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Abstract

We study the sample complexity of learning a high-dimensional simplex from a set of points
uniformly sampled from its interior. Learning of simplices is a long studied problem in computer
science and has applications in computational biology and remote sensing, mostly under the
name of ‘spectral unmixing’. We theoretically show that a sufficient sample complexity for

reliable learning of a K-dimensional simplex up to a total-variation error of ε is O
(
K2

ε log K
ε

)
,

which yields a substantial improvement over existing bounds. Based on our new theoretical
framework, we also propose a heuristic approach for the inference of simplices. Experimental
results on synthetic and real-world datasets demonstrate a comparable performance for our
method on noiseless samples, while we outperform the state-of-the-art in noisy cases.

1 Introduction

High-dimensional measurements from a physical system can sometimes be thought as convex com-
binations of a number of unknown sources, where profiles associated with each source might not
be easy to assess, separately. Even though both the source profiles and combination weights are
assumed to be unknown, however, one can still attempt to infer them through collection and careful
analysis of a large number of i.i.d. measurements. This computational problem, generally known
as the ‘unmixing problem’, arises in many areas including hyper-spectral remote sensing [1, 2], mix-
ture modeling, and analysis of tumor heterogeneity in computational biology and bioinformatics
[3, 4, 5]. In all the above cases, unmixing the data refers to inferring all the unknown source profiles
as well as the weights for each observed sample.

From a geometric point of view, this problem can be formulated as learning of a high-dimensional
simplex. A K-dimensional simplex is defined as the set of all convex combinations of K+1 points in
RK , also called vertices. For example, simplices with K = 2 and K = 3 correspond to triangles and
tetrahedrons, respectively. Learning of a simplex refers to inferring its vertices through observing
randomly chosen points from its interior. This problem is also closely related to solving the following

An implementation of our method is available at: github.com/seyedsaberi/simplex

E-mails: ∗{najafy,silchi}@ce.sharif.edu, †sah.saberi@ee.sharif.edu, {∗motahari,†khalaj,‡rabiee}@sharif.edu
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Figure 1: Learning of simplices from a geometric viewpoint: As-
sume a K-dimensional simplex specified by K + 1 latent vertices
θ0,θ1, . . . ,θK ∈ RK which correspond to the columns of the ver-
tex matrix Θ. Given n random points uniformly sampled from
the interior of the simplex, our aim is to find an estimator for
Θ, say Θ̂, such that the uniform probability measures over the
simplices specified by Θ and Θ̂ have a total variation distance of
at most ε with probability at least 1− ζ, for any given ε, ζ > 0.

set of equations:
Θpi = Xi , i = 1, . . . , n, (1)

whereXi ∈ RK represents the ith observed point, each column of the K×(K + 1) matrix Θ denotes

a source profile (or alternatively a vertex of the simplex), and pi ∈ [0, 1]K+1 is the ith weight vector
with 1Tpi = 1. Here, the matrix Θ and all the weight vectors pi are assumed to be unknown. In
order to transform the problem into a statistical setting, we assume pis are generated independently
from a uniform Dirichlet distribution which means data points are distributed uniformly inside the
simplex. It is easy to show that (1), for any n, has an infinite number of solutions. However,
as we show it in proceeding sections, the solution which corresponds to the minimum volume of
the simplex specified by Θ is the maximum-likelihood estimator of the above-mentioned statistical
inference problem.

Assume a uniform probability distribution in RK which is supported over the simplex specified
by Θ. Then, our aim is to design an algorithm that with probability at least 1− ζ estimates this
probability distribution with a total variation error of at most ε, for any given ε, ζ > 0, given that
the number of observations satisfies n ≥ poly

(
ε−1, log (1/ζ)

)
. In this setting, ε also coincides with

the normalized Nikodym distance, or the relative volume of the symmetric difference between the
estimated simplex and the true one [6]. The geometric interpretation of this problem is illustrated
in Figure 1. Some interesting questions in this setting would be: How many samples are required
for the above-mentioned estimation problem (sample complexity)? or, How well does any particular
algorithm perform if observations become noisy? In this study, we show that a sufficient sample
complexity to ensure a total variation error of at most ε with probability at least 1− ζ is

n ≥ O
(

1

ε

[
K2 log

K

ε
+ log

1

ζ

])
, (2)

where achievability is guaranteed by the Maximum Likelihood Estimator (MLE). Our approach
is based on tools from statistical learning theory and high-dimensional geometry. To the best of
our knowledge, this result yields a significant improvement over the only existing bound of [7],
which is n ≥ O

(
K22/ε2

)
. However, finding the MLE requires solving a combinatoric optimization

problem and is proved to have an exponential-time computational complexity [8], while the method
of [7] is polynomial-time. Motivated by this fact, we also propose a novel continuously-relaxed
version of the original ML problem, followed by a heuristic Gradient Descent (GD)-based algorithm
for its numerical optimization. Theoretical sample complexity for the proposed relaxed-MLE is
O
(
ε−2 log 1

ε

)
, while maintaining the same polynomial dependence on dimension K as that of MLE.

We have tested our method on a number of synthetic and real-world datasets. Experimental results
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demonstrate an acceptable performance for our method in the noiseless case, while they show a
considerable superiority over rival techniques when data samples are noisy.

The paper is organized as follows: Section 1.1 reviews the related works. Section 2 explains the
mathematical notation and also formally defines our problem. Our proposed method and theoretical
results are presented in Section 3. Section 4 is devoted to experimental results on both synthetic
and real-world datasets. Finally, conclusions are made in Section 5.

1.1 Related Works

Previous works in this domain can be divided into two separate categories: papers that follow a
theoretical approach, and those trying to solve a real-world problem via heuristics.

From a theoretical viewpoint, in a seminal work on learning linear transformations [9], authors
have proved the efficient learnability1 of hyper-cubes via O

(
K8
)

samples. They suggested a possibly
similar result for simplices. However, authors in [7] have recently proved that a sufficient sample
size for efficient learnability of simplices is n ≥ O

(
K22

)
, which is the only existing bound with

respect to dimension K prior to this paper. Regarding the estimation error ε, it is known that
learning of high-dimensional polytopes requires Õ

(
ε−1
)

2 samples [11, 12]. In particular, Theorem
1 and Corollary 1 of [11] shows that the following bound holds for the expected total-variation error
(or equivalently, the expected relative Nikodym error) of estimating a K-dimensional polytope with
r vertices (r ≥ K + 1):

ε ≤K
r log n

n
. (3)

Here, ≤K indicates that the inequality holds up to a factor that only depends on dimension K.
The bound is achievable via the ML estimator which in this case would be the minimum-volume
polytope with at most r vertices that includes all the data points. To the best of our knowledge, the
(seemingly) optimal dependence of sample complexity on K has been left as an open problem. In
this paper, we introduce a new approach to solve this problem for the special case of simplices, i.e.
when r = K+1. Our method is based on statistical analysis of the K+1 facets of a K-dimensional
simplex; However, this technique may not work for the broader case of K-dimensional r-polytopes
with r > K + 1, due to the rapidly increasing number of facets as a function of vertex number r in
high dimensions. To the best of our knowledge, the best sample complexity results for learning of
r-polytopes when r is strictly larger than K + 1 is still (3).

A nice line of research focuses on estimating convex bodies in general (and simplices, in particular)

through the convex hull of n uniformly sampled data points, denoted by K̂n. For example, it has
been shown that the random polytope K̂n is rate optimal over the class of all convex bodies in
RK in a minimax sense, when Nikodym metric is used [11]. There are also other studies on the
estimation power and/or the expected number of vertices of Convex Hull Estimators (CHE) for
different classes of geometric shapes such as ellipsoids and polytopes; See [13, 14, 15]. As long as one
is concerned about estimating the data generating distribution as a whole, without any constraint
on the shape of its support, CHE is shown to attain the following total-variation error bound in an
efficient (polynomial) time (Theorem 2 of [14]):

ε .
K2

n

(
log n

K + 1

)K−1

+
(log n)K−1

n
. (4)

1In this paper, the term learnable refers to a learning task with a polynomial sample complexity w.r.t. ε and ζ.
This notation is consistent with that of [10]. A learnable case which also has a polynomial computational complexity
is referred to as efficiently learnable.

2We use Õ (·) to hide possible logarithmic dependencies
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We show that, for the case of simplices, MLE achieves a better sample complexity bound by
removing the exponential terms w.r.t. K in the r.h.s. of (4). However, unlike CHE, MLE is NP-
hard. Once again, we should reiterate that CHE does not necessarily output a simplex and thus is
not directly linked to the approach that we follow in this paper. In this work, we are interested in
estimators in the class of all K-dimensional simplices and not the far richer class of all polytopes
in RK .

Learning of simplices also has close ties with Nonnegative Matrix Factorization (NMF) research
[16, 17]. In fact, with proper normalization, one can transform many NMF problems into learning
of a simplex (or more generally, a polytope) as long as there exists a minimum-volume constraint
or related regularizers in the formulation of their corresponding objective functions. A nice survey
on NMF methods used for data clustering can be found in [18]. Most of the existing works on NMF
focus on its real-world applications, while fewer interesting works have considered its theoretical
identifiability issues [19, 20]. In addition, a nice study on the generalization theory of dictionary
learning and other matrix factorizations can be found in [21]. In proceeding sections, we propose a
relaxed scheme for learning of simplices that has some mathematical similarities to the regulariza-
tion techniques that are known to be useful in this line of research; See, for example, the volume
regularizer proposed in [16]. It is worth mentioning that the output of NMF, in general, may span
a larger vector space than that of the data samples, which is another subtle difference between
learning of simplices and NMF research. In any case, not much work has been done so far on
the sample complexity of NMF problems, which means our work could be helpful for researchers
working in this area.

From an algorithmic point of view, the ML estimator in the noiseless setting is equivalent to
finding the minimum volume simplex that contains all the data points. This task is shown to
be NP-hard, irrespective of the input representation which could be either via facets or vertices
[8]. In this regard, [22] introduced an LP-relaxation that computes the determinant of a modified
vertex matrix instead of the volume. Determinant can then be written as the sum of matrix co-
factors and consequently optimized in a row-wise manner. However, authors do not provide any
theoretical guarantees, while experiments are used for justification of their method. Authors of
[23] studied a similar problem in lattice-based cryptography, where inputs are generated from a
parallelepiped instead of a simplex. Our problem also shares some similarities to the Blind Source
Separation (BSS) research [21]. In fact, [9] has already shown that at least one particular problem
from Independent Component Analysis (ICA) area can be transformed into learning of a high-
dimensional hyper-cube from uniform samples. However, assumptions on the statistical generation
of weight vectors pi are still crucially different between a hyper-cube and a simplex. As a result, in
BSS research one usually employs high-order statistical moments for capturing the source signals
[24], while we follow a different approach which is described in Section 3.

From a more applied perspective, learning of simplices is of practical interest in a variety of
applications, including hyper-spectral imaging [25]. Hyper-spectral cameras capture electromag-
netic energy scatters from a scene in multiple wavelengths, where the spectrum of each pixel is
a combination of reflected (or radiated) patterns of its basic elements [2, 26]. Recently, this field
has attracted an intensive research interest, which are mostly centered on analysis of the minimum
volume simplex, c.f. [1, 2, 27, 28]. Another tightly related application to our paper is the analysis
of common patterns in cancer tumors [4]. Tumors can have a high cell-type heterogeneity, and
a sufficient knowledge of the genetic characteristics that correspond to each cell-type is vital for
recommending an effective treatment. However, biological datasets are mostly in bulk format which
means each sample is an aggregation of cell populations from all the different cell-types with un-
known combination weights. Again, the idea of finding the smallest inclusive simplex for capturing
these hidden characteristics is exploited in several recent articles [3, 4, 5, 29].
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2 Notation and Definitions

For K ∈ N, let us denote the number of vertices in our model by K+1. Without loss of generality3,
the dimensionality of data points can be assumed to be K. Let us denote Φ as the set of all discrete
(K + 1)-dimensional probability mass functions, i.e. Φ ,

{
p ∈ RK+1

∣∣ ∑
k pk = 1, pk ≥ 0

}
. Φ is

generally referred to as the standard simplex. Assume θ0, . . . ,θK ∈ RK , and let Θ , [θ0| · · · |θK ]
to denote the vertex matrix, where the kth column of Θ represents the kth vertex. We define S as
a K-simplex with the vertex matrix Θ as

S = S (Θ) ,

{
x ∈ RK

∣∣∣∣ x =
∑
k

pkθk, p ∈ Φ

}
. (5)

Also, SK represents the set of all K-simplices in RK . For a K-simplex S ∈ SK , Vol (S) denotes
the Lebesgue measure (or volume) of S. For S ∈ SK , let S−k be the kth polygonal facet of S, or
equivalently, the (K − 1)-simplex obtained by removing the kth vertex of S.

In Section 3, we argue that in continuously-relaxed regimes, learning of a simplex may heavily
depend on its level of geometric regularity. In other words, simplices with more or less equally-sized
facets are much easier to learn, compared to those which include very acute corners. Inspired by
the isoperimetric inequality in geometry [30], let us define the

(
λ, λ̄

)
-isoperimetricity property for

a K-simplex as follows:
Definition 1. A K-simplex S (Θ) ∈ SK for Θ , [θ0| · · · |θK ] is said to be

(
λ, λ̄

)
-isoperimetric for

some λ, λ̄ > 0, if

max
k,k′

‖θk − θk′‖2 ≤ λKVol (S)
1

K , max
k

Vol (S−k) ≤ λ̄Vol (S)
K−1

K .

The essence of
(
λ, λ̄

)
-isoperimetricity property is to ensure that a given K-simplex is comparably

stretched along all theK dimensions of RK . According to Lemma 7 (see Appendix B), for a perfectly
regular simplex with equal side lines and all K ∈ N, λ and λ̄ can be chosen to be as small as 1 and
e, respectively.

For any simplex S ∈ SK , let Hk ,
{
x ∈ RK | wT

k x+ bk = 0
}

for k = 0, . . . ,K represent the

hyper-plane which encompasses the kth facet of S. This way, wk ∈ RK denotes a normal vector
(with ‖wk‖2 = 1) and bk ∈ R is a corresponding bias value. Vectors wk are assumed to be outward
w.r.t. S. Then, the following defines the planar distance of a point in RK from the simplex S:
Definition 2. For any point x ∈ RK , let us define the planar distance of x from S, denoted by
dS (x), as

dS (x) , max

{
0, max

k
wT
k x+ bk

}
. (6)

We always have dS (x) ≥ 0, and since each wk is an outward normal vector w.r.t. S, dS (x) = 0
holds if and only if x ∈ S. Also, it is easy to check that for any fixed d0 ≥ 0, the set{
x ∈ RK | dS (x) ≤ d0

}
is also a simplex which encompasses S (see Figure 2). For a simplex

S ∈ SK , PS denotes the uniform probability distribution which is supported over S. Let ρS
be the probability density function associated to PS , then

ρS (x) ,
1S (x)

Vol (S)
for ∀x ∈ RK , (7)

3Points within aK-simplex lie on aK-dimensional linear subspace, which is almost surely identifiable and efficiently
learnable as long as n ≥ K + 1.
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S (Θ)

δ
Figure 2: Graphical illustration of the planar dis-
tance dS(Θ) (·) in Definition 2. The gray trian-
gle shows an arbitrary two-dimensional simplex
S (Θ) ∈ S2. For some δ > 0, the dashed contour
corresponds to the set

{
x ∈ R2| dS(Θ) (x) = δ

}
.

As can be seen, the set of points in RK with
the same positive planar distance from a simplex
S ∈ SK is in fact the boundary of another simplex
whose facets are parallel to those of S.

where 1S (x) is the indicator function of the K-simplex S which returns 1 if x ∈ S, and zero other-
wise. Also, DTV (·, ·) represents the total-variation distance between two probability distributions.

Now, we can formally define the problem that has been tackled in this paper. Assume
X1, . . . ,Xn ∈ RK to be n i.i.d. samples which are generated uniformly from ST ∈ SK , i.e.
X1, . . . ,Xn ∼ PST . The problem is to find an approximation of ST , denoted by S∗, from the
dataset D , {X1, . . . ,Xn} such that with probability at least 1 − ζ the total variation between
PS∗ and PST is less than ε.

3 Statistical Learning of Simplices: Method and Results

In this section, we first formulate the MLE for estimation of ST from the data data points in D.
We then give a new sample complexity bound for MLE which seems to be optimal with respect to
both K and ε. Then, we propose a novel relaxation for the ML estimator that has the same sample
complexity bound as that of MLE, at least with respect to dimension K.

Given a dataset D, the ML estimator for ST , which we denote by S∗ML = S∗ML (D) would be the
maximizer of the log-likelihood function logPS (D) according to the following formulation:

S∗ML , argmax
S∈SK

{
log ρS (D) = log

n∏
i=1

ρS (Xi) =

n∑
i=1

log 1S (Xi)− n log Vol (S)

}
. (8)

It is easy to see that the optimization in (8) aims to find the smallest simplex (in terms of volume),
which contains all the data points in D: For a simplex S ∈ SK , even if a single data point happens
to be outside of S, then the log-likelihood of S being the true simplex becomes −∞. Moreover,
among those simplices that contain all the data points, the one(s) with the smallest volume would
be the maximizer(s) of (8). Regardless of the computational burden that is required to find the
MLE, one can still be interested in a sufficient number of samples in D which guarantees the
suitability of MLE in a PAC sense. In this regard, Theorem 1 states one of our main contributions
in this paper, where we derive a new sample complexity bound for MLE as a function of both
dimension K and estimation error ε.
Theorem 1 (Sample Complexity of MLE). Assume a K-simplex ST ∈ SK and let X1, . . . ,Xn be
n i.i.d. samples drawn from PST . Assume there exist ε, ζ > 0, such that

n ≥ O
(

1

ε

[
K2 log

(
K

ε

)
+ log

1

ζ

])
.
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Then, with probability at least 1 − ζ, the maximum likelihood estimator of ST , denoted by S∗ML,
satisfies DTV

(
PST ,PS∗ML

)
≤ ε.

The proof of Theorem 1 is given in Appendix A. Sample complexity is shown to be O
(
K2 logK

)
w.r.t. the dimension K, while the dependence on estimation error ε has remained optimal [12].
Interestingly, the given guarantees on the accuracy of MLE hold regardless of the shape of the
simplex and does not impose any geometric constraints on ST .

However, solving for (8) is proved to be NP-hard, and thus impractical in real-world situations
[8]. In the remainder of this section, we try to propose a heuristic framework for the estimation
of simplices, which is practically amenable and at the same time enjoys from a number of weaker
theoretical guarantees. A solution for the computational hardness of ML estimator is to replace the
objective function in (8) with a continuously-relaxed surrogate. In order to do so, first it should be
noted that the maximization in (8) is equivalent to the following constrained minimization problem:

S∗ML = argmin
S∈SK

Vol (S)

subject to dS (Xi) = 0 , ∀i. (9)

The above formulation directly follows from the explanations that we gave earlier on how ML
algorithm attempts to find the optimal simplex. It should be noted that any other distance measure
rather than dS (·) can also be used in (9); However, this particular choice significantly helps us to
derive our sample complexity bounds in the proceeding parts of the paper. Motivated by the
formulation in (9) and also the idea of Lagrangian relaxation, let us propose the Continuously-
Relaxed Risk (CRR) in order to approximate ST as follows:
Definition 3 (Continuously-Relaxed Risk). Assume a dataset D = {X1, . . . ,Xn} in RK , parame-
ter γ ≥ 0, and an increasing and integrable function ` : R→ R. Then, the empirical Continuously-
Relaxed Risk R̂CRR : SK → R is defined as:

R̂CRR (S;D, γ, `) ,
1√
n

n∑
i=1

` (dS (Xi)) + γVol (S) . (10)

Also, let us define
S∗ = S∗ (D, γ, `) , argmin

S∈SK
R̂CRR (S;D, γ, `) , (11)

as the Continuously-Relaxed Estimator (CRE) of ST .

Parameter γ > 0 and function ` (·) can be freely chosen, except that ` (·) must be increasing and
integrable; However, ` does not need to be strictly increasing or even continuous in general. In any
case, choosing a differentiable ` makes R̂CRR (S (Θ) ;D, γ, `) to be differentiable w.r.t. the vertex
matrix Θ almost everywhere4. In Section 3.1, we derive an efficient technique to numerically
compute the derivatives of R̂CRR w.r.t. the vertex matrix Θ which works for all differentiable
functions ` (·). We then propose a heuristic GD-based scheme to find a local minimizer of (11).
The following theorem gives us a sample complexity bound for learning of ST via (11). Our results
hold for any increasing and integrable function ` : R→ R.
Theorem 2 (Sample Complexity for General `). Assume a K-simplex ST with Lebesgue measure
VT , Vol (ST ), which is

(
λ, λ̄

)
-isoperimetric for some λ, λ̄ ≥ 0. Also, assume X1,X2, . . . ,Xn to

4As shown in Section 3.1, the subset of simplices in SK for which the gradient of R̂CRR does not exist has a zero
Lebesgue measure.
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be n i.i.d. samples drawn from PST . Assume for ζ, ε > 0, the following condition holds for n:

n ≥

6`
(

3λKV
1

K

T

)(√
K2 log ne

K +
√

log 1
ζ

)
+ γVT ε

εL
(
εV

1/K
T

(K+1)λ̄

)


2

,

where L (x) , 1
x

∫ x
0 ` (u) du−` (0). Then, with probability at least 1−ζ we have DTV (PST ,PS∗) ≤ ε,

where S∗ is an optimizer of (11).

Proof of Theorem 2 is given in Appendix A. Similar to Theorem 1, the proof includes math-
ematical techniques from high-dimensional geometry and calculus, as well as tools from Vapnik-
Chervonenkis (VC) theory of statistical learning [10]. The general statement of Theorem 2, for
particular choices of the smoothing function ` and/or under certain asymptotic regimes can be ex-
tended to some interesting side results. For example, with appropriate choices of γ, one can always

bound the total-variation error below O
(√

log n/n
)

. Another interesting issue is the mathematical

dependence of sample complexity on the geometric regularity of ST . In fact, searching for functions
` that decrease (or even obviate) the need to put geometric restrictions on the true simplex could
be a nice research direction which goes beyond the scope of this paper. The following corollary is
perhaps the most notable consequence of Theorem 2.
Corollary 1 (Sample Complexity of Soft-ML). Assume a K-simplex ST ∈ SK and let X1, . . . ,Xn

to be n i.i.d. samples drawn from PST . Also, assume ST is
(
λ, λ̄

)
-isoperimetric for some bounded

λ, λ̄ > 0. For ε, ζ > 0 and parameter γ > 0, let function ` : R→ R be

` (u) , 1− e−bu, ∀u ∈ R,

with b , K
ε , and also assume

n ≥γ,λ̄,λ O
(

1

ε2

[
K2 log

(
K

ε

)
+ log

1

ζ

])
,

where ≥γ,λ̄,λ means the inequality holds up to a factor that only depends on the mentioned param-
eters. Then, with probability at least 1 − ζ the minimizer of (11), denoted by S∗, satisfies the
inequality DTV (PST ,PS∗) ≤ ε.

Proof of Corollary 1 is given in Appendix B. In Corollary 1, we show that for at least one class
of differentiable functions `, the sample complexity for acquiring a reliable solution to (11) has the
same order with that of MLE in terms of parameter ζ and dimension K. However, the optimal
dependence of sample complexity w.r.t. ε, which is Õ

(
ε−1
)
, has been deteriorated to Õ

(
ε−2
)
. We

conjecture that this sub-optimal dependence cannot be improved, since prior works on learning
of other geometric shapes, such as hyper-cubes in [9], have also concluded that by relaxing the
combinatoric and exponential-time algorithms the dependence on ε would be sacrificed.

By using the Soft-ML setting of Corollary 1, the optimization problem of Definition 3 becomes
differentiable w.r.t. Θ almost everywhere and thus one can apply any heuristic continuous opti-
mization tool, such as Gradient Descent (GD), to solve it. It should be noted that this result is not
in contrast with the computational hardness of ML for two reasons: first, Corollary 1 does not say
anything about the convexity of (10). Second, even if (10) happens to be convex with the above
choice of ` (·), we are still tackling a different problem compared to finding the smallest inclusive
simplex which is what ML estimation attempts to do.

A thorough convexity analysis of our method goes beyond the scope of this paper. As a result, we
make no claims regarding the computational complexity of our continuous-relaxation in Definition
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Algorithm 1 Learning of simplices via Gradient Descent

1: procedure Simplex Inference(D = {X1, . . . ,Xn} ,K, ` (·) , γ, T, α)
2: Select {i0, i1, . . . , iK} ⊂ [n] uniformly at random.
3: Initialize Θ(0) = [Xi0 | . . . |XiK ]
4: for t = 0 : · · · : T − 1 do
5: Θ(t+1) ← Θ(t) − α∇Θ

[
R̂CRR (S (Θ) ;D, `, γ)

]
. According to (16) and Theorem 3

6: end for
7: end procedure

3. Instead, we derive an efficient scheme to compute the gradient of (11) w.r.t. almost any vertex
matrix Θ, and then show that a simple heuristic approach, such as GD, can achieve a very good
performance in practice.

3.1 Numerical Optimization

We show how to numerically compute the gradient of (10) in order to employ it in the GD-based
optimization of Algorithm 1. Later in Section 4, we have empirically investigated the convergence
and effectiveness of Algorithm 1 through several computer simulations.

According to (10), R̂CRR (S) is naturally broken into two separate terms: one controls the
distance of data points from S, and the second one is a regularization term on the volume of S.
Gradient of γVol (S) is easy to compute, since volume can be rewritten as

Vol (S (Θ)) =
1

K!

∣∣∣∣det

[
θ1 − θ0

∣∣∣∣ · · · ∣∣∣∣θK − θ0

]∣∣∣∣ . (12)

On the other hand, for any matrixA ∈ RK×K we have∇Adet (A) = adjT (A), where adj (·) denotes
the adjugate function. To ensure that the gradient is well-defined, assume Θ to be non-degenerate,
i.e. S (Θ) has a positive volume. This assumption only excludes a zero-measure (according to
the Lebesgue measure) subset of solutions from SK . For the remaining part of (10), one needs
to compute the gradient vectors gik = ∇θk`

(
dS(Θ) (Xi)

)
, i ∈ [n] , k ∈ [K], or alternatively, the

gradient matrices Gi , [gi0| · · · |giK ] , i ∈ [n]. The following theorem gives a straightforward
procedure for numerical computation of Gis.
Theorem 3 (Gradient of the Planar Distance). Assume X ∈ RK , S (Θ) ∈ SK with Vol (S (Θ)) >
0, and an increasing function ` : R→ R which is differentiable in R+.

i) If dS(Θ) (X) = 0, assume wT
kX + bk < 0 for all k = 0, . . . ,K, where (wk, bk) represent the

parameters of hyper-plane Hk which encompasses the kth facet of S (Θ). Then, the gradient w.r.t.
Θ is zero.

ii) If dS(Θ) (X) > 0, assume k∗ , argmaxk w
T
kX + bk is unique. Next, one needs to compute the

normal outward vector wk∗. Let the K×K matrix Θ−k∗ represent Θ with its k∗th column removed.
Then, wk∗ is the eigenvector corresponding to the unique zero eigenvalue of

(
I − 1

K11T
)
ΘT
−k∗.

Without loss of generality, assume ‖wk∗‖2 = 1 and wT
k∗
(
θk∗ − 1

KΘ−k∗1
)
≤ 0 which means wk∗ is

outward w.r.t. S (Θ). Let

p∗ , Θ†−k∗

(
X −wk∗w

T
k∗

(
X − 1

K
Θ−k∗1

))
∈ RK , (13)
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where † denotes the pseudo-inverse operator. Then, we have:

∇Θ`
(
dS(Θ) (X)

)
= −`′

(
dS(Θ) (X)

)
wk∗p

∗TJk∗ ∈ RK×(K+1), (14)

where `′ (·) denotes the derivative of ` (·), and Jk∗ is a K × (K + 1) zero-padded identity matrix as
follows:

Jk∗ , [e1| · · · |ek∗−1|0|ek∗ | · · · |eK ] . (15)

Here, ek ∈ RK refers to a binary vector where the kth component is 1 and the rest are zero.

Proof of Theorem 3 is given in Appendix A. It should be noted that conditions i) and ii) of
Theorem 3 hold for all S ∈ SK , except for a subset with a zero Lebesgue measure. Total gradient of
the continuously-relaxed risk R̂CRR (S (Θ) ;D, `, γ) w.r.t. vertex matrix Θ can then be computed
as

∇ΘR̂CRR (S (Θ)) =
1√
n

n∑
i=1

Gi +
γs

K!

[
0

∣∣∣∣adjT
(
Θ1:K − θ01

T
)](

I − 11T

K + 1

)
, (16)

where 0 is an all-zero vector, 1 is an all-one vector and I denotes the identity matrix, all with
corresponding appropriate sizes. Variable s ∈ {±1} denotes the sign of det [θ1 − θ0| · · · |θK − θ0],
and Θ1:K represents the K × K matrix [θ1| · · · |θK ]. Also, we have Gi , ∇Θ`

(
dS(Θ) (Xi)

)
. In

order to avoid the zero-measure set of ill-conditioned simplices in SK , as described by conditions i
and ii of Theorem 3, one can add an infinitesimally small noise to Θ before computing the gradient
matrix at each iteration. For example, assuming the numerical computations are performed by a
digital processor with B precision bits, the addition of a Gaussian noise drawn from N

(
0, 2−BI

)
implies that the probability of facing an ill-conditioned simplex in Algorithm 1 is zero.

4 Experimental Results

This section is devoted to testing the performance of Algorithm 1 on a number of synthetic and
real-world datasets. In particular, we report the results of applying our method on three different
tasks: 1) analysis of convergence, noise robustness and error performance on synthetic data, 2)
cell-type extraction in computational biology, and 3) spectral unmixing of remote sensing data. We
also compare our method with a number of popular rival frameworks. Throughout this section,
estimation error is measured in terms of the average Euclidean distance between the vertices of the
true simplex ST and those of an estimated simplex Ŝ 5. For simplicity, assume Θ = [θ0| · · · |θK ]

and Θ̂ =
[
θ̂0| · · · |θ̂K

]
to be the vertex matrices of ST and Ŝ, respectively. Then, error can be

mathematically formulated as follows:

error2 , min
(i0,...,iK)

1

K (K + 1)

K∑
k=0

∥∥∥θk − θ̂ik∥∥∥2

2
, (17)

where minimization is taken over all permutations (i0, . . . , iK) of the numbers {0, 1, . . . ,K}. The
main reason for using error instead of the total-variation distance DTV (·, ·) is due to the numerical
hardness of computing TV distance, specially in higher dimensions. Motivated by Corollary 1, we
have chosen ` (u) , 1− e−bu as our smoothing loss function in Definition 3, where b , diam−1 (D)
is chosen as the inverse diameter of the input database D = {X1, . . . ,Xn}. Here, by diam (D)
we simply mean maxi,j ‖Xi −Xj‖2. Parameters γ and the learning rate α in Algorithm 1 are
manually adjusted to optimize the performance and convergence rate. Noticeably, we did not
observe a considerable sensitivity to any of these parameters.

5We use the notation Ŝ for the output of Algorithm 1 instead of S∗, since S∗ is already defined as the global
optimizer of (11). However, Algorithm 1 may converge to a local minimizer which could be different from S∗.
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4.1 Initialization and Acceleration

We have empirically observed that by setting an appropriate initial simplex Sinit ∈ SK for Algorithm
1, one can significantly improve its convergence rate. Moreover, numerical evaluation of the gradient
in (16) is O

(
nK3

)
which could be computationally intensive in some applications. In this part, we

propose a simple heuristic approach to circumvent the above-mentioned problems. Let conv (D) ⊆
D represent the vertices of the convex hull of data points X1, . . . ,Xn ∈ D. In other words,
conv (D) is the smallest subset of D with the following property:

X1, . . . ,Xn ∈

{∑
i

qiZi

∣∣∣∣ ∀Zi ∈ conv (D) ,
∑
i

qi = 1, ∀qi ≥ 0

}
. (18)

This way, one can choose Sinit ∈ SK such that its vertices are randomly selected from conv (D).
We have empirically observed that such initialization leads to a substantially faster convergence.
Moreover, one can accelerate the execution of Algorithm 1 by approximating the gradient in (16)
via computing it only for data points in conv (D) instead of the whole dataset D.

The effect of the proposed approximation for the gradient remains negligible on the performance
of Algorithm 1 in low noise regimes. In other words, when γ is chosen to be relatively low, which
means the objective function of Algorithm 1 becomes more similar to that of ML estimator, the
proposed algorithm tries to find a simplex that encompasses almost all of the data points. This is,
however, equivalent to encompassing the convex hull of data points which suggests that the proposed
approximation of gradient becomes significantly close to (16) after a number of initial iterations.
We already know that the convex hull of a set of n points can be determined in gn,K ≤ Õ

(
nbK/2c

)
arithmetic operations, which grows exponentially w.r.t. K [31]. However, the mentioned bound
corresponds to a worst-case analysis which might not be the case in many real-world or randomly
formed databases. As a result, we have faced a far smaller computational burden in our experiments,
i.e. gn,K � Õ

(
nbK/2c

)
even for moderate K. A detailed experimental or analytic investigation of

this issue goes beyond the scope of this paper.

Therefore, the proposed strategy reduces the expected computational complexity of approximat-
ing the gradient to O

(
gn,K + fn,KK

3
)
, where fn,K denotes the expected number of vertices of the

convex hull of n randomly chosen points inside a K-simplex. It can be at least empirically confirmed
that for large n, we have fn,K � n. As a result of the mentioned initialization and acceleration
strategies for moderately small K, our method runs fairly faster than its rival frameworks with a
negligible harm to its performance. Detailed experiments on the performance of Algorithm 1 are
given in the next sub-section. In all the following simulations we have always used the discussed
initialization technique unless we say otherwise.

One more issue that should be discussed before proceeding to the next sub-section, is that finding
the convex hull of a dataset D might be very sensitive to the presence of outliers in the dataset.
However, analysis of the effect of outliers goes beyond the scope of this paper and we leave this
interesting line of work for future researches in this area.

4.2 Synthetic Data

Figure 3 shows four snapshots from the outputs of Algorithm 1 running on a set of n = 100
noiseless data points in R2, which have been uniformly sampled from a typical two-dimensional
simplex. We have chosen K = 2 in order to facilitate the visualization of our results. For this
particular simulation, we have chosen a completely random initial simplex instead of the suggested
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Figure 3: Snapshots from running Algorithm 1 on a set of n = 100 noiseless samples drawn uniformly from
a two-dimensional simplex. The original triangle is drawn in black and the outputs of the proposed method
for four different iteration steps are shown in red.

technique in the previous sub-section. The reason behind this choice is to show the convergence
performance of Algorithm 1 and the fact that it does not necessarily need a good initialization.
Here, the shaded simplex denotes the true ST , while the “red” simplex is the output of Algorithm
1 for four different iteration numbers. As it can be seen, despite the fact that algorithm has started
from an inappropriate initial point, it converges to an acceptable solution in a reasonable number of
iterations. Figure 4 depicts error as a function of iteration number for the experiment of Figure 3.
Results have been averaged over 100 trials. According to the curve, sample mean and the standard
deviation of error decay as the number of iterations increases.

Figure 5 aims to investigate the robustness of our method to noise and also the dimension of the
space. We have used synthetic datasets for this purpose. In particular, Figure 5a illustrates the
performance of Algorithm 1 when samples are contaminated with additive white Gaussian noise.
In this regard, n = 100 uniformly-sampled data points have been drawn from a two-dimensional
simplex. Each sample has been contaminated with a noise vector drawn independently from a
zero-mean Gaussian distribution N

(
0, σ2I

)
, where σ denotes the standard deviation of the noise

components. Let us define the noise strength ρ as the normalized standard deviation of noise as
follows:

ρ , σ

 1

K (K + 1)

∑
k,k′

‖θk − θk′‖2

−1

. (19)

According to the above definition, value of ρ is invariant to the size of the original simplex ST .
Figure 5a depicts the error of Algorithm 1 as a function of noise strength ρ. The proposed method
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Figure 4: Depiction of error in (17) as a function
of iteration number for Algorithm 1. The experi-
ment has been performed on n = 100 data points
uniformly sampled from a two-dimensional simplex.
Parameters γ and optimization step α have been
adjusted to optimize the performance. According
to the curve, sample mean and the standard devi-
ation of error decay as the number of iterations is
increased.
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Figure 5: Estimation error as a function of noise strength ρ and dimension. In 5a, n = 100 data samples are
drawn from a two-dimensional simplex and then contaminated with additive white Gaussian noise. However,
for 5b data samples are noiseless and n has been increased proportional to K2 logK, where K indicates the
dimension.

is considerably robust to noise roughly for ρ ≤ 0.2. However, the performance is degraded when
noise strength is being increased. On the other hand, Figure 5b illustrates the error as a function of
dimension K. For each point of the curve, dataset size has been increased proportional to K2 logK
in order to match the result of Theorem 2 and Corollaries 1 and 1. Surprisingly, we have empirically
validated that as long as n is increased proportional to K2 logK, the error remains constant. This
implies that Algorithm 1 has the same sample complexity (order-wise) as that of ML, while unlike
the ML estimator it converges to a solution in a practically reasonable time.

In Table 1, we have compared the error performance of our method with a number of well-known
computational techniques for learning of simplices, namely MVSA [1], SISAL [32], VCA [33], and
UNMIX [3]. We have used three datasets for the experiments which are i) Plain dataset: n = 100
data points generated from a simple two-dimensional simplex, ii) Noisy dataset: a noisy version of
the “Plain” dataset with ρ = 0.5 (highly noisy), and iii) High-Dimensional (HD) dataset: n = 1000
data points generated uniformly from a noiseless simplex with K = 9. According to Table 1, our
method has a comparable performance on “Plain” and “HD” datasets, while it outperforms all the
rival strategies on Noisy dataset. The reason behind this result might be due to the continuously-
relaxed nature of our method which is in contrast to the majority of existing frameworks in this
area. In fact, the inherent flexibility of the objective function in (11) achieves more robustness to
noisy data points that fall out of the true simplex.

Plain Noisy HD
Proposed 0.20 0.51 0.74
MVSA 0.14 1.84 0.76
SISAL 0.16 1.65 0.77
VCA 1.09 1.006 5.93

UNMIX 0.14 1.83 -

Table 1: Comparison of the proposed method with MVSA
[1], SISAL [32], VCA [33], and UNMIX [3]. Methods have
been tested on three different datasets. The values of error
have been averaged over several runs, such that all relative
standard deviations become less than 10%. UNMIX did not
execute on “HD” dataset in a reasonable time.
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Figure 6: Cell-type identification from micro-array data given in [34]. 6a: Visualization of data points, as
well as the estimated simplex. Vertices of the estimated simplex highly resemble the expression levels of the
ground truth tissues. 6b: Estimated weights for the samples as a function of real weights reported in the
dataset. Data points are scattered around the X = Y curve (red). Also, the result of a LOESS regression of
the samples (blue) falls very close to the X = Y curve.

4.3 Computational Biology

Unmixing of cell-types from biological samples has become a commonplace task in bioinformatics,
and in particular, in cancer therapy. In a recent work [34], researchers have synthetically merged
cells from three different tissues (brain, liver and kidney) with several different percentages, where
combination weights were known prior to each merging. The aim of this experiment is to investigate
whether one can deconvolve the gene-expression profiles of different tissues from a synthetic bulk
dataset. However, the dataset in [34] is also a potentially appropriate target for Algorithm 1. In
fact, we can neglect the knowledge of the combination weights, and try to blindly infer both the
unknown gene-expression profiles of the three tissues, as well as the combination weights, directly
from the gene-expression levels of samples.

In this regard, we have used all the n = 42 samples of the dataset in [34], where the initial
dimensionality of data is Kinit = 31100. Due to the presence of redundant information in the
dataset6, samples have been linearly projected onto a corresponding 41-dimensional subspace via
Principal Component Analysis (PCA), and then the proposed method has been applied. Figure 6
illustrates the final results, where Figure 6a shows a qualitative two-dimensional visualization of the
final simplex (via the first two principal components) that matches the ground truth gene-expression
profiles of the tissues with a relatively high accuracy. From a more quantitative perspective, Figure
6b shows the inferred weights for all the n = 42 samples as a function of real weights which are
already given in the dataset. As can be seen, points are scattered around the X = Y curve which
is depicted in red. We have also shown the result of a LOESS (Locally Estimated Scatterplot
Smoothing) regression of the samples via a blue curve, which is very close to the X = Y curve.
This suggests that the real weights and the ones that are estimated via our proposed method are

6Any n points in RKinit , for n ≤ Kinit, lie on a (n− 1)-dimensional linear subspace which is almost surely
identifiable and can be attained by Principal Component Analysis. This way, the reduction of dimensionality in this
case does not result into any information loss.
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Figure 7: (a): Estimation of dominant elements in a hyper-spectral imaging dataset (red simplex) compared
to the ground truth (green simplex). Three major elements, called Andradite, Dumortierite and Sphene have
been identified which considerably match with our experimental findings. Data points have been visualized
via the first two PCs. (b): Estimation error as a function of iterations for the Cuprit dataset.

similar to each other.

4.4 Hyper-Spectral Remote Sensing

Another major application of the “unmixing problem” is in hyper-spectral remote sensing, where
one aims to reveal the chemical composition of materials in a remote area by using hyper-spectral
imaging devices. Each pixel in a hyper-spectral image is a vector including radiation intensities (in
different wave-lengths) from a relatively small region of a remote location. This way, pixels can be
considered as weighted averages of a limited number of radiation profiles which correspond to the
chemical elements that are likely to be found in that location. The Cuprit dataset [35] includes
n = 47500 pixels, where each pixel has been measured in effectively m = 188 spectral wavelengths.
In [35], it has been suggested that K = 12 basic elements might be present in the remote location
that corresponds to the image pixels, however, a smaller subset of them might be dominant.

We have randomly chosen n = 10000 points from this dataset and reduced the dimensionality
of data to dim = 10 via PCA. The latter is performed in order to eliminate the majority of linear
dependencies and also to suppress the effect of noise. According to a simple eigen-analysis of the
data, we chose the number of vertices for the simplex as K + 1 = 3. Based on the above setting,
Figure 7 illustrates the performance of the proposed method on the data compared to the ground
truth profiles presented in the literature. Similar to the previous sub-section, Figure 7a depicts
a two-dimensional visualization, obtained from the first two principal components of the data
samples and the estimated simplex via Algorithm 1 (shown in red). For the sake of comparison,
the ground truth profiles have been shown by a green simplex. Evidently, our method finds the
dominant elements with an acceptable accuracy. Figure 7b shows the approximation error versus
the number of iterations for Algorithm 1.
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5 Conclusions

This paper aims to develop a computational framework for learning of simplices in arbitrary dimen-
sions. In order to deal with the combinatoric structure of this problem, a continuously-relaxed op-
timization scheme has been proposed which comes with new theoretical sample complexity bounds.
In particular, we have shown that a sufficient sample complexity for both ML and the proposed
Soft-ML surrogate are n ≥ O

(
K2 logK

)
, which is a significant improvement of the existing bounds

for this problem, i.e. O
(
K22

)
. In addition, a heuristic, yet computationally tractable algorithm is

proposed for numerical optimization of our scheme. Numerous experiments magnify the applica-
bility of our method on synthetic and real-world datasets. Our method has shown a comparable
performance to a number of well-known rival strategies on noiseless data, while shows a consider-
able superiority in noisy regimes. For future works, one may attempt to provide similar sample
complexity bounds for the noisy case, which has not been tackled yet. Assuming non-uniform dis-
tributions over the simplices to generate the data could be another interesting problem to consider.
Also, deriving the computational complexity of this problem, as well as finding lower bounds on
the sample complexity, are examples of other existing research directions in this area.
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A Proof of Theorems

Proof of Theorem 1. We show that the problem of estimating the true simplex ST up to a total-
variation error of ε can be transformed into a binary classification task, where one aims to learn a
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classifier up to a same classification error rate. Mathematically speaking, for S ∈ SK and X ∈ RK ,
let us define the parametric binary classifier c (·;S) as

c (X;S) ,

{
0 X ∈ S
1 O.W.

, (20)

and the corresponding classifier family C as

C ,

{
c (·;S) : RK → {1, 0}

∣∣∣∣ S ∈ SK
}
. (21)

Having the input dataset D = {X1, . . . ,Xn} drawn independently from distribution PST , let us
consider an augmented supervised dataset D̃ which includes the n data points X1, . . . ,Xn, all
labeled with c (·;ST ); Thus, all data points in D̃ are labeled with 0. Assume there exists algorithm
A , which given the dataset D̃, is able to output a consistent classifier c∗ ∈ C and a corresponding
simplex S∗ ∈ SK , i.e., c∗ (·) = c (·;S∗), where the volume of S∗ is strictly bounded. Here, by
consistent, we mean c∗ classifies all the data points in D̃ correctly. Mathematically speaking, let
us assume c∗ and S∗ have the following two properties:

Consistency : c∗ (Xi) = 0, for all i = 1, . . . , n,

Bounded Volume Property : Vol (S∗) ≤ Vol (ST ) ,

where ST denotes the true simplex underlying the input data samples. We first claim that the
simplex S∗ which is found by algorithm A and has the above properties approximates the true
simplex ST up to a tolerable total-variation error. Then, we show that the ML algorithm has
both of the above-mentioned properties and thus MLE is a desired estimator in the total-variation
(Nikodym distance) sense. In order to do so, first we show the following:

Lemma 1. For any ε ∈ [0, 1], if we have EX∼PST {c
∗ (X)} ≤ ε, then DTV (PST ,PS∗) ≤ ε.

Proof. It should be noted that

EX∼PST {c (X;S∗)} = P {X ∼ PST and X ∈ S∗} ≤ ε, (22)

which means Vol (S∗ ∩ ST ) ≥ VT (1− ε), where VT = Vol (ST ). Also, we already know that
Vol (S∗) ≤ VT . These facts lead us to the following three inequalities:

Vol (S∗) ≥ VT (1− ε) , (23)

Vol (S∗ − ST ) ≤ Vol (S∗)− VT (1− ε)
and Vol (ST − S∗) ≤ VT ε.

On the other hand, based on the definition of the total variation distance between PS∗ and PST ,
we have

DTV (PS∗ ,PST ) ,
1

2

[∫
S∗−ST

ρS∗ +

∫
ST−S∗

ρST +

∫
S∗∩ST

|ρS∗ − ρST |
]

≤ 1

2

[
Vol (S∗)− VT (1− ε)

Vol (S∗)
+ ε · VT

VT
+ (1− ε)

(
VT

Vol (S∗)
− 1

)]
= ε, (24)

where for any S ∈ SK , ρS denotes the probability density function associated to PS . This completes
the proof.
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Next, we take advantage of a well-known generalization bound for consistent binary classifiers
that has been originally implied from a series of theorems in [36]. We use a modified version of this
bound which has been formulated in Theorem A2.1 of [37] and, for example, can also be found in
Lemma 4 of [38]. Formal statement of the above-mentioned generalization bound is rewritten in
Lemma 2 for the sake of the readability of the paper. Before proceeding to the lemma, let us define
the “growth function” of a set of binary classifiers:

Definition 4. Assume X is an arbitrary set of feature vectors and C ⊆ {0, 1}X denotes a corre-
sponding set of binary classifiers. The growth function of C , denoted by ΠC (·) : N→ N, is defined
such that for all m ∈ N, ΠC (m) represents the maximum number of distinct ways that any set of
m points in X can be labeled by classifiers in C . Mathematically speaking, we have

ΠC (m) , sup
X1,...,Xm∈X

∣∣∣∣{(c (X1) , . . . , c (Xm))

∣∣∣∣ c ∈ C

}∣∣∣∣ ,
where |{·}| denotes the cardinality of a set.

Lemma 2. Assume an arbitrary and unknown distribution P supported over a set X , and a learn-
able class of binary classifiers C ⊆ {0, 1}X . Let ΠC : N→ N be the “growth function” of C . Assume
a dataset D̃ consisting of n i.i.d. samples drawn from P, where each sample has been labeled by a
classifier cT ∈ C .

Assume there exists algorithm A which given D̃ outputs a consistent classifier c∗ ∈ C . Then,
for any ζ > 0, the following generalization bound holds with probability at least 1− ζ:

P {c∗ (X) 6= cT (X)} ≤ O

(
log ΠC (2n) + log 1

ζ

n

)
.

Proof can be found in any of the above-mentioned references. Moreover, Lemma 3 proves that
for the particular class of K-dimensional simplices, the growth function associated to the classifier
set C can be bounded as log ΠC (n) ≤ O

(
K2 log (n/K)

)
.

Lemma 3. For K ∈ N, assume the classifier set C which consists of all the simplex-based binary
classifiers in RK as described in (21). Then, the following upper-bound holds for the growth function
ΠC , for n ∈ N:

ΠC (n) ≤
(

ne

K + 1

)(K+1)2

.

See Appendix B for the proof. Substituting into the generalization bound of Lemma 2, we have
the following bound for the total-variation error of the output of algorithm A , denoted by S∗:

DTV (PST ,PS∗) ≤ O

(
K2 log n

K + log 1
ζ

n

)
. (25)

Following some simple algebra, one can show that the minimum number of samples n which guar-
antees a maximum total-variation error of ε > 0 with probability at least 1 − ζ for algorithm A
must satisfy the following sample complexity bound:

n ≥ O

(
K2 log K

ε + log 1
ζ

ε

)
. (26)
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What remains to prove is that the ML algorithm has the same consistency and bounded volume
property as the imaginary algorithm A . First, remember that all the data samples in the dataset
D̃ are labeled with 0. On the other hand, MLE always finds a simplex that encapsulates all the
data points X1, . . . ,Xn. Therefore, the classifier in C which corresponds to the MLE of ST , say
c (·;S∗ML), is always a consistent classifier. This proves the consistency property. In addition, ML
always finds the smallest (in terms of Lebesgue measure or volume) simplex that encapsulates all
the samples. It should be noted that the true simplex ST also corresponds to a consistent classifier
in C , which means the volume of S∗ML must be smaller or equal to the volume of ST which is
denoted by VT , i.e.

Vol (S∗ML) ≤ VT . (27)

Therefore, ML algorithm satisfies the two properties mentioned above and the proof is complete.

Proof of Theorem 2. Recall that S∗ is obtained as

S∗ , argmin
S∈SK

{
R̂CRR (S) ,

1

n

n∑
i=1

φ (Xi,S) + γVol (S)

}
, (28)

where for X ∈ RK , φ (X,S) ,
√
n` (dS (X)). Instead of working directly with S∗ and obtaining

an upper bound on DTV (PS∗ ,PST ), we define the following set

Q (ε) ,

{
S ∈ SK

∣∣∣∣ Vol (S) ≤ VT , (29)

Vol (S ∩ ST ) ≥ (1− ε)VT ,

max
u∈ST

dS (u) ≤ 3Diam (ST )

}
,

where the diameter of a simplex S ∈ SK , denoted by Diam (S), is defined as

Diam (S) , max
u,u′∈S

∥∥u− u′∥∥
2
. (30)

Then, we prove the following two claims:
Claim 1: For all S ∈ Q (ε), we have DTV (PS ,PST ) ≤ ε. This is essentially a direct consequence of
Lemma 1 which has been stated and subsequently proved in Appendix A.
Claim 2: The probability that S∗ ∈ Q (ε) is at least 1 − ζ, if the number of samples satisfies the
following bound:

n ≥

6`
(

3λKV
1

K

T

)(√
K2 log ne

K +
√

log 1
ζ

)
+ γVT ε

L
(
εV

1/K
T

(K+1)λ̄

)
ε


2

. (31)

In fact, combining the two claims will prove the theorem. Next, we prove each claim separately.

Proof of Claim 2. Claim 2 can be shown by proving that the following three conditions are held
with probability at least 1− ζ:
C1: V ∗ , Vol (S∗) ≤ VT , and consequently, the volume of the solution to (11) is bounded.
C2: maxu∈ST dS∗ (u) ≤ 3Diam (ST ), which means S∗ cannot be very far from ST .
C3: Vol (S∗ ∩ ST ) ≥ (1− ε)VT .
The first two conditions C1 and C2 do hold with certainty as the following lemma presents.

21



Lemma 4. With certainty, we have V ∗ ≤ VT and maxu∈ST dS∗ (u) ≤ 3Diam (ST ).

See Appendix B for the proof. From Lemma 4, one can deduce that S∗ belongs to either Q (ε)
or its partial complement Qc (ε) which is defined as

Qc (ε) ,

{
S ∈ SK

∣∣∣∣ Vol (S) ≤ VT , (32)

Vol (S ∩ ST ) < (1− ε)VT ,

max
u∈ST

dS (u) ≤ 3Diam (ST )

}
,

For a given ε, we are interested in finding n such that S∗ ∈ Q(ε) with probability at least 1− ζ. To
this end, we seek an appropriate function u(n, ε) such that

P
{

inf
S∈Qc(ε)

R̂CRR (S)− R̂CRR (ST ) > u(n, ε)

}
> 1− ζ. (33)

Next, we find n such that u(n, ε) is non-negative. In this way, one can deduce that ST is preferable
over all the simplices in Qc(ε) with probability at least 1−ζ. Since S∗ is the optimal solution, it is in
Q(ε) with probability at least 1−ζ. To this aim, we obtain a candidate for u(n, ε) by considering two

facts for each S ∈ Qc (ε). First, R̂CRR (S) is sufficiently close to its statistical average EST R̂CRR (S).

Second, EST R̂CRR (S) is sufficiently larger than R̂CRR (ST ). The main challenge is to show that
these two facts hold for all simplices in Qc(ε), with high probability. To prove the first fact, we
define φmax as

φmax , sup
X∈ST

sup
S∈Q(ε)∪Qc(ε)

φ (X,S) , (34)

and use it to normalize the function φ as

φ̄ (X,S) ,

√
n` (dS (X))

φmax
. (35)

For any X ∈ ST and S ∈ Q(ε) ∪Qc(ε), we have:

φmax = sup
X,S

√
n` (dS (X)) ≤

√
n`

(
3 max
u,u′∈ST

∥∥u− u′∥∥
2

)
≤
√
n`
(

3λKV
1

K

T

)
, (36)

which holds due to both the
(
λ, λ̄

)
-isoperimetricity assumption on ST , and ` being an increasing

function. In more details, we already know from Definition 1 that

max
u,u′∈ST

∥∥u− u′∥∥
2
≤ max
θ,θ′∈ΘT

∥∥θ − θ′∥∥
2
≤ λKV

1

K

T . (37)

Also, since ` is increasing, the maximum of its output occurs when the input argument is maximized.
Defining the function set Φ as

Φ ,
{
φ̄ (·,S) : ST → [0, 1]

∣∣ S ∈ Qc (ε)
}
,

and using one of the fundamental theorems in Vapnik-Chervonenkis (VC) theory of statistical
learning gives us the following bound, for all ζ > 0:

P

{
sup
S∈Qc(ε)

∣∣∣∣∣R̂CRR (S)− EST R̂CRR (S)

φmax

∣∣∣∣∣ (a)

≤ 2Rn {Φ}+

√
log (2/ζ)

2n

}
(b)

≥ 1− ζ, (38)

22



where Rn {Φ} represents the Rademacher complexity of the function set Φ, for sample size n and
dataset D = {X1, . . . ,Xn} ∼ PST [10].

One of the main challenges is to find an appropriate upper bound on Rn {Φ}. In the following
lemma, we obtain an upper bound showing that both terms in the r.h.s. of inequality (a) in (38)
are Õ

(
n−1/2

)
.

Lemma 5. Rademacher complexity of the function set Φ, for all ε > 0 and increasing functions
` : R→ R can be bounded as

Rn {Φ} ≤
√

4K2

n
log
(ne
K

)
,

for n,K ∈ N

See Appendix B for the proof. The second fact, i.e. for all S ∈ Qc (ε), the value of EST R̂CRR (S)

is sufficiently larger than R̂CRR (ST ), is formalized by the following lemma.

Lemma 6. Let ST ∈ SK be
(
λ, λ̄

)
-isoperimetric and assume D , {X1, . . . ,Xn} are n i.i.d.

samples drawn uniformly from ST . For any increasing and integrable function `, all γ ≥ 0 and
0 < ε ≤ 1, assume we have

n ≥

 γVT

`
(
εV

1/K
T

(K+1)λ̄

)
2

. (39)

Then, the following bound holds:

inf
S∈Qc(ε)

EST
{
R̂CRR (S;D, `, γ)

}
≥

(
√
nL

(
εV

1/K
T

(K + 1) λ̄

)
− γVT

)
ε+ R̂CRR (ST ;D, `, γ) , (40)

where L (x) ,
∫ x

0 ` (u) du− ` (0).

See Appendix B for the proof. From (38) and Lemma 5, the following lower-bound holds for all
S ∈ Qc (ε) with probability at least 1− ζ:

R̂CRR (S) ≥ EST R̂CRR (S)− `
(

3λKV
1

K

T

)(
4

√
K2 log

ne

K
+

√
log

2

ζ

)
. (41)

Substituting from Lemma 6, for all S ∈ Qc (ε) and with probability at least 1− ζ, we have

R̂CRR (S)− R̂CRR (ST ) ≥

(
√
nL

(
εV

1/K
T

(K + 1) λ̄

)
− γVT

)
ε−

`
(

3λKV
1

K

T

)(
4

√
K2 log

ne

K
+

√
log

2

ζ

)
, u(n, ε), (42)

subject to n satisfies (39). In this way, we have obtained the desired u(n, ε). One can show that
for

n ≥

6`
(

3λKV
1

K

T

)(√
K2 log ne

K +
√

log 1
ζ

)
+ γVT ε

L
(
εV

1/K
T

(K+1)λ̄

)
ε


2

, (43)
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both (39) and u (n, ε) > 0 are satisfied. Therefore,

P
{

inf
S∈Qc(ε)

R̂CRR (S)− R̂CRR (ST ) > 0

}
> 1− ζ, (44)

which implies P {S∗ ∈ Q (ε)} > 1− ζ and completes the proof of Claim 2.

As mentioned earlier, combining Claims 1 and 2 proves Theorem 2.

Proof of Theorem 3. According to the definition of dS (·), having dS (X) = 0 immediately implies
that wT

kX + bk ≤ 0, k = 0, . . . ,K. However, we have already assumed that wT
kX + bk < 0 for all

k = 0, . . . ,K, which means X is inside S with a positive margin from its boundary. Therefore, an
infinitesimally small perturbation of Θ (regardless of the direction) cannot throw X out of S (Θ)
and thus the gradient of dS(Θ) (X) is zero.

For the case of dS(Θ) (X) > 0, one can deduce that wT
kX+bk > 0 for at least one k ∈ {0, . . . ,K}.

Due to the assumption of lemma, k∗ , argmaxk w
T
kX + bk is unique. This alternatively implies

that there exists δ > 0 such that for all u ∈ RK with ‖u−X‖2 ≤ δ we have dS(Θ) (u) = wT
k∗u+bk∗ .

Therefore, we have

∇ΘdS(Θ) (X) = ∇Θ

(
min

p∈RK | pT1=1
f (X,p) , ‖X −Θ−k∗p‖2

)
, (45)

which is based on the fact that dS(Θ) (X) is the minimum Euclidean distance of X from Hk∗ ={
Θ−k∗p| p ∈ RK , pT1 = 1

}
which represents the hyper-plane including the k∗th facet of S. Due

to the continuity of f , one can use the envelope theorem and obtain the following formulation for
the gradient:

∇Θ−k∗dS(Θ) (X) = ∇Θ−k∗ ‖X −Θ−k∗p
∗‖2 =

(Θ−k∗p
∗ −X)p∗T

‖Θ−k∗p∗ −X‖2
, (46)

where
p∗ , argmin

p∈RK | pT1=1
‖X −Θ−k∗p‖2 . (47)

It should not be surprising that derivatives w.r.t. θk∗ is zero since the k∗th vertex does not
contribute to the planar distance from Hk∗ . Also, note that p∗ can be computed analytically. More
precisely, Θ−k∗p

∗ is the projection of X into the (K − 1)-dimensional subspace Hk∗ . Thus, we
have

Θ−k∗p
∗ = X −

(
wT
k∗X + bk∗

)
wk∗ , (48)

with bk∗ =
−1

K
wT
k∗

∑
k 6=k∗

θk = − 1

K
Θ−k∗1,

where wk∗ , as mentioned in the lemma, is the normal outward vector of the k∗th facet of S. In
order to compute wk∗ , it should be noted that wk∗ must be orthogonal to all θk − 1

KΘ−k∗1 for
k 6= k∗. Thus, we have(

Θ−k∗ −
1

K
Θ−k∗11T

)T
wk∗ =

(
I − 11T

K

)
ΘT
−k∗wk∗ = 0. (49)

Since the columns of Θ−k∗ − 1
KΘ−k∗11T , or equivalently θk − 1

KΘ−k∗1 for k 6= k∗, all lie on the

hyper-plane Hk∗ , then
(
I − 1

K11T
)
ΘT
−k∗ must have at least one zero eigenvalue. On the other
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hand, since we have already assumed that S (Θ) has a non-zero volume, the projections of the
mentioned columns on Hk∗ are linearly independent in RK−1, and therefore the above-mentioned
zero eigenvalue is unique. Thus, wk∗ can be obtained as described in the statement of lemma. In
this regard, we have

Θ−k∗p
∗ = X −

(
wT
k∗X + bk∗

)
wk∗ = X −wk∗w

T
k∗

(
X − 1

K
Θ−k∗1

)
, (50)

which means p∗ , Θ†−k∗
(
X −wk∗w

T
k∗
(
X − 1

KΘ−k∗1
))
∈ RK . Note that using the pseudo-inverse

operator does not result into any information loss here since X −
(
wT
k∗X + bk∗

)
wk∗ lies on the

hyper-plane specified by Θ−k∗ . Finally, we have ∇Θ−k∗ (·) = ∇Θ (·)Jk∗ , and ∇Θ` (·) = `′ (·)∇Θ (·).
Considering the fact that

wk∗ = − Θ−k∗p
∗ −X

‖Θ−k∗p∗ −X‖2
, (51)

and substituting into (46), completes the proof.

B Proofs of Lemmas and Corollaries

Proof of Corollary 1. Proof is similar to that of Corollary 1. First, let us compute the integral
function L (·):

L (x) =
1

x

∫ x

0

(
1− e−bu

)
du = 1−

(
1− e−bx

bx

)
, x ,

εV
1/K
T

(K + 1) λ̄
. (52)

Considering the fact that b = K/ε, it can be easily verified that L (x) has a positive lower-bound
which is independent of K, ε and ζ. On the other hand, we have ` (·) ≤ 1 due to the particular
choice of `. Substituting the above results into the sample complexity of Theorem 2, and using the
same techniques which we already used for the proof Theorem 1 will complete the proof.

Proof of Lemma 3. The proof is motivated by the fact that any K-simplex S ∈ SK can be viewed
as a set of points in RK satisfying the following set of constraints:

S =
{
u ∈ RK

∣∣ wT
ku+ bk ≤ 0, ∀k = 0, 1, . . . ,K

}
, (53)

where for each k, the couple Hk , (wk, bk) ∈ RK×R represent a (K − 1)-dimensional linear hyper-
plane that includes the kth facet of S. Not to mention that wk are considered to be outwards w.r.t.
S. We can then write S = S (H0, . . . ,HK).

Assume one aims to use a K-simplex as a binary classifier, where for any S ∈ SK and x ∈ RK ,
x is labeled as +1 if x ∈ S and is labeled −1, otherwise. Then, we are interested to bound the
maximum number of ways that a set of n generally-positioned points in RK can be labeled via
simplices in SK , i.e. the growth function of C or ΠC (n). Fortunately, this goal can be achieved by
using the growth function of hyper-planes in RK , which is already derived.

Let us define LK+1 , {−1,+1}K+1 as the set of all binary super labels of dimension K + 1 and
the function family H, such that h = h (w0:K , b0:K) ∈ H : RK → LK+1 is defined as:

h (x) ,
[
sign

(
wT

0 x+ b0
)
, . . . , sign

(
wT
Kx+ bK

)]T
, ∀x ∈ RK , (54)
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where we define sign (0) = −1. Then, by letting IK to be the set of all hyper-plane binary classifiers
in RK and according to the rule of product, the growth function of H can be computed as

ΠH (n) = ΠIK (n)× · · · ×ΠIK (n)︸ ︷︷ ︸
K+1 times

. (55)

It is easy to see that ΠC (n) ≤ ΠH (n). In fact, for any S = S (H0, . . . ,HK) ∈ SK , the hyper-plane
parameter sets H0, . . . ,HK uniquely identify a function in H that can assign super labels to RK ,
while only a subset of them can be generated by S. On the other hand, considering the fact that
VC dimension of hyper-planes in RK is exactly K + 1, and using the Sauer-Shelah lemma (see, for
example, Theorem 3.5 of [10]), we have the following bound for ΠIK (n) :

ΠIK (n) ≤
K+1∑
i=0

(
n

i

)
≤
(

ne

K + 1

)K+1

, (56)

which, according to the previous inequality, means: ΠC (n) ≤
(

ne
K+1

)(K+1)2

and completes the

proof.

Proof of Lemma 4. First, we prove V ∗ , Vol (S∗) ≤ VT ; The proof is by contradiction. Assume
V ∗ > VT . Since dST (Xi) = 0 for i = 1, . . . , n, and the fact that ` is an increasing function, it can
be readily seen that

R̂CRR (S∗) ≥
√
n` (0) + γV ∗ >

√
n` (0) + γVT = R̂CRR (ST ) , (57)

which contradicts the fact that S∗ is the minimizer.

Next, we show that
max
u∈ST

dS∗ (u) ≤ 3 max
u,u′∈ST

∥∥u− u′∥∥
2
, (58)

where S∗ is the minimizer of (11) for the dataset D = {X1, . . . ,Xn} that includes an arbitrary set
of n points Xi ∈ ST , i ∈ [n]. It should be noted that for this lemma, we do not need to assume any
particular stochastic model for the generation of Xis, and these points can be arbitrarily chosen
from ST . The main implication of the above inequality is the fact that S∗ cannot be very far from
the the points in D, and the maximum planar distance between each Xi and S∗ is bounded by a
factor of the diameter of ST (Diam (ST ) , maxu,u′∈ST ‖u− u′‖2).

Before attempting to prove (58), we first show that for any S∗ ∈ SK and Z ∈ RK , the following
useful bound holds for planar distance dS∗ (Z):

dS∗ (Z) ≤ min
u∈S∗

‖Z − u‖2 . (59)

Let us denote the r.h.s. of (59) as the spherical distance of Z from S∗. For Z ∈ S∗, both the planar
distance and spherical distance of Z from S∗ are zero and thus the inequality holds. For Z /∈ S∗,
first consider wk ∈ RK (with ‖wk‖2 = 1) and bk ∈ R, and then let Hk ,

{
x ∈ RK | wT

k x+ bk = 0
}

represent the hyper-plane that encompasses the kth facet of S∗. This way, the planar distance can
be rewritten as dS∗ (Z) = minu∈Hk∗ ‖Z − u‖2, where k∗ , argmaxk w

T
kZ + bk. Also, for Z /∈ S∗

we have wT
k∗Z + bk∗ > 0, while for all u ∈ S∗, we have wT

k∗u + bk∗ ≤ 0, based on the fact that
wk vectors are defined as outward unitary vectors w.r.t. S∗. Therefore, the line segment which
connects Z to u must cross Hk∗ at some point, which we denote by Z∗ (u) ∈ Hk∗ . Note that we
have:

‖Z − u‖2 = ‖Z −Z∗ (u)‖2 + ‖Z∗ (u)− u‖2 ≥ ‖Z −Z
∗ (u)‖2 . (60)
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Therefore, the following relations hold and (59) is proved:

min
u∈S∗

‖Z − u‖2 ≥ min
u∈S∗

‖Z −Z∗ (u)‖2 ≥ min
u∈Hk∗

‖Z − u‖2 = dS∗ (Z) . (61)

Back to proving (58), first let us define X̄ , 1
n

∑
iXi as the center of mass for data points in

D. Then, we show the following set of inequalities hold with certainty:

wT
k X̄ + bk ≤ 2Diam (ST ) , k = 0, . . . ,K. (62)

Based on the definition of diameter Diam (·) for a simplex, the following inequality hold for any
Z ∈ ST :

max
‖w‖

2
=1
wT

(
Z − X̄

)
≤ max

u,u′

∥∥u− u′∥∥
2

= Diam (ST ) , (63)

which also takes into account the fact that due to the convexity of a simplex, we have X̄ ∈ ST .
In this regard, we can prove (62) by contradiction: assume there exists k such that wT

k X̄ + bk >
2Diam (ST ). Then, one can show that for all i ∈ [n] we have

2Diam (ST ) < wT
k X̄ + bk = wT

k

(
X̄ −Xi

)
+wT

kXi + bk ≤ Diam (ST ) +wT
kXi + bk, (64)

or alternatively, wT
kXi + bk > Diam (ST ). This way, due to the definition of the planar distance in

Section 2, we end up with the following lower-bound for dS∗ (Xi) for all i ∈ [n]:

dS∗ (Xi) = max
{

0 , max
t

wT
t Xi + bt

}
> Diam (ST ) . (65)

The above result also gives a lower-bound for the continuously-relaxed risk in (11) as R̂ (S∗;D) >√
n` (Diam (ST )) + γV ∗, where V ∗ , Vol (S∗). On the other hand, assume one shifts the simplex

S∗ to obtain a new simplex Ŝ∗ which includes the point X̄. Note that the volume of Ŝ∗ is also V ∗.

However, the following relations hold w.r.t. Ŝ
∗

and for all i ∈ [n]:

dŜ∗ (Xi) ≤ min
u∈Ŝ∗

‖Xi − u‖2 ≤
∥∥Xi − X̄

∥∥
2
≤ Diam (ST ) , (66)

which also gives the following upper-bound for the continuously-relaxed risk in (11): R̂
(
Ŝ∗;D

)
≤

√
n` (Diam (ST )) + γV ∗. This yields that Ŝ∗ results in a smaller objective value for (11) which

contradicts the assumption that S∗ is a global minimizer. Therefore, we must have wT
k X̄ + bk ≤

2Diam (ST ) , ∀k = 0, . . . ,K, which results in the following inequality for each k = 0, . . . ,K and all
Z ∈ ST :

wT
kZ + bk = wT

k

(
Z − X̄

)
+wT

k X̄ + bk ≤ 3Diam (ST ) . (67)

This also implies that dS∗ (Z) ≤ 3Diam (ST ) and completes the proof.

Proof of Lemma 5. Rademacher complexity of hypothesis set Φ measures its capability to (in some
sense) correlate with a set of n randomly labeled and generally positioned points in the input space.
Mathematically speaking, it has the following definition:

Rn {Φ} , EX1:n∼PST

{
Eσ

(
sup
S∈Qc(ε)

1

n

n∑
i=1

σiφ̄ (Xi,S)

)}
, (68)

where σ ∈ {−1,+1}n is a vector of i.i.d. Rademacher random variables, and φ̄ (·, ·) has been
already defined in (35). Also, remember the set of binary classifiers C which was defined in the
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proof of Theorem 1 in Appendix A; Let us rewrite the definition of the classifier set C , this time
using the planar distance dS (·):

C ,

{
f (dS (·)) : RK → {0, 1}

∣∣∣∣ S ∈ SK
}
, (69)

where function f : R→ {0, 1} is defined as below:

f (x) ,

{
1 x > 0
0 x ≤ 0

. (70)

The binary classifier set C is different from Φ in two important aspects. First, functions in C assign
binary labels {0, 1} instead of real values in [0, 1]. Also, S is chosen from SK instead of Qc (ε) in
the case of Φ. This way, we can proceed to the proof by first showing that

Rn {Φ} ≤ Rn {C } . (71)

The reason behind this approach is the fact that r.h.s. of (71) is much easier to handle in terms of
statistical complexity. In order to show (71), we prove a stronger claim. More precisely, we prove
that for each σ ∈ {−1,+1}n, the following inequality holds for any dataset {X1, . . . ,Xn} in ST :

J , sup
S∈Qc(ε)

1

n

n∑
i=1

σiφ̄(Xi,S) ≤ sup
S∈SK

1

n

n∑
i=1

σif(φ̄(Xi,S)) , J(ext). (72)

It should be reminded that Qc (ε) ⊆ SK , and also f (dS (Xi)) = f
(
φ̄ (Xi,S)

)
. Let Smax ∈ SK

represent the maximizer of the l.h.s. of (72). Without loss of generality, assume that:

0 = φ̄(X1,Smax) = · · · = φ̄(Xn0
,Smax)

< φ̄(Xn0+1,Smax) ≤ · · · ≤ φ̄(Xn,Smax), (73)

where n0 shows the number of data in the dataset such that φ̄ (Xi,Smax) = 0. For the sake of
simplicity, assume that for every i < j, if φ̄ (Xi,Smax) = φ̄ (Xj ,Smax), then σi ≥ σj . In this regard,
to prove (72) one only needs to run the following procedure:

Marking algorithm Let the integer numbers between n0 and n to be either marked or unmarked.
Also, assume all numbers {n0, . . . , n} are unmarked in the beginning, and then increase the index
i from n0 to n. For each i, if σi = −1 define j as the largest unmarked index such that n0 ≤ j < i,
and σj = +1. If there are no index j which satisfies these conditions, then just pass to the next i.
Otherwise, match σi with σj and set both i and j as marked.

Note that according to the above algorithm, each matched pair contribute a negative value to J .
Let n∗ be the largest index satisfying the conditions: n∗ > n0 and σn∗ = −1. If there is no index
with these conditions, set n∗ = n0 − 1. Then, the following facts hold for n∗:

• For all matched pairs (σi, σj), we have either min (i, j) < n∗ or n∗ < max (i, j).

• For all unmarked i ≤ n∗, we have σi = −1.

• For all unmarked i > n∗, we have σi = +1.
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Next, let us define the set S∗max ,
{
x ∈ RK

∣∣ dSmax
(x) ≤ ε , dSmax

(Xn∗)
}

. Surprisingly, and

based on the definition of the planar distance in Section 2, S∗max is also a simplex in SK . Similar to
the notation introduced in Section 2, let (wk, bk) represent the parameters associated to the hyper-
plane which encompasses the kth facet of Smax. This way, wk ∈ RK (with ‖wk‖2 = 1) denotes
the normal outward vector associated to the kth facet, while bk ∈ R represents the corresponding
bias value. Then, it can be easily seen that S∗max is also a simplex whose hyper-plane parameters
are (wk, bk − ε), i.e. for each k, the kth facet is ε-shifted toward its outward normal vector wk.
Therefore, and based on the definition of J(ext), we can write:

J(ext) ≥
1

n

n∑
i=1

σif
(
φ̄ (Xi,S∗max)

)
. (74)

Thanks to the definition of S∗max, we can now investigate the contribution of each data sample to
both J and at least a lower-bound of J(ext).

• Any unmatched data point Xi with n0 ≤ i ≤ n∗, contributes negatively to J , while its
contribution to J(ext) is at least zero.

• Any matched pair contribute to J non-positively, while their contribution to J(ext) is at least
zero.

• For any unmatched data point Xi with i > n∗, contribution to J is at most 1, while contri-
bution to J(ext) is exactly 1.

In all the above-mentioned cases, contribution of each Xi to J is less than or equal to that of J(ext)

which proves (72). A direct consequence of these arguments is the following:

Rn {Φ} ≤ Rn {C } , (75)

since the expectation of J(ext) w.r.t. σ and data points Xi is in fact the Rademacher complexity
of C . For a function class such as C , we can bound the Rademacher complexity via a number of
previously-established tools and measures, e.g. VC-dimension and Massart’s lemma. However, we
first need to bound the growth functions of C, which has been already carried away in Lemma 3. In
this regard, according to Massart’s lemma (see, for example, Theorem 3.3 of [10]), and also using
(72), we have

Rn {Φ} ≤
√

2 log ΠC (n)

n
, (76)

Substitution from Lemma 3 into the above inequality completes the proof.

Proof of Lemma 6. Lemma roughly states that whenever the overlap between a K-simplex S and
ST is strictly smaller than 1 − ε, then with high probability S would not cover all the training
data points when n becomes sufficiently large. Thus, the expected value of cost function increases
accordingly. First, let us take a closer look at EST R̂CRR and analyze its minimum over S ∈ Qc (ε):

min
S∈Qc(ε)

EST R̂CRR (S) = min
S∈Qc(ε)

{√
nEX∼PST [` (dS (X))] + γVol (S)

}
, (77)

where throughout the proof we refer to Vol (S) simply as V for the sake of simplicity.

The planar distance dS (X) is zero when X ∈ S ∩ ST . Thus, any nonzero term in the above
expectation corresponds to a point in the differential set ST − S, which due to the minimization
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over S ∈ Qc (ε), has a Lebesgue measure of at least εVT . In this regard, let us define the following
sets:

Ak = Ak (S,ST ) ,

{
X ∈ ST − S

∣∣∣∣dS (X) = wT
kX + bk

}
,

∀k = 0, 1, . . . ,K, (78)

where, similar to Section 2, (wk, bk) represent the hyper-plane which encompasses the kth facet of
S. In other words, Ak shows the set of points inside ST and outside of S, which have a smaller
planar distance to the kth facet of S compared to its other facets. For each point that has an equal
planar distance from more than one facet, k can be chosen as any of those facets, arbitrarily. In
this regard, it is easy to see that

Ak ∩ Al = ∅ ⇔ k 6= l ,

K⋃
k=0

Ak = ST − S. (79)

Also, let

αk ,
Vol (Ak)∑K
l=0 Vol (Al)

, k = 0, 1, . . . ,K, (80)

with
∑

k αk = 1. Consider the parameteric sets Bδ , ε ≤ δ ≤ 1, defined as

Bδ ,
{
S ∈ Qc (ε)

∣∣∣∣ Vol (S ∩ ST )

VT
= 1− δ

}
. (81)

Obviously, we have
⋃
ε≤δ≤1 Bδ = Qc (ε). Then, one can show that the following chain of relations

hold for all ε ≤ δ ≤ 1:

min
S∈Bδ

{
EST R̂CRR (S)− γV

}
=
√
n min
S∈Bδ

EST [` (dS (X))]

≥ δ
√
n min
S∈Bδ

K∑
k=0

αkEAk [` (dS (X))] + (1− δ)
√
n` (0)

≥ δ
√
nmin
α∈Φ

K∑
k=0

(
αk
∆k

∫ ∆k

0
` (u) du

)
+ (1− δ)

√
n` (0)

= δ
√
nmin
α∈Φ

K∑
k=0

αkL (∆k) +
√
n` (0) , (82)

where Φ denotes the standard simplex, or the set of all (K + 1)-dimensional discrete probability
mass functions. L (x) , 1

x

∫ x
0 (` (u)− ` (0)) du for x ≥ 0, and ∆k , Vol (Ak) / (maxk Vol (S−k)).

The main intuition behind the above inequalities is the fact that the term

EAk [` (dS (X))] (83)

is minimized when Ak is concentrated in the form of a thin cylindrical structure above the largest
facet of S. The volume of the largest facet is maxk Vol (S−k), which makes ∆k to be the height of
this imaginary cylinder. We have also taken advantage of the fact that ` is increasing and integrable.
Based on the definition, we have Vol (Ak) = δαkVT . Also, due to the

(
λ, λ̄

)
-isoperimetricity of ST ,

we have

max
k

Vol (S−k) ≤ λ̄KV
K−1

K

T which implies ∆k ≥
(
δαk
λ̄

)
V

1/K
T . (84)
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Also, note that since ` (·) is assumed to be increasing, L (·) is both increasing and convex. Therefore,

the minimization over α ∈ Φ in (82) results in α∗ =
(

1
K+1 , · · · ,

1
K+1

)
. Substitution into (82) yields

the following lower-bound for the expected risk minimized over Bδ:

min
S∈Bδ

{
EST R̂CRR (S)

}
≥ δ
√
nL

(
δV

1/K
T

(K + 1) λ̄

)
+ γ min

S∈Bδ
Vol (S) +

√
n` (0)

≥ δ
√
nL

(
δV

1/K
T

(K + 1) λ̄

)
− γVT δ + R̂CRR (ST ) , (85)

where we have used the following simple facts: minS∈Bδ Vol (S) = VT (1− δ), and also R̂CRR (ST ) =√
n` (0) + γVT . The rest of the proof is straightforward. Finding a lower-bound for EST R̂CRR (S)

when S ∈ Qc (ε) can be accomplished through the following set of relations and inequalities:

min
S∈Qc(ε)

{
EST R̂CRR (S)

}
= min

ε≤δ≤1
min
S∈Bδ

EST R̂CRR (S)

≥ min
ε≤δ≤1

(
δ
√
nL

(
δV

1/K
T

(K + 1) λ̄

)
− γVT δ

)
+ R̂CRR (ST ) . (86)

Again, remember that L (·) is an increasing function. Therefore, given that the derivative of the
r.h.s. of the above inequality remains positive w.r.t. δ, and for all ε ≤ δ ≤ 1, then the minimum
occurs at δ∗ = ε. It can be easily verified that given the condition on n in the lemma, the derivative
remains positive and thus the proof is complete.

Lemma 7 (Restricted Isoperimetry). For K ∈ N, assume Sreg ∈ SK to be a perfectly regular
simplex with equal side lines. Then for all K, Sreg is

(
λ, λ̄

)
-isoperimetric where λ and λ̄ can be

chosen to be as small as 1 and e, respectively.

Proof. For a perfectly regular simplex Sreg (Θ) with all side lines equal to d ≥ 0, i.e. ‖θk − θk′‖2 =
d, ∀k 6= k′, the Lebesgue measure Vol (Sreg) is already shown to be

Vol (Sreg) =

√
K + 1

K!
√

2K
dK . (87)

Thus, we have

max
k,k′

‖θk − θk′‖2 = d =

(
K!
√

2K√
K + 1

)1/K

Vol
1

K (Sreg) . (88)

On the other hand, for all K ∈ N we have the following upper-bound for K!: K! ≤ Ke
(
K
e

)K
,

which leads us to the following relations:

max
k,k′

‖θk − θk′‖2 ≤

[(
Ke√
K + 1

)1/K √2

e

]
KVol (Sreg)1/K ≤ KVol (Sreg)1/K , (89)

and means λ can be chosen to be as small as 1.

For the other claim, we should note that the maximal facet of Sreg (noting the fact that for
a perfectly regular simplex all facets are equal), can be attained by computing the volume of a
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perfectly regular (K − 1)-simplex with all side lines equal to d. In other words:

max
k

Vol
(
Sreg−k

)
=

√
KdK−1

(K − 1)!
√

2K−1
=

√
K21−K

(K − 1)!

(
K!
√

2K√
K + 1

)K−1

K

Vol (Sreg)
K−1

K . (90)

which, again by using the previously-mentioned upper-bound on K!, can be bounded as

max
k

Vol
(
Sreg−k

)
=

[√
K

(K + 1)
K−1

K

(K!)−1/K

]
KVol (Sreg)

K−1

K

≤
[
e

√
(K/e2)−1/K

]
Vol (Sreg)

K−1

K

≤ eVol (Sreg)
K−1

K , (91)

Again, it means λ̄ can be chosen to be as small as e. This completes the proof.
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