
Dual RL: Unification and New Methods for
Reinforcement and Imitation Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

The goal of reinforcement learning (RL) is to maximize the expected cumulative1

return. It has been shown that this objective can be represented by an optimization2

problem of the state-action visitation distribution under linear constraints [52]. The3

dual problem of this formulation, which we refer to as dual RL, is unconstrained4

and easier to optimize. We show that several state-of-the-art off-policy deep5

reinforcement learning (RL) algorithms, under both online and offline, RL and6

imitation learning (IL) settings, can be viewed as dual RL approaches in a unified7

framework. This unification provides a common ground to study and identify8

the components that contribute to the success of these methods and also reveals9

the common shortcomings across methods with new insights for improvement.10

Our analysis shows that prior off-policy imitation learning methods are based on11

an unrealistic coverage assumption and are minimizing a particular f -divergence12

between the visitation distributions of the learned policy and the expert policy. We13

propose a new method using a simple modification to the dual RL framework that14

allows for performant imitation learning with arbitrary off-policy data to obtain15

near-expert performance, without learning a discriminator. Further, by framing a16

recent SOTA offline RL method XQL [23] in the dual RL framework, we propose17

alternative choices to replace the Gumbel regression loss, which achieve improved18

performance and resolve the training instability issue of XQL.19

1 Introduction20

A number of deep Reinforcement Learning (RL) algorithms optimize a regularized policy learning21

objective using approximate dynamic programming (ADP) [7]. Popular off-policy temporal difference22

algorithms spanning both imitation learning [39, 59] and RL [27, 20, 28, 69, 34] exemplify this23

class. As we will discuss in Section 3, one way to develop a principled off-policy algorithm is to24

ensure unbiased estimation of the on-policy policy gradient using off-policy data [55]. Unfortunately,25

many classical off-policy algorithms do not guarantee this property, resulting in issues like training26

instability and over-estimation of the value function [17, 20, 4]. To obtain high learning performance,27

these algorithms require that most data to be nearly on-policy, otherwise require special algorithmic28

treatments (e.g., importance sampling [65], layer normalization [5], prioritized sampling [78]) to29

avoid the aforementioned issues. Recently, there have been developments leading to new off-policy30

algorithms with improved performance for RL [43, 22, 41] and IL [82, 48, 22, 15]. These methods31

are derived via a variety of mathematical tools and attribute their success in different aspects. It32

remains an open question if we can inspect these algorithms under a unified framework to understand33

their core advantages and limitations, and subsequently propose better methods.34

In this work, we consider a specific formulation for RL that writes the performance of a policy35

as a convex objective with linear constraints [52]. The convex program can be converted into36

unconstrained forms using Lagrangian duality, which is more amenable for stochastic optimization.37

We refer to approaches that admit the dual formulations as Dual RL. Dual RL approaches naturally38

provide unbiased estimation of the on-policy policy gradient using off-policy data, in a principled39
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Dual RL Method Gradient Objective dual-Q/V Non-Adversarial? Off-Policy Data Coverage Assumption

RL

AlgaeDICE [56], GenDICE [81], CQL [43] semi reg. RL Q ✗ Arbitrary —
OptiDICE [45] full reg. RL V ✓ Arbitrary —

XQL [23], REPS [61], f -DVL semi reg. RL V ✓ Arbitrary —
VIP [49], GoFAR [50] full reg. RL V ✓ Arbitrary —
Logistic Q-learning [6] full reg. RL QV 1 ✓ ✗ —

IL

IQLearn [22], IBC [15] semi Df pρπ}ρEq Q ✓ Expert-only ✗
IVLearn semi Df pρπ}ρEq V ✓ Expert-only ✗

OPOLO [82], OPIRL [32] semi Drklpρ
π}ρEq Q ✗ Arbitrary ✓

ValueDICE [40] semi Drklpρ
π}ρEq Q ✗ Arbitrary ✓

SMODICE [48] full Drklpρ
π}ρEq V ✓ Arbitrary ✓

DemoDICE [38], LobsDICE [37] full Drklpρ
π}ρEq ` αDrklpρ

π}ρRq V ✓ Arbitrary ✓
P2IL [79] full DCpρπ}ρEq1 QV 1 ✗ ✗ ✗

ReCOIL-Q full Df pρπmix}ρE,R
mixq Q ✗ Arbitrary ✗

ReCOIL-V full Df pρπmix}ρE,R
mixq V ✓ Arbitrary ✗

Table 1: A number of recent works can be studied together under the unified umbrella of dual-RL. These methods are instantiations of dual-RL
with a choice of update strategy, objective, constraints, and their ability to handle off-policy data. Bold names correspond to the methods
proposed in the paper.

way. They avoid explicit importance sampling that leads to high variance and ensures training40

stability and convergence [76]. Related approaches in this space have often been referred to as41

DICE (DIstribution Correction Estimation) methods in previous literature [56, 40, 45, 48, 81]. We42

note that the linear programming formulation of policy performance has been used and studied in43

[52, 13, 12, 8, 30, 11, 62, 51, 44]. The general duality framework was first introduced by Nachum44

and Dai [55]. Our work focus on formulating and studying properties of off-policy algorithms by45

utilizing this tool.46

Our first contribution is that we show that many recent algorithms in deep reinforcement learning47

and imitation learning [23, 82, 43, 22, 15] can be all viewed as different instantiations of dual48

problems of regularized policy optimization, see Table 1 for the complete list. These algorithms49

have been motivated from a variety of perspectives. For example, XQL [23] focuses on introducing50

Gumbel regression into RL, CQL [43] aims at learning a pessimistic Q function, IQLearn [22] and51

OPOLO [82] use the change of variables for IL, and IBC [15] uses a contrastive loss for imitation52

learning. Even though these approaches have different derivations, we extend the work of Nachum53

and Dai [55] and show they can be unified under the framework of dual-RL in Sections 4 and 5.54

Second, the presented unification provides a framework to evaluate and analyze which factors55

actually make the algorithm better or worse. We examine this in the context of XQL, whose success56

was attributed to better modeling of Bellman errors using Gumbel regression. On the other hand,57

XQL also suffers from the training instability of Gumbel regression. By situating the implicit58

policy improvement algorithms like XQL in the dual RL framework, in Section 5 we are able to59

propose a family of implicit algorithms f -Dual V Learning (f -DVL), which successfully addresses60

the training instabilities issue. The empirical experiments on the D4RL benchmarks establish the61

superior performance of f -DVL, see Section 6.62

Third, building upon the dual framework, in Section 4 we propose a new algorithm for off-policy63

imitation learning that is able to leverage arbitrary off-policy data to learn near-expert policies, getting64

rid of the unrealistic coverage assumption (the suboptimal data covers the visitations of the expert65

data) required by previous works [48, 82, 38], and also eliminating the need for a discriminator.66

Our resulting algorithm, ReCOIL, is simple, theoretically principled, non-adversarial, and admits a67

single-player optimization in contrast to previous works in imitation [24, 31, 16, 68]. We empirically68

demonstrate the failure of previous IL methods based on the coverage assumption in a number of69

MuJoCo environments, and show substantial performance improvements of ReCOIL in Section 6.70

2 Related Work71

Off-Policy Methods for RL Off-policy RL methods promise a way to utilize data collected by72

arbitrary behavior policies to aid in learning an optimal policy and thus are advantageous over73

on-policy methods. This promise falls short, as previous off-policy algorithms are plagued with74

a number of issues such as overestimation of the value function, training instability, and various75

biases [74, 17, 20, 42]. Previous works have approached these issues for online RL using methods like76

double-Q learning [29], target networks [54], emphatic weightings [35, 33], and so on. Unfortunately,77

these approaches do not carry over well to the offline setting. For example, when deploying the policy78

online, the overestimation bias can be correctly by the environment feedbacks, which is infeasible for79

offline RL. A number of solutions exist for controlling overestimation in prior work—f -divergence80

regularization to the training distribution [80, 57, 21, 19], support regularization [70], implicit81

1These methods use a different regularizer. More details in Appendix C.5.
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maximization [41] and learning a Q function that penalizes OOD actions [43]. A recent method82

XQL [23] proposes Gumbel regression as a better tool to model Bellman errors and achieve significant83

gains in learning performance across online and offline RL.84

Another common issue for previous off-policy algorithms is distribution mismatch. As we shall85

discuss later, the RL objective requires on-policy samples but is often estimated by off-policy86

samples in practice. Prior works have proposed fixing the distribution mismatch by using importance87

weights [64], which can lead to high variance policy gradients or ignoring the distribution mismatch88

completely [27, 20]. The dual RL framework [55] fixes the distribution mismatch issue in a principled89

way. It should come as no surprise that some of the most performant RL algorithms in the space are90

known dual methods (Online RL [56], Offline RL [45]).91

Off-Policy Methods for IL Imitation learning has benefited greatly from using off-policy data92

to improve learning performance [39, 60, 68, 82]. Often, replacing the on-policy expectation93

common in most Inverse RL formulations [83, 73] by expectation under off-policy samples, which is94

unprincipled, has led to gains in sample efficiency [39]. Previous works have proposed a solution95

in the dual RL space for principled off-policy imitation but is based on a restrictive coverage96

assumption [48, 82, 38] and limit themselves to matching a particular f -divergence. In this work, we97

eliminate this assumption and allow for generalizing to all f -divergences, presenting a principled98

off-policy approach to imitation. Our work also presents an approach that allows for single-player99

non-adversarial optimization for imitation learning, in contrast to previous work [40].100

3 Preliminaries101

We consider an infinite horizon discounted Markov Decision Process denoted by the tuple102

M “ pS,A, p, r, γ, d0q, where S is the state space, A is the action space, p is the transition103

probability function, r : S ˆ A Ñ R is the reward function, γ P p0, 1q is the discount factor,104

and d0 is the distribution of initial state s0. Let ∆pAq denote the probability simplex supported105

on A. The goal of RL is to find a policy π : S Ñ ∆pAq that maximizes the expected return:106

Eπ
“
ř8

t“0 γ
trpst, atq

‰

, where we use Eπ to denote the expectation under the distribution induced by107

at „ πp¨|stq, st`1 „ pp¨|st, atq. We also define the discounted state-action visitation distribution108

dπps, aq “ πpa|sq
ř8

t“0 γ
tP pst “ s|πq. The unique stationary policy that induces a visitation109

dps, aq is given by πpa|sq “ dps, aq{
ř

a dps, aq. We will use dO and dE to denote the visitation110

distributions of the behavior policy of the offline dataset and the expert policy, respectively.111

Value Functions and Bellman Operators Let V π: S Ñ R be the state value function of π. V πpsq112

is the expected return when starting from s and following π: V πpsq “ Eπ
“
ř8

t“0 γ
trpst, atq|s0 “ s

‰

.113

Similarly, let Qπ : S ˆ A Ñ R be the state-action value function of π, such that114

Qπps, aq “ Eπ
“
ř8

t“0 γ
trpst, atq|s0 “ s, a0 “ a

‰

. Let V ˚ and Q˚ denote the value functions115

corresponding to an optimal policy π˚. Let T π
r be the Bellman operator with policy π and reward116

function r such that T π
r Qps, aq “ rps, aq ` γEs1„pp¨|s,aq,a1„πp¨|s1qrQps1, a1qs. We also define the117

Bellman operator for the state value function TrV ps, aq “ rps, aq ` γEs1„pp¨|s,aqrV ps1qs.118

f -Divergence f -Divergence measures distance between two probability distribution P and Q119

given by: Df pP || Qq “ Ez„Qrf
`P pzq

Qpzq

˘

s. The convex conjugate of f is the function f˚pyq “120

supxPR`
rxy ´ fpxqs. For a more formal overview of the above concepts, refer to Appendix C.1.121

3.1 Reinforcement Learning via Lagrangian Duality122

Reinforcement learning optimizes the expected return of a policy. We consider the linear programming123

formulation of the expected return [52], to which we can apply Lagrangian duality to obtain124

corresponding constraint-free problems. We here review the framework introduced by Nachum125

and Dai [55], which obtains the same formulations as ours via Fenchel-Rockfeller duality, yet we use126

Lagrangian duality for its simplicity and popularity. Consider the regularized policy learning problem127

max
π

Jpπq “ Edπps,aqrrps, aqs ´ αDf pdπps, aq || dOps, aqq, (1)

whereDf pdπps, aq || dOps, aqq is a conservatism regularizer that encourages the visitation distribution128

of π to stay close to some distribution dO, and α is a temperature parameter that balances the expected129

return and the conservatism. An interesting fact is that Jpπq can be rewritten as a convex problem130

that searches for a visitation distribution that satisfies the Bellman-flow constraints. We refer to this131
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form as primal-Q:132

primal-Q max
π

Jpπq “ max
π

“

max
d

Edps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

s.t dps, aq “ p1 ´ γqd0psq.πpa|sq ` γ
ř

s1,a1 dps1, a1qpps|s1, a1qπpa|sq, @s P S, a P A.
‰

(2)

Applying Lagrangian duality and convex conjugate to this problem, we can convert it to an133

unconstrained problem with dual variables Qps, aq defined for all s, a P S ˆ A, giving us the134

dual-Q formulation:135

dual-Q maxπminQp1 ´ γqEs„d0,a„πpsqrQps, aqs ` αEps,aq„dO rf˚ prT π
r Qps, aq ´Qps, aqs {αqs, (3)

where f˚ is the convex conjugate of f . Problem (2) is overconstrained—the constraints determine136

the unique solution dπ rendering the inner maximization w.r.t d unnecessary. In fact, we can relax137

the constraints to obtain another problem with the same optimal solution π˚ and d˚, which we call138

primal-V below:139

primal-V max
dě0

Edps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

s.t
ř

aPA dps, aq “ p1 ´ γqd0psq ` γ
ř

ps1,a1qPSˆA dps1, a1qpps|s1, a1q, @s P S.
(4)

Similarly, we consider the Lagrangian dual of (4), with dual variables V psq defined for all s P S:140

dual-V min
V

p1 ´ γqEs„d0rV psqs ` αEps,aq„dO
“

f˚
p prT V ps, aq ´ V psqqs {αq

‰

, (5)

where f˚
p is a variant of f˚ defined in Eq. (45). Such modification is to cope with the nonnegativity141

constraint dps, aq ě 0 in primal-V. Note that in both cases for dual-Q and dual-V, the optimal142

solution is same as their primal formulations due to strong convexity. See Appendix C.1 for a detailed143

review, connections between Fenchel and Lagrangian duality and discussion of computing π˚ from144

V ˚ for the dual-V formulation.145

Remarks. The dual formulations have a few appealing properties. (a) They allow us to transform146

constrained distribution-matching problems, w.r.t previously logged data, into unconstrained forms.147

(b) One can show that the gradient of dual-Q w.r.t π, when Q is optimized for the inner problem, is148

the on-policy policy gradient computed by off-policy data [56, 55]. This key property relieves the149

instability or divergence issue in off-policy learning [74, 17, 20, 42]. (c) The dual framework can be150

extended to the max-entropy RL setting, where Jpπq consists of additional entropy regularization, by151

replacing Bellman-operator with their soft Bellman counterparts [26].152

4 Imitation Learning from Dual Perspective153

Imitation learning is the setting where an agent does not have access to the reward when interacting154

with the environment. Instead, it is given a set of reward-free demonstrations, i.e. state-action155

trajectories. For ease of presentation, we start with the standard offline IL setup in Section 4.1, where156

the demonstrations are generated by expert agents. We show how IQLearn [22] and IBC [15] can157

be written as dual-Q problems. Next, we consider the setting in which the agents receive additional158

suboptimal demonstrations, where we rewrite OPOLO [82] in the dual-Q formulation. Finally, we159

discuss how these formulations and algorithms further extend to online IL under mild modifications.160

The process of unifying those algorithms helps us identify shortcomings and unprincipled components161

in them, and we propose a novel algorithm ReCOIL that eliminates those downsides in Section 4.2.162

4.1 Dual Formulation for Existing Off-Policy Imitation Learning Algorithms163

Offline IL with Expert Data Only A straightforward application of our dual-Q formulation to164

offline IL is to simply set the reward to be uniformly 0 across the state-action space and set the165

regularization distribution dO to be the expert visitation distribution dE . That is,166

dual-Q maxπminQp1 ´ γqEd0psq,πpa|sqrQps, aqs ` αEs,a„dE rf˚ prT π
0 Qps, aq ´Qps, aqs {αqs. (6)

Interestingly, this reduction directly leads us to a family of IL methods IQLearn [22], which was167

derived using a change of variables in the form of an inverse backup operator.168

Lemma 1. IQLearn [22] is an instance of dual-Q using the semi-gradient update rule with a169

soft-Bellman operator, where rps, aq “ 0@s P S, a P A, dO “ dE .170

We also find that IBC [15], an offline IL method that performs behavior cloning using a contrastive171

objective, is a special case of IQLearn and consequently of the dual-Q form.172

Corollary 1. IBC [15] is an instance of dual-Q using the full-gradient update rule, where rps, aq “173

0 @s P S, a P A, dO “ dE , and the f -divergence is the total variation distance.174
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Offline IL with Additional Suboptimal Data The dual-Q and dual-V formulations do not175

naturally incorporate additional suboptimal data. To remedy this, prior methods have relied on careful176

selection of the f -divergence and a coverage assumption that allows them to craft an off-policy177

objective for imitation learning [82, 32, 48, 38, 37]. More precisely, under the coverage assumption178

that the suboptimal data visitation (denoted by dS) covers the expert visitation (dS ą 0 wherever179

dE ą 0) [48], and using the reverse KL divergence, we get the following dual-Q problem:180

dual-Q maxπpa|sq minQps,aqp1 ´ γqEρ0psq,πpa|sqrQps, aqs ` Es,a„dS
“

f˚pT π
rimitQps, aq ´Qps, aqq

‰

, (7)

where Trimit denote Bellman operator under the pseudo-reward function rimitps, aq “ ´ log dSps,aq

dEps,aq
.181

This leads us to a reduction of another IL method OPOLO [82] to dual-Q.182

Lemma 2. OPOLO [82] is an instance of dual-Q using the semi-gradient update rule, where183

rps, aq “ 0 @S,A, dO “ dE , and the f -divergence set to the reverse KL divergence.184

We note that the dual-V framework for off-policy imitation learning under coverage assumptions185

with a full-gradient update rule was studied in SMODICE [48].186

From Offline to Online Problem (7) naturally extends to online IL, as the suboptimal data does not187

need to be static—it can be the replay buffer during online training. The corresponding algorithms188

generalize as well, since their key component is estimating the Qπ function using off-policy data.189

It is worth noting that dS is dynamically changing for online IL. In contrast, Eq. (6) cannot be190

extended to online IL. Garg et al. [22] uses IQLearn in the online setting where they add additional191

regularization using bellman backups on dS . Our results suggest this to be unprincipled (also pointed192

out by Al-Hafez et al. [3]), as only expert data samples can be leveraged in this formulation.193

4.2 ReCOIL: Imitation Learning from Arbitrary Experience194

As demonstrated in Section 4.1, previous off-policy IL methods often rely on the coverage195

assumption [48, 82, 38, 36], and many of them need to train a discriminator between the demonstration196

data and the policy generated data to obtain the pseudo-reward rimit. We propose RElaxed Coverage197

for Off-policy Imitation Learning (ReCOIL), an off-policy IL algorithm that eliminates the need for198

both, the coverage assumption and the discriminator.199

Let dSmix :“ βdps, aq ` p1´ βqdSps, aq and dE,Smix :“ βdEps, aq ` p1´ βqdSps, aq, where β P p0, 1q200

is a fixed hyperparameter. We consider the following problem in primal-V form:201

primal-V max
dps,aqě0

´Df pdSmixps, aq || dE,Smix ps, aqq

s.t
ř

aPA dps, aq “ p1 ´ γqd0psq ` γ
ř

ps1,a1qPSˆA dps1, a1qpps|s1, a1q, @s P S. (8)

This is a valid imitation learning formulation [24, 36, 60, 68] since the global maximum of the202

objective is attained at d “ dE which also satisfies the above constraints, irrespective of the suboptimal203

data distribution dS . Therefore, the corresponding dual-V formulation, which we dub ReCOIL-V,204

can be leveraged to solve the IL problem:205

ReCOIL-V minV βp1 ´ γqEs„d0rV psqs ` E
ps,aq„dE,S

mix

“

f˚
p pT0V ps, aq ´ V psqq

‰

´ p1 ´ βqEps,aq„dS rT0V ps, aq ´ V psqs. (9)
Lemma 3. For any visitation distribution dS and any β P p0, 1q, the solution of off-policy objective206

ReCOIL-V is V ˚ that corresponds to an optimal policy π˚.207

In other words, imitation learning can be solved by optimizing the unconstrained problem ReCOIL-V208

with arbitrary off-policy data, without the coverage assumption. Besides, as opposed to many previous209

algorithms, ReCOIL-V uses the Bellman operator T0 which does not need the pseudo-reward rimit,210

therefore it is discriminator-free. Although the pseudo-reward is not needed for training, ReCOIL-V211

allows for recovering the reward function using the learned V ˚ which corresponds to the intent of the212

expert. That is, rps, aq “ V ˚psq ´T0pV ˚ps, aqq. Moreover, our method is generic to incorporate any213

f -divergence. The complete algorithm for ReCOIL-V can be found in Algorithm 1 in Appendix E. The214

primal-Q form for mixture distribution can be similarly specified, whose dual problem ReCOIL-Q215

also solves IL with any off-policy data, see Lemma 7 in Appendix D.216

ReCOIL-Q maxπminQ βp1 ´ γqEd0,πrQps, aqs ` Es,a„dE,S
mix

“

f˚
p pT π

0 Qps, aq ´Qps, aqq
‰

´ p1 ´ βqEs,a„dS rT π
0 Qps, aq ´Qps, aqs (10)

A Bellman Consistent Energy-Based Model (EBM) View for ReCOIL Instantiating ReCOIL-Q217

with Pearson χ2 Divergence, we obtain the following problem:218

maxπminQ βpEdS ,πpa|sqrQps, aqs ´ EdEps,aqrQps, aqsq ` Es,a„dE,S
mix ps,aq

“

pγQps1, πps1qq ´Qps, aqq2
‰

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

Bellman consistency

. (11)
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1

Offline Data Expert Data

Input ReCOIL Output

Learned Policy

Expert
Non-expert

𝑎𝑟𝑔𝑚𝑎𝑥!𝑄(𝑠, 𝑎)

Learned score func-on

Bellman consistency

Expert state-ac-on score

Replay state-ac-on score

✔

Figure 1: Recipe for ReCOIL: Learn a Bellman consistent EBM - A model which
increases the score of expert transitions, and decreases the score of replay transitions
while maintaining Bellman consistency throughout.

One can see that ReCOIL-Q aims219

to learn a score function Q whose220

expected value is low over the221

suboptimal distribution but high over222

the expert distribution, while ensuring223

that Q is Bellman consistent over the224

mixture. The Bellman consistency is225

crucial to propagate the information226

of how to recover when the policy makes a mistake. The Q value can be interpreted as a score as227

it is not representative of any expected return, and we can view ReCOIL-Q as an energy-based model228

with Bellman consistency. Figure 1 illustrated this intuition.229

Theorem 1 (Suboptimality Bound for Offline ReCOIL). Let SJ denote the joint support of dS230

and dE . Let rps, aq “ V psq ´ T0V ps, aq be the pseudo-reward implied by ReCOIL and Rmax “231

maxs,a rps, aq. Let Dδ “
␣

d |Prd
`

ps, aq P SJ
˘

ě 1 ´ δ
(

be the set of visitation distributions that232

have 1 ´ δ coverage of SJ . Let π˚
δ be the best policy over all policies whose visitation distribution233

is in Dδ . Let gpd, V q “ p1´ γqEd0psqrV psqs `EdrT0V ps, aq ´ V psqs ´Df pdps, aq || dEps, aqq be234

the imitation learning objective, and hpV q “ maxdPDδ
gpd, V q. Suppose that we can solve ReCOIL235

with the constraint d P Dδ , h is κ-strongly convex in V and β Ñ 1, then the output policy pπ satisfies236

that Jpπ˚
δ q ´ Jppπq ď 4

1´γ

a

2δRmax{κ.237

Theorem 1 bounds that the performance gap between the ReCOIL policy and the best imitation policy238

with visitation in the joint support of expert data distribution dE and suboptimal distribution dS . In239

Appendix D.1, we further discuss how ReCOIL obtains a stronger performance guarantee compared240

to IQLearn and how ReCOIL ensures a search among policies with the support constraint in practice.241

Moreover, our method implicitly learns a distribution ratio dSmix{dE,Smix which is well-defined for all242

the suboptimal and expert transitions (dS ą 0 or dE ą 0) that the policy is trained on. While ReCOIL243

utilizes additional suboptimal data, we also leverage the dual-V formulation to obtain a novel method244

IVLearn for offline imitation learning with expert-data only. Due to space constraints, we defer the245

discussion to Appendix C.3.1.246

5 Reinforcement Learning from Dual Perspective247

Regularized policy optimization, in its various forms [21, 1, 69, 80], is a natural objective for248

off-policy algorithms, in both offline and online settings. In offline RL, various types of conservatism249

notions have been proposed to prevent overestimated Q-values for offline RL, which can lead to huge250

extrapolation error [17, 20]. Two notable frameworks for offline RL are pessimistic value learning251

e.g. CQL [43] and implicit policy improvement algorithms including IQL [41] and XQL [23]. These252

frameworks have seemingly been exceptions to the regularized policy optimization formulation253

(Eq. (1) and (4)). Nonetheless, our results in Section 5.1, first to our knowledge, formulate both of254

them as instances of dual methods, which are solving regularized policy optimization in essence. Such255

unification also inspires us to propose f -DVL, a new approach under this framework in Section 5.2.256

5.1 Dual Formulations for Existing Off-Policy Reinforcement Learning Algorithms257

Lemma 4. CQL is an instance of dual-Q under the semi-gradient update rule, where the258

f -divergence is the Pearson χ2 divergence, and dO is the offline visitation distribution.259

Kumar et al. [43] shows that CQL outperforms a family of behavior-regularized offline RL260

methods [20, 80, 57], which solve different forms of primal-Q using approximate dynamic261

programming. The above result indicates that CQL’s better performance is likely due to the choice of262

f -divergence and more amenable optimization afforded by the dual formulation. Moreover, the same263

dual-Q formulation has been previously studied for online RL in AlgaeDICE [56], and Lemma 4264

suggests that CQL is an offline version of AlgaeDICE.265

Next, we show that dual-V subsumes a family of implicit policy improvement methods for offline266

RL, thus tying together all three types of methods – policy regularized, pessimistic value function,267

and implicit maximization based as instances of primal-Q, dual-Q and dual-V respectively. We268

formalize the reduction of XQL, a recent implicit policy improvement method, to dual-V below.269

Lemma 5. XQL is an instance of dual-V under the semi-gradient update rule, where the270

f -divergence is the reverse Kullback-Liebler divergence, and dO is the offline visitation distribution.271
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We also highlight that the full-gradient variant of the dual-V framework for offline RL has been272

studied extensively in OptiDICE [45] and Lemma 5 highlights that XQL is a special case OptiDICE273

with a semi-gradient update rule.274

From Offline to Online Again, all the above-discussed offline methods naturally extend to online275

settings [41, 23, 58], as their off-policy nature extends beyond the offline setup. Our analysis still276

holds, where the regularization distribution dO becomes the visitation distribution of the replay buffer277

dR. It is worth noting that dR is dynamically changing over the course of training.278

5.2 f-DVL (Dual-V Learning): Better Implicit Maximizers for Offline RL279

The success of XQL was attributed to the property that Gumbel distribution better models the Bellman280

errors [23]. Despite its decent performance, XQL is prone to training instability (see e.g., Figure 3),281

since the Gumbel loss is an exponential function that can produce large gradient during training.282

Lemma 5 shows that XQL is a particular dual-V problem where the Gumbel loss is the conjugate283

f˚
p corresponding to reserve KL divergence. This inspires us to extend XQL by choosing different284

f -divergences, where the conjugate functions are more optimization amenable. We further show that285

the proposed methods enjoy both improved performance and better training stability in Section 6.286

Implicit policy improvement algorithms iterate two steps alternately: 1) regress Qps, aq to287

rps, aq ` γV ps1q for transition ps, a, s1q, 2) estimate V psq “ maxaPAQps, aq. The learned Q, V288

functions can be used to extract policy as for the dual-V formulation, see Appendix C.1.6. Step289

1) is akin to the policy evaluation step of generalized policy iteration (GPI), and step 2) acts like290

the policy improvement step without explicitly learning a policy πpsq “ argmaxaQps, aq. The crux291

is to conservatively estimate the maximum of Q in step 2.292

Consider a rewriting of dual-V with the temperature parameter λ:293

min
V

p1 ´ λqEs„dO rV psqs ` λEps,aq„dO
“

f˚
p

`

Q̄ps, aq ´ V psq
˘‰

, (12)

where Q̄ps, aq denotes stop-gradientprps, aq ` γ
ř

s1 pps1|s, aqV ps1qq. Let x be a random294

variable of distribution D. Problem (12) can be considered as a special form of the problem below:295

min
v

p1 ´ λqv ` λEx„D

“

f˚
p px´ vq

‰

, (13)

where x is analogous to Q̄ and v is analogous to V . As opposed to the handcrafted choices [41, 23],296

we show through Lemma 6 below that as λ Ñ 1, problem (13) naturally gives rise to a family of297

implicit maximizers that estimates supx„D x.298

Lemma 6. Let x be a real-valued random variable such that Prpx ą x˚q “ 0. Let vλ be the solution299

of Problem (13). It holds that vλ1
ď vλ2

, @ 0 ă λ1 ă λ2 ă 1. Further, limλÑ1 vλ “ x˚.300

We propose a family of maximizers associated with different f -divergences and apply them to301

dual-V. We call the resulting methods f -DVL (Dual-V Learning), and the complete algorithm302

can be found in Appendix E.3. Particularly, we consider the two maximizers that correspond303

to (1) Total Variation: fpxq “ 1
2 |x ´ 1|, f˚

p pyq “ maxpy, 0q, (2) Pearson χ2 divergence:304

fpxq “ px´ 1q2, f˚
p pyq “ maxp 1

4y
2 ` y, 0q. See Figure 6 for an illustration. Recall that XQL uses305

the implicit maximizer associated with reserve KL divergence where f˚
p is exponential. Compared306

with XQL, our f˚
p functions are low-order polynomials and are thus stable for optimization.307

6 Experiments308

Our experiments aim to answer the following four questions. IL: 1) How does ReCOIL perform309

and compare with previous IL methods? 2) Can ReCOIL accurately estimate the policy visitation310

distribution dπ and the reward function/intent of the expert? RL: 3) How does f-DVL perform and311

compare with previous RL methods? 4) Is the training of f-DVL more stable than XQL?312

In order to circumvent the intricacies associated with exploration and direct our attention towards313

the intrinsic nature of dual RL formulation, we focus on the offline setting in this section, although314

the approaches can also be applied to online settings. We consider the locomotion and manipulation315

tasks from the D4RL benchmark [18], and report the results in Section 6.1 and 6.2, respectively. For316

each algorithm, we train 7 instances with different seeds and report their average return and standard317

derivation. Full experiment details can be found in Appendix E.318
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Figure 2: (a) The replay buffer distribution covers the policy visitation distribution dπ . ReCOIL perfectly infers dπ whereas a method that only
relies on expert data or the replay data with the coverage assumption fails. Results averaged over 100 seeds. (b) RecoveredR and V ˚ on a
simple grid-world environment by ReCOIL.

6.1 Offline IL319

Benchmark Comparisons For every task, our agent is given 1 expert demonstration and a set320

of suboptimal transitions, both extracted from the D4RL datasets. We follow the construction321

of suboptimal dataset in SMODICE [48]. For locomotion tasks, the suboptimal dataset consists322

of 1 million transitions of the random or medium D4RL datasets and 200 expert demonstrations,323

which we label as random+expert and medium+expert, respectively. We also consider suboptimal324

datasets mixed with only 30 expert demonstrations, which are called random+few-expert and325

medium+few-expert. Similarly, we construct datasets for the manipulation tasks. More details can326

be found in Appendix E.2.327 Suboptimal Dataset Env RCE ORIL SMODICE ReCOIL

random+ hopper 51.41˘38.63 73.93˘11.06 101.61˘7.69 108.18˘3.28
halfcheetah 64.19˘11.06 60.49˘3.53 80.16˘7.30 80.20˘6.61

expert walker2d 20.90˘26.80 2.86˘3.39 105.86˘3.47 102.16˘7.19
ant 105.38˘14.15 73.67˘12.69 126.78˘5.12 126.74˘4.63

random+ hopper 25.31˘18.97 42.04˘13.76 60.11˘18.28 97.85˘17.89
halfcheetah 2.99˘1.07 2.84˘5.52 2.28˘0.62 76.92˘7.53

few-expert walker2d 40.49˘26.52 3.22˘3.29 107.18˘1.87 83.23˘19.00
ant 67.62˘15.81 25.41 ˘ 8.58 -6.10˘7.85 67.14˘ 8.30

medium+ hopper 58.71˘34.06 61.68˘7.61 49.74˘3.62 88.51˘16.73
halfcheetah 65.14˘13.82 54.66˘0.88 59.50˘0.82 81.15˘2.84

expert walker2d 96.24˘14.04 8.19˘7.70 2.62˘0.93 108.54˘1.81
ant 86.14˘38.59 102.74˘6.63 104.95˘6.43 120.36˘7.67

medium hopper 66.15˘35.16 17.40˘15.15 47.61˘7.08 50.01˘10.36
halfcheetah 61.14˘18.31 43.24˘0.75 46.45˘3.12 75.96˘4.54

few-expert walker2d 85.28˘34.90 6.81˘6.76 6.00˘6.69 91.25˘17.63
ant 67.95˘36.78 81.53˘8.618 81.53˘8.618 110.38˘10.96

cloned+expert

pen 19.60˘11.40 -3.10˘0.40 -3.36˘0.71 95.04˘4.48
door 0.08˘ 0.15 -0.33˘0.01 0.25˘ 0.54 102.75˘4.05

hammer 1.95˘3.89 0.25˘ 0.01 0.15˘ 0.078 95.77˘17.90
relocate -0.25˘0.04 -0.29˘0.01 1.75˘3.85 67.43˘14.60

human+expert

pen 17.81˘5.91 -3.38˘2.29 -2.20˘2.40 103.72˘2.90
door -0.05˘0.05 -0.33˘0.01 -0.20˘ 0.11 104.70˘0.55

hammer 5.00˘5.64 1.89˘0.70 -0.07˘0.39 125.19˘3.29
relocate 0.02˘0.10 -0.29˘0.01 -0.16˘0.04 91.98˘ 2.89

partial+expert kitchen 6.875˘9.24 0.00˘0.00 39.16˘ 1.17 60.0˘5.70
mixed+expert kitchen 1.66˘2.35 0.00˘0.00 42.5˘2.04 52.0˘1.0

Table 2: The normalized return obtained by different offline IL methods trained on the D4RL
suboptimal datasets with 1000 expert transitions.

We compare ReCOIL-V328

against recent offline329

IL methods RCE [14],330

SMODICE [48] and331

ORIL [84]. We332

do not compare to333

DEMODICE [38] as334

SMODICE was shown to335

be competitive in Ma et al.336

[48]. Both SMODICE337

and ORIL require learning338

a discriminator, and339

SMODICE is built upon340

the coverage assumption.341

RCE also uses a recursive342

discriminator to test343

the proximity of the344

policy visitations to345

successful examples. In346

contrast, ReCOIL-V is347

discriminator-free and does348

not need this coverage349

assumption. Table 2 reports the results. ReCOIL strongly outperforms the baselines in most350

environments. SMODICE shows poor performance in cases when the combined offline dataset351

has low expert coverage (random+few-expert) or where the discriminator can easily overfit352

(high-dimensional environments like dextrous manipulation).353

Estimation of the Policy Visitation Distribution and Reward Recovery Correctly estimating a354

given policy’s visitation distribution dπ is key to testing its closeness to the expert visitation. For both355

ReCOIL-Q and ReCOIL-V, dπ can be computed via Eq (47) (appendix). Here we present the results356

obtained by ReCOIL-Q for simplicity. Figure 2a and Figure 11 show that ReCOIL-Q can estimate dπ357

more accurately than OPOLO [82] which relies on coverage assumption and IQLearn [22] which358

only utilize expert data. This validates our theoretical results in Theorem 1. Besides, Figure 2b shows359

the reward function recovered by ReCOIL-V for a simple grid-world task. For Hopper and Walker,360

we respectively observe a Pearson correlation of 0.98 and 0.92 between the recovered reward with361

the ground truth. See more details in Appendix F.9.362

6.2 Offline RL363

Benchmark Comparison Table 3 shows that f-DVL outperforms XQL and other prior offline RL364

methods [9, 42, 43, 41, 19] on a broad range of continuous control tasks. We note an inconsistency365
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Dataset BC 10%BC DT TD3+BC CQL IQL XQL(r) f -DVL (χ2) f -DVL (TV)
halfcheetah-medium-v2 42.6 42.5 42.6 48.3 44.0 47.4 47.4 47.7 47.5
hopper-medium-v2 52.9 56.9 67.6 59.3 58.5 66.3 68.5 63.0 64.1
walker2d-medium-v2 75.3 75.0 74.0 83.7 72.5 78.3 81.4 80.0 81.5
halfcheetah-medium-replay-v2 36.6 40.6 36.6 44.6 45.5 44.2 44.1 42.9 44.7
hopper-medium-replay-v2 18.1 75.9 82.7 60.9 95.0 94.7 95.1 90.7 98.0
walker2d-medium-replay-v2 26.0 62.5 66.6 81.8 77.2 73.9 58.0 52.1 68.7
halfcheetah-medium-expert-v2 55.2 92.9 86.8 90.7 91.6 86.7 90.8 89.3 91.2
hopper-medium-expert-v2 52.5 110.9 107.6 98.0 105.4 91.5 94.0 105.8 93.3
walker2d-medium-expert-v2 107.5 109.0 108.1 110.1 108.8 109.6 110.1 110.1 109.6
antmaze-umaze-v0 54.6 62.8 59.2 78.6 74.0 87.5 47.7 83.7 87.7
antmaze-umaze-diverse-v0 45.6 50.2 53.0 71.4 84.0 62.2 51.7 50.4 48.4
antmaze-medium-play-v0 0.0 5.4 0.0 10.6 61.2 71.2 31.2 56.7 71.0
antmaze-medium-diverse-v0 0.0 9.8 0.0 3.0 53.7 70.0 0.0 48.2 60.2
antmaze-large-play-v0 0.0 0.0 0.0 0.2 15.8 39.6 10.7 36.0 41.7
antmaze-large-diverse-v0 0.0 6.0 0.0 0.0 14.9 47.5 31.28 44.5 39.3
kitchen-complete-v0 65.0 - - - 43.8 62.5 56.7 67.5 61.3
kitchen-partial-v0 38.0 - - - 49.8 46.3 48.6 58.8 70.0
kitchen-mixed-v0 51.5 - - - 51.0 51.0 40.4 53.75 52.5

Table 3: The normalized return of offline RL methods on D4RL tasks. XQL(r) denotes the results obtained under the standard evaluation
protocol. Results aggregated over 7 seeds.
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Figure 4: Online RL: f -DVL outperforms SAC and XQL, particularly for Hopper-Hop and Quadruped-Run tasks.

between our reproduced XQL results and the results reported in the original paper: their results were366

reported by taking the best average return during training as opposed to the standard practice of367

taking the average of the last iterate performance across different seeds at 1 million gradient steps.368

Such inconsistency can be validated by comparing their training plots and reported results (Fig 11369

and Table 1 in [23]). XQL(r) shows the results for XQL under the standard evaluation protocol.370
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Figure 3: XQL training diverges due to the numerical
instability of its loss function. f -DVL fixes this problem
by using more well-behaved f -divergences.

Training Stability As pointed out by the authors, the371

exponential loss function of XQL causes numerical372

instabilities during optimization. As discussed in373

Section 5.2, this is a by-product of reverse KL divergence.374

Fig. 3 confirms that this is fixed by f -DVL by using375

other f -divergences with more stable loss functions.376

Additionally, Fig. 4 demonstrates that f -DVL also377

outperforms XQL and SAC in the online setting as well.378

See Appendix E for additional experimental details.379

6.3 Additional Experiments380

We conduct additional experiments in Appendix F. We further demonstrate a) when incorporating381

off-policy data in online training, traditional ADP-based methods suffer from the over-estimation382

of value functions and the performance gain is limited, whereas dual-RL methods can leverage the383

same data to achieve better performance (Appendix F.1); b) the reward functions learned by ReCOIL384

are of high quality (Appendix F.9); c) the hyperparameter ablation for f-DVL (Appendix F.7) and385

qualitative results for ReCOIL (Appendix F.4).386

7 Conclusion387

Our work unifies a significant number of recent developments in RL and IL. Our insight calls for388

these methods to be studied under this unified lens to determine the core components that contribute389

to the success and limitations of these methods. Inspired by this unification, we propose: 1) a family390

of stable offline RL methods f -DVL relying on implicit value function maximization, 2) ReCOIL,391

a general off-policy IL method from arbitrary data that do not rely on the restrictive coverage392

assumption made by prior work, and 3) a non-adversarial offline IL method IVLearn using expert393

data only. We show that f -DVL and ReCOIL both outperform previous methods in online/offline RL394

and offline IL domains, respectively. We demonstrate that Dual-RL algorithms have great potential395

for developing performant algorithms and warrant further study.396
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B Limitations and Negative Societal Impacts643

Limitations: One limitation of the paper is the assumption that the expert demonstrations used in the644

imitation learning process are always of high quality and provide the desired behavior. In practice,645

obtaining high-quality demonstrations can be challenging, especially in complex environments where646

the behavior of the expert is not always clear. The performance of the proposed approach could be647

limited in cases where the expert demonstrations are of poor quality or where the behavior of the648

expert does not correspond to the desired behavior. The second issue with dual-RL approaches is the649

training stability. Although the methods we propose are significantly more stable than prior works650

that use dual approaches, it still lacks heuristics which have made ADP-based primal methods quite651

robust to train (eg. [27]).652

Negative Societal Impacts: As machine learning algorithms continue to grow in sophistication, it is653

important to consider the potential risks and harms associated with their use. One such area of concern654

is imitation learning, which involves training a model to imitate a desired behavior by providing it655

with examples of that behavior. However, this approach can be problematic if the demonstration data656

includes harmful behaviors, whether intentional or not. Even in cases where the demonstration data657

is of high quality and desirable behavior is learned, the algorithm may still fall short of providing658

sufficient guarantees of performance. In high-stakes domains, the use of such algorithms without659

appropriate safety checks on learned behaviors could lead to serious consequences. As such, it is660

crucial to carefully consider the potential risks and benefits of imitation learning, and to develop661

strategies for ensuring safe and effective use of these algorithms in real-world application662

C Dual Reinforcement Learning663

C.1 A Review of Dual-RL664

In this section, we aim to give a self-contained review for Dual Reinforcement Learning. For a more665

thorough read, refer to [55].666

C.1.1 Convex conjugates and f -divergence667

We first review the basics of duality in reinforcement learning. Let f : R` Ñ R be a convex function.668

The convex conjugate f˚ : R` Ñ R of f is defined by:669

f˚pyq “ supxPR`
rxy ´ fpxqs. (14)

The convex conjugates have the important property that f˚ is also convex and the convex conjugate670

of f˚ retrieves back the original function f . We also note an important relation regarding f and f˚:671

pf˚q
1

“ pf 1q´1, where the 1 notation denotes first derivative.672

Going forward, we would be dealing extensively with f -divergences. Informally, f -divergences [67]673

are a measure of distance between two probability distributions. Here’s a more formal definition:674

Let P and Q be two probability distributions over a space Z such that P is absolutely continuous675

with respect to Q 1. For a function f : R` Ñ R that is a convex lower semi-continuous and fp1q “ 0,676

the f -divergence of P from Q is677

Df pP || Qq “ Ez„Q

„

f

ˆ

P pzq

Qpzq

˙ȷ

. (15)

Table 4 lists some common f -divergences with their generator functions f and the conjugate functions678

f˚.679

C.1.2 An Overview of Reinforcement Learning via Lagrangian Duality680

We consider RL problems with their average return considered in the form of a convex program with681

linear constraints [52], to which we apply Lagrangian duality to obtain corresponding constraint-free682

problems. This framework was first introduced in the work of Nachum and Dai [55], which obtains683

the same formulations as ours via Fenchel-Rockfeller duality. Here we use Lagrangian duality for its684

simplicity and popularity.685

Consider the following regularized policy learning problem686

max
π

Jpπq “ Edπps,aqrrps, aqs ´ αDf pdπps, aq || dOps, aqq, (16)

1Let z denote the random variable. For any measurable set Z Ď Z , Qpz P Zq “ 0 implies P pz P Zq “ 0.
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Divergence Name Generator fpxq Conjugate f˚pyq

Forward KL ´ log x ´1 ´ logp´yq

Reverse KL x log x epy´1q

Squared Hellinger p
?
x´ 1q2

y
1´y

Pearson χ2 px´ 1q2 y `
y2

4

Total Variation 1
2 |x´ 1| y if y P r´ 1

2 ,
1
2 s otherwise 8

Jensen-Shannon ´px` 1q logpx`1
2 q ` x log x ´ log p2 ´ eyq

Table 4: List of common f -divergences.

whereDf pdπps, aq || dOps, aqq is a conservatism regularizer that encourages the visitation distribution687

of π to stay close to some distribution dO, and α is a temperature parameter that balances the expected688

return and the conservatism.689

An interesting fact is that Jpπq can be rewritten as a convex problem that searches for an achievable690

visitation distribution that satisfies the Bellman-flow constraints:691

Jpπq “ max
d

Edps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

s.t dps, aq “ p1 ´ γqd0psq.πpa|sq ` γ
ř

s1,a1 dps1, a1qpps|s1, a1qπpa|sq, @s P S, a P A.
(17)

Applying Lagrangian duality and convex conjugate (14) to this problem, we can convert it to an692

unconstrained problem with dual variables Qps, aq defined for all s, a P S ˆ A:693

min
Q

p1 ´ γqEs„d0,a„πpsqrQps, aqs ` αEps,aq„dO rf˚ prT π
r Qps, aq ´Qps, aqs {αqs, (18)

where f˚ is the convex conjugate of f . We defer the derivation to the next section. As problem (17)694

is convex, strong duality holds and problems (17) and (18) have the same optimal objective value up695

to a constant scaling2. We refer to the nested policy learning problem where Jpπq is of form (17) as696

primal-Q and the joint problem with scaled Jpπq of form (18) as dual-Q.697

primal-Q max
π

rJpπq in the form Eq. (2)], (19)

dual-Q maxπminQp1 ´ γqEs„d0,a„πpsqrQps, aqs ` αEps,aq„dO rf˚ prT π
r Qps, aq ´Qps, aqs {αqs. (20)

In fact, problem (17) is overconstrained – the maximization w.r.t d is unnecessary, as for a fixed π698

the |S| ˆ |A| equality constraints already uniquely determine a solution dπ [66]. Let π˚, d˚ be the699

optimal policy and corresponding visitation distribution. In fact, we can relax the constraints to get700

another problem [2] with the same optimal solution d˚, which we call primal-V below:701

primal-V max
dě0

Edps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

s.t
ř

aPA dps, aq “ p1 ´ γqd0psq ` γ
ř

ps1,a1qPSˆA dps1, a1qpps|s1, a1q, @s P S.
(21)

Comparing with problem (17), the constraints are relaxed and there is no policy π in this formulation.702

In fact, as opposed to primal-Q, which needs to solve nested inner problems, primal-V solves a703

single problem to obtain d˚, from which we can recover π˚ via Eq. (22)3:704

πpa|sq “ dπps, aq{
ř

aPA d
πps, aq. (22)

Similarly, we consider the Lagrangian dual of (21), with dual variables V psq defined for all s P S:705

dual-V min
V

p1 ´ γqEs„d0rV psqs ` αEps,aq„dO
“

f˚
p prT V ps, aq ´ V psqqs {αq

‰

, (23)

where f˚
p is a variant of f˚ defined in Eq. (45). Such modification is to cope with the nonnegativity706

constraint dps, aq ě 0 in primal-V. This constraint is ignored in primal-Q because the constraints707

2We scaled the dual problem by 1{α for derivation simplicity.
3Eq. (22) can be easily computed for discrete actions, yet it is difficult for continuous actions. While our

analysis focuses on the tabular case, we discuss two methods for recovering π˚ for continuous actions in
Appendix C.1.6.
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of the inner problem (17) already uniquely identify the solution. See Appendix C.1.4 for the derivation.708

As before, strong duality holds here (up to a factor of 1{α), and we can compute the optimal policy709

π˚ after obtaining V ˚. We discuss this in detail in Appendix C.1.6.710

Remark 1. The above formulations generalizes to the popular MaxEnt RL framework, where the711

objective Jpπq contains an extra policy entropy regularizer. One only needs to replace the Bellman712

operator T π
r by its soft variant: T π

r,softQps, aq “ rps, aq ` γEs1,a1 rQps1, a1q ´ log πpa1|s1qs.713

Remark 2. We derive the dual problems via the Lagrangian duality. Taking the primal-Q problem714

as an example, the key step which bridges its Lagrangian dual problem minQmaxd LpQ, dq and the715

final formulation dual-Q is that the maximizer d˚ of the inner problem has a closed form solution.716

Equivalently, we can rewrite the inner problem maxd LpQ, dq via the convex conjugate (30), which717

eliminates the variable d. The Fenchel-Rockerfeller duality provides an alternative way to directly718

reach the same formulation, where one first rewrites the linear constraints as part of the objective719

using the Dirac delta function [55].720

Remark 3. The dual formulations have a few appealing properties. (a) They allow us to transform721

constrained distribution-matching problems, w.r.t previously logged data, into unconstrained forms.722

(b) One can show that the gradient of dual-Q w.r.t π, when Q is optimized for the inner problem, is723

the on-policy policy gradient computed by off-policy data. This key property relieves the instability724

or divergence issue in off-policy learning.725

C.1.3 Deriving dual-Q726

We again consider the RL problem as a maximization of a convex program for estimating727

policy performance Jpπq by considering optimization over achievable state-action visitations (i.e728

maxπ Jpπq):729

max
π

„

max
dě0

Edps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq (24)

s.t dps, aq “ p1 ´ γqd0psq.πpa|sq ` γ
ÿ

s1,a1

dps1, a1qpps|s1, a1qπpa|sq

ȷ

, (25)

where α allows us to weigh policy improvement against conservatism from staying close to the730

state-action distribution dO.731

A careful reader may notice that the inner problem is overconstrained and overparameterized. The732

solution to the inner maximization problem with respect to d is uniquely determined by the |S| ˆ |A|733

linear constraints, and the nonnegativity constraint d ě 0 is not necessary. Moreover, given a fixed734

policy π, the solution of the inner problem is its visitation distribution dπ .735

The constraints of the inner problem are known as the Bellman flow equations that an achievable736

stationary state-action distribution must satisfy. The next question is how can we solve it? Here737

is where Lagrangian duality comes into play. First, we form the Lagrangian dual of our original738

optimization problem, transforming our constrained optimization into an unconstrained form. This739

introduces additional optimization variables - the Lagrange multipliers Q.740

As mentioned before, we can discard the nonnegativity constraint d ě 0 as the other constraints imply741

a unique solution for d. Focusing on the inner optimization problem, we optimize the Lagrangian742

dual problem:743

min
Qps,aq

max
d

Es,a„dps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

`
ÿ

s,a

Qps, aq

˜

p1 ´ γqd0psq.πpa|sq ` γ
ÿ

s1,a1

dps1, a1qpps|s1, a1qπpa|sq ´ dps, aq

¸

,

18



where Qps, aq are the Lagrange multipliers associated with the equality constraints. We can now do744

some simple algebraic manipulation to further simplify it:745

min
Qps,aq

max
d

Es,a„dps,aqrrps, aqs ´ αDf pdps, aq || dOps, aqq

`
ÿ

s,a

Qps, aq

˜

p1 ´ γqd0psq.πpa|sq ` γ
ÿ

s1,a1

dps1, a1qpps|s1, a1qπpa|sq ´ dps, aq

¸

(26)

“ min
Qps,aq

max
d

p1 ´ γqEd0psq,πpa|sqrQps, aqs

` Es,a„d

«

rps, aq ` γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq

ff

´ αDf pdps, aq || dOps, aqq,

(27)

where we swap the mamximum and minimum in the last step as strong duality holds for this problem.746

This is equivalent to solving the following scaled objective (scaled by 1{α).747

min
Qps,aq

max
d

p1 ´ γq

α
Ed0psq,πpa|sqrQps, aqs

` Es,a„d

«

prps, aq ` γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aqq{α

ff

´Df pdps, aq || dOps, aqq

(28)

“ min
Qps,aq

p1 ´ γq

α
Ed0psq,πpa|sqrQps, aqs

` Es,a„dO

«

f˚pprps, aq ` γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aqq{αq

ff

, (29)

where we applied the convex conjugate (Eq. (14)) in the last step. To see this more clearly, let748

yps, aq “ rps, aq ` γ
ř

s1 pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq. Then, under mild conditions that the749

interchangeability principle [10] is satisfied, and dO has sufficient support over S ˆ A [55], it holds750

that751

max
d

Es,a„dryps, aqs ´Df pdps, aq || dOps, aqq (30)

“max
d

Es,a„dO

„

dps, aq

dOps, aq
yps, aq ´ f

ˆ

dps, aq

dOps, aq

˙ȷ

(31)

“EdO rf˚pyps, aqqs. (32)

We have transformed the problem of computing Jpπq to solving Eq. (29). Finally, the policy752

optimization problem maxπ Jpπq is reduced to solving the following min-max optimization problem,753

which we will refer to as dual-Q:754

maxπminQ
p1´γq

α Ed0psq,πpa|sqrQps, aqs ` Es,a„dO rf˚pprps, aq ` γ
ř

s1 pps1|s, aqπpa|s1qQps1, a1q ´Qps, aqq{αqs.
(33)

Table 4 lists the corresponding convex conjugates f˚ for common f -divergences.755

In the case of deterministic policy and deterministic dynamics, the above-obtained optimization takes756

a simpler form:757

max
πpa|sq

min
Qps,aq

p1 ´ γq

α
Eρ0psqrQps, πpsqqs ` Es,a„dO

“

f˚pprps, aq ` γQps1, πps1qq ´Qps, aqq{αq
‰

(34)
Now, we have seen how we can transform a regularized RL problem into its dual-Q form which uses758

Lagrange variables in the form of state-action functions. Interestingly, we can go further to transform759

the regularized RL problem into Lagrange variables (V) that only depend on the state, and in doing760

so we also get rid of the two-player nature (min-max optimization) in the dual-Q.761
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C.1.4 Deriving dual-V762

One important constraint we have not discussed so far is that the variable d we are optimizing must763

be nonnegative. This constraint is not needed for primal-Q, as for the inner problem (2), the solution764

is uniquely determined by the constraints. Nonetheless, it is important we consider this constraint for765

primal-V and derive the correct dual problem.766

In primal-V, we formulate the visitation constraints to depend solely on states rather than state-action767

pairs. Note that doing this does not change the solution π˚ for the regularized RL problem (Eq (16)).768

We consider α “ 1 for the sake of exposition. Interested readers can derive the result for α ‰ 1 as in769

the dual-Q case above. Recall the formulation of primal-V:770

max
dě0

Edps,aqrrps, aqs ´Df pdps, aq || dOps, aqq

s.t
ÿ

aPA
dps, aq “ p1 ´ γqd0psq ` γ

ÿ

s1,a1

dps1, a1qpps|s1, a1q. (35)

As before, we construct the Lagrangian dual to this problem. Note that our constraints now solely771

depend on s.772

min
V psq

max
dě0

Es„dps,aqrrps, aqs ´Df pdps, aq || dOps, aqq

`
ÿ

s

V psq

˜

p1 ´ γqd0psq ` γ
ÿ

s1,a1

dps1, a1qpps|s1, a1q ´ dps, aq

¸

(36)

Using similar algebraic manipulations we used to obtain dual-Q in Section C.1.3, we have :773

min
V psq

max
dps,aqě0

Es,a„dps,aqrrps, aqs ´Df pdps, aq || dOps, aqq

` Es,a„d

«

rps, aq ` γ
ÿ

s1

pps1|s, aqV ps1q ´ V psq

ff

´Df pdps, aq || dOps, aqq (37)

“min
V psq

max
dps,aqě0

p1 ´ γqEd0psqrV psqs

` Es,a„d

«

rps, aq ` γ
ÿ

s1

pps1|s, aqV ps1q ´ V psq

ff

´Df pdps, aq || dOps, aqq (38)

“min
V psq

max
dps,aqě0

p1 ´ γqEd0psqrV psqs

` Es,a„dO

«

dps,aq

dOps,aq

`

rps, aq ` γ
ÿ

s1

pps1|s, aqV ps1q ´ V psq
˘

ff

´ Es,a„dO

”

f
` dps,aq

dOps,aq

˘

ı

(39)

Let wps, aq “
dps,aq

dOps,aq
and δV ps, aq “ rps, aq ` γ

ř

s1 pps1|s, aqV ps1q ´ V psq denote the TD error.774

The last equation becomes775

min
V psq

max
wps,aqě0

p1 ´ γqEd0psqrV psqs ` Es,a„dO rwps, aqpδV ps, aqqs ´ Es,a„dO rfpwps, aqqs. (40)

We now direct the attention to the inner maximization problem and derive a closed-form solution for776

it. Consider the Lagrangian dual problem of it:777

min
λě0

max
wps,aq

Es,a„dO rwps, aqpδV ps, aqqs ´ Es,a„dO rfpwps, aqqs `
ÿ

s,a

λps, aqwps, aq (41)

where the parameters λps, aq for all s P S and a P A are the Lagrange multipliers. Since strong778

duality holds, we can use the KKT constraints to find the optimal solutions w˚ps, aq and λ˚ps, aq:779

1. Primal feasibility w˚ps, aq ě 0 @ s, a780

781

2. Dual feasibility λ˚ps, aq ě 0 @ s, a782

783
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3. Stationarity dOps, aqp´f 1pw˚ps, aqq ` δV ps, aq ` λ˚ps, aqq “ 0 @ s, a784

785

4. Complementary Slackness w˚ps, aqλ˚ps, aq “ 0 @ s, a786

Using stationarity we have the following:787

f 1pw˚ps, aqq “ δV ps, aq ` λ˚ps, aq @ s, a (42)
Now using complementary slackness only two cases are possible w˚ps, aq ě 0 or λ˚ps, aq ě 0.788

Combining both cases we arrive at the following solution for this constrained optimization:789

w˚ps, aq “ max
´

0, f 1´1
pδV ps, aqq

¯

(43)

We refer to the resulting function after plugging the solution for w˚ back in Eq. (40) and refer to the790

closed form solution for d in second and third term as f˚
p .791

f˚
p pδV ps, aqq “ w˚ps, aqpδV ps, aqq ´ fpw˚ps, aqq (44)

Plugging in w˚ps, aq from Eq. (43) to Eq. (44), we get:792

f˚
p pδV ps, aqq “ max

´

0, f 1´1
pδV ps, aqq

¯

pδV ps, aqq ´ f
´

max
´

0, f 1´1
pδV ps, aqq

¯¯

(45)

Note that we get the original conjugate f˚ back if we do not consider the nonnegativity constraints:793

f˚ps, aq “ f 1´1
pδV ps, aqqpδV ps, aqq ´ fpf 1´1

pδV ps, aqqq. (46)
Finally, we have the following optimization to solve for dual-V when considering the nonnegativity794

constraints:795

dual-V: minV psqp1 ´ γqEs„d0rV psqs ` Eps,aq„dO
“

f˚
p pδV ps, aqq

‰

796

Some works e.g. SMODICE [48], ignore the nonnegativity constraints and use the corresponding797

dual-V formulation798

dual-V (w/o nonneg. constraints): minV p1 ´ γqEs„d0rV psqs ` Eps,aq„dO rf˚pδV ps, aqs.
799

C.1.5 Discussion on Dual Formulations800

In summary, we have two dual formulations for regularized policy learning:801

dual-Q: maxπminQp1 ´ γqEd0psq,πpa|sqrQps, aqs

` Es,a„dO rf˚ prps, aq ` γ
ř

s1 pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aqqs

802

and803

dual-V: minV psqp1 ´ γqEs„d0rV psqs ` Eps,aq„dO
“

f˚
p pδV ps, aqq

‰

804

The above derivations for dual of primal RL formulation - dual-Q and dual-V brings out some805

important observations806

• dual-Q and dual-V present off-policy policy optimization solutions for regularized RL807

problems which requires sampling transitions only from the off-policy distribution the policy808

state-action visitation is being regularized against. The gradient with respect to policy809

π when d is optimized in dual-Q can be shown to be equivalent to the on-policy policy810

gradient under a regularized Q-function (see Section 5.1 from [55]).811

• The above property allows us to solve not only RL problems but also imitation problems812

by setting the reward function to be zero everywhere and dO to be the expert dataset,813

and also offline RL problems where we want to maximize reward with the constraint814

that our state-action visitation should not deviate too much from the replay buffer (dO “815

replay-buffer).816
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• dual-V formulation presents a way to solve the RL problem using a single optimization817

rather than a min-max optimization of the primal-Q or standard RL formulation. dual-V818

implicitly subsumes greedy policy maximization.819

C.1.6 How to recover the optimal policy in dual-V?820

In the above derivations for dual-Q and dual-V we leveraged the fact that the closed form solution821

for optimizing Eq. (14) w.r.t d is known. The value of d˚ for which Eq. (30) is maximized can be822

found by setting the gradient to zero (stationary point) leading to:823

d˚ps, aq

dOps, aq
“ max

ˆ

0, pf 1q´1

ˆ

yps, aq

α

˙˙

(47)

This ratio can be utilized in two different ways to recover the optimal policy:824

Method 1: Maximum likelihood on expert visitation distribution825

Policy learning can be written as maximizing the likelihood of optimal actions under the optimal826

state-action visitation:827

maxEs,a„d˚ rπθpa|sqs (48)

Using importance sampling we can rewrite the optimization above in a form suitable for optimization:828

max
θ

Es,a„dO

„

d˚ps, aq

dOps, aq
πθpa|sq

ȷ

“ max
θ

Es,a„dO rw˚ps, aqπθpa|sqs (49)

This way of policy learning is similar to weighted behavior cloning or advantage-weighted regression,829

but suffers from the issue that policy is not optimized at state-actions where the offline dataset dO has830

no coverage but d˚ ą 0.831

Method 2: Reverse KL matching on offline data distribution (Information Projection)832

To allow the policy to be optimized at all that states in the offline dataset + actions outside the dataset833

we consider an alternate objective:834

min
θ
DKLpdOpsqπθpa|sq || dOpsqπ˚pa|sqq (50)

The objective can be expanded as follows:835

min
θ
DKLpdOpsqπθpa|sq || dOpsqπ˚pa|sqq (51)

“ min
θ

Es„dOpsq,a„πθ

„

log
πθpa|sq

π˚pa|sq

ȷ

(52)

“ min
θ

Es„dOpsq,a„πθ

„

log
πθpa|sqd˚psqdOpsqπopa|sq

π˚pa|sqd˚psqdOpsqπopa|sq

ȷ

(53)

“ min
θ

Es„dOpsq,a„πθ

„

log
πθpa|sq

πopa|sq
´ logpw˚ps, aqq ` log

d˚psq

dOpsq

ȷ

(54)

“ min
θ

Es„dOpsq,a„πθ
rlogpπθpa|sqq ´ logpπopa|sqq ´ logpw˚ps, aqqs (55)

This method recovers the optimal policy at the states present in the dataset but has the added836

complexity of learning another policy πopa|sq. One way of obtaining πopa|sq is by behavior cloning837

the replay buffer.838

C.2 Dual Connections to Reinforcement Learning839

We begin by showing reducing popular offline RL class of methods: pessimistic value learning840

(CQL [43]) and implicit policy improvement (XQL [22]) to the dual-Q and dual-V framework841

respectively. Then, we show how the dual-V framework under a semi-gradient update rule leads to a842

family of offline RL algorithms that do not sample OOD actions.843

Lemma 4. CQL is an instance of dual-Q under the semi-gradient update rule, where the844

f -divergence is the Pearson χ2 divergence, and dO is the offline visitation distribution.845
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The Dual-RL Landscape

Deep RL 
(offline and online)

AlgaeDICE , 
GenDICE (CQL)

OptiDICE (XQL),
   
 𝑓-DVL

Offline 
(only expert data)

Off-policy (Online/Offline) 
with coverage assumption

Off-policy  (Online/Offline)
with arbitrary data

IQLearn 
(Implicit 
Behavior 
Cloning) 

IVLearn

OPOLO

SMODICE

dualQ
2-player 
game

dualV

1-player 
optimization

No discriminator 
learning needed.

Discriminator 
learning needed!

No discriminator 
learning needed.

ReCOIL-Q

ReCOIL-V

Imitation Learning

Figure 5: We show that a number of prior methods can be understood as a special case of the dual RL framework. Based on this framework, we
also propose new methods addressing the shortcomings of previous works (boxed in green).

Proof. We show that CQL [43], a popular offline RL method is a special case of dual-Q for offline846

RL. Consider the χ2 f -divergence with the generator function f “ pt´ 1q2. The dual function f˚ is847

given by f˚ “ p t
2

4 ` tq. With this f -divergence the dual-Q optimization can be simplified as:848

p1 ´ γq

α
Ed0,πpa|sqrQps, aqs ` Es,a„dO

„

yps, a, r, s1q2

4α2
`
yps, a, r, s1q

α

ȷ

(56)

“
p1 ´ γq

α
Ed0,πpa|sqrQps, aqs ` Es,a„dO

„

yps, a, r, s1q

α

ȷ

` Es,a„dO

„

yps, a, r, s1q2

4α2

ȷ

(57)

Let’s simplify the first two terms:849

1

α

«

p1 ´ γqEd0,πpa|sqrQps, aqs ` Es,a„dO

«

rps, aq ` γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq

ffff

(58)
850

“
1

α

«

p1 ´ γqEd0,πpa|sqrQps, aqs ` Es,a„dO

«

γ
ÿ

s1,a1

pps1
|s, aqπpa1

|s1
qQps1, a1

q

ff

´ Es,a„dO rQps, aqs `(((((((Es,a„dO rrps, aqs

ff

(59)

“
1

α

«

p1 ´ γq
ÿ

s,a

d0psqπpa|sqQps, aq ` γ
ÿ

s,a

dOps, aq
ÿ

s1

pps1
|s, aqπpa1

|s1
qQps1, a1

q ´ Es,a„dO rQps, aqs

ff

(60)

“
1

α

«

p1 ´ γq
ÿ

s,a

d0psqπpa|sqQps, aq ` γxdO, PπQy ´ Es,a„dO rQps, aqs

ff

(61)

“
1

α

«

p1 ´ γq
ÿ

s,a

d0psqπpa|sqQps, aq ` γxPπ˚ d
O, Qy ´ Es,a„dO rQps, aqs

ff

(62)

“
1

α

«

p1 ´ γq
ÿ

s,a

d0psqπpa|sqQps, aq ` γ
ÿ

s,a

πpa|sqQps, aq
ÿ

s1,a1

pps|s1, a1qdps1, a1q ´ Es,a„dO rQps, aqs

ff

(63)
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“
1

α

«

ÿ

s,a

pd0psq ` γ
ÿ

s1a,1

pps|s1, a1qdps1, a1qqπpa|sqQps, aq ´ Es,a„dO rQps, aqs ` Es,a„dO rrps, aqs

ff

(64)

“
1

α

«

ÿ

s,a

dOpsqπpa|sqQps, aq ´ Es,a„dO rQps, aqs ` Es,a„dO rrps, aqs

ff

(65)

“
1

α

“

Es„dO,a„πrQps, aqs ´ Es,a„dO rQps, aqs
‰

(66)

where Pπ denotes the policy transition operator, Pπ˚ denotes the adjoint policy transition operator.851

Removing constant terms (Eq. (59)) with respect to optimization variables we end up with the852

following form for dual-Q:853

1

α

»

—

–

Es„dO,a„πrQps, aqs
looooooooooomooooooooooon

reduce Q at OOD actions

´ Es,a„dO rQps, aqs
looooooooomooooooooon

increase Q at in-distribution actions

fi

ffi

fl

` Es,a„dO

„

yps, a, r, s1q2

4α2

ȷ

loooooooooooooomoooooooooooooon

minimize Bellman Error

(67)

Hence the dual-Q optimization reduces to:854

max
π

min
Q

α
“

Es„dO,a„πrQps, aqs ´ Es,a„dO rQps, aqs
‰

` Es,a„dO

„

yps, a, r, s1q2

4

ȷ

(68)

This update equation matches the unregularized CQL objective (Equation 3 in [43]).855

Lemma 5. XQL is an instance of dual-V under the semi-gradient update rule, where the856

f -divergence is the reverse Kullback-Liebler divergence, and dO is the offline visitation distribution.857

Proof. We show that the Extreme Q-Learning [23] framework for offline and online RL is a special858

case of the dual framework, specifically the dual-V using the semi-gradient update rule.859

Consider setting the f -divergence to be the KL divergence in the dual-V framework, the860

regularization distribution and the initial state distribution to be the replay buffer distribution861

(dO “ dR and d0 “ dR). The conjugate of the generating function for KL divergence is given by862

f˚ptq “ et´1.863

min
V psq

p1 ´ γqEd0psqrV psqs ` Es,a„dR

«

f˚

˜«

rps, aq ` γ
ÿ

s1

pps1|s, aqV ps1q ´ V psqq

ff

{α

¸ff

(69)

min
V psq

p1 ´ γqEd0psqrV psqs ` Es,a„dS

«

expp

˜«

rps, aq ` γ
ÿ

s1

pps1|s, aqV ps1q ´ V psqq

ff

{α ´ 1

¸ff

(70)

A popular approach for stable optimization in temporal difference learning is the semi-gradient update864

rule which has been studied in previous works [72]. In this update strategy, we fix the targets for the865

temporal difference backup. The target in the above optimization is given by:866

Q̄ps, aq “ rps, aq ` γ
ÿ

s1

pps1|s, aqV ps1q (71)

The update equation for V is now given by:867

min
V psq

p1 ´ γqEd0psqrV psqs ` Es,a„dR
“

expp
`“

Q̄ps, aq ´ V psqq
‰

{α ´ 1
˘‰

(72)
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where hat denotes the stop-gradient operation. We approximate this target by using mean-squared868

regression with the single sample unbiased estimate as follows:869

min
Q

Es,a,s1„dR
“

pQps, aq ´ prps, aq ` V ps1qqq2
‰

(73)

The procedure (alternating Eq. (72) and Eq. (73)) is now equivalent to the Extreme-Q learning and is870

a special case of the dual-V framework.871

C.2.1 f-DVL: A family of implicit policy improvement algorithms for RL872

Figure 6: Illustration of a family of implicit maximizers corresponding to different f -divergences. The underlying data distribution is a truncated
Gaussian TN with mean 0, variance 1 and a truncation range p´2, 2q. We sample 10000 data points from TN and compute the solution vλ of
Problem (13). As λ Ñ 1, the solution vλ becomes a more accurate estimation for the supremum of the random variable x.

Lemma 6. Let x be a real-valued random variable such that Prpx ą x˚q “ 0. Let vλ be the solution873

of Problem (13). It holds that vλ1 ď vλ2 , @ 0 ă λ1 ă λ2 ă 1. Further, limλÑ1 vλ “ x˚.874

Proof. We analyze the behavior for the following optimization of interest.875

min
v

p1 ´ λqEx„Drvs ` λEx„D

“

f˚
p px´ vq

‰

(74)

f˚
p ptq is given by (using the definition in Eq. (45):876

f˚
p ptq “ ´f

´

maxpf 1´1
ptq, 0q

¯

` tmax
´

f 1´1
ptq, 0

¯

(75)

Accordingly, the function f˚
p admits two different behaviors given by:877

f˚
p “

#

´fpf 1´1
ptqq ` tf 1´1

ptq “ f˚ptq, if f 1´1
ptq ą 0

´fp0q, otherwise

where f˚ is the convex conjugate of f -divergence and is strictly increasing with t. We note other878

important properties related to f function for f -divergences: f˚, f 1, pf 1q´1 is strictly increasing879

and f˚1
“ f 1´1. Even though f 1 does not admit a derivative to the right of 0, we define f 1p0q “880

inf Yxą0 f
1pxq (similar to [63]). For all x ă 0, f˚pxq “ ´fp0q, fp0`q ą 0 and pf 1q´1ptq ą 0881

when t ą 0 and 0 otherwise.882

We analyze the second term in Eq. (74). It can be expanded as follows:883

λ

ż

x:pf 1q´1px´vqą0

ppxqf˚px´ vqdx´ λ

ż

x:pf 1q´1px´vqă0

fp0qppxqdx (76)

From the properties of f , we use the fact that pf 1q´1px ´ vq ą 0 when x ´ v ą 0 or equivalently884

x ą v.885

λ

ż

xąv

ppxqf˚px´ vqdx´ λ

ż

xďv

fp0qppxqdx (77)

The first term in the above equation decreases monotonically and the second term increases886

monotonically (thus the combined terms decrease) as v increases until v “ x˚ (supremum of887

the support of the distribution) after which the equation assumes a constant value of ´λfp0q.888

Going back to our original optimization in Eq. (74), the first term decreases monotonically with v.889

As λ Ñ 1, the minimization of the second term takes precedence, with increasing v until saturation890
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(v “ x˚). We can go further to characterize the effect of λ on solution vλ of the equation. The891

solution of the optimization can be written in closed form as (using stationarity):892

p1 ´ λq

λ
“ Ex„D

”

f˚
p

1
px´ vq

ı

(78)

Using the fact that f˚
1

p is non-decreasing, we can show that the right-hand term in the equation above893

increases as v decreases. This in turn implies that for all λ1, λ2 such that λ1 ď λ2 we have that894

vλ1 ď vλ2 .895

C.3 Dual Connections to Imitation Learning896

This section outlines the reduction of a number of algorithms for Imitation Learning to the dual897

framework. Most prior methods can either take into account expert-only data for imitation whereas898

the other methods which do imitation from arbitrary offline data are limited by their assumptions and899

the form of f -divergence they optimize for. We walk through explaining how prior methods can be900

derived through the unified framework and also why they are limited.901

C.3.1 Offline imitation learning with expert data only902

We saw in Section 4.1, how using the dual-Q framework directly led to a reduction of IQ-Learn [22]903

as part of the dual framework. This was accomplished by simple setting the reward function to904

be 0 uniformly and setting the regularization distribution to the expert. Garg et al. [22] uses this905

method in the online imitation learning setting as well by incorporating the replay data as additional906

regularization which we suggest is unprincipled, also pointed out by others [3] (as only expert data907

samples can be leveraged in the above optimization) and provide a fix in the Section 4.2. In this908

section, we show how the same approach can directly lead to another method for learning to imitation909

from expert-only data avoiding the alternating min-max optimization of IQ-Learn.910

IV-Learn: A new method for offline imitation learning: Analogous to dual-Q (offline imitation),911

we can leverage the dual-V (offline imitation) setting which avoids the min-max optimization given912

by:913

IV-Learn or dual-V (offline imitation from expert-only data):914

min
V psq

p1 ´ γqEd0psqrV psqs ` Es,a„dE rf˚ prT0V ps, aq ´ V psqqs {αqs (79)

We propose dual-V (offline imitation) to be a new method arising out of this framework which915

we leave for future exploration. This work primarily focuses on imitation learning from general916

off-policy data.917

Proofs for this section:918

Corollary 1. IBC [15] is an instance of dual-Q using the full-gradient update rule, where rps, aq “919

0 @s P S, a P A, dO “ dE , and the f -divergence is the total variation distance.920

Eq. (6) suggests that intuitively IQ-Learn trains an energy-based model in the form of Q where921

it pushes down the Q-values for actions predicted by current policy and pushes up the Q-values922

at the expert state-action pairs. This becomes more clear when the divergence f is chosen to be923

Total-Variation (f˚ “ I), IQ-Learn for Total-Variation divergence reduces to:924

p1 ´ γqEd0psq,πpa|sqrQps, aqs ` Es,a„dE

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq

ff

(80)

“

«

p1 ´ γqEd0psq,πpa|sqrQps, aqs ` Es,a„dE

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qQps1, a1q

ffff

´ Es,a„dE rQps, aqs (81)

First, we simplify the initial two terms:925
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p1 ´ γqEd0psq,πpa|sqrQps, aqs ` Es,a„dE

«

γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q

ff

(82)

“ p1 ´ γq
ÿ

s,a

d0psqπpa|sqQps, aq ` γ
ÿ

s,a

dEps, aq
ÿ

s1,a1

pps1|s, aqπpa1|s1qQps1, a1q (83)

926

“ p1 ´ γq
ÿ

s,a

d0psqπpa|sqQps, aq ` γ
ÿ

s1,a1

ÿ

s,a

dEps, aqpps1|s, aqπpa1|s1qQps1, a1q (84)

“ p1 ´ γq
ÿ

s,a

d0psqπpa|sqQps, aq ` γ
ÿ

s1,a1

πpa1|s1qQps1, a1qp
ÿ

s,a

dEps, aqpps1|s, aqq (85)

“ p1 ´ γq
ÿ

s,a

d0psqπpa|sqQps, aq ` γ
ÿ

s1,a1

πpa1|s1qQps1, a1qp
ÿ

s,a

dEps, aqpps1|s, aqq (86)

“ p1 ´ γq
ÿ

s,a

d0psqπpa|sqQps, aq ` γ
ÿ

s,a

πpa|sqQps, aqp
ÿ

s1,a1

dEps1, a1qpps|s1, a1qq (87)

“
ÿ

s,a

p1 ´ γqd0psqπpa|sqQps, aq ` πpa|sqQps, aqp
ÿ

s1,a1

dEps1, a1qpps|s1, a1qq (88)

“
ÿ

s,a

πpa|sqQps, aq

«

p1 ´ γqd0psq ` γ
ÿ

s1,a1

dEps1, a1qpps|s1, a1q

ff

(89)

“
ÿ

s,a

πpa|sqQps, aqdEpsq (90)

where the last step is due to the steady state property of the MDP (Bellman flow constraint).927

Therefore IQ-Learn/dual-Q for offline imitation (in the special case of TV divergence) simplifies to928

(from Eq. (81)):929

«

p1 ´ γqEd0psq,πpa|sqrQps, aqs ` Es,a„dE

«

γ
ÿ

s1,a1

pps1|s, aqπpa1|s1qQps1, a1q

ffff

´ Es,a„dE rQps, aqs

(91)
“ min

Q
EdEpsq,πpa|sqrQps, aqs ´ Es,a„dE rQps, aqs (92)

The update gradient w.r.t for the above optimization matches the gradient update of infoNCE objective930

in Implicit Behavior Cloning [15] with Q as the energy-based model.931

C.4 Off-policy imitation learning (under coverage assumption)932

Directly utilizing the dual-RL framework for imitation has its limitation as we see in the previous933

section – we cannot leverage off-policy suboptimal data. We first show that it is easy to see why934

choosing the f -divergence to reverse KL makes it possible to get an off-policy objective for imitation935

learning in the dual framework. We start with the primal-Q for imitation learning under the reverse936

KL-divergence regularization (rps, aq “ 0 and dO “ dE):937

max
dps,aqě0,πpa|sq

´DKLpdps, aq || dEps, aqq

s.t dps, aq “ p1 ´ γqρ0psq.πpa|sq ` γπpa|sq
ÿ

s1,a1

dps1, a1qpps|s1, a1q. (93)

Under the assumption that the suboptimal data visitation (denoted by dS) covers the expert visitation938

(dS ą 0 wherever dE>0) [48], which we refer to as the coverage assumption, the reverse KL939
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divergence can be expanded as follows:940

DKLpdps, aq || dEps, aqq “ Es,a„dps,aq

„

log
dps, aq

dEps, aq

ȷ

“ Es,a„dps,aq

„

log
dps, aq

dEps, aq

dSps, aq

dSps, aq

ȷ

(94)

“ Es,a„dps,aq

„

log
dps, aq

dSps, aq
` log

dSps, aq

dEps, aq

ȷ

(95)

“ Es,a„dps,aq

„

log
dSps, aq

dEps, aq

ȷ

`DKLpdps, aq || dSps, aqq. (96)

Hence the primal-Q can now be written as:941

max
dps,aqě0,πpa|sq

Es,a„dps,aq

„

´ log
dSps, aq

dEps, aq

ȷ

´DKLpdps, aq || dSps, aqq (97)

s.t dps, aq “ p1 ´ γqρ0psq.πpa|sq ` γ
ÿ

s1,a1

dps1, a1qpps|s1, a1qπpa|sq. (98)

Now, in the optimization above the first term resembles the reward function and the second term942

resembles the divergence constraint with a new distribution dSps, aq in the original regularized RL943

primal (Eq. (24)). Hence we can obtain respective dual-Q and dual-V in the setting for off-policy944

imitation learning using the reward function as rimitps, aq “ ´ log dSps,aq

dEps,aq
and the new regularization945

distribution as dSps, aq. Using T π
rimit and Trimit to denote backup operators under a new reward function946

rimit, we have947

dual-Q for off-policy imitation (coverage assumption) :948

max
πpa|sq

min
Qps,aq

p1 ´ γqEρ0psq,πpa|sqrQps, aqs ` Es,a„dS rf˚pT π
rimitQps, aq ´Qps, aqqs. (99)

This choice of KL divergence leads us to a reduction of another method, OPOLO [82] for off-policy949

imitation learning to dualQ which we formalize in the lemma below:950

Lemma 2. OPOLO [82] is an instance of dual-Q using the semi-gradient update rule, where951

rps, aq “ 0 @S,A, dO “ dE , and the f -divergence set to the reverse KL divergence.952

Proof. Proof is sketched in the above section, ie. Eq. (99) is the update equation for OPOLO.953

Analogously we have dual-V for off-policy imitation (coverage assumption):954

min
V psq

p1 ´ γqEρ0psqrV psqs ` Es,a„dS rf˚pTrimitV ps, aq ´ V psqqs. (100)

We note that the dual-V framework for off-policy imitation learning under coverage assumptions955

was studied in the imitation learning work SMODICE [48].956

C.5 Logistic Q-learning and P2IL as dual-QV methods957

Logistic Q-learning and Proximal Point Imitation Learning (P2IL) uses a modified primal for958

regularized policy optimization:959

max
dě0

Edps,aqrrps, aqs ´Df pdps, aq || dOps, aqq ´Hpµps, aq}µOps, aq

s.t dps, aq “ p1 ´ γqd0psq ` πpa|sqγ
ÿ

s1,a1

µps1, a1qpps|s1, a1q. (101)

and dps, aq “ µps, aq (102)

where Hpµps, aq}µOps, aqq “
ř

µps, aq log
πµpa|sq

πµO pa|sq
denotes the conditional relative entropy and960

µO is another offline distribution of state-action transitions potentially the same as dO. The961

optimization is overparameterized (setting µ “ d). This trick was popularized via [53] and leads962

to unbiased estimators and better downstream data driven algorithms. We call these two methods963

dual-QV as their dual requires estimating both Q and V as shown in [79, 6]964
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D ReCOIL: Off-policy imitation learning without the coverage assumption965

Understanding the limitations of existing imitation learning methods in the dual framework, we now966

proceed to derive our proposed method for imitation learning with arbitrary (off-policy) data. The967

derivation for the dual-Q setting is shown below. dual-V derivation proceeds analogously.968

Lemma 7. (dual-Q for off-policy imitation (relaxed coverage assumption)) Imitation learning969

using off-policy data can be solved by optimizing the following modified dual objective for primal-Q970

with rps, aq “ 0 @S,A and f -divergence considered between distributions dSmixps, aq :“ βdps, aq `971

p1 ´ βqdSps, aq and dE,Smix ps, aq :“ βdEps, aq ` p1 ´ βqdSps, aq, and is given by:972

max
πpa|sq

min
Qps,aq

βp1 ´ γqEd0psq,πpa|sqrQps, aqs ` Es,a„dE,S
mix ps,aq

“

f˚
p pT π

0 Qps, aq ´Qps, aqq
‰

´ p1 ´ βqEs,a„dS rT π
0 Qps, aq ´Qps, aqs (103)

Proof. Let’s define two mixture distributions that we are going to leverage to formulate the imitation973

learning problem: dSmixps, aq :“ βdps, aq ` p1 ´ βqdSps, aq and dE,Smix ps, aq :“ βdEps, aq ` p1 ´974

βqdSps, aq. dSmixps, aq is a mixture between the current agent’s visitation distribution with suboptimal975

transition dataset obtained from a mixture of arbitrary policies and dE,Smix ps, aq is the mixture between976

the expert’s visitation distribution with arbitrary experience from the offline transition dataset.977

Minimizing the divergence between these visitation distributions still solves the imitation learning978

problem, i.e d “ dE . We again start with the new modified primal-Q under this mixture divergence979

regularization:980

max
dps,aqě0,πpa|sq

´Df pdSmixps, aqps, aq || dE,Smix ps, aqps, aqq

s.t dps, aq “ p1 ´ γqρ0psq.πpa|sq ` γπpa|sq
ÿ

s1,a1

dps1, a1qpps|s1, a1q.

Using the same algebraic machinery of duality as before (Section C.1.3) to get an unconstrained981

tractable optimization problem, we obtain:982

max
π,dě0

min
Qps,aq

´Df pdSmixps, aq || dE,Smix ps, aqq

`
ÿ

s,a

Qps, aq

˜

p1 ´ γqd0psq.πpa|sq ` γ
ÿ

s1,a1

dps1, a1qpps|s1, a1qπpa|sq ´ dps, aq

¸

(104)

“ max
π,dě0

min
Qps,aq

p1 ´ γqEd0psq,πpa|sqrQps, aqs

` Es,a„d

«

γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq

ff

´Df pdSmixps, aq || dE,Smix ps, aqq (105)

983

“ max
π,dě0

min
Qps,aq

p1 ´ γqEd0psq,πpa|sqrQps, aqs

` βEs,a„d

«

γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq

ff

` p1 ´ βqEs,a„dS

«

γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq

ff

´ p1 ´ βqEs,a„dS

«

γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq

ff

´Df pdSmixps, aq || dE,Smix ps, aqq

(106)

Before moving forward with the derivation, we summarize the result of the derivation so far:984
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Imitation from Arbitrary data (dualQ, no nonnegativity constraints)

“ max
πpa|sq

min
Qps,aq

max
dě0

αp1 ´ γqEd0psq,πpa|sqrQps, aqs

` Es,a„dSmixps,aq

«

γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq

ff

´Df pdSmixps, aq || dE,Smix ps, aqq

´ p1 ´ αqEs,a„dS

«

γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq

ff

(107)

985

Note that the inner maximization with respect to d has the constraint that d ě 0. In this setting, to get986

a tractable closed form we replace the optimization variable from d to dSmixps, aq with the constraint987

that d ě 0. This prevents the optimization to result in values for dSmixps, aq which has dps, aq ă 0988

for some s, a. This nonnegativity constraint was not necessary for the previous settings for dual-Q989

problems we have discussed in RL and IL (as the constraints implied a unique solution which is990

no longer the case). Ignoring this constraint (d ě 0) results in the following dual-optimization for991

imitation from arbitrary data.992

max
πpa|sq

min
Qps,aq

αp1 ´ γqEd0psq,πpa|sqrQps, aqs

` Es,a„dE,S
mix ps,aq

«

f˚pγ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aqq

ff

´ p1 ´ αqEs,a„dS

«

γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq

ff

(108)

To incorporate the nonnegativity constraints, we need to obtain the closed form solution for993

maximization w.r.t d ě 0. To do that, we start with the inner maximization w.r.t dSmixps, aq and994

consider the terms dependent on dSmixps, aq below.995

max
dSmixps,aq,dě0

Es,a„dSmixps,aq

«

γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq

ff

´Df pdSmixps, aq || dE,Smix ps, aqq

(109)

Let pps, aq “
p1´αqdSps,aq

αdEps,aq`p1´αqdSps,aq
, yps, aq “ γ

ř

s1 pps1|s, aqπpa1|s1qQps1, a1q ´ Qps, aq and996

wps, aq “
dSmixps,aq

dE,S
mix ps,aq

. We construct the Lagrangian dual to incorporate the constraint d ě 0 in its997

equivalent form wps, aq ě pps, aq and obtain the following:998

max
wps,aq

max
λě0

Es,a„dE,S
mix ps,aq

rwps, aqyps, aqs ´ EdE,S
mix ps,aq

rfpwps, aqqs `
ÿ

s,a

λpwps, aq ´ pps, aqq

(110)

Since strong duality holds, we can use the KKT constraints to find the solutionsw˚ps, aq and λ˚ps, aq.999

1. Primal feasibility: w˚ps, aq ě pps, aq @ s, a1000

2. Dual feasibility: λ˚ ě 0 @ s, a1001

3. Stationarity: dE,Smix ps, aqpf 1pw˚ps, aqq ` yps, aq ` λ˚ps, aqq “ 0 @ s, a1002

4. Complementary Slackness: pw˚ps, aq ´ pps, aqqλ˚ps, aq “ 0 @ s, a1003

Using stationarity we have the following:1004

f 1pw˚ps, aqq “ yps, aq ` λ˚ps, aq @ s, a (111)
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Now using complementary slackness, only two cases are possible w˚ps, aq ě pps, aq or λ˚ps, aq ě 0.1005

Combining both cases we arrive at the following solution for this constrained optimization:1006

w˚ps, aq “ max
´

pps, aq, f 1´1
pyps, aqq

¯

(112)

Plugging in the optimal solution for Eq. (110) (w˚) back in Eq. (107), we obtain1007

max
πpa|sq

min
Qps,aq

αp1 ´ γqEd0psq,πpa|sqrQps, aqs

` Es,a„dE,S
mix ps,aq

“

max
`

pps, aq, pf 1q´1 pyps, aqq
˘

yps, aq ´ αf
`

max
`

pps, aq, pf 1q´1 pyps, aqq
˘˘‰

´ p1 ´ αqEs,a„dS

«

rps, aq ` γ
ÿ

s1

pps1|s, aqπpa1|s1qQps1, a1q ´Qps, aq

ff

(113)

Thus, the closed-form solution with the nonnegativity constraints requires us to use the ratio pps, aq1008

to threshold the distribution ratio. We observed in our experiments that ignoring the nonnegativity1009

constraints still resulted in a similarly performant method while having the benefits of being more1010

stable. A similar derivation can be done in V -space to obtain an analogous result for ReCOIL-V.1011

D.1 Suboptimality Bound for ReCOIL-V1012

Recall that ReCOIL-V admits a dual-V form (9). When deriving dual-V, there is one step (Eq. (39))1013

where we assumed the importance sampling is exact, i.e.,1014

Eps,aq„drT V ps, aq ´ V psqs “ Eps,aq„dO

”

dps,aq

dOps,aq
pT V ps, aq ´ V psqq

ı

. (114)

However, this assumption does not hold in general and is not practical, because dO and d might1015

have different support. The gap between the two terms greatly affects the performance of dual1016

RL approaches. We shall bound the approximation error introduced by importance sampling for1017

ReCOIL-V in Section D.1.1, and then bound the suboptimality of the learned policy in Section D.1.2,1018

under mild conditions. This analysis also results in the suboptimality bound of IV-Learn and1019

IQ-Learn methods.1020

Let SJ denote the joint support of dS and dE . Let rps, aq “ V psq´γT0V ps, aq be the pseudo-reward1021

implied by ReCOIL and Rmax “ maxs,a |rps, aq|. Let Dδ “
␣

d |Prd
`

ps, aq P SJ
˘

ě 1 ´ δ
(

be the1022

set of visitation distributions that have 1´δ coverage of SJ , where Prd
`

ps, aq P SJ
˘

is the probabily1023

that ps, aq lies in SJ when sampling ps, aq from d.1024

We make the following assumptions for our proof:1025

Assumption 1 We consider imitation learning under the constraint d P Dδ. This is similar to1026

pessimism assumption when learning from fixed datasets in offline RL [47].1027

Assumption 2 The hyperparameter β for defining dSmixps, aq and dE,Smix ps, aq goes to 1: β Ñ 1.1028

Assumption 3 The function hpV q defined in Section D.1.2 is κ-strongly convex.1029

For Assumption 1, ReCOIL-V (see Algorithm 1) is able to find a policy under the visitation constraint1030

as a result of a combination of implicit maximization, which prevents overestimation and thus1031

choosing OOD action, and weighted behavior cloning (Advantage-weighted regression), which keeps1032

the output policy close to the dataset policy.1033

D.1.1 Approximation Error of the Imitation Learning Objective1034

The imitation learning problem can be written in the Lagrangian form of primal-V where rps, aq “ 01035

everywhere:1036

min
V

max
dPDδ

p1 ´ γqEd0psqrV psqs ` EdrT0V ps, aq ´ V psqs ´Df pdps, aq || dEps, aqq, (115)

where we have a constraint d P Dδ due to Assumption 1. ReCOIL-V optimizes a surrogate objective1037

of Problem (115). To derive ReCOIL-V, consider the corresponding primal-V in its Lagrangian1038
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form1039

min
V

max
dPDδ

p1 ´ γqEd0psqrV psqs ` EdrT0V ps, aq ´ V psqs ´Df pdSmixps, aq || dE,Smix ps, aqq. (116)

Rewriting the second term, we obtain1040

min
V

max
dPDδ

p1 ´ γqEd0psqrV psqs `
1

β
Es,a„dSmixps,aqrT0V ps, aq ´ V psqs

´Df pdSmixps, aq || dE,Smix ps, aqq ´
1 ´ β

β
EdS rT0V ps, aq ´ V psqs. (117)

Now we approximate the second term via importance sampling, which leads to1041

min
V

max
dPDδ

p1 ´ γqEd0psqrV psqs `
1

β
Es,a„dE,S

mix ps,aq

«

dSmixps, aq

dE,Smix ps, aq
pT0V ps, aq ´ V psqq

ff

´ EdE,S
mix ps,aq

«

fp
dSmixps, aq

dE,Smix ps, aq
q

ff

´
1 ´ β

β
EdS rT0V ps, aq ´ V psqs. (118)

By expanding dSmixps, aq “ βdps, aq ` p1 ´ βqdSps, aq, we obtain1042

min
V

max
dPDδ

p1 ´ γqEd0psqrV psqs `
1

β
Es,a„dE,S

mix ps,aq

«

dSmixps, aq

dE,Smix ps, aq
pT0V ps, aq ´ V psqq

ff

´ EdE,S
mix ps,aq

«

f

˜

dSmixps, aq

dE,Smix ps, aq

¸ff

´
1 ´ β

β
EdS rT0V ps, aq ´ V psqs, (119)

This can be further simplified to1043

min
V

max
dPDδ

p1 ´ γqEd0psqrV psqs ` Es,a„dE,S
mix ps,aq

«

dps, aq

dE,Smix ps, aq
pγT0V ps, aq ´ V psqq

ff

´ EdE,S
mix ps,aq

«

f

˜

dSmixps, aq

dE,Smix ps, aq

¸ff

, (120)

where we used the fact

Es,a„dE,S
mix ps,aq

«

dSps, aq

dE,Smix ps, aq
pT0V ps, aq ´ V psqq

ff

“ Es,a„dS rT0V ps, aq ´ V psqs

as the support of dE,Smix ps, aq contains the support of dS .1044

Let gpd, V q and pgReCOILpd, V q be the objective functions of Problem (115) and (120). gpd, V q is1045

the original IL objective we want to solve, and pgReCOILpd, V q is an approximation (with importance1046

sampling) of gpd, V q used by ReCOIL-V. To simplify the analysis, we consider the case when mixture1047

ratio β Ñ 1 (Assumption 2), so that the approximation error of the objective function reduces to the1048

approximation error of importance sampling. That is,1049

|gpd, V q ´ pgReCOILpd, V q| Ñ

ˇ

ˇ

ˇ
EdrT0V ps, aq ´ V psqs ´ EdE,S

mix ps,aq

”

dps,aq

dE,S
mix ps,aq

pT0V ps, aq ´ V psqq

ı
ˇ

ˇ

ˇ
.

(121)
For any visitation distribution d P Dδ , it holds that1050

ˇ

ˇ

ˇ
EdrpT0V ps, aq ´ V psqqs ´ EdE,S

mix ps,aq

”

dps,aq

dE,S
mix ps,aq

pT0V ps, aq ´ V psqq

ı
ˇ

ˇ

ˇ

ď Es,aPSdzSJ r|T0V ps, aq ´ V psq|s ď max δ |T0V ps, aq ´ V psq| ď δRmax, (122)

where Sd is the support of d, and the second inequality follows from the definition of Dδ. As a1051

consequence, we can bound the approximation error1052

ϵReCOIL “ max
dPDδ,V

ˇ

ˇ

ˇ

ˇ

gpd, V q ´ lim
βÑ1

pgReCOILpd, V q

ˇ

ˇ

ˇ

ˇ

ď δRmax. (123)
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Similarly, one can show that for IV-Learn, we have1053

|gpd, V q ´ pgIVLearnpd, V q| Ñ

ˇ

ˇ

ˇ
EdrT0V ps, aq ´ V psqs ´ Es,a„dE

”

dps,aq

dEps,aq

ı

pT0V ps, aq ´ V psqq

ˇ

ˇ

ˇ
.

(124)
Let SE be the support of dE . Unlike ReCOIL-V, the objective of IVLearn suffers from the following1054

worst-case estimation error1055
ˇ

ˇ

ˇ
EdrpT0V ps, aq ´ V psqqs ´ EdE

”

dps,aq

dEps,aq
pT0V ps, aq ´ V psqq

ı
ˇ

ˇ

ˇ

ď Eps,aqPSdzSE r|T0V ps, aq ´ V psq|s ď max |T0V ps, aq ´ V psq| ď Rmax, (125)

and consequently1056

ϵIVLearn “ max
dPDδ,V

ˇ

ˇ

ˇ

ˇ

gpd, V q ´ lim
βÑ1

pgIVLearnpd, V q

ˇ

ˇ

ˇ

ˇ

ď Rmax. (126)

We note that the same approximation error bounds hold similarly for IQLearn as that of IVLearn.1057

Thus ReCOIL has a smaller upper bound for the approximation error than IQLearn which we will1058

see in the next sections leads to a better performance guarantee than IQLearn.1059

D.1.2 Performance Bound of the Learned Policy1060

Recall that ϵReCOIL denotes the approximation error of the objective function by ReCOIL-V:1061

ϵReCOIL “ max
dPDδ,V

ˇ

ˇ

ˇ

ˇ

gpd, V q ´ lim
βÑ1

pgpd, V q

ˇ

ˇ

ˇ

ˇ

. (127)

Let hpV q “ maxdPDδ
gpd, V q and phpV q “ maxdPDδ

limβÑ1 pgpd, V q. It directly follows from1062

Eq. (127) that1063

|phpV q ´ hpV q| ď 2ϵReCOIL, @V. (128)
We note that maxd gpd, V q (without the d P Dδ constraint) is the standard dual-V form for imitation1064

learning, but hpV q here is defined as the same optimization under a constrained set d P Dδ .1065

Let pV “ argminV
phpV q and V ˚ “ argminV hpV q. We are interested in bounding the gap1066

hppV q ´ hpV ˚q. It holds that1067

hppV q ´ hpV ˚q “ hppV q ´ phppV q ` phppV q ´ hpV ˚q (129)

“ hppV q ´ phppV q ` phppV q ´ phpV ˚q ` phpV ˚q ´ hpV ˚q (130)
ď 2ϵReCOIL ` 0 ` 2ϵReCOIL (131)
“ 4ϵReCOIL, (132)

where the inequality follows from Eq. (128) and the fact pV “ argminV
phpV q.1068

As a consequence, we have1069

4ϵReCOIL ě hppV q ´ hpV ˚q (133)

ě hpV ˚q ` pV ˚ ´ pV q∇hpV ˚q `
κ

2
}V ˚ ´ pV }2F ´ hpV ˚q (134)

“
κ

2
}V ˚ ´ pV }2F , (135)

where the second inequality comes from the fact that the function hpV q is κ-strongly convex1070

(Assumption 3) and ∇hpV ˚q “ 0. It directly follows that1071

}V ˚ ´ pV }8 ď }V ˚ ´ pV }F ď 2
b

2
κϵReCOIL. (136)

Let π˚
δ be the policy that acts greedily with value function V ˚, which is an optimal policy over all1072

policies whose visitation distribution is within Dδ. Let pπ denote the policy that acts greedily with1073

value function pV , i.e., the output policy of ReCOIL-V. We then use the results in Singh and Yee [71]1074

to bound the performance gap between π˚
δ and pπ:1075

Jπ
˚
δ ´ J pπ ď

4

1 ´ γ

c

2ϵReCOIL
κ

ď
4

1 ´ γ

c

2δRmax

κ
. (137)
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Algorithm 1: ReCOIL-V Idealized Algorithm (Under Stochastic Dynamics)

1: Initialize Qϕ, Q̄ϕ(target Q-function), Vθ, and πψ , mixing ratio β
2: Let DS “ ps, a, s1q be data (possibly suboptimal) from the suboptimal transition dataset (online

or offline)
3: Let DE “ ps, a, s1q be expert data transitions. Let D be a sampling distribution s.t
s, a „ D “ ts, a „ DS w.p 1 ´ β, s, a „ DE w.p βu

4: for t “ 1..T iterations do
5: Train Qϕ using minϕ Lpϕq:

Lpϕq “ βp1 ´ γqEDrVθpsqs ` Es,a„D
“

f˚
p pQϕps, aq ´ Vθpsqq

‰

´ p1 ´ βqEs,a„DS rQϕps, aq ´ Vθpsqs (140)

6: Train Vθ using minθ J pθq

J pθq “ βp1 ´ γqEDrVθpsqs ` Es,a„D
“

f˚
p pQϕps, aq ´ Vθpsqq

‰

´ p1 ´ βqEs,a„DS rQϕps, aq ´ Vθpsqs (141)

7: Update πψ via maxψMpψq:

Mpψq “ Es,a„DrepQϕps,aq´Vθpsqq{β log πψps|aqs. (142)

8: end for

The above results demonstrate that ReCOIL is able to leverage suboptimal data with an approximate1076

in-distribution policy improvement and results in a policy close to the best policy with visitation1077

almost in-support of the dataset.1078

E Implementation and Experiment Details1079

Rewriting of dual-V using temperature parameter λ instead of α : An implementation trick that1080

we found particularly useful in reducing the number of hyperparameters to tune in order to obtain1081

strong learning performance was replace the temperature parameter from α to λ. Notice that our1082

initial dual-V formulation used the temperature parameter α as follows:1083

dual-V min
V

p1 ´ γqEs„d0rV psqs ` αEps,aq„dO
“

f˚
p prT V ps, aq ´ V psqqs {αq

‰

, (138)

The temperature parameter α captures the tradeoff between the first term which seeks to minimize V1084

vs the second term which seeks to maximize V and set it to the maximum value possible when taking1085

various actions from that state onwards. Depending on different f generator functions we would1086

require tuning this parameter as it has a non-linear dependence on the entire optimization problem1087

through the function f . Instead we consider a simpler objective, that we observe to empirically reduce1088

hyperparameter tuning significantly by trading off linear between the first term and the second term1089

using parameter λ. This modification is used in all of our experiments for RL and IL.1090

dual-V (rewritten) min
V

p1 ´ λqEs„d0rV psqs ` λEps,aq„dO
“

f˚
p prT V ps, aq ´ V psqqsq

‰

, (139)

E.1 Offline IL: ReCOIL algorithm and implementation details1091

We give algorithms for two versions of ReCOIL: An idealized version and a practical version1092

(Algorithm 1 and Algorithm 2 respectively). The practical version incorporates tricks like regressing1093

to fixed targets for expert Q-values and learning bounded reward functions (corresponding to χ21094

divergence), that greatly increase training stability for the method inspired by [68, 3]. We base the1095

ReCOIL implementation on the official implementation of XQL [23] and IQL [41]. Our network1096

architecture mimics theirs and uses the same data preprocessing techniques.1097

In our set of environments, we keep the same hyper-parameters (except λ) across tasks - locomotion,1098

adroit manipulation, and kitchen manipulation. For each environment, the values of λ are searched1099
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Algorithm 2: ReCOIL-V Practical Algorithm (Under Stochastic Dynamics)

1: Initialize Qϕ„ Q̄ϕ(target Q-function) Vθ, and πψ, Rmax “ k,Rmin “ ´k
2: Let DS “ ps, a, s1q be data (possibly suboptimal) from the replay buffer (online or offline)
3: Let DE “ ps, a, s1q be expert data transitions. Let D be a sampling distribution s.t
s, a „ D “ ts, a „ DS w.p 1 ´ β, s, a „ DE w.p βu

4: for t “ 1..T iterations do
5: Train Qϕ using minϕ Lpϕq:

Lpϕq “ Es,a,s1„DS
“

pQϕps, aq ´ pRminps, aq ` Vθps1qqq2
‰

` Es,a„DE

”

Qϕps, aq ´ Rmax

1´γ

ı2

6: Train Vθ using minθ J pθq:

J pθq “

$

&

%

p1 ´ λqEs,a„DrVθpsqs ` λEs,a„D

“

maxpQ̄ϕps, aq ´ Vθpsq, 0q
‰

TV
p1 ´ λqEs,a„DrVθpsqs ` λEs,a„D

“

maxppQ̄ϕps, aq ´ Vθpsqq ` 0.5pQ̄ϕps, aq ´ Vθpsqq2, 0q
‰

χ2

p1 ´ λqEs,a„DrVθpsqs ` λEs,a„D

“

expp
`“

Q̄ϕps, aq ´ Vθpsqq
‰

´ 1
˘‰

RKL/XQL

7: Update πψ via maxψMpψq:

Mpψq “ Es,a„DrepQϕps,aq´Vθpsqq{β log πψps|aqs. (143)

8: end for

between [2.5,5,10]. We keep a constant batch size of 256 across all environments. For all tasks1100

we average mean returns over 10 evaluation trajectories and 7 random seeds. We add Layer1101

Normalization [46] to the value networks for all environments. Full hyper-parameters we used1102

for experiments are given in Table 5. We found the RKL update for training the V function to be the1103

most performant for the imitation setting.1104

Hyperparameters for our proposed off-policy imitation learning method ReCOIL are shown in Table 5.1105

Hyperparameter Value
Policy learning rate 3e-4
Value learning rate 3e-4
f -divergence RKL/ (χ2,TV)
max-clip (loss clipping) 7 (for RKL)
MLP layers (256,256)
LR decay schedule cosine

Table 5: Hyperparameters for ReCOIL.
1106

E.2 Offline Imitation Learning Experiments1107

Environments: For the offline imitation learning experiments we focus on 10 locomotion and1108

manipulation environments from the MuJoCo physics engine [75]. These environments include1109

Hopper, Walker2d, HalfCheetah, Ant, Kitchen, Pen, Door, Hammer, and Relocate. The MuJoCo1110

environments used in this work are licensed under CC BY 4.0 and the datasets used from D4RL are1111

also licensed under Apache 2.0.1112

Suboptimal Datasets: For the offline imitation learning task, we utilize offline datasets consisting1113

of environment interactions from the D4RL framework [18]. Specifically, we construct suboptimal1114

datasets following the composition approach introduced in SMODICE [48]. The suboptimal datasets,1115

denoted as ’random+expert’, ’random+few-expert’, ’medium+expert’, and ’medium+few-expert’1116

combine expert trajectories with low-quality trajectories obtained from the "random-v2" and1117

"medium-v2" datasets, respectively. For locomotion tasks, the ’x+expert’ dataset (where x is ’random’1118

or ’medium’) contains a mixture of some number of expert trajectories (ď 200) and «1 million1119

transitions from the "x" dataset. The ’x+few-expert’ dataset is similar to ‘x+expert,’ but with only 301120

expert trajectories included. For manipulation environments we consider only 30 expert trajectories1121

mixed with the complete ’x’ dataset of transitions obtained from D4RL.1122
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Algorithm 3: f-DVL (Under Stochastic Dynamics)

1: Initialize Qϕ, Q̄ϕ(target Q-function), Vθ, and πψ
2: Let D “ ps, a, r, s1q be data from πD (offline) or replay buffer (online)
3: for t “ 1..T iterations do
4: Train Qϕ using minϕ Lpϕq:

Lpϕq “ Es,a,s1„dS
“

pQϕps, aq ´ prps, aq ` V ps1qqq2
‰

5: Train Vθ using minθ J pθq

J pθq “

$

&

%

p1 ´ λqEs,a„DrVθpsqs ` λEs,a„D

“

maxpQ̄ϕps, aq ´ Vθpsq, 0q
‰

TV
p1 ´ λqEs,a„DrVθpsqs ` λEs,a„D

“

maxppQ̄ϕps, aq ´ Vθpsqq ` 0.5pQ̄ϕps, aq ´ Vθpsqq2, 0q
‰

χ2

p1 ´ λqEs,a„DrVθpsqs ` λEs,a„D

“

expp
`“

Q̄ϕps, aq ´ Vθpsqq
‰

´ 1
˘‰

RKL/XQL

6: Update πψ via maxψMpψq:

Mpψq “ Es,a„DrepQϕps,aq´Vθpsqq{β log πψps|aqs. (144)

7: end for

Expert Dataset: To enable imitation learning, an offline expert dataset is required. In this work, we1123

use 1 expert trajectory obtained from the "expert-v2" dataset for each respective environment.1124

Baselines: To benchmark and analyze the performance of our proposed methods for offline imitation1125

learning with suboptimal data, we consider four representative baselines in this work: SMODICE1126

[48], RCE [14], ORIL [84], and IQLearn [22]. We exclude DEMODICE [38] from the comparison,1127

as SMODICE has been shown to be competitive [48]. SMODICE is an imitation learning method1128

based on the dual framework, assuming a restrictive coverage. ORIL adapts the generative adversarial1129

imitation learning (GAIL) [31] algorithm to the offline setting, employing an offline RL algorithm1130

for policy optimization. The RCE baseline combines RCE, an online example-based RL method1131

proposed by Eysenbach et al. [14]. RCE also uses a recursive discriminator to test the proximity1132

of the policy visitations to successful examples. [14], with TD3-BC [19]. Both ORIL and RCE1133

utilize a state-action based discriminator similar to SMODICE, and TD3-BC serves as the offline RL1134

algorithm. All the compared approaches only have access to the expert state-action trajectory.1135

The open-source implementations of the baselines SMODICE, RCE, and ORIL provided by the1136

authors [48] are employed in our experiments. We use the hyperparameters provided by the authors,1137

which are consistent with those used in the original SMODICE paper [48], for all the MuJoCo1138

locomotion and manipulation environments.1139

E.3 Online and Offline RL: f -DVL Algorithm and implementation details1140

Offline RL: Algorithm E.3 gives the algorithm for f-DVL. This section provides additional offline1141

RL experimences along with complete hyper-parameter and implementation details. Figure 13 shows1142

learning curves for all the environments. f -DVL exhibits as fast convergence as XQL but avoids the1143

numerical instability of XQL with one hyperparameter across each set of environments. We base our1144

implementation of f -DVL off the official implementation of XQL [23] and IQL from Kostrikov et al.1145

[41]. Our network architecture mimics theirs and uses the same data preprocessing techniques.1146

In our set of environments, we keep the same hyper-parameter across sets of tasks - locomotion, adroit1147

manipulation, kitchen-manipulation, and antmaze. Contrary to XQL, we find no need to use tricks1148

like gradient clipping to stabilize learning. For each set of environment, the values of λ were tuned1149

via hyper-parameter sweeps over a fixed set of values r0.65, 0.7, 0.75, 0.8, 0.9s. We keep a constant1150

batch size of 256 across all environments. For MuJoCo locomotion tasks we average mean returns1151

over 10 evaluation trajectories and 7 random seeds. For the AntMaze tasks, we average over 10001152

evaluation trajectories. We add Layer Normalization [46] to the value networks for all environments.1153

Full hyper-parameters we used for experiments are given in Table 6.1154
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Env Lambda λ Batch Size v_updates

halfcheetah-medium-v2 0.7 256 1
hopper-medium-v2 0.7 256 1
walker2d-medium-v2 0.7 256 1
halfcheetah-medium-replay-v2 0.7 256 1
hopper-medium-replay-v2 0.7 256 1
walker2d-medium-replay-v2 0.7 256 1
halfcheetah-medium-expert-v2 0.7 256 1
hopper-medium-expert-v2 0.7 256 1
walker2d-medium-expert-v2 0.7 256 1
antmaze-umaze-v0 0.8 256 1
antmaze-umaze-diverse-v0 0.8 256 1
antmaze-medium-play-v0 0.8 256 1
antmaze-medium-diverse-v0 0.8 256 1
antmaze-large-play-v0 0.8 256 1
antmaze-large-diverse-v0 0.8 256 1
kitchen-complete-v0 0.8 256 1
kitchen-partial-v0 0.8 256 1
kitchen-mixed-v0 0.8 256 1
pen-human-v0 0.8 256 1
hammer-human-v0 0.8 256 1
door-human-v0 0.8 256 1
relocate-human-v0 0.8 256 1
pen-cloned-v0 0.8 256 1
hammer-cloned-v0 0.8 256 1
door-human-v0 0.8 256 1
relocate-human-v0 0.8 256 1

Table 6: Offline RL Hyperparameters used for f -DVL. Lambda λ is the value that controls the strength of the implicit maximizer. V-updates
gives the number of value updates per Q updates.

E.4 Online RL Experiments1155

Online RL: We base the implementation of SAC off pytorch_sac and XQL [23]. Like in1156

offline experiments, hyper-parameters were left as default except for λ, which we tuned between1157

r0.6, 0.7, 0.8s and found a single value to work best across all environments. This was in contrast1158

to XQL’s finding which required per environment different hyperparameter. Also, as opposed to1159

XQL we required no clipping of the loss function. We test our method on 7 random seeds for each1160

environment.1161

Hyperparameter Value
Policy updates npol 1
Policy learning rate 3e-4
Value learning rate 3e-4
MLP layers (256,256)
LR decay schedule cosine

Table 7: Common hyperparameters for f -DVL.

Hyperparameter Value
Batch Size 1024
Learning Rate 0.0001
Critic Freq 1
Actor Freq 1
Actor and Critic Arch 1024, 1024
Buffer Size 1,000,000
Actor Noise Auto-tuned
Target Noise –

Table 8: Hyperparameters for SAC.

Compute We ran all our experiments on a machine with AMD EPYC 7J13 64-Core Processor and1162

NVIDIA A100 with a GPU memory consumption of <1000 MB per experiment. Our offline RL and1163

IL experiments for locomotion tasks take 10-20 min and the online IL experiments took around 5-61164

hours for 1 million timesteps.1165
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F Additional Experimental Results1166

F.1 Why Dual-RL Methods are a Better Alternative to Traditional Off-Policy Algorithms1167

Our experimental evaluation aims to illustrate the benefits of the dual RL framework and analyze our1168

proposed method for off-policy imitation learning. In the RL setting, we first present a case study on1169

the failure of ADP-based methods like SAC [27] to make the most when bootstrapped with additional1170

(helpful) data. This setting is what motivates the use of off-policy algorithms in the first place and is1171

invaluable in domains like robotics [77, 57]. Our results validate the benefit of utilizing the dual RL1172

framework for off-policy learning.1173

The limitations of classical off-policy algorithms: Our experiments with the popular off-policy1174

method SAC [27] reveal its brittleness to off-policy data. At the beginning of training, each learning1175

agent is provided with expert or human-demonstrated trajectories for completing the task. We add1176

1000 transitions from this dataset to the replay buffer for the off-policy algorithm to bootstrap from.1177

SAC is able to leverage this helpful data and shows improved performance in Hopper-v2, where1178

the action dimension is small. As the action dimension increases, the brittleness of SAC becomes1179

more apparent (see SAC+off policy data and SACfD plots in Figure 7). We hypothesize that this1180

failure in the online RL setting is primarily due to the training instabilities caused by TD-backups1181

resulting in overestimation in regions where the agent’s current policy does not visit. In Figure 8, we1182

observe that overestimation indeed happens in environments with larger action dimensions and these1183

overestimations take longer to get corrected and in the process destabilize the training.
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Figure 7: Despite the promise of off-policy methods, current methods based on ADP such as SAC fail when the dimension of action space,
denoted by A, increases even when helpful data is added to their replay buffer. On other hand, dual-Q methods are able to leverage off-policy
data to increase their learning performance1184
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Figure 8: SAC and SACfD suffer from overestimation when off-policy data is added to the replay buffer. We hypothesize this to cause instabilities
during training while dualQ has no overestimation.

Figure 7 shows that the dual-RL method (AlgaeDICE) is able to leverage off-policy data to increase1185

learning performance without any signs of destabilization. This can be attributed to the distribution1186

correction estimation property of dual RL methods which updates the current policy using the1187
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Figure 9: Learning curves for ReCOIL showing that it outperforms baselines in the setting of learning to imitate from diverse offline data. The
results are averaged over 7 seeds

corrected on-policy policy visitation [56]. Note, that we set the temperature α to a low value (0.001)1188

to disentangle the effect of pessimism which is an alternate way to avoid overestimation.1189

F.2 Training Curves for ReCOIL on MuJoCo tasks1190

We show learning curves for ReCOIL in Figure 9 for locomotion tasks and Figure 10 for manipulation1191

tasks below. ReCOIL training curves are reasonably stable while also being performant, especially in1192

the manipulation setting where other methods completely fail.1193
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Figure 10: Learning curves for ReCOIL showing that it outperforms baselines in the setting of learning to imitate from diverse offline data. The
results are averaged over 7 seeds

F.3 Does ReCOIL Allow for Better Estimation of Agent Visitation Distribution?1194

We consider an additional 2-D gridworld environment that demonstrate the failures of a method that1195

either do not utilize all available suboptimal data (IQ-Learn) or relies on a coverage assumption1196

(SMODICE). We saw that ReCOIL is able to perfectly infer the agent’s visitation when the replay1197

buffer covers agent ground truth visitation perfectly (Fig 2a) and here we see that ReCOIL is able to1198

outperform baselines when the replay buffer has imperfect coverage over the agent’s ground truth1199

visitation (Fig 11). In this task, the agent starts at (0,0) which is the top-left corner. The agent1200

can only move in cardinal directions with deterministic dynamics. The agent has access to two1201
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sources of off-policy data - expert visitation and replay visitation. The problem is to estimate the1202

agent’s visitation distribution given access to the agent’s policy using all the available transition data.1203

IQLearn and SMODICE predict an agent’s visitation that wildly differs from Agent’s ground truth1204

visitation distribution. While ReCOIL is not perfect as the coverage of the offline data is limited, we1205

can estimate some visitation which is qualitatively very similar to the agent’s ground truth visitation.1206

Imperfect Coverage
Expert visitation Agent ground truth visitationReplay visitation

Estimated agent visitation 
(ReCOIL)

Estimated agent visitation 
with expert data only 

(IQLearn)

Estimated Agent Visitation 
with coverage assumption

(SMODICE)

Figure 11: Replay buffer consists of data that visits near the initial state (0,0), a setting commonly observed when training RL agents. We
estimate the agent’s policy visitation and observe ReCOIL to outperform both methods which rely on expert data only or use the replay data with
coverage assumption

F.4 ReCOIL: Qualitative Comparison with a Baseline1207

In Figure 12, we investigate qualitatively why other baselines fail where ReCOIL succeeds in1208

high-dimensional tasks. A surprising finding is that the baseline we consider ’SMODICE’ almost1209

learns to imitate. It follows nearly the same actions as an expert but makes small mistakes along1210

the way - eg. ’gripping the hammer too loose’ or ’picking up the ball at a slightly wrong location’.1211

SMODICE is unable to recover from such mistakes and ends up having low performance. ReCOIL,1212

on the other hand, learns a performant task-solving policy from the same data.1213

F.5 Training Curves for f-DVL on MuJoCo Tasks (Offline)1214

Figure 13 shows the learning curves during training for f-DVL. f-DVL is able to leverage low-order1215

conjugate f -divergences to give offline RL algorithms that more stable compared to XQL. XQL1216

frequently crashes in the antmaze environment.1217

F.6 f -DVL: Complete Offline RL Results1218

Table 9 and Table 10 show complete results for benchmarking f-DVL on MuJoCo D4RL environments.1219

Here we also show the author-reported results for XQL and the reproduced results (XQL(r)) using1220

the metric of taking the average of the last iterate performance across seeds.1221

F.7 Sensitivity of f -DVL (offline) with varying λ on MuJoCo tasks1222

We ablate the temperature parameter, λ for offline RL experiments using f-DVL in Figure 15 and1223

Figure 14. The temperature λ controls the strength of KL penalization between the learned policy1224

and the dataset behavior policy, and a small λ is beneficial for datasets with lots of random noisy1225

actions. In contrast, a high λ favors more expert-like datasets. We observe that significantly less1226

hyperparameter tuning is required compared to XQL as a single temperature value works well across1227

a broad range of experiments.1228

F.8 Sensitivity of f -DVL (online) with varying λ on MuJoCo tasks1229

We ablate the temperature parameter λ for online RL experiments using f-DVL in Figure 171230

(chi-square) and Figure 16 (TV). We observe that significantly less hyperparameter tuning is required1231

compared to XQL as a single temperature value works well across a broad range of experiments.1232
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SMODICE

ReCOIL

SMODICE

ReCOIL

Figure 12: Errors compound in imitation learning and recovery is of crucial importance. Figure demonstrate how SMODICE ’almost’ imitates,
figures out roughly what actions to take but does not realise once it has made a mistake. In Hammer environment, it grips the hammer too loose
causing it to get thrown away and for relocate picks up just beside the ball missing the original task the expert intended to solve.

Table 9: Averaged normalized scores on MuJoCo locomotion and Ant Maze tasks. XQL(r) denotes the reproduced
results with author’s implementation.

Dataset BC 10%BC DT TD3+BC CQL IQL XQL XQL(r) f-DVL χ2 f-DVL TV

G
ym

halfcheetah-medium-v2 42.6 42.5 42.6 48.3 44.0 47.4 47.7 47.4 47.7 47.5
hopper-medium-v2 52.9 56.9 67.6 59.3 58.5 66.3 71.1 68.5 63.0 64.1
walker2d-medium-v2 75.3 75.0 74.0 83.7 72.5 78.3 81.5 81.4 80.0 81.5
halfcheetah-medium-replay-v2 36.6 40.6 36.6 44.6 45.5 44.2 44.8 44.1 42.9 44.7
hopper-medium-replay-v2 18.1 75.9 82.7 60.9 95.0 94.7 97.3 95.1 90.7 98.0
walker2d-medium-replay-v2 26.0 62.5 66.6 81.8 77.2 73.9 75.9 58.0 52.1 68.7
halfcheetah-medium-expert-v2 55.2 92.9 86.8 90.7 91.6 86.7 89.8 90.8 89.3 91.2
hopper-medium-expert-v2 52.5 110.9 107.6 98.0 105.4 91.5 107.1 94.0 105.8 93.3
walker2d-medium-expert-v2 107.5 109.0 108.1 110.1 108.8 109.6 110.1 110.1 110.1 109.6

A
nt

M
az

e

antmaze-umaze-v0 54.6 62.8 59.2 78.6 74.0 87.5 87.2 47.7 83.7 87.7
antmaze-umaze-diverse-v0 45.6 50.2 53.0 71.4 84.0 62.2 69.17 51.7 50.4 48.4
antmaze-medium-play-v0 0.0 5.4 0.0 10.6 61.2 71.2 73.5 31.2 56.7 71.0
antmaze-medium-diverse-v0 0.0 9.8 0.0 3.0 53.7 70.0 67.8 0.0 48.2 60.2
antmaze-large-play-v0 0.0 0.0 0.0 0.2 15.8 39.6 41 10.7 36.0 41.7
antmaze-large-diverse-v0 0.0 6.0 0.0 0.0 14.9 47.5 47.3 31.28 44.5 39.3

Fr
an

ka kitchen-complete-v0 65.0 - - - 43.8 62.5 72.5 56.7 67.5 61.3
kitchen-partial-v0 38.0 - - - 49.8 46.3 73.8 48.6 58.8 70.0
kitchen-mixed-v0 51.5 - - - 51.0 51.0 54.6 40.4 53.75 52.5

F.9 Recovering Reward functions from ReCOIL1233

We study the quality of reward functions recovered from ReCOIL using the hopper-medium-expert1234

and Walker2d-medium-expert datasets and the setup described in Section 6.1. For all trajectories1235

in this dataset, we calculate the ground truth return (sum of rewards) and the predicted cumulative1236

reward using ReCOIL. The scatter plot in figure 18 shows the correlation between predicted rewards.1237

We note that ReCOIL is an IRL method and suffers from the reward ambiguity problems as rest of the1238

IRL methods— we can only expect a reward function that induces an optimal policy whose visitation1239

is close to an expert and cannot guarantee that we recover the expert’s exact reward function. To1240

test the quality of rewards functions output by IRL methods, Pearson correlation is not the accurate1241

metric and metrics like EPIC [25] might be used instead.1242
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Figure 13: Learning curves for f-DVL showing that it is able to leverage low-order conjugate f -divergences to give offline RL algorithms that
more stable compared to XQL. The results are averaged over 7 seeds

Table 10: Evaluation on Adroit tasks from D4RL.XQL-C (r) denotes the reproduced results with author’s
implementation.

Dataset BC BRAC-p BEAR Onestep RL CQL IQL XQL XQL(r) f-DVL (χ2) f-DVL (TV)
pen-human-v0 63.9 8.1 -1.0 - 37.5 71.5 85.5 63.5 67.1 64.1
hammer-human-v0 1.2 0.3 0.3 - 4.4 1.4 2.2 1.4 2.6 1.8
door-human-v0 2 -0.3 -0.3 - 9.9 4.3 11.5 6.63 5.7 6.77
relocate-human-v0 0.1 -0.3 -0.3 - 0.2 0.1 0.17 0.2 0.37 0.12
pen-cloned-v0 37 1.6 26.5 60.0 39.2 37.3 38.6 25.25 36.1 38.1
hammer-cloned-v0 0.6 0.3 0.3 2.1 2.1 2.1 4.3 1.58 1.64 1.65
door-cloned-v0 0.0 -0.1 -0.1 0.4 0.4 1.6 5.9 0.69 0.45 0.87
relocate-cloned-v0 -0.3 -0.3 -0.3 -0.1 -0.1 -0.2 -0.2 -0.24 -0.24 -0.24

Hopper
Pearson correla-on: 0.98

Walker2d
Pearson correlation: 0.92

Le
ar

ne
d 

re
w

ar
d

GT reward GT reward

Figure 18: Correlation of the rewards inferred by ReCOIL with respect to the ground truth reward function of the expert.
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Figure 14: Offline RL: Ablating the temperature parameter for f-DVL (Total variation). The plot shows the effect of temperature parameters on
learning performance.
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Figure 15: Offline RL: Ablating the temperature parameter for f-DVL (Chi-square). The plot shows the effect of temperature parameters on
learning performance.
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Figure 16: Online RL: Ablating the temperature parameter for f-DVL (Total variation). The plot shows the effect of temperature parameters on
learning performance.
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Figure 17: Online RL: Ablating the temperature parameter for f-DVL (Chi-square). The plot shows the effect of temperature parameters on
learning performance.
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