. URL https://openreview.net/
forum?id=8ykyGbtt2q.

Neoneye. 79fb03f4 test is unsolvable, water flow
· Issue #100 · fchollet/ARC-AGI — github.com.
https://github.com/fchollet/ARC-AGI/
issues/100, 2024. [Accessed 30-01-2025].

Radcliffe, D. G. 3 million sudoku puzzles with rat-
ings, 2020. URL https://www.kaggle.com/
dsv/1495975.

RubenKelevra. Puzzle id: 0d87d2a6 result is am-
biguous. https://github.com/fchollet/
ARC-AGI/issues/149, 2024. [Accessed 30-01-
2025].

Seely, J., Imajuku, Y., Zhao, T., Cetin, E., and Jones, L.
Sudoku-bench: Evaluating creative reasoning with su-
doku variants, 2025. URL https://arxiv.org/
abs/2505.16135.

Singh, A. K. and Strouse, D. Tokenization counts: the
impact of tokenization on arithmetic in frontier llms.
CoRR, abs/2402.14903, 2024. doi: 10.48550/ARXIV.
2402.14903. URL https://doi.org/10.48550/
arXiv.2402.14903.

Sreenivas, S. T., Muralidharan, S., Joshi, R., Chochowski,
M., Patwary, M., Shoeybi, M., Catanzaro, B., Kautz,
J., and Molchanov, P. Llm pruning and distillation in
practice: The minitron approach, 2024. URL https:
//arxiv.org/abs/2408.11796.

Sun, K., Qi, P., Zhang, Y., Liu, L., Wang, W. Y., and Huang,
Z. Tokenization consistency matters for generative mod-
els on extractive NLP tasks. In Bouamor, H., Pino, J., and
Bali, K. (eds.), Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pp. 13300–13310. Association for Com-
putational Linguistics, 2023. doi: 10.18653/V1/2023.
FINDINGS-EMNLP.887. URL https://doi.org/
10.18653/v1/2023.findings-emnlp.887.

Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A. A., and
Hardt, M. Test-time training with self-supervision for
generalization under distribution shifts. In Proceedings of
the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 9229–
9248. PMLR, 2020. URL http://proceedings.
mlr.press/v119/sun20b.html.

Wind, J. S. Abstraction and Reason-
ing Challenge — kaggle.com. https:
//www.kaggle.com/competitions/
abstraction-and-reasoning-challenge/
discussion/154597, 2020. [Accessed 30-01-2025].

11

https://arxiv.org/abs/2404.07353
https://arxiv.org/abs/2404.07353
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://www.kaggle.com/code/gregkamradt/testing-o1-preview-on-arc-agi
https://www.kaggle.com/code/gregkamradt/testing-o1-preview-on-arc-agi
https://www.kaggle.com/code/gregkamradt/testing-o1-preview-on-arc-agi
https://arxiv.org/abs/2409.01374
https://arxiv.org/abs/2410.06405
https://arxiv.org/abs/2410.06405
https://openreview.net/forum?id=UmdotAAVDe
https://openreview.net/forum?id=UmdotAAVDe
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://openreview.net/forum?id=8ykyGbtt2q
https://openreview.net/forum?id=8ykyGbtt2q
https://github.com/fchollet/ARC-AGI/issues/100
https://github.com/fchollet/ARC-AGI/issues/100
https://www.kaggle.com/dsv/1495975
https://www.kaggle.com/dsv/1495975
https://github.com/fchollet/ARC-AGI/issues/149
https://github.com/fchollet/ARC-AGI/issues/149
https://arxiv.org/abs/2505.16135
https://arxiv.org/abs/2505.16135
https://doi.org/10.48550/arXiv.2402.14903
https://doi.org/10.48550/arXiv.2402.14903
https://arxiv.org/abs/2408.11796
https://arxiv.org/abs/2408.11796
https://doi.org/10.18653/v1/2023.findings-emnlp.887
https://doi.org/10.18653/v1/2023.findings-emnlp.887
http://proceedings.mlr.press/v119/sun20b.html
http://proceedings.mlr.press/v119/sun20b.html
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597
https://www.kaggle.com/competitions/abstraction-and-reasoning-challenge/discussion/154597

Appendix for Product of Experts with LLMs: Boosting Performance on ARC is a Matter of Perspective

A. Appendix: DFS Algorithm
The algorithm presented here assumes that the model supports internal caching for already seen sequences and only needs to
process the newly added tokens. Note that we use negative log probabilities to avoid numerical issues, while the main
paper uses percentage values for clarity.
Our actual implementation differs from this simple variant, as we are using unsloth, which does not support dynamic caching
and requires us to prune the key-value-cache of the transformer ourselves.
Furthermore, we use various performance optimizations, like a simultaneous initial forward pass of the best known sequence
including prompt and prediction (which is much faster than token-by-token generation) as well as aggregating the sequences
during backtracking to avoid the unnecessary processing of sequences that would be discarded later

Algorithm 1 Depth-First Probability-Guided Sampling for LLMs.
function DFS sample {model, prompt, threshold,max len, eos id}

Input: model is the language model
Input: prompt is the prompt that should be completed
Input: threshold is the maximum negative log probability allowed
Input: max len is the maximum length (including the prompt)
Input: eos id is the index of the end of sentence token
function Explore {tokens, score}

if tokens[−1] = eos id or |tokens| ≥ max len then
return (score, tokens)

end if
next token logits← model.predict logits(tokens)[−1]
next token log prob← −log softmax(next token logits)
valid sequences← ∅
for each possible next token t do
next score← score+ next token log prob[t]
if next score ≤ threshold then
next tokens← current tokens+ [t]
continuations← Explore(next tokens, next score)
valid sequences← valid sequences ∪ continuations

end if
end for
return valid sequences

end function
return Explore(prompt, 0.0)

end function

12

Appendix for Product of Experts with LLMs: Boosting Performance on ARC is a Matter of Perspective

B. Appendix: Training Parameters

Table 4. Training parameters and times for the initial and the test-time fine-tuning processes. Test-time fine-tuning is performed separately
for each task, each time starting from the initially fine-tuned base model.

Initial Fine-Tuning Test-Time Fine-Tuning

Batch size 4 1
Gradient acc. steps 2 1
LoRA rank 256 32
LoRA α 24 16
LoRA bias off off
rank-stabilized LoRA on on
LR (LoRA adapters) 1e−4 1e−4
LR (embeddings) 1e−5 1e−5
LR schedule cosine cosine
LR warmup phase 25% 50%
Weight decay off off
Optimizer adamw 8bit adamw 8bit
Base model quantization 4 bit 4 bit
Data type bfloat16 bfloat16
Trained tokens outputs only outputs only
Training dataset RE-ARC single task examples

Number of Epochs 368 [Llama]
1200 [NeMo]

64

Training performed on 1x Nvidia H100 1x Nvidia RTX 4090

Training time 15 hrs. [Llama]
98 hrs. [NeMo]

12 sec./task [Llama]
51 sec./task [NeMo]

Table 5. Reduced Token Set for ARC-AGI-specific LLM Model

Token Category Tokens Purpose

Alphabet A-Z, a-z (excl. I,O,i,o) Learned pre-prompt tokens
Numbers 0-9 Encoding the 10 colors
Newline token \n Signals end of each grid line
Input/Output I, O Signals start of problem input/output
Begin token ⟨bos⟩ Inserted once at the beginning
End token ⟨eos⟩ Inserted after each output
Padding token ⟨pad⟩ Internal usage (e.g. batching)

13

Appendix for Product of Experts with LLMs: Boosting Performance on ARC is a Matter of Perspective

C. Appendix: Product of Experts Proof
Theorem C.1 (Error Bound for Log-Pooled Augmentations). Suppose we have m valid augmentations {ϕ1, . . . , ϕm} in the
sense of preserving solution distribution, and define

P̂j(s) := P̂
(
ϕj(s) | ϕj(p)

)
, for each j = 1, . . . ,m.

Assume each single-augmentation predictor P̂j has a bounded KL divergence from P , i.e.,

Dj := KL
(
P ∥ P̂j

)
≤ δj .

Now define the “geometric-mean” ensemble

P (s) :=
1

Z

m∏

j=1

[
P̂j(s)

] 1
m ,

where

Z =
∑

u∈Sp

m∏

j=1

[
P̂j(s)

] 1
m ,

Then the KL divergence between P and P is bounded by the average of the single-augmentation divergences:

KL
(
P
∥∥∥P

)
≤ 1

m

m∑

j=1

KL
(
P ∥ P̂j

)

Proof. Let us write
Dj = KL

(
P ∥ P̂j

)
= Es∼P

[
− log P̂j(s)

]
− Es∼P

[
− logP (s)

]
.

By assumption, Dj ≤ δj for each j.

Step 1: Expressing KL
(
P ∥P

)
. By definition of KL divergence,

KL
(
P ∥P

)
=

∑

s∈Sp

P (s) log
(P (s)

P (s)

)

= Es∼P

[
− logP (s)

]
− Es∼P

[
− logP (s)

]
.

Since we can rewrite P as

P (s) =
1

Z
exp

(
1
m

m∑

j=1

log P̂j(s)
)
,

we get

− logP (s) = − 1
m

m∑

j=1

log P̂j(s) + logZ.

Thus,

Es∼P

[
− logP (s)

]
=

1

m

m∑

j=1

Es∼P

[
− log P̂j(s)

]
+ logZ.

Subtracting Es∼P [− logP (s)] then yields

KL
(
P ∥P

)

=
1

m

m∑

j=1

[
Es∼P

(
− log P̂j(s)

)
− Es∼P

(
− logP (s)

)]

︸ ︷︷ ︸
1
m

∑m
j=1 KL(P ∥ P̂j)

+ logZ.

Hence to complete the bound, we need only to show that logZ ≤ 0, i.e. that Z ≤ 1.

14

Appendix for Product of Experts with LLMs: Boosting Performance on ARC is a Matter of Perspective

Step 2: Bounding logZ. Recall that

Z =
∑

s∈Sp

m∏

j=1

[
P̂j(s)

] 1
m .

Since the geometric mean is always smaller than the arithmetic mean for positive numbers, it follows that:

Z ≤
∑

s∈Sp

m∑

j=1

1

m

[
P̂j(s)

]

with equality exactly when all P̂j are equal. Further, as all P̂j are probability distributions we find that:

Z =
∑

s∈Sp

m∑

j=1

1

m

[
P̂j(s)

]
=

1

m

m∑

j=1

∑

s∈Sp

[
P̂j(s)

]
≤ 1

Putting it all together. From Step 1 of the proof, we have the decomposition

KL
(
P ∥P

)
=

1

m

m∑

j=1

KL
(
P ∥ P̂j

)

︸ ︷︷ ︸
average excess NLL

+ logZ.

Combining with the bound Z ≤ 1 yields

KL
(
P ∥P

)
≤ 1

m

m∑

j=1

KL
(
P ∥ P̂j

)

15

