
Published as a conference paper at ICLR 2025

TC-MOE: AUGMENTING MIXTURE OF EXPERTS WITH
TERNARY EXPERT CHOICE

Shen Yan1, Xingyan Bin2, Sijun Zhang2, Yisen Wang3,4∗, Zhouchen Lin3,4,5∗
1Center for Data Science, Peking University
2Seed-Foundation-Model, ByteDance
3State Key Lab of General AI, School of Intelligence Science and Technology, Peking University
4Institute for Artificial Intelligence, Peking University
5Pazhou Laboratory (Huangpu), Guangzhou, Guangdong, China

ABSTRACT

The Mixture of Experts (MoE) architecture has emerged as a promising solution
to reduce computational overhead by selectively activating subsets of model pa-
rameters. The effectiveness of MoE models depends primarily on their routing
mechanisms, with the widely adopted Top-K routing scheme used for activating
experts. However, the Top-K scheme has notable limitations, including unneces-
sary activations and underutilization of experts. In this work, rather than modi-
fying the routing mechanism as done in previous studies, we propose the Ternary
Choice MoE (TC-MoE), a novel approach that expands the expert space by apply-
ing the ternary set {−1, 0, 1} to each expert. This expansion allows more efficient
and effective expert activations without incurring significant computational costs.
Additionally, given the unique characteristics of the expanded expert space, we
introduce a new load balance loss and reward loss to ensure workload balance
and achieve a flexible trade-off between effectiveness and efficiency. Extensive
experiments demonstrate that TC-MoE achieves an average improvement of over
1.1% compared with traditional approaches, while reducing the average number
of activated experts by up to 9%. These results confirm that TC-MoE effectively
addresses the inefficiencies of conventional routing schemes, offering a more ef-
ficient and scalable solution for MoE-based large language models. Code and
models are available at https://github.com/stiger1000/TC-MoE.

1 INTRODUCTION

In recent years, large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023; Achiam
et al., 2023) have demonstrated impressive performance across a wide range of domains. However,
modern LLMs still face inefficiencies because they typically utilize all their parameters for every
input token during both training and inference. This leads to substantially increased computational
resource requirements as the models scale. To address these challenges, researchers have introduced
the Mixture of Experts (MoE) architecture (Shazeer et al., 2017). The MoE architecture facili-
tates parameter scaling while maintaining reasonable computational costs. Unlike traditional dense
models, MoE models incorporate a routing mechanism that selectively activates specific subsets of
parameters for each input token. Recent advancements in MoE models (Jiang et al., 2024; Dai et al.,
2024; Wu et al., 2024) have paved the way for scaling language models to unprecedented sizes while
achieving remarkable performance improvements.

Within the MoE architecture, the routing mechanism plays a critical role since it significantly influ-
ences both the efficiency and effectiveness of model training. Traditional MoE frameworks, includ-
ing GShard (Lepikhin et al., 2021), Switch Transformers (Fedus et al., 2022), and ST-MoE (Zoph
et al., 2022), all employ the Top-K routing scheme. This method calculates the routing probabil-
ity for each combination of experts and tokens. The K experts with the highest probabilities are
activated for each token , with the final output being the weighted sum of their outputs.

∗Corresponding authors.

1

https://github.com/stiger1000/TC-MoE

Published as a conference paper at ICLR 2025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02

0.04

0.06

0.08

C
o

nt
rib

ut
io

n

Negative contribution

Positive contribution

Gate Values

Unnecessary activation

(a) Distribution of contributions from activated ex-
perts. The experts are categorized based on their gate
values. This shows that some activations contribute
negatively to the performance, indicating unnecessary
activations.

� � � � � � � � � � � � � � � � � 0 0 . 0 0 5
0

5 0

1 0 0

1 5 0

2 0 0

�

�

De
ns

ity

C o n t r i b u t i o n

�P o s i t i v e c o n t r i b u t i o n
�N e g a t i v e c o n t r i b u t i o n

� � � �� � � �

(b) Distribution of contributions from experts with
low gate values after flipping the sign of their out-
puts. The results demonstrate that some experts
can positively impact performance when their out-
put signs are flipped.

Figure 1: Analysis of the limitations in the conventional Top-K routing scheme in a model with 2
activated experts out of 8. We compute the contribution of each activated expert by measuring the
difference in model performance when the activation is masked. More details are in Appendix A.

However, recent works (Zhou et al., 2022; Huang et al., 2024) combined with our experiments
demonstrate the suboptimal nature of this routing scheme. We identify two key limitations:

• Unnecessary Activations: The Top-K scheme activates a fixed number of experts for each
token, neglecting the possibility of adaptively choosing the number of activated experts. As
shown in Figure 1a, some activated experts do not positively contribute to model perfor-
mance, revealing redundant computations.

• Underutilization of Experts: The constraint of non-negative expert weights prevents full
utilization of expert potential. Figure 1b demonstrates that approximately 40% of low-
weight experts show positive contributions when their output signs are reversed.

In this work, we introduce the Ternary Choice Mixture of Experts (TC-MoE) to address these
limitations. Unlike previous studies (Zhou et al., 2022; Yang et al., 2024; Huang et al., 2024) that
focus on improving the routing scheme, we explore an innovative approach through expert space
expansion. Inspired by ternary quantization techniques where weights are constrained to {−1, 0, 1},
we propose to create an expanded expert space through ternary multiplication of each original ex-
pert. As demonstrated in Figure 2b, assigning ternary choices to each expert generates expanded
expert space with unchanged parameter counts of the experts. This expanded expert space empow-
ers the router to learn sophisticated strategies during the training process, thereby alleviating the
aforementioned limitations without modifying the routing scheme.

However, the expanded expert space exhibits unique characteristics differing from the original expert
space. As illustrated in Figure 2b, parameter-sharing expert pairs coexist with zero-parameter ex-
perts that incur computational costs. These structural differences render traditional load balance loss
ineffective. To address this, we propose a redesigned load balance loss for equitable workload dis-
tribution. Furthermore, we introduce a novel reward loss enabling flexible efficiency-effectiveness
trade-offs through our analysis.

We conduct comprehensive evaluations of our method on multiple benchmarks. The results demon-
strate that our TC-MoE outperforms existing approaches. Compared with the baseline, TC-MoE
delivers an average performance gain of 1.1% alongside a 9% reduction in the average number of
activated experts. Notably, under varying computational budgets, our method maintains consistent
performance advantages over dynamic routing alternatives. These findings conclusively demonstrate
the effectiveness of TC-MoE in overcoming the limitations of conventional routing schemes.

2

Published as a conference paper at ICLR 2025

Router

Token A

Expert 𝐸3Expert 𝐸2Expert 𝐸1

(a) Conventional MoE.

Router

Expert

𝐸1

Token A

× {−1, 0, 1}

Expert

𝐸2

Expert

𝐸3

Sharing parameters Sharing parameters
No parameters

Expert

𝐸1
−1

Expert

𝐸1
1

Expert

𝐸2
−1

Expert

𝐸2
1

Expert

𝐸3
−1

Expert

𝐸3
1

Expert

𝐸1
0

Expert

𝐸2
0

Sharing parameters

(b) Our proposed TC-MoE.

Figure 2: Comparison of the conventional MoE architecture and the proposed TC-MoE. The original
expert space contains 3 experts, with the router activating 2 experts per token. By multiplying each
expert with the ternary set {−1, 0, 1}, TC-MoE obtains an expanded expert space comprising 8
experts. Notably, 2 of these experts are parameter-free (we maintain 2 instead of 3 as 2 is sufficient
for the router to activate any number from 0 to 2 of these experts). The remaining 6 experts are
grouped into 3 parameter-sharing sets.

Our contributions can be summarized as follows:

1. We propose the TC-MoE, a novel method to overcome classical routing limitations in MoE
architectures by expanding the expert space through multiplying the ternary set, achieving
effective activation enhancement without routing scheme modification.

2. Given the unique load balance requirements in our expanded expert space, we redesign
the load balance loss. Additionally, we introduce a novel reward loss to achieve a flexible
trade-off between effectiveness and efficiency.

3. Our experimental results demonstrate that TC-MoE achieves superior performance with
fewer activated parameters, confirming significant improvements in both effectiveness and
efficiency over the baseline.

2 RELATED WORK

Mixture of Experts Models. MoE models (Jacobs et al., 1991; Jordan & Jacobs, 1994) have been
extensively studied in artificial intelligence. The concept of using a trainable gating network to
determine a sparse combination of experts is pioneered by the Sparsely-Gated MoE (Shazeer et al.,
2017). Since then, numerous studies (Lepikhin et al., 2021; Fedus et al., 2022; Zoph et al., 2022;
Jiang et al., 2024; Dai et al., 2024; Wei et al., 2024) have built upon this framework, demonstrating
compelling empirical results by scaling MoE models to unprecedented sizes.

Routing Schemes. The MoE architecture relies on a routing module to determine the activation
of experts, making the routing scheme a critical factor for MoE model performance. Early works
(Shazeer et al., 2017; Fedus et al., 2022) employ the Top-K routing scheme, which calculates the
routing probabilities for each expert and activates the Top-K experts with the highest probabilities.
Recent studies have focused on improving routing schemes. Zhou et al. (2022) introduce the expert
choice routing mechanism, which assigns equal capacity to every expert and allows tokens to com-
pete for expert selection. Yang et al. (2024) propose a threshold-based router that uses a manually
set threshold to control the number of activated experts for each token. Huang et al. (2024) also
propose a threshold-based router but take it a step further by incorporating a dynamic loss to prevent
activating too many experts.

Heterogeneous Experts Design. Unlike classical MoE frameworks that utilize feed-forward net-
works with the same configuration for all experts, recent works have explored the design of hetero-
geneous experts. Ainslie et al. (2023b) propose a heavy branch alongside a light branch, using a

3

Published as a conference paper at ICLR 2025

router to select important tokens for processing through the heavy branch. Raposo et al. (2024) fur-
ther refine this concept in the decoder-only setting by defining the light branch as a skip connection.
Additionally, Zeng et al. (2024) introduce a set of null experts alongside ordinary experts, while
Wang et al. (2024) explore more diverse strategies for integrating heterogeneous experts.

In this paper, we propose the TC-MoE, a novel method that complements existing research on rout-
ing mechanisms in MoE models. Our framework provides a comprehensive design for expert spaces
by leveraging heterogeneous experts, thereby improving the overall performance and scalability of
MoE architectures.

3 PROPOSED TC-MOE

In this section, we begin with an overview of the widely used Top-K routing mechanism in MoE
models. We then introduce our Ternary Choice MoE, a method that expands the expert space with
minimal computational overhead. Following this, we propose a new load balance loss to ensure
effective load balance across the expanded expert space. Finally, we present a reward loss technique
that achieves a flexible trade-off between efficiency and performance in our approach.

3.1 REVIEW OF TOP-K ROUTING MECHANISM

In a typical MoE architecture for transformer language models, Feed-Forward Network (FFN) layers
are replaced with MoE layers. Each MoE layer consists of N independent FFNs, referred to as
experts, {E1, E2, · · · , EN}, along with a trainable router. Given a hidden representation h ∈ Rd of
the input token, the router computes the probability distribution over the experts as follows:

p(h) = Softmax(Wg · h+ bg), (1)

where Wg ∈ RN×d is a trainable weight matrix, and bg ∈ RN is the bias term. Then the Top-K
router selects the top K experts with the highest probabilities for each input token. The gate values
for the selected experts are set to the normalized probabilities, while those for the other experts are
set to 0:

gi(h) =

pi(h)/
∑
j∈E

pj(h), i ∈ E

0, i /∈ E
(2)

where E denotes the set of the top K experts with the highest probabilities. The final output O of
the MoE layer is computed as the weighted sum of the outputs from the activated experts:

O =
∑
i∈E

gi(h) · Ei(h). (3)

3.2 TERNARY CHOICE

Although the Top-K routing scheme is widely used in MoE models, we identify two key limitations
of this approach. As illustrated in Figure 1, the scheme exhibits unnecessary activations where some
activated experts negatively affect model performance. It also fails to fully utilize existing experts,
neglecting the potential benefits of contrasting expert outputs. While most previous studies have
focused on routing scheme modifications, we propose the TC-MoE, which expands the expert space
to provide richer activation options for the router. Specifically, as illustrated in Figure 2b, we expand
the original expert space by applying the ternary set {−1, 0, 1}. This allows us to project each expert
Ei into three distinct experts {E−1

i , E0
i , E

1
i }, defined as follows:

E1
i (h) := Ei(h), E0

i (h) := 0, E−1
i (h) := −Ei(h), ∀h ∈ Rd. (4)

In our design, E1
i and E−1

i share parameters with Ei. While E0
i contains no parameters and remains

identical across all experts. We further simplify by retaining only E0
1 , · · · , E0

K , as this is sufficient
for the Top-K router to activate any number from 0 to K of these experts. As a result, TC-MoE has
a total of 2N +K experts.

As E1
i and E−1

i share parameters with Ei, the only additional parameters and computational costs
in our method come from the router component. With the number of experts increased to 2N +

4

Published as a conference paper at ICLR 2025

K, TC-MoE introduces (N + K)d + N + K additional parameters and incurs O((N + K)d)
additional computational overhead. Importantly, these additions are negligible compared to the
overall computational costs of the MoE block.

For simplicity, we define the sets of each type of expert as follows:

E−1 := {E−1
i |i ∈ [N]}, E0 := {E0

i |i ∈ [K]}, E1 := {E1
i |i ∈ [N]} (5)

Our method provides an alternative perspective for addressing the aforementioned limitations of the
Top-K routing scheme. By incorporating E0, the router can avoid unnecessary activations by activat-
ing experts from E0, which do not contribute to the output and require no computation. Moreover,
introducing E−1 enables the router to explore the potential benefits of flipping the signs of expert
outputs.

Furthermore, we find that making a small improvement to the Top-K routing scheme by always
activating experts from E0 is beneficial, which is described in detail in Appendix C.

3.3 LOAD BALANCE LOSS

In common MoE models (Fedus et al., 2022; Zoph et al., 2022), an auxiliary loss is typically in-
troduced to encourage a balanced workload among experts. However, in our approach, experts are
classified into two types: E1 ∪ E−1, which incurs computational costs, and E0, which does not in-
cur any computational costs. Therefore, reasonable workload balance considerations in our scenario
are as follows: (1) experts from E0 do not need to be balanced with other experts since they do not
contribute to computational costs, and (2) the sum of the workloads of expert E1

i and expert E−1
i

should be balanced, as E1
i and E−1

i are distributed on the same device in scenarios involving expert
parallelism (Lepikhin et al., 2021). Based on these considerations, we propose a new formulation
for the load balance loss:

fi =
1

KT

T∑
j=1

1
(
Token j selects expert E1

i or E−1
i

)
, (6)

f =
1

N

N∑
i=1

fi, (7)

pi =
1

T

T∑
j=1

[
pE1

i
(hj) + pE−1

i
(hj)

]
, (8)

Laux =

N∑
i=1

(
fi − f

)
· pi, (9)

where T is the sequence length, fi represents the sum of the activation frequencies of experts E1
i

and E−1
i , and pi denotes the sum of the average probabilities assigned to experts E1

i and E−1
i .

3.4 FLEXIBLE TRADE-OFF BETWEEN EFFICIENCY AND EFFECTIVENESS

Since E0 represents a special class of experts that incurs no computational costs, it is crucial to
understand how the router learns to allocate gate values to these experts. Based on our analysis,
we propose a novel auxiliary loss, termed the reward loss, to achieve a flexible trade-off between
efficiency and effectiveness by tuning the activated ratio of experts from E0.

During the backward pass, the gradient of the gate value for each expert is computed as follows:

∂L
∂gi(h)

=

〈
∂L
∂O

, Ei(h)

〉
, i ∈ E

0. i /∈ E
(10)

For each activated expert Ei, the term − ∂L
∂gi(h)

indicates the impact of increasing the gate value
on reducing the loss function. Since the sum of the gate values is constrained to 1, a competitive

5

Published as a conference paper at ICLR 2025

Table 1: Comparison of performance across evaluation benchmarks. “Avg. K” denotes the average
number of activated experts that incurs computational costs during inference. “#FLOPs ↓” denotes
the reduction ratio of FLOPs compared to the Top-K baseline. The bold number indicates the highest
value for each benchmark.

Pre-trained Dataset Method Avg. K #FLOPs ↓ ARC-Easy BoolQ MMLU LAMBADA HellaSwag OpenBookQA PIQA SIQA WinoGrande Avg
Base model

RedPajama

Top-K 2.00 - 57.03 58.75 25.24 50.40 42.76 39.40 68.17 43.91 52.72 48.71
Random drop 1.85 5.4% 56.48 58.62 25.35 50.13 42.83 39.00 69.53 44.68 51.30 48.66
Top-P 1.99 0.3% 55.26 59.54 25.74 50.30 42.22 41.00 68.66 43.55 53.20 48.83
TC-MoE 1.82 6.5% 57.03 59.20 25.58 50.16 43.51 42.00 68.66 44.88 54.85 49.54
Fine-grained base model
Top-K 4.00 - 56.69 55.35 25.16 50.16 42.72 39.6 68.93 44.11 52.49 48.36
TC-MoE 3.87 2.3% 57.58 58.56 26.80 50.46 43.16 41.80 68.28 45.19 52.09 49.32

FineWeb

Tiny model
Top-K 2.00 - 55.13 56.76 26.02 48.32 46.46 37.60 71.33 44.68 52.41 48.75
TC-MoE 1.83 5.8% 55.93 58.53 26.2 48.85 46.65 41.20 71.71 46.32 53.99 49.93
Base model
Top-K 2.00 - 60.19 50.76 26.46 53.95 53.23 43.00 74.48 45.60 55.33 51.44
TC-MoE 1.86 5.1% 60.56 57.4 26.67 54.01 54.05 44.00 73.45 47.24 56.12 52.61

dynamic arises among the activated experts. Experts that significantly contribute to reducing the
loss function are assigned higher gate values, as verified in Figure 1a.

Following Equation 10, for activated expert E0
i , we have

∂L
∂gE0

i
(h)

=

〈
∂L
∂O

, E0
i (h)

〉
=

〈
∂L
∂O

,0

〉
= 0. (11)

This indicates that expert E0
i has no impact on reducing the loss function. Therefore, when com-

peting with other activated experts, expert E0
i tends to receive higher gate values than experts with

negative impacts but lower gate values than those with positive impacts. This effectively helps avoid
unnecessary activations.

Based on the above analysis, we propose extending our method to achieve a flexible trade-off be-
tween efficiency and effectiveness. Specifically, we manually assign a negative value to ∂L

∂g
E0

i
(h)

instead of 0, thereby giving expert E0
i a positive contribution in reducing the loss function. Conse-

quently, the router will learn to promote the activation of these experts, while selectively deactivating
other types of experts with minimal positive contributions. To achieve this, we introduce a new aux-
iliary loss, termed the reward loss, defined as follows:

Lrwd = − 1

T

K∑
i=1

T∑
j=1

gE0
i
(hj), (12)

where T is the sequence length, and gE0
i
(hj) represents the gate values of expert E0

i on token hj .

Linearly combining the language modeling loss (Llm), the load balance loss, and the reward loss,
we yield the total loss, formulated as follows:

L = Llm + α1Laux + α2Lrwd, (13)

where α1 is a hyper-parameter known as the load balance factor, and α2 is a hyper-parameter known
as the reward factor.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Pre-trained Datasets. We train our models using the RedPajama dataset (Computer, 2023) and
the FineWeb dataset (Penedo et al., 2024). The RedPajama dataset includes diverse sources such
as Common Crawl (CC), C4, Wikipedia, Github, books, arxiv, and Stackexchange. The FineWeb
dataset is an open-source, high-quality training dataset consisting of cleaned and deduplicated En-
glish web data from CC. In our experiments, all models are trained on 100B tokens.

Architecture. We employ a decoder-only transformer model, primarily based on the LLaMA ar-
chitecture (Touvron et al., 2023). Each transformer layer includes both an attention layer and an

6

Published as a conference paper at ICLR 2025

Table 2: Configurations of our MoE models.

Model #Layers #Hidden Size #Heads #KV Heads #Intermediate Size #Activated Experts/
#Total Experts

#Activated Params/
#Total Params

Tiny 24 768 12 2 2048 2/8 298M/978M
Base 32 1024 16 2 2816 2/8 681M/2.3B
Fine-grained base 32 1024 16 2 1280 4/16 631M/2.1B

1 1.2 1.4 1.6 1.8 2
2.47

2.48

2.49

2.5

2.51

2.52

L
os

s

Average K

 TC-MoE
 Top-P
 Random drop

(a)

1 1.2 1.4 1.6 1.8 2
41

42

43

44

H
el

la
S

w
ag

 A
cc

. (
%

)

Average K

 TC-MoE
 Top-P
 Random drop

(b)

Figure 3: Comparison of (a) the language modeling loss and (b) the accuracy on HellaSwag under
different budgets for the average number of activated experts. The results demonstrate TC-MoE
outperforms other competitors under all settings.

MoE layer. RMSNorm (Zhang & Sennrich, 2019) is applied to the inputs of both attention layers
and MoE layers. Within the attention layer, we adopt the Group-Query Attention (GQA) (Ainslie
et al., 2023a). Additionally, RMSNorm is used to normalize each key vector (Dehghani et al., 2023).
Each FFN expert employs the SwiGLU activation function (Shazeer, 2020). In our experiments, We
employ three types of models: tiny, base, and fine-grained base, as summarized in Table 2. We use
the same tokenizer as GPT-NeoX-20B (Black et al., 2022), which has a vocabulary size of 50257.

Competitors. We pre-train three baseline methods alongside our proposed TC-MoE:

1. Top-K: A standard Top-K routing scheme that activates the top K experts for each token.
We select K = 2 or K = 4 as these are the most common configurations in modern MoE
architectures (Zoph et al., 2022; Jiang et al., 2024; Wei et al., 2024; Wu et al., 2024).

2. Random drop: A variant of the Top-K routing scheme that, with probability p, does not
activate the expert with the second highest probability.

3. Top-P: The Top-P routing scheme (Huang et al., 2024), which activates the smallest set of
experts whose cumulative probabilities surpass a threshold P for each token.

4. TC-MoE (ours): It expands the expert space and adopts the standard Top-K routing
scheme to activate the top K experts within this expanded expert space for each token.

The Top-K baseline adopts a fixed number of activated experts, whereas Random drop, Top-P, and
TC-MoE allow for a flexible trade-off between effectiveness and efficiency by tuning specific hyper-
parameters. Details of these hyper-parameters are provided in Appendix B.

Evaluation. We evaluate these models on seven benchmarks: ARC (Clark et al., 2018), BoolQ
(Clark et al., 2019), MMLU (Hendrycks et al., 2021), LAMBADA (Paperno et al., 2016), HellaSwag
(Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), SIQA (Sap
et al., 2019), and WinoGrande (Sakaguchi et al., 2021). These tasks assess the model performance
on logical reasoning, language understanding, commonsense reasoning, and knowledge utilization.
Additionally, we measure the average number of activated experts that incur computational costs to
demonstrate the efficiency of each model. Note that in our TC-MoE, only the activations of E−1

and E1 are counted since E0 incurs no computational costs. For simplicity, we refer to the average

7

Published as a conference paper at ICLR 2025

Table 3: Ablation study on the contribution of different types of experts. “Multiplication Set” de-
notes the set used to multiply the original expert space, “Average K” denotes the average number of
activated experts. Specifically, {1} represents the Top-K baseline.

Multiplication
Set Average K #FLOPs ↓ Average

Performance

{1} 2.00 - 48.71
{−1, 1} 2.00 0.0% 49.00 (+0.29)
{0, 1} 1.81 6.9% 49.23 (+0.52)

{−1, 0, 1} 1.82 6.4% 49.54 (+0.83)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02

0.04

0.06

0.08

C
o

nt
rib

ut
io

n

Negative contribution

Positive contribution

Gate Values

Figure 4: Distribution of contri-
butions from activated experts
in TC-MoE on pre-trained data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
o

nt
rib

u
tio

n

Negative contribution

Positive contribution

Gate Values

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
o

nt
rib

u
tio

n

Negative contribution

Positive contribution

Gate Values

(b)

Figure 5: Distribution of contributions from activated experts in
(a) baseline and (b) TC-MoE on ARC-Easy. The results show a
significant alleviation of unnecessary activations by TC-MoE.

number of activated experts as the average number of activated experts that incur computational
costs in the following sections.

4.2 MAIN RESULTS

Table 1 summarizes the performance of various models across different evaluation benchmarks. The
results highlight the superior performance of the proposed TC-MoE.

Specifically, when the base model is pre-trained on the RedPajama dataset, TC-MoE outperforms
competitors on ARC-Easy, HellaSwag, OpenBookQA, SIQA, and WinoGrande, while achieving
comparable results on BoolQ, MMLU, LAMBADA, and PIQA. Notably, TC-MoE achieves an av-
erage accuracy of 49.54%, surpassing the Top-K baseline by 0.83%, Random drop by 0.88% and
Top-P by 0.71%. For the fine-grained base model pre-trained on the RedPajama dataset, TC-MoE
also outperforms the Top-K baseline, improving the average accuracy by 0.96%.

When pre-training on the FineWeb dataset, TC-MoE demonstrates even greater accuracy improve-
ments. For the tiny model, TC-MoE surpasses the Top-K baseline by 1.18%. Similarly, for the base
model, TC-MoE outperforms the Top-K baseline by 1.17%.

Beyond improved accuracy, TC-MoE consistently demonstrates greater efficiency. Specifically, it
reduces the average number of activated experts by 9.0% and the required FLOPs by 6.5% com-
pared to the Top-K baseline when using the base model pre-trained on the RedPajama dataset. On
the FineWeb dataset, TC-MoE reduces the average number of activated experts by 7.0% and the
required FLOPs by 5.1%. These results demonstrate that our method achieves significant gains in
both effectiveness and efficiency over the Top-K baseline.

Additionally, we conduct a thorough comparison of these methods under different budgets for the
average number of activated experts. The results are shown in Figure 3. The figure demonstrates
that TC-MoE consistently outperforms the other two competitors. Notably, in terms of the language
modeling loss, TC-MoE reduces the loss by approximately 0.017 compared to competitors. In terms
of the accuracy on HellaSwag, TC-MoE improves by up to 0.7% compared to other methods.

8

Published as a conference paper at ICLR 2025

1 11 21 31
0

20

40

60

80

100

A
ct

iv
a

te
d

R
a

tio
 (

%
)

Layer

(a)

1 11 21 31
0

20

40

60

80

100

A
ct

iv
a

te
d

R
a

tio
 (

%
)

Layer

(b)

Figure 6: The activated ratios of different types of experts across layers on (a) the pre-trained data
and (b) the test data (ARC-Easy). The results show a similar activated pattern on different data.

1 2 3 4 5 6 7 8 9
0

5

10

15

20

A
ct

iv
a

te
d

R
a

tio
 (

%
)

Expert

(a)

1 2 3 4 5 6 7 8 9
0

5

10

15

20

A
ct

iv
a

te
d

R
a

tio
 (

%
)

Expert

(b)

Figure 7: The activated ratios of different experts in layer 16 on (a) the pre-trained data and (b)
the test data (ARC-Easy). The results show the effectiveness of our load balance loss during both
training and inference.

4.3 ABLATION STUDY

We conduct an ablation study by evaluating the performance of our method using only a subset of
{−1, 0, 1} to multiply the original expert space. As demonstrated in Table 3, expanding the expert
space with either {−1, 1} or {0, 1} improves the model performance. Specifically, expanding the
expert space with {−1, 1} results in a 0.29% average performance increase, while maintaining the
average number of activated experts at 2.0. When expanding the expert space with {0, 1}, the
average performance increases by 0.52%, and the average number of activated experts is reduced
by 0.19. When expanding the expert space with the complete set {−1, 0, 1}, the model achieves
the best performance, with both improved results and a reduced number of activated experts. In
summary, both the E−1 and E0 types contribute to the improvement in model performance, while
the E0 type also significantly enhances model efficiency.

4.4 ANALYSIS

Unnecessary Activations. We investigate the effect of our method on reducing unnecessary activa-
tions. Figure 4 shows the distribution of contributions from activated experts in the TC-MoE model
on the pre-trained data. Compared to the distribution of contributions in the baseline model, shown
in Figure 1a, our TC-MoE significantly reduces the occurrence of unnecessary activations. Addi-
tionally, when analyzing unnecessary activations on ARC-Easy, we observe a significantly large
number of activations that contribute negatively. As shown in Figure 5, TC-MoE demonstrates an
even greater reduction of unnecessary activations in this scenario.

9

Published as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000
0

5

10

15

A
ct

iv
at

ed
 R

at
io

 (
%

)

Step

1

5

9

13

17

21

25

29

33

La
ye

r

(a)

0 5000 10000 15000 20000 25000
0

10

20

30

40

A
ct

iv
at

ed
 R

at
io

 (
%

)

Step

1

5

9

13

17

21

25

29

33

La
ye

r

(b)

Figure 8: The changing curves of activated ratios of (a) type E−1 and (b) type E0 of different layers.

Activated Ratio of Different Types of Experts. To analyze the activated ratio of different types
of experts, we visualize the activated ratios across layers in the TC-MoE model. The results are
shown in Figure 6. We observe that the E1 type has the highest activated ratio, indicating its major
contribution to the output. Additionally, the model spontaneously learns to allocate an activated
ratio of totally around 20% to the E0 type and the E−1 type, highlighting their necessity for more
powerful routing. The activation ratios on ARC-Easy are similar to those on the pre-trained data,
demonstrating the generalization of our method.

The distribution of activated ratios varies significantly across different layers. Figure 8 shows the
changing curves of activated ratios across layers throughout training. We find that the E−1 and E0

types exhibit contrasting activation patterns across layers. Specifically, the model activates a higher
proportion of E−1 experts in deeper layers, while E0 experts are predominantly activated in shallow
layers.

Load Balance. To explore the effectiveness of our load balance loss, we visualize the activated
ratios of different experts in TC-MoE during training. Figure 7 shows the activated ratios in layer
16. To observe the actual load balancing distribution, we stack the activated ratios of each E−1

i
and E1

i pair, as these experts are distributed on the same device when involving expert parallelism.
Additionally, we plot the sum of the activated ratios of experts from E0 at the position of expert 9,
since these experts do not contribute to computational costs. The results demonstrate that TC-MoE
achieves near-perfect workload balance on the pre-trained data. The sum of the workloads of experts
E1

i and experts E−1
i are balanced, each around 11.5%. Additionally, the activated ratios of expert

E1
i and expert E−1

i are not fixed but are instead learned dynamically by the model. Furthermore,
experts from E0 do not participate in the load balancing, allowing the model to activate E0 without
any constraints. On ARC-Easy, we observe a slight deviation with maximum workload at 15.0%
versus minimum at 8.5%.

5 CONCLUSIONS

In this paper, we present the Ternary Choice MoE (TC-MoE), a novel approach that addresses
the limitations of traditional Top-K routing in MoE architectures. By expanding the expert space
through multiplying each expert with the ternary set {−1, 0, 1}, we introduce greater flexibility and
diversity into expert activations without significant computational overhead. Our approach enhances
expert utilization, effectively mitigating both unnecessary activations and expert underutilization in
conventional MoE models. Extensive experiments demonstrate that TC-MoE achieves consistent
improvements in effectiveness and efficiency, surpassing existing methods across multiple bench-
marks. These results highlight the potential of TC-MoE as a scalable, computationally efficient
method for MoE models. We believe this work provides new perspectives for further development
in the design and optimization of MoE models, paving the way for more advanced and resource-
efficient large-scale models.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

Zhouchen Lin and Yisen Wang were supported by National Key R&D Program of China
(2022ZD0160300). Zhouchen Lin was also supported by the NSF China (No. 62276004). Yisen
Wang was also supported by National Natural Science Foundation of China (92370129, 62376010),
and Beijing Nova Program (20230484344, 20240484642).

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023a.

Joshua Ainslie, Tao Lei, Michiel de Jong, Santiago Ontañón, Siddhartha Brahma, Yury Zemlyan-
skiy, David Uthus, Mandy Guo, James Lee-Thorp, Yi Tay, et al. COLT5: Faster long-range
transformers with conditional computation. arXiv preprint arXiv:2303.09752, 2023b.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2020.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Ho-
race He, Connor Leahy, Kyle McDonell, Jason Phang, et al. GPT-NeoX-20B: An open-source
autoregressive language model. arXiv preprint arXiv:2204.06745, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologiess, Volume 1 (Long and Short Papers), 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Together Computer. RedPajama: an open dataset for training large language models, 2023. URL
https://github.com/togethercomputer/RedPajama-Data.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. DeepSeekMoE: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
2023.

William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2021.

11

https://github.com/togethercomputer/RedPajama-Data

Published as a conference paper at ICLR 2025

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao, Chen Zhang, Yang Jin, Kun Xu, Kun Xu,
Liwei Chen, Songfang Huang, and Yansong Feng. Harder task needs more experts: Dynamic
routing in MoE models. In Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), 2024.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural Computation, 3(1):79–87, 1991.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural Computation, 6(2):181–214, 1994.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. In International Conference on Learning Representations,
2021.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, 2018.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), 2016.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The FineWeb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
Santoro. Mixture-of-Depths: Dynamically allocating compute in transformer-based language
models. arXiv preprint arXiv:2404.02258, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An ad-
versarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. SocialIQa: Common-
sense reasoning about social interactions. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing, 2019.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
International Conference on Learning Representations, 2017.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

An Wang, Xingwu Sun, Ruobing Xie, Shuaipeng Li, Jiaqi Zhu, Zhen Yang, Pinxue Zhao, JN Han,
Zhanhui Kang, Di Wang, et al. Hmoe: Heterogeneous mixture of experts for language modeling.
arXiv preprint arXiv:2408.10681, 2024.

Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao
Zhang, Xiaoyu Zhang, Liang Zeng, et al. Skywork-MoE: A deep dive into training techniques for
mixture-of-experts language models. arXiv preprint arXiv:2406.06563, 2024.

12

https://arxiv.org/abs/2406.17557

Published as a conference paper at ICLR 2025

Shaohua Wu, Jiangang Luo, Xi Chen, Lingjun Li, Xudong Zhao, Tong Yu, Chao Wang, Yue Wang,
Fei Wang, Weixu Qiao, et al. Yuan 2.0-M32: Mixture of experts with attention router. arXiv
preprint arXiv:2405.17976, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In International Conference on Learning Representations,
2024.

Yuanhang Yang, Shiyi Qi, Wenchao Gu, Chaozheng Wang, Cuiyun Gao, and Zenglin Xu. XMoE:
Sparse models with fine-grained and adaptive expert selection. In Findings of the Association for
Computational Linguistics ACL 2024, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

Zihao Zeng, Yibo Miao, Hongcheng Gao, Hao Zhang, and Zhijie Deng. AdaMoE: Token-
adaptive routing with null experts for mixture-of-experts language models. arXiv preprint
arXiv:2406.13233, 2024.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In Advances in Neural
Information Processing Systems, 2019.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. In Advances in Neural
Information Processing Systems, 2022.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. ST-MoE: Designing stable and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

13

Published as a conference paper at ICLR 2025

A DETAILS OF CALCULATING THE CONTRIBUTION OF EACH ACTIVATION

To evaluate the effectiveness of the routing scheme, we conduct experiments to analyze the impact of
routing decisions on model outputs. It is important to note that we are not discussing the contribution
of each expert, but rather the effect of each activation decision made by the router.

Specifically, we first randomly select 15 sequences from the training set of RedPajama (Computer,
2023) and the test set of ARC-Easy (Clark et al., 2018), respectively. The average sequence length
of samples in the training set is 1608, while it is 30 in the test set, We use the language modeling
loss on these sequences to measure the quality of model outputs. For a specific activation A, a
straightforward method to obtain its contribution is to forward the model on the input sequence
twice: once with this activation and once masking this activation. We then calculate the difference
in the value of the loss function. This can be formulated as follows:

ContributionA := L(M\{A}(x))− L(M(x)), (14)

where x denotes the input sequence, L denotes the loss function, M denotes the function of the
model, and M\{A} denotes the function of the model when masking the activation A. For sequences
sampled from the pre-trained data, we compute the loss across all positions, whereas for sequences
sampled from the test data, we calculate the loss only over the tokens constructing the answer. When
masking activation A results in a higher loss, we calculate a positive contribution for activation A.
This indicates that the activation decision has a beneficial impact on model performance.

In practice, we observe empirically that the impact of masking a single activation is too small to
analyze due to numerical errors. Therefore, we alternatively categorize the activations into groups
based on their gate values and calculate the contribution of each group of activations. Specifically,
we divide the gate values from 0 to 1 into 10 intervals: 0 to 0.1, 0.1 to 0.2, ..., 0.9 to 1.0. Nevertheless,
the unequal size of different groups still makes it unfair to compare the contributions across groups.
To address this, we randomly select the same number of activations to mask within each group for
a fair comparison. Specifically, we mask 20 activations in each layer of each group for sequences
sampled from the training set, and 5 activations in each layer of each group for sequences sampled
from the test set. We then calculate the loss difference as shown in Equation 14.

For the experiments involving the flipping of expert output signs, we use a similar method. For
a specific activation A, we forward the model on the input sequence twice: once with this activa-
tion and once with the flipped sign activation, then calculate the difference in the value of the loss
function. We define this as:

Contribution−A := L(M\{A},∪{−A}(x))− L(M(x)), (15)

where M\{A},∪{−A} denotes the function of the model when the sign of activation A is flipped. We
randomly flip the sign of 20 activations with gate values lower than 0.2 in each layer, obtaining the
distribution shown in Figure 1b.

B HYPER-PARAMETERS

We use the AdamW optimizer with exponential decay rates β1 = 0.9 and β2 = 0.95, and apply
a weight decay of 0.1 throughout training. The learning rate is warmed up linearly from 0 to 3e-4
during the initial 10% of training, then decays to 3e-5 following a cosine decay schedule for the
remaining steps. We set the sequence length to 2048 and the global batch size to 2048. Batch size
warmup is synchronized with the learning rate warmup schedule.

To achieve a flexible trade-off between effectiveness and efficiency for Random drop, Top-P, and
TC-MoE, we set hyperparameters as follows:

• Random drop: We set the drop probability p to 15%, 45%, and 70% to achieve average
activation numbers of 1.85, 1.55, and 1.30, respectively.

• Top-P: We set the threshold P to 0.4 as in the original paper (Huang et al., 2024), and the
dynamic loss weight to 1e-5, 2e-5, and 5e-5 to achieve average activation numbers of 1.99,
1.56, and 1.14, respectively.

• TC-MoE: We set the load balance factor α1 to 0.01, and the reward factor α2 to 0, 1e-5,
and 2e-5 to achieve average activation numbers of 1.82, 1.61, and 1.30, respectively.

14

Published as a conference paper at ICLR 2025

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0

1 . 4

1 . 6

1 . 8

2

Av
era

ge
 K

S t e p

 0
 1 e - 5
 2 e - 5

Figure 9: The changing curves of the average
number of activated experts when varying the re-
ward factor.

CC C4 Wikipedia Github arxiv Stackexchange
0

5

10

15

A
ct

iv
a

te
d

R
a

tio
 (

%
)

Source

Figure 10: The activated ratios across different
sources of the training data.

For initialization, we adopt an initializer range of 0.006. The weight matrix Wg of the router is also
initialized with a standard deviation of 0.006. The bias term bg ∈ R2N+K of the router is set such
that experts of type E1 have a bias of 0, those of type E−1 have a bias of −1, and those of type E0

have a bias of −10. This particular initialization strategy is designed to guide the router to focus
primarily on type E1 during the early stages of the training process.

C IMPROVING THE TOP-K ROUTING SCHEME

Intuitively, experts from E0 share similarities with attention sinks (Xiao et al., 2024). The intuition
behind attention sinks lies in the fact that the attention scores calculated by the Softmax operation
sum up to 1 for all tokens. As a result, the model naturally learns to assign useless attention scores
to sink tokens. Similarly, in MoE models, the router uses the Softmax operation to calculate gate
values. In this context, we believe that experts from E0 serve as sink experts to collect unneeded
gate values.

However, within the conventional Top-K routing mechanism, as illustrated in Equation 10, only the
activated experts participate in the competition for gate values. This implies that experts from E0

can collect useless gate values only when they are among the Top-K experts. To address this, we
refine our design by consistently activating experts of type E0, enabling them to participate fully
in the competition for gate values and more effectively serve as sinks. Specifically, we revise the
activation set E by taking its union with E0. The updated calculation of gate values is formulated as
follows:

gi(h) =

pi(h)/

∑
j∈E∪E0

pj(h), i ∈ E ∪ E0

0, i /∈ E ∪ E0

(16)

where E denotes the set of the top K experts with the highest probabilities.

D EFFECT OF THE REWARD LOSS

We also investigate the effect of our designed reward loss. As illustrated in Figure 9, we vary the
reward factor from 0 to 2e-5, The average number of activated experts shows different changing
curves. By increasing the reward factor, we encourage the model to select experts from E0, which
incur no computational costs. Consequently, the model tends to have a lower average number of
activated experts. Specifically, the average number of activated experts converges to 1.82 when the
reward factor is 0 and to 1.30 when the reward factor is 2e-5. These results demonstrate that tuning
the reward factor enables a flexible trade-off between effectiveness and efficiency.

15

Published as a conference paper at ICLR 2025

E ACTIVATED RATIO ON DIFFERENT SOURCES

We also investigate the activated ratio on different sources of the training data. The results are shown
in Figure 10. We observe that the activated ratio of E0 exhibits significant variance across different
sources. Notably, The activated ratio of E0 is around 11% on data from Github and arxiv, while it
is only 4% on data from Wikipedia. Similarly, the activated ratio of E−1 also varies across different
sources. The activated ratio of E−1 is only 4% on data from Wikipedia and Stackexchange, while it
is 6% on data from CC. The variance across different sources indicates the specialization of experts
from E0 and E−1.

16

	Introduction
	Related Work
	Proposed TC-MoE
	Review of Top-K Routing Mechanism
	Ternary Choice
	Load Balance Loss
	Flexible Trade-off between efficiency and effectiveness

	Experiments
	Experimental Settings
	Main Results
	Ablation Study
	Analysis

	Conclusions
	Details of calculating the contribution of each activation
	Hyper-parameters
	Improving the Top-K routing scheme
	Effect of the reward loss
	Activated Ratio on Different Sources

