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ABSTRACT

GUI grounding, which maps natural-language instructions to actionable UI el-
ements, is a core capability of GUI agents. Prior work largely treats instruc-
tions as a static proxy for user intent, overlooking the impact of instruction di-
versity on grounding performance. Through a careful investigation of existing
grounding datasets, we find a 23.3% flaw rate in their instructions and show that
inference-time exploitation of instruction diversity yields up to a 76% relative per-
formance improvement. In this paper, we introduce the “Instruction as Reason-
ing” paradigm, treating instructions as dynamic analytical pathways that offer
distinct perspective and enabling the model to select the most effective pathway
during reasoning. To achieve this, we propose a two-stage training framework:
supervised fine-tuning (SFT) on synthesized, diverse instructions to instill multi-
perspective reasoning, followed by reinforcement learning (RL) to optimize path-
way selection and composition. Our resulting models, UI-Ins-7B and UI-Ins-32B,
achieve state-of-the-art results on five challenging benchmarks and exhibit emer-
gent reasoning, selectively composing and synthesizing novel instruction path-
ways at inference. In particular, UI-Ins-32B attains the best grounding accuracy:
87.3% on UI-I2E-Bench and 84.9% on MMBench-GUI L2, besides, UI-Ins-7B
yields superior agent performance, achieving a 66.1% success rate on the An-
droidWorld. All code, data, and models will be publicly released.

1 INTRODUCTION

Automated agents for graphical user interfaces (GUIs) are an important frontier in the pursuit of arti-
ficial general intelligence (AGI) (Wang et al., 2024b). Their effectiveness hinges on GUI grounding,
i.e., the task of mapping a natural-language instruction to the corresponding actionable UI element
in a screenshot or live interface.

The natural-language instruction is central to GUI grounding: it is a primary input alongside the
GUI screenshot and conveys high-level user intent to be realized as low-level, executable actions.
Accordingly, instruction clarity and precision are key determinants of grounding success. However,
prior work has offered limited systematic study of instructions themselves. In this paper, we pro-
vide a multi-faceted analysis covering instruction diversity, quality, and algorithmic strategies, and
establish a concrete basis for more effective grounding.

We focus on instruction diversity and reveal a fundamental mismatch: humans flexibly choose
among multiple instructional perspectives, whereas current models are trained in a narrow, fixed
style. For example, a single intent such as “close a window”, human may describe its appearance
(“click the red X”), function (“close the file manager”), spatial location (“the button in the top-right
corner”), or high-level intent (“get rid of this screen”). Humans strategically switch among these
perspectives, choosing the most effective description for the task at hand, as illustrated in Fig. 3.
Our quantitative analysis in Sec 2.1 likewise show that leveraging instruction diversity is key to im-
proving grounding accuracy. However, prevailing GUI grounding models are typically trained to
map a single instruction style to an action, with limited capacity to reason across perspectives. This
limitation forms a key bottleneck to adaptability and robust interpretation in GUI tasks.

Those insights motivate a paradigm shift: rather than treating instructions as static inputs, we should
regard them as dynamic reasoning pathways. Different instruction types are not merely alternative
phrasings; they encode distinct analytical angles for identifying a target. An intelligent GUI agent
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Figure 1: Performance comparisons of UI-Ins and other state-of-the-art methods.
should not only understand a command but also actively select the most effective reasoning process
to infer the user’s intent. We term this new paradigm Instruction as Reasoning.

Beyond this conceptual shift, we also find pervasive instruction-quality issues in grounding datasets.
Specifically, we manually inspected 1,909 data entries sampled from prominent datasets, including
OS-Atlas (Wu et al., 2024), Omniact (Kapoor et al., 2024), and Android Control (Li et al., 2024).
As shown in Fig. 2b, we found that a notable 23.3% of these samples contained various quality
deficiencies, introducing considerable noise that could adversely affect model training.

To realize this vision, we introduce a simple and effective framework. We propose a data pipeline
systematically cleans noisy annotations and, crucially, augments existing data with a rich diversity
of instruction types, creating a dataset curated specifically for multi-perspective instruction reason-
ing. With this high-quality data as our foundation, we then propose our Instruction as Reasoning
framework. This novel two-stage training paradigm first uses Supervised Fine-Tuning (SFT) to
explicitly teach the model these diverse reasoning pathways, and then employs Group Relative Pol-
icy Optimization (GRPO) (Guo et al., 2025; Shao et al., 2024) in a Reinforcement Learning (RL)
stage, enabling the model to learn how to choose the optimal instruction as reasoning for any given
situation. Leveraging our effective data processing pipeline and the Instruction as Reasoning algo-
rithm, we introduce the UI-Ins-7B and UI-Ins-32B models. Empirical evaluations conducted across
multiple distinct benchmarks validate the strength of our approach, as illustrated in Fig. 1.

In summary, our contributions are as follows:

• Systematic Investigation into Grounding Instruction. We conduct a systematic analysis of in-
structions in GUI grounding, revealing two crucial insights: (1) a striking 23.3% of samples’
instructions in major datasets are flawed, and (2) there is massive potential in leveraging instruc-
tion diversity, which can unlock up to a 76% relative performance gain even without training.

• Instruction as Reasoning Paradigm. Building on the insights above, we pioneer the “Instruc-
tion as Reasoning” paradigm, which reframes instructions from static inputs to dynamic reasoning
pathways. We realize this through a SFT+GRPO training framework that first teaches the model
use diverse instruction perspectives as reasoning and then incentivize it to select the optimal ana-
lytical perspective for any given task.

• SOTA Performance Across Diverse Benchmarks. Our UI-Ins-7B and UI-Ins-32B establish
new SOTA performance across five major grounding benchmarks. Notably, UI-Ins-32B achieves
87.3% on UI-I2E-Bench and 84.9% on MMBench-GUI L2, significantly surpassing the strongest
baseline. Moreover, our superior grounding capability leads to strong online agent performance
on AndroidWorld when combined with GPT-5 as the planner, yielding a 66.1% success rate.

2 HOW MUCH DO INSTRUCTIONS REALLY MATTER?

The natural language instruction is a primary input to grounding tasks, serving as the sole carrier of
user intent in GUI grounding. But to what extent do the key aspects of an instruction’s formulation,
namely its analytical perspective and its correctness, truly impact a model’s performance? Prior
works have largely treated the instruction as a simple input string, leaving its impact underexplored.
We highlight that the instruction is a central, understudied variable in grounding. To probe this view,
we conduct a preliminary analysis guided by two foundational research questions:
• RQ1: How does the diversity of instructional perspectives affect grounding accuracy?
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Figure 2: Preliminary analysis of GUI Grounding Instructions. (a) Instruction diversity influences
performance significantly. (b) Instruction quality problems in existing open-source datasets. (c)
Low instruction quality undermines training efficacy.
• RQ2: What is the state of instruction quality in existing grounding datasets, and what is its impact?

2.1 DOES INSTRUCTION DIVERSITY UNLOCK HIGHER PERFORMANCE?

Humans instinctively choose the most effective way to describe an object based on the context like
Fig. 3. Does providing a model with similarly diverse, perspective-rich instructions unlock better
performance? To investigate this, we conducted a controlled experiment on the ScreenSpot Pro
benchmark. We systematically rewrote its original instructions to reflect four distinct perspectives:
Appearance, Functionality, Location, and Intent. We then evaluated the zero-shot performance of
Qwen2.5-VL-7B on each instruction set.

Functionality: Close the file 
manager window.

Appearance: The icon looks 
like a picture.

Intent: Mute all the system 
sound.

Location: Edit line after the 
addFault function.

Figure 3: Examples of best-performing instruc-
tions in different scenarios.

The results, shown in Fig. 2a, reveal two criti-
cal insights. First, instruction diversity matters
significantly. Instructions from perspectives of
appearance, function, and intent all substan-
tially outperform the original instructions. This
demonstrates that even without retraining, sim-
ply providing diverse instruction perspectives
can unlock significant latent capabilities within
the model. Second, the ability to select the
most appropriate instruction perspective leads
to a higher performance ceiling. The “Com-
bined” bar, representing the performance if a
model could always pick the best-performing
perspective for each sample, achieves a relative
improvement of 76%, far surpassing any single
instruction perspective.

Overall, these results reveal considerable untapped potential in leveraging instruction diversity, both
by introducing multiple instruction perspectives and by selecting the optimal perspective per in-
stance. This motivates our algorithm that learns to leverage diverse instruction perspectives as rea-
soning and dynamically chooses the best analytical angle.

2.2 CAN WE TRUST EXISTING DATASETS FOR INSTRUCTION QUALITY?

While utilizing instruction diversity is promising, its effectiveness rests on a foundation that the
original instructions are correct. But is this foundation valid? To probe the instruction quality of the
grounding datasets, we conducted a large-scale manual analysis. Specifically, we examined 1, 909
samples from three prominent datasets, OS-Atlas (Wu et al., 2024), AMEX (Chai et al., 2025), and
Widget Captioning (Li et al., 2020).

Our analysis reveals pervasive instruction quality issues. As shown in Fig. 2b, 23.3% of instructions
exhibit substantive flaws, including ambiguity or referring to nothing shown in Fig. 4. To further
quantify the impact of such flaws, we trained the same model on the original dataset and on a
cleaned version. Experimental results are depicted in Fig. 2c: models trained on cleaned data achieve
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Figure 5: Overview of our data augmentation and verification pipeline.
substantial and consistent performance gains across multiple benchmarks. In other words, flawed
instruction data can significantly degrade downstream performance when used for training.

Ambiguous Instruction Mismatch Instruction

The red square indicates the 
active slide

Check how many people have 
interacted with the article.

Figure 4: Instruction quality problems. Left:
Ambiguous match. Right: Mismatch.

These findings indicate that existing datasets suffer
from instruction quality problems that actively harm
model performance. Consequently, data cleaning is
not optional niceties but necessary prerequisites for
meaningful training, especially when our goal is to
teach models to leverage diverse instruction perspec-
tives as reasoning.

3 METHOD

Our methodology is architected to address the two
fundamental challenges identified in Sec. 2: the per-
vasive data quality issues and the untapped poten-
tial of instruction diversity. We first introduce a
high-fidelity data pipeline designed to establish the
necessary preconditions for effective model training.
With this robust data foundation, we then present our
core algorithmic contribution, Instruction as Rea-
soning, a two-stage training framework that empow-
ers models to use diverse instructions as reasoning
pathways and to select the optimal analytical per-
spective during reasoning.

3.1 TASK DEFINITION

GUI Grounding aims to localize the UI element corresponding to an natural language instruction
on a graphical interface (Wang et al., 2024b). Formally, given a GUI screenshot S and a natural
language instruction I, the model f should predict a coordinate point p = (xp, yp) that indicates the
target element’s location.

3.2 DATA PIPELINE FOR MULTI-PERSPECTIVE REASONING

Our preliminary analysis (Sec. 2) revealed that data quality is a prerequisite for meaningful training
(Sec 2.2) and that instruction diversity unlocks significant performance gains (Sec. 2.1). To this end,
we developed a data processing pipeline focused on two primary objectives: establishing a clean
data foundation and then systematically augmenting it with diverse, multi-perspective instructions.

Pre-processing. To rectify the pervasive annotation noise found in existing datasets, we first perform
a lightweight pre-processing step. We use OmniParser V2 (Lu et al., 2024) to detect all UI elements
on a screenshot and apply a simple IoU-based method to refine or filter the original ground truth
bounding box. This ensures each instruction is associated with a reliable spatial anchor, and the flaw
instructions are filtered at the same time. The pre-processing forms the clean foundation necessary
for the subsequent augmentation.

Multi-Perspective Instruction Augmentation. The core of our pipeline focuses on enriching in-
struction diversity. We leverage GPT-4.1 (OpenAI, 2025) to generate new instructions from the
four fundamental analytical perspectives identified in our analysis: appearance, functionality, lo-
cation, and intent. For each data instance, the model receives the screenshot with the highlighted
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Vision
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System

You can analyze user’s instruction 
from following perspective:
Appearance: …
Function: …
Spatial: …
Goal: … 

User

Click the close.

System

You should think first, and then 
output the coordinate

User

Click the close.
Vision
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𝑅𝑒𝑤𝑎𝑟𝑑 = 	)1, 𝑖𝑓	𝑖𝑛	𝑔𝑡	𝑏𝑜𝑥,0	, 𝑜𝑡ℎ𝑒𝑟𝑠

Point-in-box Reward 
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<think>I will analyze the instruction from appearance 
perspective… I will click the picture-like icon. </think> 
Coordinate [x, y] Center

Point GT Bbox
coordinateInstruction as reasoning format

Model Response

<think>…</think>
Coordinate [x, y]

SFT Loss

SFT: Learning Reasoning Paths RL: Autonomous Discovery of Optimal Strategies 

Instruction as Reasoning

Figure 6: Overview of Instruction as Reasoning. We leverage diverse instructions as reasoning
process to teach model multi-perspective reasoning paths in SFT stage, then let model explore un-
constrained perspectives to find the optimal ways in different scenarios.

target element and is prompted to create a set of high-quality, diverse phrasings. To mitigate LLM
hallucinations and ensure a strict one-to-one mapping, each generated instruction undergoes a verifi-
cation step where GPT-4.1 confirms it unambiguously refers only to the target element. This process
yields a high-fidelity, multi-perspective corpus specifically curated to teach complex reasoning.

3.3 INSTRUCTION AS REASONING

With such a multi-perspective dataset at hand, we introduce the framework to use it. As discussed
in Sec. 2.1, leveraging diverse instruction perspectives and dynamically choosing the best analytical
angle are key to unlock superior grounding performance. As shown in Fig. 6, our Instruction as
Reasoning framework is a two-stage training approach that instills this capability: (i) a SFT stage
that teaches the model to use multi-perspective instructions as explicit reasoning pathways, and (ii)
a RL stage that trains the model to use the optimal perspective on a per-sample basis.

3.3.1 SFT STAGE: LEARNING TO GENERATE DIVERSE REASONING

The goal of the SFT stage is to explicitly instill the model with the ability to perform Instruction
as Reasoning: utilizing diverse instruction perspectives as analytical reasoning before predicting
the grounding coordinates. Concretely, the model first generates an intermediate reasoning text, i.e.,
a rewritten instruction from one instruction perspective, which serves as an actionable reasoning
pathway (Fig. 6). Then outputs the final coordinates.

The grounding model, with parameters θ, is training objective is to maximize the log-likelihood of
the target sequence Ygt across the entire dataset D, formally expressed as:

max
θ

∑
(S,I,Ygt)∈D

logP (Ygt|S, I; θ), where Ygt = Rgt ⊕ pgt (1)

In this formulation, ⊕ denotes sequence concatenation. The ground-truth reasoning text, Rgt, is
randomly sampled from one of the four augmented instruction perspectives, while pgt represents
the ground-truth coordinates. An example of SFT prompt and answer is in Appendix E.1. This
unified objective elegantly compels the model to co-optimize two distinct but related skills:

• Reasoning Generation: Learning to produce a reasoning (Rgt) in an instruction perspective.

• Grounded Prediction: Learning to predict the correct coordinates (pgt) conditioned on both
inputs and its self-generated reasoning.

By fine-tuning on this objective, the model learns to reasoning from diverse instruction perspectives,
creating a foundational skill for RL stage training.
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3.3.2 RL STAGE: LEARNING TO SELECT THE OPTIMAL PERSPECTIVE

The SFT stage equips the model with the ability to generate reasoning from multiple instruction
perspectives. However, it does not teach the model which reasoning pathway is optimal for a given
context. To transcend this limitation and incentivize the model to dynamically select the most effec-
tive analytical perspective, we introduce a RL stage.

The goal of this stage is to fine-tune the SFT-trained model to discover and select reasoning strategies
that maximize grounding accuracy. To achieve this, we employ Group Relative Policy Optimization
(GRPO) (Guo et al., 2025). In this phase, we modify the prompt to simply ask the model to“think”
before answering, without providing the explicit list of predefined perspectives (appearance, func-
tion, etc.). This open-ended instruction encourages the model to explore a wider space of reasoning
patterns, including synthesizing multiple perspectives or even formulating entirely novel ones. The
model then learns to select the optimal analytical perspective from the feedback of RL rewards.

We calculate rewards by a point-in-box function, then, the rewards {ri}Gi=1 are normalized into
advantages via Z-score normalization:

Âi,t =
ri − 1

G

∑G
i=1 ri√

1
G

∑G
i=1

(
ri − 1

G

∑G
i=1 ri

)2
(2)

where G is the rollout number. Finally, the model is optimized by minimizing the objective:

L = − 1

G

G∑
i=1

π(oi | I, S)
πold(oi | I, S)

· Âi,t (3)

where πold(· | ·) denotes the old policy and Âi,t is the advantage associated with prediction oi.
By iteratively applying this process, the model learns to prioritize reasoning pathways that con-
sistently lead to correct grounding, effectively learning an optimal, context-dependent strategy for
instruction perspective selection. Interestingly, we find that the model also learns to synthesize mul-
tiple perspectives and even formulate entirely novel instruction perspectives (detailed in Sec 4.4).

4 EXPERIMENT AND RESULTS

Table 1: Overall performance on MMBench-GUI L2 and UI-I2E-Bench benchmarks. The aggre-
gated accuracy (%) for different instruction types is reported. We use ‘-’ to denote unavailability,
and ‘∗’ to denote the results evaluated by us.

Model Size MMBench-GUI L2 UI-I2E-Bench

Basic Advanced Avg. Explicit Implicit Avg.

Qwen2.5-VL (Bai et al., 2025) 7B 38.0 29.8 33.9 58.4 51.0 53.8
OS-Atlas (Wu et al., 2024) 7B 52.8 30.1 41.4 63.2 55.8 58.6
Aguvis (Xu et al., 2025) 7B 51.0 40.5 45.7 61.1 48.4 53.2
Uground-V1 (Gou et al., 2025) 7B 78.4 53.0 65.7 81.3 63.6 70.3
UI-TARS-1.5 (Seed, 2025) 7B 78.4 50.4 64.3 81.3 68.2 73.2
UI-TARS (Qin et al., 2025) 7B - - - 71.4 55.3 61.4
UI-I2E-VLM (Liu et al., 2025a) 7B - - - 72.0 67.9 69.5
InfiGUI-G1 (Liu et al., 2025c) 7B 88.5 73.2 80.8 85.0 72.7 77.4
GTA1 (Yang et al., 2025) 7B 84.4∗ 72.6∗ 78.5∗ 87.0∗ 72.8∗ 78.2∗

GTA1 (Yang et al., 2025) 32B 89.0∗ 77.9∗ 83.4∗ 91.4∗ 78.7∗ 83.5∗

Qwen2.5-VL (Bai et al., 2025) 72B 54.4 29.3 41.8 49.6 52.5 51.4
Uground-V1 (Gou et al., 2025) 72B - - - 84.5 71.3 76.3
UI-TARS-DPO (Qin et al., 2025) 72B 83.2 65.6 74.3 - - -
UI-TARS (Qin et al., 2025) 72B - - - 80.9 69.4 73.7
InternVL3 (Zhu et al., 2025) 72B 80.4 64.1 72.2 - - -

UI-Ins-7B 7B 89.0 77.3 83.1 88.9 76.3 81.1
UI-Ins-32B 32B 90.5 79.4 84.9 92.9 83.9 87.3
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Table 2: Performance comparison on ScreenSpot-Pro, ScreenSpot-V2, and ShowDown.

Model Size ScreenSpot-Pro ScreenSpot-V2 ShowDown

Text Icon Avg. Text Icon Avg. Avg.

UI-R1 (Lu et al., 2025) 3B 23.3 6.8 17.8 95.6 81.6 89.5 -
ZonUI (Hsieh et al., 2025) 3B 38.3 13.0 28.7 - - - -
Qwen2.5-VL (Bai et al., 2025) 7B 2.1 0.3 1.6 94.2 81.8 88.8 -
OS-Atlas (Wu et al., 2024) 7B - - - 92.5 73.3 85.1 41.1
GUI-R1 (Luo et al., 2025) 7B 41.5 11.7 31.0 - - - -
UI-TARS (Qin et al., 2025) 7B 46.0 16.0 35.7 95.4 86.6 91.6 66.1
UI-TARS-1.5 (Seed, 2025) 7B - - 42.0 92.9 83.3 89.0 67.2
UI-AGILE (Lian et al., 2025) 7B 58.7 18.0 44.0 - - - -
GUI-G2 (Tang et al., 2025) 7B 64.9 18.4 47.5 96.1 89.7 93.3 -
UGround-v1 (Gou et al., 2025) 7B - - - 88.1 86.8 87.7 57.8
InfiGUI-G1 (Liu et al., 2025c) 7B 69.1 24.5 51.9 97.4 88.4 93.5 68.2∗

GTA1 Yang et al. (2025) 7B 58.7 34.9 50.1 95.7 88.1 92.4 67.9∗

Phi-ground (Zhang et al., 2025) 7B - - 43.2 93.2 71.0 83.8 62.5
GUI-Actor (Wu et al., 2025) 7B - - 44.6 96.0 87.0 92.1 -
SE-GUI (Yuan et al., 2025) 7B 61.8 22.8 43.2 - - 90.3 -
GTA1 Yang et al. (2025) 32B 65.6 28.1 53.6 97.1 88.3 93.2 71.1∗

UI-Ins-7B 7B 70.0 23.5 52.2 98.2 88.6 94.0 73.1
UI-Ins-32B 32B 73.7 30.0 57.0 98.2 90.6 94.9 73.8

4.1 EXPERIMENTAL SETTINGS

Data and Implementation Details We source data from several public datasets, including OS-
Atlas, Omniact, Android Control, AMEX, and AgentNet, covering diverse operating systems such
as Windows, MacOS, Linux, and Android. All data is subsequently processed through our pipeline
to ensure quality. We employ Qwen2.5-VL-7B and Qwen2.5-VL-32B as our backbone architectures.
More data details are in Sec. E and more implementation details are in D.1.

Baselines and Metrics We compare our method against extensive recent SOTA baselines to pro-
vide a comprehensive grounding performance evaluation. These include models that are primarily
trained using supervised fine-tuning, such as Jedi (Xie et al., 2025) and Aguvis (Xu et al., 2025), as
well as methods that incorporate RL paradigm, such as GUI-Actor (Wu et al., 2025) and InfiGUI-
G1 (Liu et al., 2025c). Besides, we also compare UI-Ins with some agentic frameworks such as
AgentS2 (Zhou et al., 2024) and InfiGUIAgent (Liu et al., 2025b) on the online benchmark.
Following prior works (Yang et al., 2025; Liu et al., 2025c; Tang et al., 2025), we evaluate GUI
Grounding performance using the point-in-box accuracy.

Evaluation Benchmarks We evaluate our method on five widely-used grounding benchmarks and
a challenging online agent environment.
• Grounding Benchmarks: MMBench-GUI L2 (Xuehui Wang et al., 2025) tests performance

on hierarchical instructions, while UI-I2E-Bench (Liu et al., 2025a) focuses on explicit instruc-
tions and deeper semantic reasoning for implicit instructions. Showdown (Team, 2025) evaluates
instruction-following and low-level control capabilities. ScreenSpot-Pro Li et al. (2025) examines
semantic understanding in high-resolution professional software.

• Online Agent Benchmark: To evaluate our model’s practical utility in a dynamic setting, we
report performance on AndroidWorld (Rawles et al., 2024a). This benchmark is particularly
challenging as it requires the agent to complete multi-step tasks in a live, interactive environment.

4.2 RESULTS

Main Results As shown in Tab. 1, UI-Ins-32B achieves state-of-the-art (SOTA) results on both
the MMBench-GUI L2 and UI-I2E-Bench benchmarks, while UI-Ins-7B demonstrates a significant
performance advantage over similarly-sized models. While our models show improvements on basic
and explicit instructions, they exhibit even more substantial gains on the challenging “advanced”
(MMBench-GUI L2) and “implicit” (UI-I2E-Bench) subsets. This further validates the effectiveness
of our Instruction as Reasoning approach. Furthermore, to provide a broader validation of our
models’ capabilities, we conduct extensive evaluations on the ScreenSpot-V2, ScreenSpot-Pro, and
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Showdown benchmarks. As detailed in Tab. 2, UI-Ins-32B again achieves SOTA performance, and
UI-Ins-7B consistently delivers superior results compared to its peers in the same parameter class.
UI-Ins-32B performs well in different os platforms(Fig. 7) and we also provide a error analysis,
which indicates the lack of knowlegde(Fig. 8) and hallucination can causes(Fig. 9) the failure. More
result details are shown in Sec. F.1. Table 3: Performance on AndroidWorld.

Model Success Rate

InfiGUIAgent (Liu et al., 2025b) 9.0
Ponder&Press (Wang et al., 2024a) 34.5
Uground (Gou et al., 2025) 44.0
Aria-UI (Yang et al., 2024) 44.8
UI-Tars (Qin et al., 2025) 46.6
AgentS2 (Zhou et al., 2024) 54.3

UI-Ins-7B 66.1

Online Agent Results To assess real-world
utility, we evaluated our model as the grounding
component for a mobile agent on the challeng-
ing AndroidWorld benchmark (Rawles et al.,
2024b). As shown in Tab. 3, Paired with a
GPT-5 planner, our UI-Ins model achieves a
66.1% success rate. This result significantly
outperforms specialized baselines, demonstrat-
ing that superior grounding capability directly
translates to enhanced agent performance.

4.3 ABLATION STUDY
Table 4: Ablation study on training stages and
the reasoning component. We report accuracy on
MMBench-GUI L2 (MM), UI-I2E-Bench (I2E),
Showdown (Show), ScreenSpot-Pro (Pro), and
ScreenSpot-V2 (V2).

SFT RL MM I2E Show Pro V2

Ablation: Training stages.

✗ ✗ 63.4 56.0 43.6 24.4 86.5
✗ ✓ 72.4 69.2 66.6 37.0 88.6
✓ ✗ 76.3 70.1 67.5 37.1 90.6
✓ ✓ 83.1 81.1 73.1 52.2 94.0

Ablation: Reasoning in training stages.

✗ ✗ 79.1 70.7 66.1 44.8 91.7
✗ ✓ 78.8 71.6 68.4 48.0 92.0
✓ ✗ 81.6 76.2 72.0 47.5 93.1
✓ ✓ 83.1 81.1 73.1 52.2 94.0

Data Pipeline Ablation Study We first man-
ually inspect 1542 data produced by data
pipeline, where the error rate is less than 8%.
This is significantly lower than the inital error
rate, 23.3%. To further validate the effective-
ness of our data pipeline, we conduct an ab-
lation study via SFT training. As shown in
Tab. 11, our data pipeline provides a consis-
tent performance improvement across multiple
benchmarks. We show the details in Sec. C.2

Training Stage Ablation Study Here we val-
idate the necessity of SFT+RL training stages
for the Instruction as Reasoning method. We
compare the Qwen2.5-VL-7B model against
two variants: one trained only with SFT and
another trained only with RL . In all configu-
rations, the model is prompted to generate an intermediate reasoning step. Top results of Tab. 4
indicate that both the SFT and RL stages are critical for achieving optimal performance. The ab-
sence of either stage leads to a accuracy degradation, highlighting the importance of first teaching
the model diverse reasoning paths and then allowing it to autonomously optimize its strategy.

4.4 DEEPER INSIGHTS INTO INSTRUCTION-AS-REASONING

Having established the strong performance of our models, we now delve deep into the Instruction-
as-Reasoning framework to understand its success. We investigate three central questions below:

Table 5: Comparison between free-form reason-
ing and Instruction as Reasoning in RL stage.

Method SS.Pro SS.V2

Free-Form Reasoning (FFR) in RL

RL (w/o FFR) 50.1 92.4
RL (w/ FFR) 46.9↓ (6.4)% 93.2↑ (0.8)%

Instruction-as-Reasoning (IR) in RL

RL (w/o IR) 47.5 93.1
RL (w/ IR) 52.2↑ (9.9%) 94.0↑ (0.9%)

Is an intermediate reasoning step necessary?
A fundamental question is whether letting the
model to generate an intermediate reasoning
trace is beneficial at all. To answer this, we con-
ducted an ablation study by completely remov-
ing the reasoning generation component from
both the SFT and RL stages, training the model
to directly predict coordinates. Experimental
results are depicted in Tab. 4. Compared to our
method (the 4th row), removing reasoning (the
first row) leads to a substantial performance
drop across all benchmarks, with an accuracy
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decrease over 10% on UI-I2E-Bench. This result confirms including intermediate reasoning step is
crutial to the success of Instruction-as-Reasoning framework.

Instruction-as-Reasoning vs. Free-Form Thinking Given that reasoning is critical, what kind
of reasoning is effective? Prior works (Lu et al., 2025; Yang et al., 2025) have shown that free-
form-reasoning often fails to improve, and can even degrade, grounding performance. We test this
hypothesis against our instruction-as-Reasoning approach in Tab. 5.
First, we examine Free-Form Reasoning (FFR). As the top section of Tab. 5 shows, applying FFR
on a standard SFT model degrades performance, causing a 6.4% relative drop on SS.Pro.
In contrast, we evaluate our Instruction-as-Reasoning (IR) approach. As the bottom section of the
table 4 shows, training the model with IR yields a significant accuracy increase by a relative 9.9%.
We can thus conclude from the experiments that free-form-thinking fails to improve, where as our
instruction-as-thinking is the key to unlocking effective reasoning for GUI grounding.

Table 6: Impact of reasoning in SFT in early RL
stages. We report scores after 100 RL steps and
the relative change from the SFT-only baseline.

Method SS.Pro SS.V2

SFT (w/o IR) 37.0 90.6
SFT (w/o IR) + RL 34.9↓ (5.7%) 89.9↓ (0.8%)

SFT (w/ IR) 37.1 90.6
SFT (w/ IR) + RL 46.0↑ (24.0%) 92.8↑ (2.4%)

The Hidden Benefit: Stabilizing SFT+RL We
compare our SFT+RL framework with a stan-
dard one in Tab. 6. When a model is trained
with a standard coordinate-based SFT and then
moved to RL, it suffers from policy collapse
and leads to performance degradation. In con-
trast, our instruction-as-reasoning-based SFT
acts as a powerful exploratory warm-up. By
pre-training the model to generate diverse rea-
soning pathways, we empower it with a strong
exploratory capability, achieving significant performance increase during RL. This demonstrate that
our SFT strategy not only teaches reasoning format, but also enables effective and stable policy
optimization in the RL phase.

Emergent Capabilities: Reasoning Beyond Predefined Perspectives Does our framework merely
teach the model to use the four predefined perspectives? A qualitative analysis of 500 model re-
sponses reveals that it learns far deeper. We observe three key emergent capabilities:
Strategic Selection: The model learns to strategically select different reasoning perspectives for
different scenarios, as shown in Tab. 7. Besides this, model just trained after SFT stage also have
the ability to select the a better perspective(Tab. 16).
Spontaneous Synthesis: The model often combines multiple perspectives into a single, cohesive
reasoning (e.g., “Find the blue ‘Save’ button [appearance] at the bottom of the form [location]). This
synthesis is not explicitly taught but emerges as an effective reasoning strategy during RL.
Emergent Perspective: Most impressively, the model is capable of generating entirely new analyt-
ical angles beyond the four trained perspectives, such as reasoning from the instruction perspective
of current state or component type.

Table 7: Details of reasoning types categorized by GPT-4.1 from 500 UI-Ins-7B thinking processes.
Note that a process may contain multiple types, resulting in a total of 1,950 reasoning instances.

Perspective App. Loc. Comp. Str. Func. Intent Seq. Others Total

Count 608 569 284 197 194 54 19 25 1950
Percentage (%) 31.2 29.2 14.6 10.1 9.9 2.8 1.0 1.3 100.0

5 CONCLUSION

In this work, we conducted a systematic investigation into the natural language instruction, a crit-
ical yet underexplored component of GUI grounding. We first identified and quantified the severe
quality and diversity issues prevalent in existing open-source datasets. To address these, we in-
troduced a high-fidelity two-stage data pipeline to curate a reliable foundation for model training.
Building upon this, we proposed Instruction as Reasoning, a novel SFT+RL framework designed
to explicitly leverage instructional diversity by treating different perspectives as distinct reasoning
pathways. Our resulting models, UI-Ins-7B and UI-Ins-32B, establish a new state of the art across
five benchmarks, verifying the effectiveness our approach.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We are committed to full reproducibility. Upon publication, we will release all code, data, and
models.

• Code and Models: The source code for our training framework for UI-Ins-7B and UI-Ins-32B,
will be made public. The models will also be released.

• Data: Our cleaned and augmented dataset will be released. Data processing details and prompts
are described in Section 3.2 and Appendix C.

• Hyperparameters: All implementation details are specified in Section D.1, enabling a faithful
replication of our experiments.

Further environment details will be included in the public repository to ensure a smooth replication
process.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are only used in polish writing.

B RELATED WORK

B.1 REINFORCEMENT LEARNING FOR MLLMS

Reinforcement Learning (RL) has demonstrated a distinct advantage in enhancing the generalization
capabilities of Multimodal Large Language Models (MLLMs), leading to its rapid adoption across
various vision-language downstream tasks. Prior works such as Seg-Zero (Liu et al., 2025d) and Vi-
sion Reasoner (Liu et al., 2025e) have showcased its unique strengths in general-purpose grounding.
Concurrently, Vision-R1 (Huang et al., 2025) revealed that RL algorithms can significantly boost
the reasoning abilities of MLLMs. Beyond static images, this paradigm has also been extended to
the video domain, where Time-R1 (Wang et al., 2025) successfully applied GRPO to video temporal
localization tasks, achieving exceptional performance.

B.2 GROUNDING FOR GUI AGENTS

GUI grounding has recently undergone rapid development, and current GUI agents can be primarily
categorized by their training methodologies. Early works predominantly employed Supervised Fine-
Tuning (SFT). For instance, Jedi (Xie et al., 2025) synthesized a 4-million-example dataset using
multi-perspective decoupling to improve SFT for grounding. AGUVIS (Xu et al., 2025) introduced a
unified, vision-based framework that operates directly on screen images, enabling cross-platform in-
teraction through a two-stage training pipeline. Similarly, OS-Atlas (Wu et al., 2024) addressed the
lack of high-quality open-source data by introducing a cross-platform grounding corpus with over 13
million elements.More recently, a majority of works have transitioned to RL-based training methods,
which typically yield higher performance and better generalization. For example, GUI-G1 (Zhou
et al., 2025) refines the online RL training method by proposing a fast-thinking template and a
difficulty-aware policy update. To tackle semantic alignment issues, InfiGUI-G1 (Liu et al., 2025c)
introduced Adaptive Exploration Policy Optimization (AEPO), a framework that enhances explo-
ration through a multi-answer strategy. Diverging from coordinate-based methods, GUI-Actor (Wu
et al., 2025) proposed a novel attention-based action head that learns to align a special ‘<ACTOR>’
token with visual features, enabling a coordinate-free approach to grounding.

Table 8: Manual inspection results of our refined dataset, breaking down error types by count and
percentage out of 1,542 total instances.

Metric Ambiguous match Mismatch Precise match All

Count 18 81 1443 1542
Percentage (%) 1.17 5.25 93.58 100.00

Table 9: Summary of SFT Data Sources

Metric AgentNet Os-Atlas AMEX OmniAct Total

Count 138,635 73,335 70,023 1,159 283,152
Percentage (%) 50.8 26.9 25.7 0.4 100.0

Table 10: Summary of RL Data Sources

Metric AgentNet Os-Altas AMEX OmniAct Android Control Total

Count 12,570 11,048 6,553 1,520 1,160 32,851
Percentage (%) 38.3 33.6 19.9 4.6 3.5 100.0
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C DATA DETAILS

C.1 INSTRUCTION DIVERSITY AUGMENTATION

To enhance instructional diversity, we expanded the instruction set based on frequently occurring
scenarios, categorizing them into four types: appearance-based, function-based, spatial-based, and
intent-based. When leveraging GPT-4.1 to augment instructions from open-source datasets, we
mitigated potential hallucinations arising from poor-quality original instructions. To achieve this,
we visually grounded the process by overlaying the ground-truth point or bounding box as a distinct
circular or rectangular marker on the input image.

Instruction Diversity Augumentation Prompt

## Task:
Generate and Translate Unambiguous Grounding Instructions
## Input:
GUI Screenshot: An image of a user interface.
Original Instruction: An initial English instruction.
Highlighted Element: A visual marker e.g., a red <annotation type> on the screenshot
pointing to the target UI element.
— CORE OBJECTIVE —
Your primary task is to first translate the Original Instruction into high-quality Chinese, and
then generate four new, distinct types of grounding instructions. For all generated instruc-
tions, you must adhere to this critical rule: the instruction must correspond to one and only
one element on the entire screen—the one highlighted. Clarity and uniqueness are the top
priorities.
— IMPORTANT SAFEGUARD —
The <annotation type> is a ground-truth annotation provided only for your reference. Your
instructions must never refer to the annotation itself.
It is noticeable that the original instruction may can not align with the ground-truth annota-
tion, you should follow the ground-truth annotation first.
## Instructions Generation Requirements:
Generate one new, clear, and unambiguous instruction for each of the following four cate-
gories.
Appearance-Based:
A direct and literal description of the element’s visual characteristics (e.g., its text, icon,
color, shape). Combine features as needed to ensure the description is completely unique.
Function-Based:
A clear description of the element’s purpose or the immediate outcome of interacting with it
(e.g., ”the button used to confirm and save your profile changes”).
Spatial-Based:
An instruction that identifies the element based on its position relative to other prominent,
easily identifiable UI elements (landmarks). The described spatial relationship must lead to
a unique location.
Goal-Based:
A concise phrase that describes the user’s ultimate goal or intent. The user must infer which
single UI element on the screen fulfills this goal.
## Output Format:
The final output must be a single, well-formed JSON object. The JSON structure should
begin with the original instruction and its translation, followed by the newly generated in-
structions.
Now, please process the following inputs and generate the instructions in the specified JSON
format.
Original Instruction:
<instruction here>
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Prompt for Instruction Refinement breakable

## Task:
Quality Evaluation of a GUI Grounding Datum
## Role:
You are a meticulous Data Quality Analyst specializing in user interface datasets. Your task
is to critically evaluate a given data sample for its quality and correctness in a structured,
two-step process.
## Input:
GUI Screenshot: An image of a user interface.
Grounding Instruction: An English command intended to guide a user to a specific element.
Ground-Truth Bounding Box: A red box drawn on the screenshot, highlighting the target UI
element.
——-IMPORTANT——-
Ground-Truth Point: A blue hollow circle drawn on the center of the Ground-Truth Bound-
ing Box, which is the key to help you locate the target UI element, because screenshots
usually have other red bboxes which may cause distribution.
## Output Process (Two Steps):
### Step 1: Chain-of-Thought Reasoning
First, you must articulate your reasoning process in plain text. Analyze the input and think
step-by-step. Your reasoning should cover the following points:
Instruction Analysis:
What specific element does the instruction describe? Identify its key features (text, function,
location, etc.), it is important you should locate the target UI element according to the blue
hollow circle and the red bbox.
Scan the entire screenshot. Are there any other elements that could match this description,
even partially?
Conclude whether the instruction is unique or ambiguous based on this scan.
Bounding Box Analysis:
What is the target element identified by the instruction? Does it have the blue hollow circle
in the center of the box?
Does the red box tightly enclose this entire target element?
Does the box cut off any part of the element?
Does the box include significant empty space or other unrelated elements?
Conclude whether the bounding box is appropriately sized, too large, or too small.
### Step 2: Final JSON Output
After you have completed your reasoning, provide the final answer as a single, well-formed
JSON object. This JSON should be the very last part of your response. Do not add any text
after the JSON object.

{
”instruction evaluation”: {

”reasoning”: ”<A concise summary of your reasoning from Step 1 about the instruc-
tion’s uniqueness.>”

”is unique”: <true or false>,
},
”bbox evaluation”: {

”reasoning”: ”<A concise summary of your reasoning from Step 1 about the bounding
box size.>”,

”is appropriately sized”: <true or false>
}

}
Now, please perform this two-step evaluation for the following data.
Grounding Instruction:
<instruction here>
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C.2 INSTRUCTION QUALITY REFINEMENT

To verify and filter the quality of both the original and the newly generated diverse instructions, we
prompted GPT-4.1 to assess whether each instruction uniquely corresponded to a single element in
the GUI screenshot. To mitigate potential model hallucinations during this verification process, we
visually grounded the task by overlaying the ground-truth annotation directly onto the input image.
This filtering stage significantly improved the quality of our instruction set. A manual inspection of
1,542 instructions confirmed this improvement, revealing that the error rate was reduced from over
23% to under 8%, as detailed in Tab. 8, each data was checked by two experenced annotators.

C.3 DATA QUALITY IMPROVEMENT

To further validate the quality of our data processing pipeline, we adapt an ablation study via SFT.
We use about 210k original samples and result in about 180k cleaned samples after our pipeline
process, we use them train Qwen2.5-VL-7B. The results shown in Tab. 11 indicate the high quality
of our pipeline.

Table 11: Data pipeline ablation study.

Data Pipeline MMBench-GUI L2 UI-I2E Showdown SS.Pro SS.V2

✗ 72.3 63.5 60.5 33.0 88.1
✓ 74.3 66.3 60.3 33.7 90.2

D IMPLEMENTATION DETAILS

D.1 IMPLEMENTATION DETAILS

We employ the state-of-the-art vision-language foundation models Qwen2.5-VL-7B and Qwen2.5-
VL-32B as our backbone architectures. The training procedure consists of two stages:

• SFT Stage We fine-tune the models on approximately 283k instances for one epoch. For each
instance, we randomly select one instruction as the input command, contextualized by four ana-
lytical perspectives (i.e., appearance, spatial, function and goal). The target reasoning process is
another randomly sampled instruction from the same instance. We use a global batch size of 256
and a learning rate of 5e-6.

• RL Stage The GRPO training utilizes 33k instances, expanded to approximately 100k training
samples by generating a sample per valid instruction. The prompt excludes analytical perspectives
to promote unconstrained reasoning. We train for one epoch with a learning rate of 1e-6 and 8
rollouts. The batch size is set to 256 for the 7B model and 128 for the 32B model.

D.2 EVALUATION METRICS

Following prior works (Yang et al., 2025; Liu et al., 2025c; Tang et al., 2025), we evaluate GUI
Grounding performance using the point-in-box accuracy. A prediction is considered correct if
the predicted coordinate point p = (xp, yp) falls within the ground-truth bounding box b =
(xl, yl, xr, yr), where the (xl, yl) denotes the top-left corner and (xr, yr) represents the bottom-right
corner. The accuracy over a test set of size N is formally defined as: Accuracy = 1

N

∑N
i=1 I(pi ∈ bi)

, where I(·) is the indicator function, which equals 1 if the condition is true and 0 otherwise.

E EXPERIMENT PROMPTS

E.1 SFT STAGE

In the Supervised Fine-Tuning (SFT) stage, we utilized a dataset of approximately 290,000 in-
stances, with the data distribution detailed in Tab. 9. For each training instance, we randomly
sampled a single refined instruction to serve as the input, and subsequently, another instruction
was randomly selected from the remaining set to function as the reasoning. Each instance was used
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Table 12: Performance comparison on the MMBench-GUI L2 benchmark. We report aggregated
accuracy (%) for details. We report aggregated accuracy (%) in detail. We use‘-’ to denote unavail-
ability, and ‘∗’ to denote the results evaluated by us.

Model Windows MacOS Linux iOS Android Web Avg.
Basic Adv. Basic Adv. Basic Adv. Basic Adv. Basic Adv. Basic Adv.

GPT-4o 1.5 1.1 8.7 4.3 1.1 1.0 5.1 3.3 2.5 1.4 3.2 2.9 2.9
Claude-3.7 1.5 0.7 12.5 7.5 1.1 0.0 13.7 10.6 1.4 1.4 3.2 2.3 4.7
Qwen-Max-VL 43.9 36.8 58.8 56.1 53.9 30.1 77.4 59.1 79.5 70.1 74.8 58.8 58.0
ShowUI-2B 9.2 4.4 24.1 10.4 25.1 11.7 29.0 19.7 17.4 8.7 22.9 12.7 16.0
Qwen2.5-VL-7B 31.4 16.5 31.3 22.0 21.5 12.2 66.6 55.2 35.1 35.2 40.3 32.5 33.9
Qwen2.5-VL-72B 55.7 33.8 49.9 30.1 40.3 20.9 56.1 28.2 55.6 25.4 68.4 45.8 41.8
OS-Atlas-Base-7B 36.9 18.8 44.4 21.7 31.4 13.3 74.8 48.8 69.6 46.8 61.3 35.4 41.4
Aguvis-7B-720P 37.3 21.7 48.1 33.3 33.5 25.0 67.5 65.2 61.0 51.0 61.6 45.5 45.7
UI-TARS-1.5-7B 68.3 39.0 69.0 44.5 64.4 37.8 88.5 69.4 90.5 69.3 81.0 56.5 64.3
UI-TARS-72B-DPO 78.6 51.8 80.3 62.7 68.6 51.5 90.8 81.2 93.0 80.0 88.1 68.5 74.3
UGround-V1-7B 66.8 39.0 71.3 48.6 56.5 31.1 92.7 70.9 93.5 71.0 88.7 64.6 65.7
InternVL3-72B 70.1 42.6 75.7 52.3 59.2 41.3 93.6 80.6 92.7 78.6 90.7 65.9 72.2
InfiGUI-G1-7B 82.7 61.8 83.8 63.9 72.3 52.0 94.9 89.4 95.2 85.6 93.5 76.3 80.8
GTA1-7B∗ 76.8 57.4 80.3 63.9 68.6 53.6 93.9 83.3 96.3 84.5 90.3 74.7 78.5
GTA1-32B∗ 82.3 66.9 89.0 74.0 73.3 52.0 96.2 88.2 95.8 88.5 95.2 79.9 83.4

UI-Ins-7B 82.7 64.7 87.2 75.1 71.7 51.5 94.9 89.7 95.8 89.0 93.2 80.8 83.1
UI-Ins-32B 84.9 68.4 88.4 73.4 68.6 56.1 96.5 91.2 97.2 92.4 94.8 85.1 84.9

for training only once. To better align the training data with the model’s in-context learning capabil-
ities, our training prompt provided four predefined analytical perspectives as context. The prompt
structure is detailed as follows:

Training Example We provide a SFT training example as following, we mark the Instruction as
Reasoning in red.

E.2 RL STAGE

In the Reinforcement Learning (RL) stage, we trained the model on a total of 32,851 instances, with
the data sources and distribution detailed in Tab. 10. To ensure the model performs robustly across all
diverse instructions for a given instance, we trained on every remaining refined instruction for each
sample. Furthermore, to encourage the model to discover potentially optimal reasoning pathways,
we removed the predefined analytical perspectives from the prompt. This allowed the model, already
fine-tuned during the SFT stage, to freely explore various thinking formats and strategies.

RL Training Examples We provide a RL training example as following.
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SFT Training Example

# System Prompt: You are a GUI agent. You are given a task and your action history, with
screenshots. You need to perform the next action to complete the task.
## Output Format
Return a json object with function name and arguments within <tool call></tool call>
XML tags:

<think>
...
<think>
<tool call>
{”name”: ”grounding”, ”arguments”: <args-json-object>}
<tool call>

<args-json-object> represents the following item of the action space:
## Action Space
{”action”: ”click”, ”coordinate”: [x, y]}

Your task is to accurately locate a UI element based on the user’s instructions. The screen-
shot resolution is height {height} and width {width}.
First, you should carefully examine the screenshot and analyze the user’s instructions from
one of the following different perspectives:
Appearance Perspective: You should prioritize visually scanning the user interface to find
an element that precisely matches the label, text color, background, shape, and its relative
position to other elements as described in the appearance-based instruction. Your decision-
making will be driven by direct pattern matching of these visual attributes.
Function Perspective: You should identify which UI element is responsible for achieving
the specified system state change or executing the described action, such as switching the
media display mode. Your decision-making will be guided by understanding the intended
effect or utility of interacting with the element.
Spatial Perspective: You should first locate any specified reference points (e.g., another UI
element or screen edge) and then precisely pinpoint the target element based on its exact
directional and positional relationship within the UI layout. Your decision-making will be
based on geometric and relational positioning within the interface.
Goal Perspective: You should identify the UI element or sequence of actions that directly
leads to the fulfillment of the user’s stated ultimate objective. Your decision-making will be
driven by finding the most direct and efficient path to achieve the desired end-state for the
user.
You should translate the user’s instruction into the corresponding instruction, and then pro-
vide the final action.
# User Instruction:
Click on the CSDN bookmark in the bookmarks bar to access the CSDN website.
# Assistant:
<think>
I will analyze this instruction from Appearance-Based perspective, the user’s instruction can
be represented as : Click the bookmark with the red ’C’ icon and the label ’CSDN’ in the
bookmarks bar.
</think>
<tool call>
{”name”:”grounding”,”arguments”:{”action”:”click”,”coordinate”:[588,67]}}
</tool call>
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RL Training Example

# System Prompt: You are a GUI agent. You are given a task and your action history, with
screenshots. You need to perform the next action to complete the task.
## Output Format
Return a json object with function name and arguments within <tool call></tool call>
XML tags:

<think>
...
<think>
<tool call>
{”name”: ”grounding”, ”arguments”: <args-json-object>}
<tool call>

<args-json-object> represents the following item of the action space:
## Action Space
{”action”: ”click”, ”coordinate”: [x, y]}

Your task is to accurately locate a UI element based on the user’s instructions. The screen-
shot resolution is height {height} and width {width}.
First, you should carefully examine the screenshot and analyze the user’s instructions in
<think>...<think> tags and then output the coordinate.
# User Instruction:
Click on the CSDN bookmark in the bookmarks bar to access the CSDN website.
# Assistant:
<think>
...
</think>
<tool call>
...
</tool call>

F DETAILS OF RESULTS

F.1 EVALUATION DETAILS

We present the performance of our models on four benchmarks: MMBench-GUI L2, UI-I2E-Bench,
ScreenSpot-Pro, and ScreenSpot-V2. The results demonstrate that both UI-Ins-7B and UI-Ins-32B
achieve excellent performance across diverse operating systems and software categories, performing
favorably against models of similar parameter counts. Ultimately, UI-Ins-32B establishes a new
state-of-the-art. Furthermore, analysis of the MMBench-GUI L2 and UI-I2E-Bench results reveals
that our models consistently improve performance across various instruction types. Notably, they
exhibit substantial gains on advanced and implicit instructions, which demand a higher level of
semantic understanding, significantly outperforming peer models of a similar size.

F.2 QUALITIVE RESULTS

Generalization analysis We performed a detailed classification of the model’s reasoning process by
first manually defining ten distinct analytical perspectives. We then utilized GPT-4.1 to examine 500
responses generated by UI-Ins-7B on the UI-I2E benchmark based on this taxonomy. As a single re-
sponse can incorporate multiple reasoning perspectives, the 500 responses ultimately corresponded
to 1,950 distinct instances of reasoning. We compiled statistics on these perspectives, the results of
which are presented in Tab. 7. The taxonomy can be seen as following:
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Taxonomy of Reasoning Perspectives

1. Appearance
Abbreviation: app
Definition: Describes the static visual properties of a UI element, including its color, shape,
icon, style, and the literal text it displays.
2. Functionality
Abbreviation: func
Definition: Describes the element’s purpose, its action, or what happens when a user
interacts with it.
3. Location
Abbreviation: loc
Definition: Describes the element’s spatial position on the screen or in the viewport, which
can be absolute (e.g., ”top-left”) or relative to other elements (e.g., ”below the title”).
4. Intent
Abbreviation: intent
Definition: Describes the high-level user goal or plan that motivates the entire action. It is
often the starting point of a reasoning chain.
5. Structural Relationship
Abbreviation: struct
Definition: Describes the element’s position within the UI’s layout hierarchy (like a DOM
tree), emphasizing its parent, child, or sibling relationship to other elements or containers.
6. State
Abbreviation: state
Definition: Describes the current dynamic condition of an element, such as whether it is
interactive, active, selected, disabled, or checked.
7. Component Type
Abbreviation: ctype
Definition: Identifies the element as a standard, reusable design pattern or component,
rather than just describing its appearance.
8. Sequential Position
Abbreviation: seq
Definition: Describes the element’s order or temporal place within a multi-step user task or
workflow.
9. Salience
Abbreviation: salience
Definition: Describes the element’s degree of visual prominence, which is often determined
by its size, contrast, unique styling, or animation.

10. Accessibility
Abbreviation: a11y
Definition: Describes non-visual properties provided for assistive technologies, such as
screen readers. This includes ARIA labels, roles, and other accessibility attributes.

Visualization Here we present the grounding results of UI-Ins-32B across various platforms and
software applications. As shown in Fig. 7, UI-Ins-32B demonstrates robust performance on diverse
platforms.

Failure cases We analyzed the failure cases of our model on the MMBench-GUI benchmark and
identified two primary categories of errors. The first category stems from an insufficient understand-
ing of diverse UI layouts, as shown in Fig. 8. The second category involves model hallucinations, as
illustrated in Fig. 9.
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Table 13: Performance comparison on the ScreenSpot-Pro benchmark. We report aggregated accu-
racy (%) in detail. We use‘-’ to denote unavailability, and ‘∗’ to denote the results evaluated by us.

Model CAD Dev. Creative Scientific Office OS Avg.
Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon

GPT-4o 2.0 0.0 1.3 0.0 1.0 0.0 2.1 0.0 1.1 0.0 0.0 0.0 0.8
Claude Comp. Use 14.5 3.7 22.0 3.9 25.9 3.4 33.9 15.8 30.1 16.3 11.0 4.5 17.1
SeeClick 2.5 0.0 0.6 0.0 1.0 0.0 3.5 0.0 1.1 0.0 2.8 0.0 1.1
Qwen2-VL-7B 0.5 0.0 2.6 0.0 1.5 0.0 6.3 0.0 3.4 1.9 0.9 0.0 1.6
CogAgent-18B 7.1 3.1 14.9 0.7 9.6 0.0 22.2 1.8 13.0 0.0 5.6 0.0 7.7
UI-R1-3B 11.2 6.3 22.7 4.1 27.3 3.5 42.4 11.8 32.2 11.3 13.1 4.5 17.8
ZonUI-3B 31.9 15.6 24.6 6.2 40.9 7.6 54.8 18.1 57.0 26.4 19.6 7.8 28.7
GUI-R1-7B 23.9 6.3 49.4 4.8 38.9 8.4 55.6 11.8 58.7 26.4 42.1 16.9 31.0
UI-TARS-7B 20.8 9.4 58.4 12.4 50.0 9.1 63.9 31.8 63.3 20.8 30.8 16.9 35.7
UI-AGILE-7B 49.2 14.1 64.3 15.2 53.0 9.8 72.9 25.5 75.1 30.2 45.8 20.2 44.0
GUI-G2-7B 55.8 12.5 68.8 17.2 57.1 15.4 77.1 24.5 74.0 32.7 57.9 21.3 47.5
InfiGUI-G1-7B 57.4 23.4 74.7 24.1 64.6 18.2 80.6 31.8 75.7 39.6 57.0 29.2 51.9
GTA1-7B 53.3 17.2 66.9 20.7 62.6 18.9 76.4 31.8 82.5 50.9 48.6 25.9 50.1
GTA1-32B 43.7 23.4 82.5 28.3 69.2 14.7 79.9 31.8 80.8 43.4 70.1 32.6 53.6
OpenCUA-7B - - - - - - - - - - - - 50.0
OpenCUA-32B - - - - - - - - - - - - 55.3
SE-GUI-7B 51.3 42.2 68.2 19.3 57.6 9.1 75.0 28.2 78.5 43.4 49.5 25.8 43.2
GUI-Actor-7B - - - - - - - - - - - - 44.6

UI-Ins-7B 60.9 20.3 75.3 18.6 65.2 18.9 81.3 29.1 79.7 37.7 57.0 25.8 52.2
UI-Ins-32B 51.8 29.7 83.1 26.9 69.7 18.9 83.3 34.5 88.7 50.9 70.1 34.8 57.0

Table 14: Performance comparison on the UI-I2E-Bench benchmark. We report aggregated accu-
racy (%) in detail. We use‘-’ to denote unavailability, and ‘∗’ to denote the results evaluated by us.

Model Grouped by Platform Grouped by Implicitness Overall
Web Desktop Mobile Explicit Implicit

Qwen2.5-VL-7B 56.9 41.6 61.7 58.4 51.0 53.8
Qwen2.5-VL-72B 49.0 47.2 55.3 49.6 52.5 51.4
OS-Atlas-4B 54.6 19.9 58.6 51.5 39.9 44.3
OS-Atlas-7B 52.2 48.9 68.1 63.2 55.8 58.6
Aguvis-7B 45.1 47.6 60.3 61.1 48.4 53.2
Uground-V1-2B 66.4 49.5 59.9 72.9 47.9 57.4
Uground-V1-7B 70.8 65.7 73.5 81.3 63.6 70.3
Uground-V1-72B 74.7 74.6 78.2 84.5 71.3 76.3
UI-TARS-2B 62.2 54.0 66.7 74.1 54.5 62.0
UI-TARS-7B 56.5 58.0 65.7 71.4 55.3 61.4
UI-TARS-1.5-7B 79.5 68.8 74.1 81.3 68.2 73.2
UI-TARS-72B 77.1 69.8 75.5 80.9 69.4 73.7
UI-I2E-VLM-4B 60.9 38.9 61.4 61.9 48.3 53.4
UI-I2E-VLM-7B 62.1 64.0 76.2 72.0 67.9 69.5
InfiGUI-G1-7B 84.6 66.3 83.0 85.0 72.7 77.4
GTA1-7B∗ 77.5 71.3 83.5 87.0 72.8 78.2
GTA1-32B∗ 93.3 77.6 84.4 91.4 78.7 83.5

UI-Ins-7B 90.5 72.8 83.8 88.9 76.3 81.1
UI-Ins-32B 95.7 81.9 88.2 92.9 83.9 87.3
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Table 15: Performance comparison on the ScreenSpot-V2 benchmark. We report aggregated accu-
racy (%) in detail. We use‘-’ to denote unavailability, and ‘∗’ to denote the results evaluated by us.

Model Mobile Desktop Web Avg.
Text Icon/Widget Text Icon/Widget Text Icon/Widget

SeeClick 78.4 50.7 70.1 29.3 55.2 32.5 55.1
OS-Atlas-Base-7B 95.2 75.8 90.7 63.6 90.6 77.3 85.1
UI-TARS-7B 96.9 89.1 95.4 85.0 93.6 85.2 91.6
UI-TARS-72B 94.8 86.3 91.2 87.9 91.5 87.7 90.3
GUI-G2-7B 98.3 91.9 95.4 89.3 94.0 87.7 93.3
UI-R1-3B 98.2 83.9 94.8 75.0 93.2 83.7 89.5
Qwen2.5-VL-7B 97.6 87.2 90.2 74.2 93.2 81.3 88.8
Qwen2.5-VL-32B 97.9 88.2 98.5 79.3 91.2 86.2 91.3
UGround-v1-7B 83.6 90.5 85.8 86.3 95.5 83.2 87.7
UI-Tars-1.5-7B 92.2 81.5 91.0 84.2 95.5 84.5 89.0
InfiGUI-G1-7B 99.0 91.9 94.3 82.1 97.9 89.2 93.5
GTA1-7B 99.0 88.6 94.9 89.3 92.3 86.7 92.4
GTA1-32B 98.6 89.1 96.4 86.4 95.7 88.7 93.2
Phi-ground-7B 90.2 76.4 93.6 75.9 96.5 62.0 83.8
OpenCUA-7B - - - - - - 92.3
OpenCUA-32B - - - - - - 93.4
GUI-Actor-7B 97.6 88.2 96.9 85.7 93.2 86.7 92.1
SE-GUI-7B - - - - - - 90.3
LPO 97.9 82.9 95.9 86.4 95.6 84.2 90.5

UI-Ins-7B 99.0 90.5 97.9 81.4 97.4 91.6 94.0
UI-Ins-32B 98.6 90.0 99.0 87.9 97.0 93.1 94.9

Find similar videos featuring 
cats by selecting topic tags. Select this tool to highlight important text by underlining it.

Click to switch from the mind map view to outline view of a 
different way to organize your problem-sloving steps. 

Figure 7: Success Examples of UI-Ins-32B
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Open the jailbreak tool for IOS
device.

Acess the recent active project-alpha repository 
to view its contents postioned above the demo-

repo repository.

Refine your search to view Charizard products 
from the company known for building block toys 

and figures.

Figure 8: Failure Examples of UI-Ins-32B, these examples need more layout knowledge of corre-
sponding app.

A button with a grid/table icon located in the status bar 
at the bottom of the excel window.

A green microphone icon button located at the 
bottom of the Spotify player interface.

Figure 9: Failure Examples of UI-Ins-32B, these examples casued by hallucination.

Table 16: Performance comparison across different reasoning perspectives. ‘App.’ is Appearance,
‘Func.’ is Functionality, ‘Spa.’ is Spatial, ‘Goa.’ is Goal, and ‘No.’ indicates no specific perspective
provided.

Perspective MMBench-
GUI L2

UI-I2E Showdown SS.Pro SS.V2

Appearance (App.) 75.7 69.8 66.4 37.1 91.1
Functionality (Func.) 75.4 68.6 65.7 35.7 89.7
Spatial (Spa.) 74.7 68.0 66.4 34.5 90.6
Goal (Goa.) 74.7 67.8 65.7 35.8 90.1
No Perspective (No.) 76.3 70.1 67.5 37.1 90.6
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