

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UI-INS: ENHANCING GUI GROUNDING WITH MULTI-PERSPECTIVE INSTRUCTION-AS-REASONING

Anonymous authors

Paper under double-blind review

ABSTRACT

GUI grounding, which maps natural-language instructions to actionable UI elements, is a core capability of GUI agents. Prior work largely treats instructions as a static proxy for user intent, overlooking the impact of instruction diversity on grounding performance. Through a careful investigation of existing grounding datasets, we find a 23.3% flaw rate in their instructions and show that inference-time exploitation of instruction diversity yields up to a 76% relative performance improvement. In this paper, we introduce the **“Instruction as Reasoning” paradigm**, treating instructions as dynamic analytical pathways that offer distinct perspective and enabling the model to select the most effective pathway during reasoning. To achieve this, we propose a two-stage training framework: supervised fine-tuning (SFT) on synthesized, diverse instructions to instill multi-perspective reasoning, followed by reinforcement learning (RL) to optimize pathway selection and composition. Our resulting models, UI-Ins-7B and UI-Ins-32B, achieve state-of-the-art results on five challenging benchmarks and exhibit emergent reasoning, selectively composing and synthesizing novel instruction pathways at inference. In particular, UI-Ins-32B attains the best grounding accuracy: **87.3%** on UI-I2E-Bench and **84.9%** on MMBench-GUI L2, besides, UI-Ins-7B yields superior agent performance, achieving a **66.1%** success rate on the AndroidWorld. All code, data, and models will be publicly released.

1 INTRODUCTION

Automated agents for graphical user interfaces (GUIs) are an important frontier in the pursuit of artificial general intelligence (AGI) (Wang et al., 2024b). Their effectiveness hinges on GUI grounding, i.e., the task of mapping a natural-language instruction to the corresponding actionable UI element in a screenshot or live interface.

The natural-language instruction is central to GUI grounding: it is a primary input alongside the GUI screenshot and conveys high-level user intent to be realized as low-level, executable actions. Accordingly, instruction clarity and precision are key determinants of grounding success. However, prior work has offered limited systematic study of instructions themselves. In this paper, we provide a multi-faceted analysis covering instruction diversity, quality, and algorithmic strategies, and establish a concrete basis for more effective grounding.

We focus on instruction diversity and reveal a fundamental mismatch: humans flexibly choose among multiple instructional perspectives, whereas current models are trained in a narrow, fixed style. For example, a single intent such as “close a window”, human may describe its **appearance** (“click the red X”), **function** (“close the file manager”), spatial **location** (“the button in the top-right corner”), or high-level **intent** (“get rid of this screen”). Humans strategically switch among these perspectives, choosing the most effective description for the task at hand, as illustrated in Fig. 3. Our quantitative analysis in Sec 2.1 likewise show that leveraging instruction diversity is key to improving grounding accuracy. However, prevailing GUI grounding models are typically trained to map a single instruction style to an action, with limited capacity to reason across perspectives. This limitation forms a key bottleneck to adaptability and robust interpretation in GUI tasks.

Those insights motivate a paradigm shift: rather than treating instructions as static inputs, we should regard them as *dynamic reasoning pathways*. Different instruction types are not merely alternative phrasings; they encode distinct analytical angles for identifying a target. An intelligent GUI agent

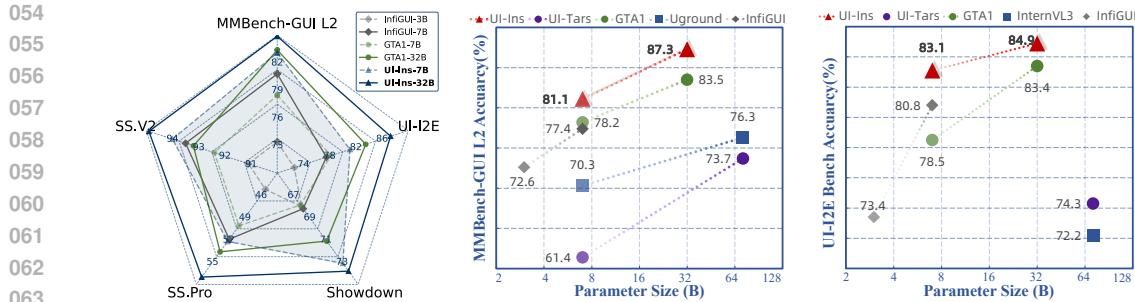


Figure 1: Performance comparisons of UI-Ins and other state-of-the-art methods.

should not only understand a command but also actively select the most effective reasoning process to infer the user’s intent. We term this new paradigm **Instruction as Reasoning**.

Beyond this conceptual shift, we also find pervasive instruction-quality issues in grounding datasets. Specifically, we manually inspected 1,909 data entries sampled from prominent datasets, including OS-Atlas (Wu et al., 2024), Omnia (Kapoor et al., 2024), and Android Control (Li et al., 2024). As shown in Fig. 2b, we found that a notable 23.3% of these samples contained various quality deficiencies, introducing considerable noise that could adversely affect model training.

To realize this vision, we introduce a simple and effective framework. We propose a data pipeline systematically cleans noisy annotations and, crucially, augments existing data with a rich diversity of instruction types, creating a dataset curated specifically for multi-perspective instruction reasoning. With this high-quality data as our foundation, we then propose our Instruction as Reasoning framework. This novel two-stage training paradigm first uses Supervised Fine-Tuning (SFT) to explicitly teach the model these diverse reasoning pathways, and then employs Group Relative Policy Optimization (GRPO) (Guo et al., 2025; Shao et al., 2024) in a Reinforcement Learning (RL) stage, enabling the model to learn how to choose the optimal instruction as reasoning for any given situation. Leveraging our effective data processing pipeline and the Instruction as Reasoning algorithm, we introduce the UI-Ins-7B and UI-Ins-32B models. Empirical evaluations conducted across multiple distinct benchmarks validate the strength of our approach, as illustrated in Fig. 1.

In summary, our contributions are as follows:

- **Systematic Investigation into Grounding Instruction.** We conduct a systematic analysis of instructions in GUI grounding, revealing two crucial insights: (1) a striking **23.3%** of samples’ instructions in major datasets are flawed, and (2) there is massive potential in leveraging instruction diversity, which can unlock up to a **76%** relative performance gain even without training.
- **Instruction as Reasoning Paradigm.** Building on the insights above, we pioneer the “Instruction as Reasoning” paradigm, which reframes instructions from static inputs to dynamic reasoning pathways. We realize this through a SFT+GRPO training framework that first teaches the model use diverse instruction perspectives as reasoning and then incentivize it to select the optimal analytical perspective for any given task.
- **SOTA Performance Across Diverse Benchmarks.** Our UI-Ins-7B and UI-Ins-32B establish new SOTA performance across five major grounding benchmarks. Notably, UI-Ins-32B achieves **87.3%** on UI-I2E-Bench and **84.9%** on MMBench-GUI L2, significantly surpassing the strongest baseline. Moreover, our superior grounding capability leads to strong online agent performance on AndroidWorld when combined with GPT-5 as the planner, yielding a **66.1%** success rate.

2 HOW MUCH DO INSTRUCTIONS REALLY MATTER?

The natural language instruction is a primary input to grounding tasks, serving as the sole carrier of user intent in GUI grounding. But to what extent do the key aspects of an instruction’s formulation, namely its analytical perspective and its correctness, truly impact a model’s performance? Prior works have largely treated the instruction as a simple input string, leaving its impact underexplored. We highlight that the instruction is a central, understudied variable in grounding. To probe this view, we conduct a preliminary analysis guided by two foundational research questions:

- **RQ1:** How does the diversity of instructional perspectives affect grounding accuracy?

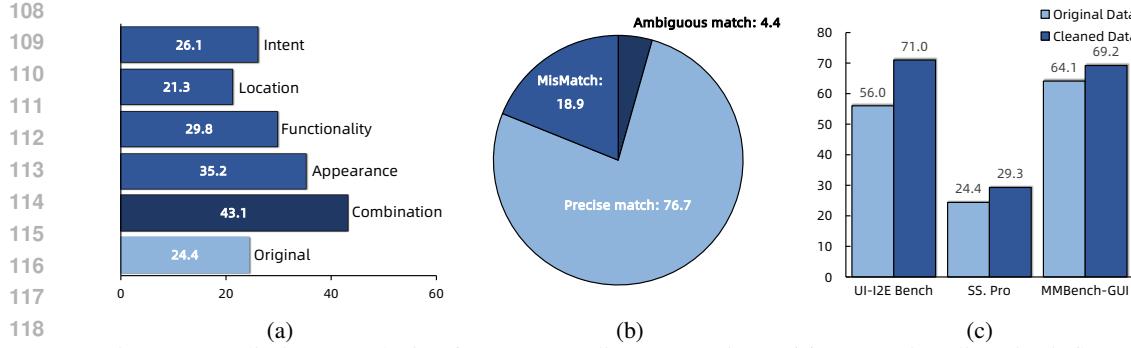


Figure 2: Preliminary analysis of GUI Grounding Instructions. (a) Instruction diversity influences performance significantly. (b) Instruction quality problems in existing open-source datasets. (c) Low instruction quality undermines training efficacy.

- **RQ2:** What is the state of instruction quality in existing grounding datasets, and what is its impact?

2.1 DOES INSTRUCTION DIVERSITY UNLOCK HIGHER PERFORMANCE?

Humans instinctively choose the most effective way to describe an object based on the context like Fig. 3. Does providing a model with similarly diverse, perspective-rich instructions unlock better performance? To investigate this, we conducted a controlled experiment on the ScreenSpot Pro benchmark. We systematically rewrote its original instructions to reflect four distinct perspectives: Appearance, Functionality, Location, and Intent. We then evaluated the zero-shot performance of Qwen2.5-VL-7B on each instruction set.

The results, shown in Fig. 2a, reveal two critical insights. First, instruction diversity matters significantly. Instructions from perspectives of appearance, function, and intent all substantially outperform the original instructions. This demonstrates that *even without retraining, simply providing diverse instruction perspectives can unlock significant latent capabilities within the model*. Second, *the ability to select the most appropriate instruction perspective leads to a higher performance ceiling*. The “Combined” bar, representing the performance if a model could always pick the best-performing perspective for each sample, achieves a relative improvement of 76%, far surpassing any single instruction perspective.

Overall, these results reveal considerable untapped potential in leveraging instruction diversity, both by introducing multiple instruction perspectives and by selecting the optimal perspective per instance. This motivates our algorithm that learns to leverage diverse instruction perspectives as reasoning and dynamically chooses the best analytical angle.

2.2 CAN WE TRUST EXISTING DATASETS FOR INSTRUCTION QUALITY?

While utilizing instruction diversity is promising, its effectiveness rests on a foundation that the original instructions are correct. But is this foundation valid? To probe the instruction quality of the grounding datasets, we conducted a large-scale manual analysis. Specifically, we examined 1,909 samples from three prominent datasets, OS-Atlas (Wu et al., 2024), AMEX (Chai et al., 2025), and Widget Captioning (Li et al., 2020).

Our analysis reveals pervasive instruction quality issues. As shown in Fig. 2b, 23.3% of instructions exhibit substantive flaws, including ambiguity or referring to nothing shown in Fig. 4. To further quantify the impact of such flaws, we trained the same model on the original dataset and on a cleaned version. Experimental results are depicted in Fig. 2c: models trained on cleaned data achieve

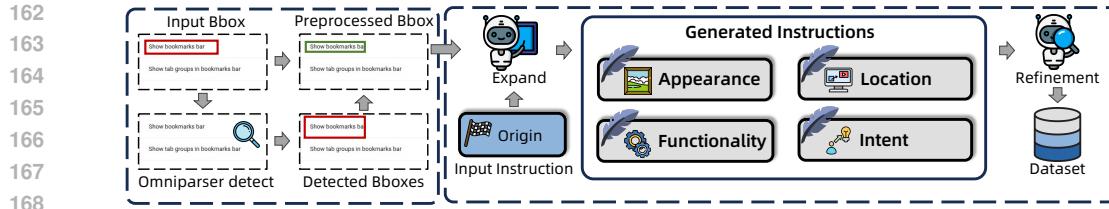


Figure 5: Overview of our data augmentation and verification pipeline.

substantial and consistent performance gains across multiple benchmarks. In other words, flawed instruction data can significantly degrade downstream performance when used for training.

These findings indicate that existing datasets suffer from instruction quality problems that actively harm model performance. Consequently, data cleaning is not optional niceties but necessary prerequisites for meaningful training, especially when our goal is to teach models to leverage diverse instruction perspectives as reasoning.

3 METHOD

Our methodology is architected to address the two fundamental challenges identified in Sec. 2: the pervasive data quality issues and the untapped potential of instruction diversity. We first introduce a high-fidelity data pipeline designed to establish the necessary preconditions for effective model training. With this robust data foundation, we then present our core algorithmic contribution, **Instruction as Reasoning**, a two-stage training framework that empowers models to use diverse instructions as reasoning pathways and to select the optimal analytical perspective during reasoning.

3.1 TASK DEFINITION

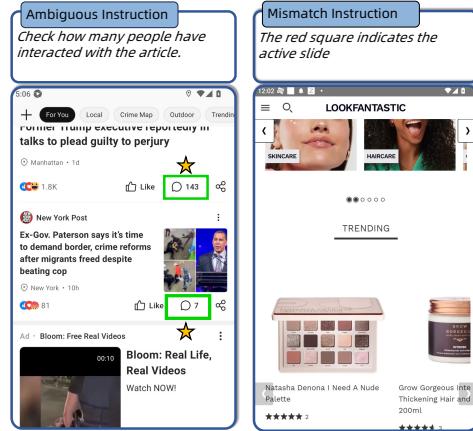
GUI Grounding aims to localize the UI element corresponding to a natural language instruction on a graphical interface (Wang et al., 2024b). Formally, given a GUI screenshot S and a natural language instruction I , the model f should predict a coordinate point $p = (x_p, y_p)$ that indicates the target element’s location.

3.2 DATA PIPELINE FOR MULTI-PERSPECTIVE REASONING

Our preliminary analysis (Sec. 2) revealed that data quality is a prerequisite for meaningful training (Sec 2.2) and that instruction diversity unlocks significant performance gains (Sec. 2.1). To this end, we developed a data processing pipeline focused on two primary objectives: establishing a clean data foundation and then systematically augmenting it with diverse, multi-perspective instructions.

Pre-processing. To rectify the pervasive annotation noise found in existing datasets, we first perform a lightweight pre-processing step. We use OmniParser V2 (Lu et al., 2024) to detect all UI elements on a screenshot and apply a simple IoU-based method to refine or filter the original ground truth bounding box. This ensures each instruction is associated with a reliable spatial anchor, and the flaw instructions are filtered at the same time. The pre-processing forms the clean foundation necessary for the subsequent augmentation.

Multi-Perspective Instruction Augmentation. The core of our pipeline focuses on enriching instruction diversity. We leverage GPT-4.1 (OpenAI, 2025) to generate new instructions from the four fundamental analytical perspectives identified in our analysis: **appearance**, **functionality**, **location**, and **intent**. For each data instance, the model receives the screenshot with the highlighted

Figure 4: Instruction quality problems. **Left:** Ambiguous match. **Right:** Mismatch.

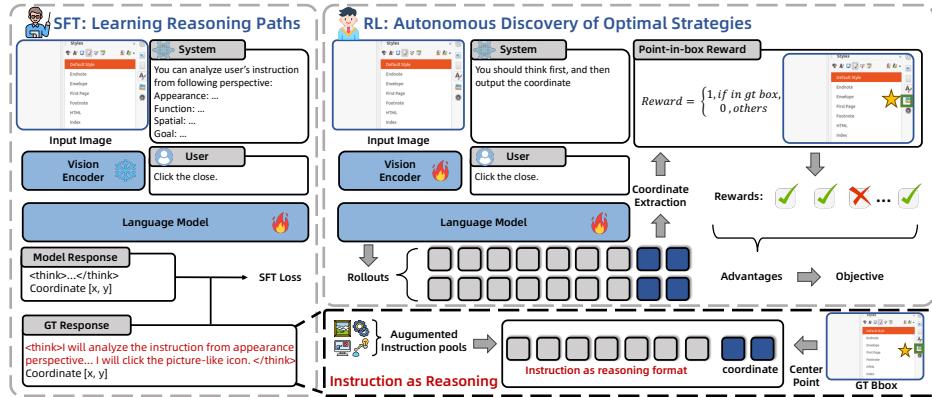


Figure 6: Overview of **Instruction as Reasoning**. We leverage diverse instructions as reasoning process to teach model multi-perspective reasoning paths in SFT stage, then let model explore unconstrained perspectives to find the optimal ways in different scenarios.

target element and is prompted to create a set of high-quality, diverse phrasings. To mitigate LLM hallucinations and ensure a strict one-to-one mapping, each generated instruction undergoes a verification step where GPT-4.1 confirms it unambiguously refers only to the target element. This process yields a high-fidelity, multi-perspective corpus specifically curated to teach complex reasoning.

3.3 INSTRUCTION AS REASONING

With such a multi-perspective dataset at hand, we introduce the framework to use it. As discussed in Sec. 2.1, leveraging diverse instruction perspectives and dynamically choosing the best analytical angle are key to unlock superior grounding performance. As shown in Fig. 6, our **Instruction as Reasoning** framework is a two-stage training approach that instills this capability: (i) a SFT stage that teaches the model to use multi-perspective instructions as explicit reasoning pathways, and (ii) a RL stage that trains the model to use the optimal perspective on a per-sample basis.

3.3.1 SFT STAGE: LEARNING TO GENERATE DIVERSE REASONING

The goal of the SFT stage is to explicitly instill the model with the ability to perform **Instruction as Reasoning**: utilizing diverse instruction perspectives as analytical reasoning before predicting the grounding coordinates. Concretely, the model first generates an intermediate reasoning text, i.e., a rewritten instruction from one instruction perspective, which serves as an actionable reasoning pathway (Fig. 6). Then outputs the final coordinates.

The grounding model, with parameters θ , is training objective is to maximize the log-likelihood of the target sequence \mathbf{Y}_{gt} across the entire dataset \mathcal{D} , formally expressed as:

$$\max_{\theta} \sum_{(\mathbf{S}, \mathbf{I}, \mathbf{Y}_{gt}) \in \mathcal{D}} \log P(\mathbf{Y}_{gt} | \mathbf{S}, \mathbf{I}; \theta), \quad \text{where } \mathbf{Y}_{gt} = \mathbf{R}_{gt} \oplus \mathbf{p}_{gt} \quad (1)$$

In this formulation, \oplus denotes sequence concatenation. The ground-truth reasoning text, \mathbf{R}_{gt} , is randomly sampled from one of the four augmented instruction perspectives, while \mathbf{p}_{gt} represents the ground-truth coordinates. An example of SFT prompt and answer is in Appendix E.1. This unified objective elegantly compels the model to co-optimize two distinct but related skills:

- **Reasoning Generation:** Learning to produce a reasoning (\mathbf{R}_{gt}) in an instruction perspective.
- **Grounded Prediction:** Learning to predict the correct coordinates (\mathbf{p}_{gt}) conditioned on both inputs and its self-generated reasoning.

By fine-tuning on this objective, the model learns to reasoning from diverse instruction perspectives, creating a foundational skill for RL stage training.

270 3.3.2 RL STAGE: LEARNING TO SELECT THE OPTIMAL PERSPECTIVE
271

272 The SFT stage equips the model with the ability to generate reasoning from multiple instruction
273 perspectives. However, it does not teach the model *which* reasoning pathway is optimal for a given
274 context. To transcend this limitation and incentivize the model to dynamically select the most effec-
275 tive analytical perspective, we introduce a RL stage.

276 The goal of this stage is to fine-tune the SFT-trained model to discover and select reasoning strategies
277 that maximize grounding accuracy. To achieve this, we employ Group Relative Policy Optimization
278 (GRPO) (Guo et al., 2025). In this phase, we modify the prompt to simply ask the model to “think”
279 before answering, without providing the explicit list of predefined perspectives (appearance, func-
280 tion, etc.). This open-ended instruction encourages the model to explore a wider space of reasoning
281 patterns, including synthesizing multiple perspectives or even formulating entirely novel ones. The
282 model then learns to select the optimal analytical perspective from the feedback of RL rewards.

283 We calculate rewards by a point-in-box function, then, the rewards $\{r_i\}_{i=1}^G$ are normalized into
284 advantages via Z-score normalization:

$$285 \hat{A}_{i,t} = \frac{r_i - \frac{1}{G} \sum_{i=1}^G r_i}{\sqrt{\frac{1}{G} \sum_{i=1}^G (r_i - \frac{1}{G} \sum_{i=1}^G r_i)^2}} \quad (2)$$

289 where G is the rollout number. Finally, the model is optimized by minimizing the objective:

$$290 L = -\frac{1}{G} \sum_{i=1}^G \frac{\pi(o_i | I, S)}{\pi_{\text{old}}(o_i | I, S)} \cdot \hat{A}_{i,t} \quad (3)$$

293 where $\pi_{\text{old}}(\cdot | \cdot)$ denotes the old policy and $\hat{A}_{i,t}$ is the advantage associated with prediction o_i .
294 By iteratively applying this process, the model learns to prioritize reasoning pathways that
295 consistently lead to correct grounding, effectively learning an optimal, context-dependent strategy for
296 instruction perspective selection. Interestingly, we find that the model also learns to synthesize mul-
297 tiple perspectives and even formulate entirely novel instruction perspectives (detailed in Sec 4.4).
298

300 4 EXPERIMENT AND RESULTS
301

302 Table 1: Overall performance on **MMBench-GUI L2** and **UI-I2E-Bench** benchmarks. The aggre-
303 gated accuracy (%) for different instruction types is reported. We use ‘-’ to denote unavailability,
304 and ‘*’ to denote the results evaluated by us.

306 307 308 Model	309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 Size	310 311 312 313 314 315 316 317 318 319 320 321 322 323 MMBench-GUI L2			310 311 312 313 314 315 316 317 318 319 320 321 322 323 UI-I2E-Bench		
		310 311 Basic	310 311 Advanced	310 311 Avg.	310 311 Explicit	310 311 Implicit	310 311 Avg.
Qwen2.5-VL (Bai et al., 2025)	7B	38.0	29.8	33.9	58.4	51.0	53.8
OS-Atlas (Wu et al., 2024)	7B	52.8	30.1	41.4	63.2	55.8	58.6
Aguvis (Xu et al., 2025)	7B	51.0	40.5	45.7	61.1	48.4	53.2
Uground-V1 (Gou et al., 2025)	7B	78.4	53.0	65.7	81.3	63.6	70.3
UI-TARS-1.5 (Seed, 2025)	7B	78.4	50.4	64.3	81.3	68.2	73.2
UI-TARS (Qin et al., 2025)	7B	-	-	-	71.4	55.3	61.4
UI-I2E-VLM (Liu et al., 2025a)	7B	-	-	-	72.0	67.9	69.5
Infigui-G1 (Liu et al., 2025c)	7B	88.5	73.2	80.8	85.0	72.7	77.4
GTA1 (Yang et al., 2025)	7B	84.4*	72.6*	78.5*	87.0*	72.8*	78.2*
GTA1 (Yang et al., 2025)	32B	89.0*	77.9*	83.4*	91.4*	78.7*	83.5*
Qwen2.5-VL (Bai et al., 2025)	72B	54.4	29.3	41.8	49.6	52.5	51.4
Uground-V1 (Gou et al., 2025)	72B	-	-	-	84.5	71.3	76.3
UI-TARS-DPO (Qin et al., 2025)	72B	83.2	65.6	74.3	-	-	-
UI-TARS (Qin et al., 2025)	72B	-	-	-	80.9	69.4	73.7
InternVL3 (Zhu et al., 2025)	72B	80.4	64.1	72.2	-	-	-
UI-Ins-7B	7B	89.0	77.3	83.1	88.9	76.3	81.1
UI-Ins-32B	32B	90.5	79.4	84.9	92.9	83.9	87.3

324 Table 2: Performance comparison on **ScreenSpot-Pro**, **ScreenSpot-V2**, and **ShowDown**.
325

326 Model	327 Size	328 ScreenSpot-Pro			329 ScreenSpot-V2			330 ShowDown Avg.
		331 Text	332 Icon	333 Avg.	334 Text	335 Icon	336 Avg.	
337 UI-R1 (Lu et al., 2025)	338 3B	339 23.3	340 6.8	341 17.8	342 95.6	343 81.6	344 89.5	345 -
346 ZonUI (Hsieh et al., 2025)	347 3B	348 38.3	349 13.0	350 28.7	351 -	352 -	353 -	354 -
355 Qwen2.5-VL (Bai et al., 2025)	356 7B	357 2.1	358 0.3	359 1.6	360 94.2	361 81.8	362 88.8	363 -
364 OS-Atlas (Wu et al., 2024)	365 7B	366 -	367 -	368 -	369 92.5	370 73.3	371 85.1	372 41.1
373 GUI-R1 (Luo et al., 2025)	374 7B	375 41.5	376 11.7	377 31.0	378 -	379 -	380 -	381 -
382 UI-TARS (Qin et al., 2025)	383 7B	384 46.0	385 16.0	386 35.7	387 95.4	388 86.6	389 91.6	390 66.1
391 UI-TARS-1.5 (Seed, 2025)	392 7B	393 -	394 -	395 42.0	396 92.9	397 83.3	398 89.0	399 67.2
400 UI-AGILE (Lian et al., 2025)	401 7B	402 58.7	403 18.0	404 44.0	405 -	406 -	407 -	408 -
409 GUI-G ² (Tang et al., 2025)	410 7B	411 64.9	412 18.4	413 47.5	414 96.1	415 89.7	416 93.3	417 -
418 UGround-v1 (Gou et al., 2025)	419 7B	420 -	421 -	422 -	423 88.1	424 86.8	425 87.7	426 57.8
427 InfiGUI-G1 (Liu et al., 2025c)	428 7B	429 69.1	430 24.5	431 51.9	432 97.4	433 88.4	434 93.5	435 68.2*
436 GTA1 Yang et al. (2025)	437 7B	438 58.7	439 34.9	440 50.1	441 95.7	442 88.1	443 92.4	444 67.9*
445 Phi-ground (Zhang et al., 2025)	446 7B	447 -	448 -	449 43.2	450 93.2	451 71.0	452 83.8	453 62.5
454 GUI-Actor (Wu et al., 2025)	455 7B	456 -	457 -	458 44.6	459 96.0	460 87.0	461 92.1	462 -
463 SE-GUI (Yuan et al., 2025)	464 7B	465 61.8	466 22.8	467 43.2	468 -	469 -	470 90.3	471 -
472 GTA1 Yang et al. (2025)	473 32B	474 65.6	475 28.1	476 53.6	477 97.1	478 88.3	479 93.2	480 71.1*
UI-Ins-7B		7B	70.0	23.5	52.2	98.2	88.6	94.0
UI-Ins-32B		32B	73.7	30.0	57.0	98.2	90.6	94.9
								73.8

344
345 4.1 EXPERIMENTAL SETTINGS
346

347 **Data and Implementation Details** We source data from several public datasets, including OS-
348 Atlas, Omniact, Android Control, AMEX, and AgentNet, covering diverse operating systems such
349 as Windows, MacOS, Linux, and Android. All data is subsequently processed through our pipeline
350 to ensure quality. We employ Qwen2.5-VL-7B and Qwen2.5-VL-32B as our backbone architectures.
351 More data details are in Sec. E and more implementation details are in D.1.

352 **Baselines and Metrics** We compare our method against extensive recent SOTA baselines to pro-
353 vide a comprehensive grounding performance evaluation. These include models that are primarily
354 trained using supervised fine-tuning, such as Jedi (Xie et al., 2025) and Aguvis (Xu et al., 2025), as
355 well as methods that incorporate RL paradigm, such as GUI-Actor (Wu et al., 2025) and InfiGUI-
356 G1 (Liu et al., 2025c). Besides, we also compare UI-Ins with some agentic frameworks such as
357 AgentS2 (Zhou et al., 2024) and InfiGUIAgent (Liu et al., 2025b) on the online benchmark.
358 Following prior works (Yang et al., 2025; Liu et al., 2025c; Tang et al., 2025), we evaluate GUI
359 Grounding performance using the point-in-box accuracy.

360 **Evaluation Benchmarks** We evaluate our method on five widely-used grounding benchmarks and
361 a challenging online agent environment.

- 362 • **Grounding Benchmarks:** MMBench-GUI L2 (Xuehui Wang et al., 2025) tests performance
363 on hierarchical instructions, while UI-I2E-Bench (Liu et al., 2025a) focuses on explicit instruc-
364 tions and deeper semantic reasoning for implicit instructions. Showdown (Team, 2025) evaluates
365 instruction-following and low-level control capabilities. ScreenSpot-Pro Li et al. (2025) examines
366 semantic understanding in high-resolution professional software.
- 367 • **Online Agent Benchmark:** To evaluate our model’s practical utility in a dynamic setting, we
368 report performance on **AndroidWorld** (Rawles et al., 2024a). This benchmark is particularly
369 challenging as it requires the agent to complete multi-step tasks in a live, interactive environment.

370 4.2 RESULTS
371

372 **Main Results** As shown in Tab. 1, UI-Ins-32B achieves state-of-the-art (SOTA) results on both
373 the MMBench-GUI L2 and UI-I2E-Bench benchmarks, while UI-Ins-7B demonstrates a significant
374 performance advantage over similarly-sized models. While our models show improvements on basic
375 and explicit instructions, they exhibit even more substantial gains on the challenging “advanced”
376 (MMBench-GUI L2) and “implicit” (UI-I2E-Bench) subsets. This further validates the effectiveness
377 of our Instruction as Reasoning approach. Furthermore, to provide a broader validation of our
378 models’ capabilities, we conduct extensive evaluations on the ScreenSpot-V2, ScreenSpot-Pro, and

378 Showdown benchmarks. As detailed in Tab. 2, UI-Ins-32B again achieves SOTA performance, and
 379 UI-Ins-7B consistently delivers superior results compared to its peers in the same parameter class.
 380 UI-Ins-32B performs well in different os platforms(Fig. 7) and we also provide a error analysis,
 381 which indicates the lack of knowlegde(Fig. 8) and hallucination can causes(Fig. 9) the failure. More
 382 result details are shown in Sec. F.1.

383 **Online Agent Results** To assess real-world
 384 utility, we evaluated our model as the grounding
 385 component for a mobile agent on the challenging
 386 AndroidWorld benchmark (Rawles et al.,
 387 2024b). As shown in Tab. 3, Paired with a
 388 GPT-5 planner, our UI-Ins model achieves a
 389 **66.1%** success rate. This result significantly
 390 outperforms specialized baselines, demon-
 391 strating that superior grounding capability directly
 392 translates to enhanced agent performance.

394 4.3 ABLATION STUDY

395 **Data Pipeline Ablation Study** We first man-
 396 ually inspect 1542 data produced by data
 397 pipeline, where the error rate is less than 8%.
 398 This is significantly lower than the inital error
 399 rate, 23.3%. To further validate the effective-
 400 ness of our data pipeline, we conduct an ab-
 401 lation study via SFT training. As shown in
 402 Tab. 11, our data pipeline provides a con-
 403 sistent performance improvement across multiple
 404 benchmarks. We show the details in Sec. C.2

405 **Training Stage Ablation Study** Here we val-
 406 idate the necessity of SFT+RL training stages
 407 for the **Instruction as Reasoning** method. We
 408 compare the Qwen2.5-VL-7B model against
 409 two variants: one trained only with SFT and
 410 another trained only with RL . In all configu-
 411 rations, the model is prompted to generate an intermediate reasoning step. Top results of Tab. 4
 412 indicate that both the SFT and RL stages are critical for achieving optimal performance. The ab-
 413 sence of either stage leads to a accuracy degradation, highlighting the importance of first teaching
 414 the model diverse reasoning paths and then allowing it to autonomously optimize its strategy.

417 4.4 DEEPER INSIGHTS INTO INSTRUCTION-AS-REASONING

418 Having established the strong performance of our models, we now delve deep into the *Instruction-
 419 as-Reasoning* framework to understand its success. We investigate three central questions below:

420 **Is an intermediate reasoning step necessary?**
 421 A fundamental question is whether letting the
 422 model to generate an intermediate reasoning
 423 trace is beneficial at all. To answer this, we con-
 424 ducted an ablation study by completely remov-
 425 ing the reasoning generation component from
 426 both the SFT and RL stages, training the model
 427 to directly predict coordinates. Experimental
 428 results are depicted in Tab. 4. Compared to our
 429 method (the 4th row), removing reasoning (the
 430 first row) leads to a substantial performance
 431 drop across all benchmarks, with an accuracy

Table 3: Performance on AndroidWorld.

Model	Success Rate
InfiGUIAgent (Liu et al., 2025b)	9.0
Ponder&Press (Wang et al., 2024a)	34.5
Uground (Gou et al., 2025)	44.0
Aria-UI (Yang et al., 2024)	44.8
UI-Tars (Qin et al., 2025)	46.6
AgentS2 (Zhou et al., 2024)	54.3
UI-Ins-7B	66.1

Table 4: Ablation study on training stages and the reasoning component. We report accuracy on MMBench-GUI L2 (MM), UI-I2E-Bench (I2E), Showdown (Show), ScreenSpot-Pro (Pro), and ScreenSpot-V2 (V2).

SFT	RL	MM	I2E	Show	Pro	V2
Ablation: Training stages.						
✗	✗	63.4	56.0	43.6	24.4	86.5
✗	✓	72.4	69.2	66.6	37.0	88.6
✓	✗	76.3	70.1	67.5	37.1	90.6
✓	✓	83.1	81.1	73.1	52.2	94.0
Ablation: Reasoning in training stages.						
✗	✗	79.1	70.7	66.1	44.8	91.7
✗	✓	78.8	71.6	68.4	48.0	92.0
✓	✗	81.6	76.2	72.0	47.5	93.1
✓	✓	83.1	81.1	73.1	52.2	94.0

Table 5: Comparison between free-form reasoning and Instruction as Reasoning in RL stage.

Method	SS.Pro	SS.V2
Free-Form Reasoning (FFR) in RL		
RL (w/o FFR)	50.1	92.4
RL (w/ FFR)	46.9 \downarrow (6.4)%	93.2 \uparrow (0.8)%
Instruction-as-Reasoning (IR) in RL		
RL (w/o IR)	47.5	93.1
RL (w/ IR)	52.2 \uparrow (9.9%)	94.0 \uparrow (0.9%)

432 decrease over 10% on UI-I2E-Bench. This result confirms including intermediate reasoning step is
 433 crucial to the success of Instruction-as-Reasoning framework.
 434

435 **Instruction-as-Reasoning vs. Free-Form Thinking** Given that reasoning is critical, what kind
 436 of reasoning is effective? Prior works (Lu et al., 2025; Yang et al., 2025) have shown that free-
 437 form-reasoning often fails to improve, and can even degrade, grounding performance. We test this
 438 hypothesis against our instruction-as-Reasoning approach in Tab. 5.

439 First, we examine Free-Form Reasoning (FFR). As the top section of Tab. 5 shows, applying FFR
 440 on a standard SFT model degrades performance, causing a 6.4% relative drop on SS.Pro.
 441

442 In contrast, we evaluate our Instruction-as-Reasoning (IR) approach. As the bottom section of the
 443 table 4 shows, training the model with IR yields a significant accuracy increase by a relative 9.9%.
 444 We can thus conclude from the experiments that free-form-thinking fails to improve, whereas our
 445 instruction-as-thinking is the key to unlocking effective reasoning for GUI grounding.
 446

447 **The Hidden Benefit: Stabilizing SFT+RL** We
 448 compare our SFT+RL framework with a stan-
 449 dard one in Tab. 6. When a model is trained
 450 with a standard coordinate-based SFT and then
 451 moved to RL, it suffers from policy collapse
 452 and leads to performance degradation. In con-
 453 trast, our instruction-as-reasoning-based SFT
 454 acts as a powerful exploratory warm-up. By
 455 pre-training the model to generate diverse rea-
 456 soning pathways, we empower it with a strong
 457 exploratory capability, achieving significant performance increase during RL. This demonstrate that
 458 our SFT strategy not only teaches reasoning format, but also enables effective and stable policy
 459 optimization in the RL phase.
 460

461 **Emergent Capabilities: Reasoning Beyond Predefined Perspectives** Does our framework merely
 462 teach the model to use the four predefined perspectives? A qualitative analysis of 500 model re-
 463 sponses reveals that it learns far deeper. We observe three key emergent capabilities:

464 **Strategic Selection:** The model learns to strategically select different reasoning perspectives for
 465 different scenarios, as shown in Tab. 7. Besides this, model just trained after SFT stage also have
 466 the ability to select the a better perspective(Tab. 16).

467 **Spontaneous Synthesis:** The model often combines multiple perspectives into a single, cohesive
 468 reasoning (e.g., ‘Find the blue ‘Save’ button [appearance] at the bottom of the form [location]’). This
 469 synthesis is not explicitly taught but emerges as an effective reasoning strategy during RL.

470 **Emergent Perspective:** Most impressively, the model is capable of generating entirely new analyt-
 471 ical angles beyond the four trained perspectives, such as reasoning from the instruction perspective
 472 of current state or component type.
 473

474 Table 7: Details of reasoning types categorized by GPT-4.1 from 500 UI-Ins-7B thinking processes.
 475 Note that a process may contain multiple types, resulting in a total of 1,950 reasoning instances.
 476

Perspective	App.	Loc.	Comp.	Str.	Func.	Intent	Seq.	Others	Total
Count	608	569	284	197	194	54	19	25	1950
Percentage (%)	31.2	29.2	14.6	10.1	9.9	2.8	1.0	1.3	100.0

477 5 CONCLUSION

478 In this work, we conducted a systematic investigation into the natural language instruction, a crit-
 479 ical yet underexplored component of GUI grounding. We first identified and quantified the severe
 480 quality and diversity issues prevalent in existing open-source datasets. To address these, we in-
 481 troduced a high-fidelity two-stage data pipeline to curate a reliable foundation for model training.
 482 Building upon this, we proposed **Instruction as Reasoning**, a novel SFT+RL framework designed
 483 to explicitly leverage instructional diversity by treating different perspectives as distinct reasoning
 484 pathways. Our resulting models, UI-Ins-7B and UI-Ins-32B, establish a new state of the art across
 485 five benchmarks, verifying the effectiveness our approach.
 486

486

6 REPRODUCIBILITY STATEMENT

487
488 We are committed to full reproducibility. Upon publication, we will release all code, data, and
489 models.
490491 • **Code and Models:** The source code for our training framework for UI-Ins-7B and UI-Ins-32B,
492 will be made public. The models will also be released.
493 • **Data:** Our cleaned and augmented dataset will be released. Data processing details and prompts
494 are described in Section 3.2 and Appendix C.
495 • **Hyperparameters:** All implementation details are specified in Section D.1, enabling a faithful
496 replication of our experiments.
497498 Further environment details will be included in the public repository to ensure a smooth replication
499 process.
500501

REFERENCES

502
503 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
504 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
505 2025.
506 Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Guozhi Wang, Dingyu Zhang,
507 Shuai Ren, and Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui
508 agents. In *Findings of the Association for Computational Linguistics: ACL 2025*, pp. 2138–2156.
509 Association for Computational Linguistics, 2025. doi: 10.18653/v1/2025.findings-acl.110. URL
510 <http://dx.doi.org/10.18653/v1/2025.findings-acl.110>.
511
512 Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
513 Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI agents.
514 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=kxnoqaisCT>.
515
516 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
517 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
518 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
519
520 ZongHan Hsieh, Tzer-Jen Wei, and ShengJing Yang. Zonui-3b: A lightweight vision-language
521 model for cross-resolution gui grounding. <https://arxiv.org/abs/2506.23491>, 2025.
522 arXiv:2506.23491 [cs.CV], version 2, last revised 1 Jul 2025.
523
524 Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
525 Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models,
526 2025. URL <https://arxiv.org/abs/2503.06749>.
527
528 Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem Alshikh,
529 and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
530 autonomous agents for desktop and web, 2024.
531
532 Kaixin Li, Meng Ziyang, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
533 Tat-Seng Chua. Screenspot-pro: GUI grounding for professional high-resolution computer use.
534 In *Workshop on Reasoning and Planning for Large Language Models*, 2025. URL <https://openreview.net/forum?id=XaKNDIAHas>.
535
536 Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
537 and Oriana Riva. On the effects of data scale on ui control agents, 2024. URL <https://arxiv.org/abs/2406.03679>.
538
539 Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. Widget captioning:
540 Generating natural language description for mobile user interface elements, 2020. URL <https://arxiv.org/abs/2010.04295>.

540 Shuquan Lian, Yuhang Wu, Jia Ma, Yifan Ding, Zihan Song, Bingqi Chen, Xiawu Zheng, and Hui
 541 Li. Ui-agile: Advancing gui agents with effective reinforcement learning and precise inference-
 542 time grounding, 2025. URL <https://arxiv.org/abs/2507.22025>.

543 Xinyi Liu, Xiaoyi Zhang, Ziyun Zhang, and Yan Lu. Ui-e2i-synth: Advancing gui grounding with
 544 large-scale instruction synthesis, 2025a. URL <https://arxiv.org/abs/2504.11257>.

545 Yuhang Liu, Pengxiang Li, Zishu Wei, Congkai Xie, Xueyu Hu, Xinchen Xu, Shengyu Zhang,
 546 Xiaotian Han, Hongxia Yang, and Fei Wu. Infiguiagent: A multimodal generalist gui agent with
 547 native reasoning and reflection. *arXiv preprint arXiv:2501.04575*, 2025b.

548 Yuhang Liu, Zeyu Liu, Shuanghe Zhu, Pengxiang Li, Congkai Xie, Jiasheng Wang, Xueyu Hu,
 549 Xiaotian Han, Jianbo Yuan, Xinyao Wang, et al. Infigui-g1: Advancing gui grounding with
 550 adaptive exploration policy optimization. *arXiv preprint arXiv:2508.05731*, 2025c.

551 Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-
 552 zero: Reasoning-chain guided segmentation via cognitive reinforcement. *arXiv preprint
 553 arXiv:2503.06520*, 2025d.

554 Yuqi Liu, Tianyuan Qu, Zhisheng Zhong, Bohao Peng, Shu Liu, Bei Yu, and Jiaya Jia. Vision-
 555 reasoner: Unified visual perception and reasoning via reinforcement learning. *arXiv preprint
 556 arXiv:2505.12081*, 2025e.

557 Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
 558 gui agent, 2024. URL <https://arxiv.org/abs/2408.00203>.

559 Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Guanjing Xiong, and
 560 Hongsheng Li. Ui-r1: Enhancing action prediction of gui agents by reinforcement learning. *arXiv
 561 preprint arXiv:2503.21620*, 2025.

562 Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language
 563 action model for gui agents. *arXiv preprint arXiv:2504.10458*, 2025.

564 OpenAI. Gpt-4.1 announcement. <https://openai.com/index/gpt-4-1/>, 2025. Ac-
 565 cessed: 2025-08-03.

566 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
 567 Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
 568 agents. *arXiv preprint arXiv:2501.12326*, 2025.

569 Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
 570 Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry,
 571 Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A dynamic benchmark-
 572 ing environment for autonomous agents, 2024a. URL <https://arxiv.org/abs/2405.14573>.

573 Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
 574 Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, Daniel Toyama, Robert Berry,
 575 Divya Tyamagundlu, Timothy Lillicrap, and Oriana Riva. Androidworld: A dynamic benchmark-
 576 ing environment for autonomous agents, 2024b. URL <https://arxiv.org/abs/2405.14573>.

577 ByteDance Seed. Ui-tars-1.5. <https://seed-tars.com/1.5>, 2025.

578 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 579 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 580 reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>, 2(3):5, 2024.

581 Fei Tang, Zhangxuan Gu, Zhengxi Lu, Xuyang Liu, Shuheng Shen, Changhua Meng, Wen Wang,
 582 Wenqi Zhang, Yongliang Shen, Weiming Lu, Jun Xiao, and Yueling Zhuang. Gui-g²: Gaussian
 583 reward modeling for gui grounding, 2025. URL <https://arxiv.org/abs/2507.15846>.

584 General Agents Team. The showdown computer control evaluation suite, 2025. URL <https://github.com/generalagents/showdown>.

594 Ye Wang, Ziheng Wang, Boshen Xu, Yang Du, Kejun Lin, Zihan Xiao, Zihao Yue, Jianzhong Ju,
 595 Liang Zhang, Dingyi Yang, Xiangnan Fang, Zewen He, Zhenbo Luo, Wenxuan Wang, Junqi Lin,
 596 Jian Luan, and Qin Jin. Time-r1: Post-training large vision language model for temporal video
 597 grounding, 2025. URL <https://arxiv.org/abs/2503.13377>.

598 Yiqin Wang, Haoji Zhang, Jingqi Tian, and Yansong Tang. Ponder & press: Advancing visual gui
 599 agent towards general computer control. *arXiv preprint arXiv:2412.01268*, 2024a.

601 Yiqin Wang, Haoji Zhang, Jingqi Tian, and Yansong Tang. Ponder & press: Advancing visual gui
 602 agent towards general computer control, 2024b. URL <https://arxiv.org/abs/2412.01268>.

604 Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
 605 Baolin Peng, Bo Qiao, Reuben Tan, et al. Gui-actor: Coordinate-free visual grounding for gui
 606 agents. *arXiv preprint arXiv:2506.03143*, 2025.

608 Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
 609 Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. Os-atlas: A foundation action model for
 610 generalist gui agents, 2024. URL <https://arxiv.org/abs/2410.23218>.

611 Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
 612 Xinyuan Wang, Yuhui Xu, Zekun Wang, Yiheng Xu, Junli Wang, Doyen Sahoo, Tao Yu, and
 613 Caiming Xiong. Scaling computer-use grounding via user interface decomposition and synthesis,
 614 2025. URL <https://arxiv.org/abs/2505.13227>.

616 Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
 617 and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction, 2025.
 618 URL <https://arxiv.org/abs/2412.04454>.

619 JingJing Xie Xuehui Wang, Zhenyu Wu et al. Mmbench-gui: Hierarchical multi-platform evaluation
 620 framework for gui agents. *arXiv preprint arXiv:2507.19478*, 2025.

622 Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe
 623 Huang, Amrita Saha, Zeyuan Chen, Ran Xu, Liyuan Pan, Caiming Xiong, and Junnan Li. Gta1:
 624 Gui test-time scaling agent, 2025. URL <https://arxiv.org/abs/2507.05791>.

625 Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-
 626 ui: Visual grounding for gui instructions, 2024. URL <https://arxiv.org/abs/2412.16256>.

628 Xinbin Yuan, Jian Zhang, Kaixin Li, Zhuoxuan Cai, Lujian Yao, Jie Chen, Enguang Wang, Qibin
 629 Hou, Jinwei Chen, Peng-Tao Jiang, et al. Enhancing visual grounding for gui agents via self-
 630 evolutionary reinforcement learning. *arXiv preprint arXiv:2505.12370*, 2025.

632 Miaozen Zhang, Ziqiang Xu, Jialiang Zhu, Qi Dai, Kai Qiu, Yifan Yang, Chong Luo, Tianyi Chen,
 633 Justin Wagle, Tim Franklin, et al. Phi-ground tech report: Advancing perception in gui grounding.
 634 *arXiv preprint arXiv:2507.23779*, 2025.

635 Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
 636 Shuai Wang, Xiaohua Xu, Ningyu Zhang, Huajun Chen, and Yuchen Eleanor Jiang. Sym-
 637 bolic learning enables self-evolving agents. 2024. URL <https://arxiv.org/abs/2406.18532>.

639 Yuqi Zhou, Sunhao Dai, Shuai Wang, Kaiwen Zhou, Qinglin Jia, and Jun Xu. Gui-g1: Un-
 640 derstanding r1-zero-like training for visual grounding in gui agents, 2025. URL <https://arxiv.org/abs/2505.15810>.

643 Jinguo Zhu, Weiyun Wang, et al. Internvl3: Exploring advanced training and test-time recipes for
 644 open-source multimodal models, 2025. URL <https://arxiv.org/abs/2504.10479>.

645
 646
 647

648 **A THE USE OF LARGE LANGUAGE MODELS (LLMs)**
649650 LLMs are only used in polish writing.
651652 **B RELATED WORK**
653654 **B.1 REINFORCEMENT LEARNING FOR MLLMs**
655656 Reinforcement Learning (RL) has demonstrated a distinct advantage in enhancing the generalization
657 capabilities of Multimodal Large Language Models (MLLMs), leading to its rapid adoption across
658 various vision-language downstream tasks. Prior works such as Seg-Zero (Liu et al., 2025d) and Vi-
659 sion Reasoner (Liu et al., 2025e) have showcased its unique strengths in general-purpose grounding.
660 Concurrently, Vision-R1 (Huang et al., 2025) revealed that RL algorithms can significantly boost
661 the reasoning abilities of MLLMs. Beyond static images, this paradigm has also been extended to
662 the video domain, where Time-R1 (Wang et al., 2025) successfully applied GRPO to video temporal
663 localization tasks, achieving exceptional performance.
664665 **B.2 GROUNDING FOR GUI AGENTS**
666667 GUI grounding has recently undergone rapid development, and current GUI agents can be primarily
668 categorized by their training methodologies. Early works predominantly employed Supervised Fine-
669 Tuning (SFT). For instance, Jedi (Xie et al., 2025) synthesized a 4-million-example dataset using
670 multi-perspective decoupling to improve SFT for grounding. AGUVIS (Xu et al., 2025) introduced a
671 unified, vision-based framework that operates directly on screen images, enabling cross-platform in-
672 teraction through a two-stage training pipeline. Similarly, OS-Atlas (Wu et al., 2024) addressed the
673 lack of high-quality open-source data by introducing a cross-platform grounding corpus with over 13
674 million elements. More recently, a majority of works have transitioned to RL-based training methods,
675 which typically yield higher performance and better generalization. For example, GUI-G1 (Zhou
676 et al., 2025) refines the online RL training method by proposing a fast-thinking template and a
677 difficulty-aware policy update. To tackle semantic alignment issues, InfiGUI-G1 (Liu et al., 2025c)
678 introduced Adaptive Exploration Policy Optimization (AEPO), a framework that enhances explo-
679 ration through a multi-answer strategy. Diverging from coordinate-based methods, GUI-Actor (Wu
680 et al., 2025) proposed a novel attention-based action head that learns to align a special ‘<ACTOR>’
681 token with visual features, enabling a coordinate-free approach to grounding.
682683 Table 8: Manual inspection results of our refined dataset, breaking down error types by count and
684 percentage out of 1,542 total instances.

Metric	Ambiguous match	Mismatch	Precise match	All
Count	18	81	1443	1542
Percentage (%)	1.17	5.25	93.58	100.00

685 **Table 9: Summary of SFT Data Sources**
686

Metric	AgentNet	Os-Atlas	AMEX	OmniAct	Total
Count	138,635	73,335	70,023	1,159	283,152
Percentage (%)	50.8	26.9	25.7	0.4	100.0

687 **Table 10: Summary of RL Data Sources**
688

Metric	AgentNet	Os-Altas	AMEX	OmniAct	Android Control	Total
Count	12,570	11,048	6,553	1,520	1,160	32,851
Percentage (%)	38.3	33.6	19.9	4.6	3.5	100.0

702 C DATA DETAILS
703
704705 C.1 INSTRUCTION DIVERSITY AUGMENTATION
706
707

708 To enhance instructional diversity, we expanded the instruction set based on frequently occurring
709 scenarios, categorizing them into four types: appearance-based, function-based, spatial-based, and
710 intent-based. When leveraging GPT-4.1 to augment instructions from open-source datasets, we
711 mitigated potential hallucinations arising from poor-quality original instructions. To achieve this,
712 we visually grounded the process by overlaying the ground-truth point or bounding box as a distinct
713 circular or rectangular marker on the input image.

714
715 Instruction Diversity Augmentation Prompt
716717 **## Task:**

718 Generate and Translate Unambiguous Grounding Instructions

719 **## Input:**

720 GUI Screenshot: An image of a user interface.

721 Original Instruction: An initial English instruction.

722 Highlighted Element: A visual marker e.g., a red <annotation_type> on the screenshot
723 pointing to the target UI element.

724 — CORE OBJECTIVE —

725 Your primary task is to first translate the Original Instruction into high-quality Chinese, and
726 then generate four new, distinct types of grounding instructions. For all generated instructions,
727 you must adhere to this critical rule: the instruction must correspond to one and only
728 one element on the entire screen—the one highlighted. Clarity and uniqueness are the top
729 priorities.

730 — IMPORTANT SAFEGUARD —

731 The <annotation_type> is a ground-truth annotation provided only for your reference. Your
732 instructions must never refer to the annotation itself.

733 It is noticeable that the original instruction may not align with the ground-truth annotation,
734 you should follow the ground-truth annotation first.

735 **## Instructions Generation Requirements:**

736 Generate one new, clear, and unambiguous instruction for each of the following four categories.

737 **Appearance-Based:**

738 A direct and literal description of the element's visual characteristics (e.g., its text, icon,
739 color, shape). Combine features as needed to ensure the description is completely unique.

740 **Function-Based:**

741 A clear description of the element's purpose or the immediate outcome of interacting with it
(e.g., "the button used to confirm and save your profile changes").

742 **Spatial-Based:**

743 An instruction that identifies the element based on its position relative to other prominent,
744 easily identifiable UI elements (landmarks). The described spatial relationship must lead to
745 a unique location.

746 **Goal-Based:**

747 A concise phrase that describes the user's ultimate goal or intent. The user must infer which
748 single UI element on the screen fulfills this goal.

749 **## Output Format:**

750 The final output must be a single, well-formed JSON object. The JSON structure should
751 begin with the original instruction and its translation, followed by the newly generated in-
752 structions.

753 Now, please process the following inputs and generate the instructions in the specified JSON
754 format.

755 **Original Instruction:**

<instruction_here>

Prompt for Instruction Refinement breakable

810 C.2 INSTRUCTION QUALITY REFINEMENT
811

812 To verify and filter the quality of both the original and the newly generated diverse instructions, we
813 prompted GPT-4.1 to assess whether each instruction uniquely corresponded to a single element in
814 the GUI screenshot. To mitigate potential model hallucinations during this verification process, we
815 visually grounded the task by overlaying the ground-truth annotation directly onto the input image.
816 This filtering stage significantly improved the quality of our instruction set. A manual inspection of
817 1,542 instructions confirmed this improvement, revealing that the error rate was reduced from over
818 23% to under 8%, as detailed in Tab. 8, each data was checked by two experienced annotators.
819

820 C.3 DATA QUALITY IMPROVEMENT
821

822 To further validate the quality of our data processing pipeline, we adapt an ablation study via SFT.
823 We use about 210k original samples and result in about 180k cleaned samples after our pipeline
824 process, we use them train Qwen2.5-VL-7B. The results shown in Tab. 11 indicate the high quality
825 of our pipeline.
826

Table 11: Data pipeline ablation study.

Data Pipeline	MMBench-GUI L2	UI-I2E	Showdown	SS.Pro	SS.V2
✗	72.3	63.5	60.5	33.0	88.1
✓	74.3	66.3	60.3	33.7	90.2

831 D IMPLEMENTATION DETAILS
832833 D.1 IMPLEMENTATION DETAILS
834

835 We employ the state-of-the-art vision-language foundation models Qwen2.5-VL-7B and Qwen2.5-
836 VL-32B as our backbone architectures. The training procedure consists of two stages:
837

- 838 • **SFT Stage** We fine-tune the models on approximately 283k instances for one epoch. For each
839 instance, we randomly select one instruction as the input command, contextualized by four ana-
840 lytical perspectives (i.e., appearance, spatial, function and goal). The target reasoning process is
841 another randomly sampled instruction from the same instance. We use a global batch size of 256
842 and a learning rate of 5e-6.
- 843 • **RL Stage** The GRPO training utilizes 33k instances, expanded to approximately 100k training
844 samples by generating a sample per valid instruction. The prompt excludes analytical perspectives
845 to promote unconstrained reasoning. We train for one epoch with a learning rate of 1e-6 and 8
846 rollouts. The batch size is set to 256 for the 7B model and 128 for the 32B model.
847

848 D.2 EVALUATION METRICS
849

850 Following prior works (Yang et al., 2025; Liu et al., 2025c; Tang et al., 2025), we evaluate GUI
851 Grounding performance using the point-in-box accuracy. A prediction is considered correct if
852 the predicted coordinate point $p = (x_p, y_p)$ falls within the ground-truth bounding box $b =$
853 (x_l, y_l, x_r, y_r) , where the (x_l, y_l) denotes the top-left corner and (x_r, y_r) represents the bottom-right
854 corner. The accuracy over a test set of size N is formally defined as: Accuracy = $\frac{1}{N} \sum_{i=1}^N \mathbb{I}(p_i \in b_i)$
855 , where $\mathbb{I}(\cdot)$ is the indicator function, which equals 1 if the condition is true and 0 otherwise.
856

857 E EXPERIMENT PROMPTS
858859 E.1 SFT STAGE
860

861 In the Supervised Fine-Tuning (SFT) stage, we utilized a dataset of approximately 290,000 in-
862 stances, with the data distribution detailed in Tab. 9. For each training instance, we randomly
863 sampled a single refined instruction to serve as the input, and subsequently, another instruction
was randomly selected from the remaining set to function as the reasoning. Each instance was used

Table 12: Performance comparison on the **MMBench-GUI L2** benchmark. We report aggregated accuracy (%) for details. We report aggregated accuracy (%) in detail. We use ‘-’ to denote unavailability, and ‘*’ to denote the results evaluated by us.

Model	Windows		MacOS		Linux		iOS		Android		Web		Avg.
	Basic	Adv.											
GPT-4o	1.5	1.1	8.7	4.3	1.1	1.0	5.1	3.3	2.5	1.4	3.2	2.9	2.9
Claude-3.7	1.5	0.7	12.5	7.5	1.1	0.0	13.7	10.6	1.4	1.4	3.2	2.3	4.7
Qwen-Max-VL	43.9	36.8	58.8	56.1	53.9	30.1	77.4	59.1	79.5	70.1	74.8	58.8	58.0
ShowUI-2B	9.2	4.4	24.1	10.4	25.1	11.7	29.0	19.7	17.4	8.7	22.9	12.7	16.0
Qwen2.5-VL-7B	31.4	16.5	31.3	22.0	21.5	12.2	66.6	55.2	35.1	35.2	40.3	32.5	33.9
Qwen2.5-VL-72B	55.7	33.8	49.9	30.1	40.3	20.9	56.1	28.2	55.6	25.4	68.4	45.8	41.8
OS-Atlas-Base-7B	36.9	18.8	44.4	21.7	31.4	13.3	74.8	48.8	69.6	46.8	61.3	35.4	41.4
Aguvis-7B-720P	37.3	21.7	48.1	33.3	33.5	25.0	67.5	65.2	61.0	51.0	61.6	45.5	45.7
UI-TARS-1.5-7B	68.3	39.0	69.0	44.5	64.4	37.8	88.5	69.4	90.5	69.3	81.0	56.5	64.3
UI-TARS-72B-DPO	78.6	51.8	80.3	62.7	68.6	51.5	90.8	81.2	93.0	80.0	88.1	68.5	74.3
UGround-V1-7B	66.8	39.0	71.3	48.6	56.5	31.1	92.7	70.9	93.5	71.0	88.7	64.6	65.7
InternVL3-72B	70.1	42.6	75.7	52.3	59.2	41.3	93.6	80.6	92.7	78.6	90.7	65.9	72.2
InfiGUI-G1-7B	82.7	61.8	83.8	63.9	72.3	52.0	94.9	89.4	95.2	85.6	93.5	76.3	80.8
GTA1-7B*	76.8	57.4	80.3	63.9	68.6	53.6	93.9	83.3	96.3	84.5	90.3	74.7	78.5
GTA1-32B*	82.3	66.9	89.0	74.0	73.3	52.0	96.2	88.2	95.8	88.5	95.2	79.9	83.4
UI-Ins-7B	82.7	64.7	87.2	75.1	71.7	51.5	94.9	89.7	95.8	89.0	93.2	80.8	83.1
UI-Ins-32B	84.9	68.4	88.4	73.4	68.6	56.1	96.5	91.2	97.2	92.4	94.8	85.1	84.9

for training only once. To better align the training data with the model’s in-context learning capabilities, our training prompt provided four predefined analytical perspectives as context. The prompt structure is detailed as follows:

Training Example We provide a SFT training example as following, we mark the **Instruction as Reasoning** in red.

E 2 RL STAGE

In the Reinforcement Learning (RL) stage, we trained the model on a total of 32,851 instances, with the data sources and distribution detailed in Tab. 10. To ensure the model performs robustly across all diverse instructions for a given instance, we trained on every remaining refined instruction for each sample. Furthermore, to encourage the model to discover potentially optimal reasoning pathways, we removed the predefined analytical perspectives from the prompt. This allowed the model, already fine-tuned during the SFT stage, to freely explore various thinking formats and strategies.

RL Training Examples We provide a RL training example as following

918 SFT Training Example
 919
 920 **# System Prompt:** You are a GUI agent. You are given a task and your action history, with
 921 screenshots. You need to perform the next action to complete the task.
 922 **## Output Format**
 923 Return a json object with function name and arguments within <tool_call></tool_call>
 924 XML tags:
 925 <think>
 926 ...
 927 <think>
 928 <tool_call>
 929 {"name": "grounding", "arguments": <args-json-object>}
 930 </tool_call>
 931 <args-json-object> represents the following item of the action space:
 932 **## Action Space**
 933 {"action": "click", "coordinate": [x, y]}
 934
 935 Your task is to accurately locate a UI element based on the user's instructions. The screen-
 936 shot resolution is height {height} and width {width}.
 937 First, you should carefully examine the screenshot and analyze the user's instructions from
 938 one of the following different perspectives:
 939 **Appearance Perspective:** You should prioritize visually scanning the user interface to find
 940 an element that precisely matches the label, text color, background, shape, and its relative
 941 position to other elements as described in the appearance-based instruction. Your decision-
 942 making will be driven by direct pattern matching of these visual attributes.
 943 **Function Perspective:** You should identify which UI element is responsible for achieving
 944 the specified system state change or executing the described action, such as switching the
 945 media display mode. Your decision-making will be guided by understanding the intended
 946 effect or utility of interacting with the element.
 947 **Spatial Perspective:** You should first locate any specified reference points (e.g., another UI
 948 element or screen edge) and then precisely pinpoint the target element based on its exact
 949 directional and positional relationship within the UI layout. Your decision-making will be
 950 based on geometric and relational positioning within the interface.
 951 **Goal Perspective:** You should identify the UI element or sequence of actions that directly
 952 leads to the fulfillment of the user's stated ultimate objective. Your decision-making will be
 953 driven by finding the most direct and efficient path to achieve the desired end-state for the
 954 user.
 955 You should translate the user's instruction into the corresponding instruction, and then pro-
 956 vide the final action.
 957 **# User Instruction:**
 958 Click on the CSDN bookmark in the bookmarks bar to access the CSDN website.
 959 **# Assistant:**
 960 <think>
 961 I will analyze this instruction from Appearance-Based perspective, the user's instruction can
 962 be represented as : **Click the bookmark with the red 'C' icon and the label 'CSDN' in the**
 963 **bookmarks bar.**
 964 </think>
 965 <tool_call>
 966 {"name": "grounding", "arguments": {"action": "click", "coordinate": [588, 67]}}
 967 </tool_call>
 968
 969
 970
 971

```

972 RL Training Example
973
974 # System Prompt: You are a GUI agent. You are given a task and your action history, with
975 screenshots. You need to perform the next action to complete the task.
976 ## Output Format
977 Return a json object with function name and arguments within <tool_call></tool_call>
978 XML tags:
979 <think>
980 ...
981 <think>
982 <tool_call>
983 {"name": "grounding", "arguments": <args-json-object>}
984 <tool_call>
985 <args-json-object> represents the following item of the action space:
986 ## Action Space
987 {"action": "click", "coordinate": [x, y]}
988
989 Your task is to accurately locate a UI element based on the user's instructions. The screen-
990 shot resolution is height {height} and width {width}.
991 First, you should carefully examine the screenshot and analyze the user's instructions in
992 <think>...<think> tags and then output the coordinate.
993 # User Instruction:
994 Click on the CSDN bookmark in the bookmarks bar to access the CSDN website.
995 # Assistant:
996 <think>
997 ...
998 </think>
999 <tool_call>
1000 ...
1001 </tool_call>
1002
1003

```

F DETAILS OF RESULTS

F.1 EVALUATION DETAILS

We present the performance of our models on four benchmarks: MMBench-GUI L2, UI-I2E-Bench, ScreenSpot-Pro, and ScreenSpot-V2. The results demonstrate that both UI-Ins-7B and UI-Ins-32B achieve excellent performance across diverse operating systems and software categories, performing favorably against models of similar parameter counts. Ultimately, UI-Ins-32B establishes a new state-of-the-art. Furthermore, analysis of the MMBench-GUI L2 and UI-I2E-Bench results reveals that our models consistently improve performance across various instruction types. Notably, they exhibit substantial gains on advanced and implicit instructions, which demand a higher level of semantic understanding, significantly outperforming peer models of a similar size.

F.2 QUALITATIVE RESULTS

Generalization analysis We performed a detailed classification of the model's reasoning process by first manually defining ten distinct analytical perspectives. We then utilized GPT-4.1 to examine 500 responses generated by UI-Ins-7B on the UI-I2E benchmark based on this taxonomy. As a single response can incorporate multiple reasoning perspectives, the 500 responses ultimately corresponded to 1,950 distinct instances of reasoning. We compiled statistics on these perspectives, the results of which are presented in Tab. 7. The taxonomy can be seen as following:

1026	Taxonomy of Reasoning Perspectives
1027	
1028	1. Appearance
1029	Abbreviation: app
1030	Definition: Describes the static visual properties of a UI element, including its color, shape, icon, style, and the literal text it displays.
1031	
1032	2. Functionality
1033	Abbreviation: func
1034	Definition: Describes the element's purpose, its action, or what happens when a user interacts with it.
1035	
1036	3. Location
1037	Abbreviation: loc
1038	Definition: Describes the element's spatial position on the screen or in the viewport, which can be absolute (e.g., "top-left") or relative to other elements (e.g., "below the title").
1039	
1040	4. Intent
1041	Abbreviation: intent
1042	Definition: Describes the high-level user goal or plan that motivates the entire action. It is often the starting point of a reasoning chain.
1043	
1044	5. Structural Relationship
1045	Abbreviation: struct
1046	Definition: Describes the element's position within the UI's layout hierarchy (like a DOM tree), emphasizing its parent, child, or sibling relationship to other elements or containers.
1047	
1048	6. State
1049	Abbreviation: state
1050	Definition: Describes the current dynamic condition of an element, such as whether it is interactive, active, selected, disabled, or checked.
1051	
1052	7. Component Type
1053	Abbreviation: ctype
1054	Definition: Identifies the element as a standard, reusable design pattern or component, rather than just describing its appearance.
1055	
1056	8. Sequential Position
1057	Abbreviation: seq
1058	Definition: Describes the element's order or temporal place within a multi-step user task or workflow.
1059	
1060	9. Salience
1061	Abbreviation: salience
1062	Definition: Describes the element's degree of visual prominence, which is often determined by its size, contrast, unique styling, or animation.
1063	
1064	10. Accessibility
1065	Abbreviation: a11y
1066	Definition: Describes non-visual properties provided for assistive technologies, such as screen readers. This includes ARIA labels, roles, and other accessibility attributes.
1067	

Visualization Here we present the grounding results of UI-Ins-32B across various platforms and software applications. As shown in Fig. 7, UI-Ins-32B demonstrates robust performance on diverse platforms.

Failure cases We analyzed the failure cases of our model on the MMBench-GUI benchmark and identified two primary categories of errors. The first category stems from an insufficient understanding of diverse UI layouts, as shown in Fig. 8. The second category involves model hallucinations, as illustrated in Fig. 9.

1075
1076
1077
1078
1079

1080

1081

1082 Table 13: Performance comparison on the **ScreenSpot-Pro** benchmark. We report aggregated accuracy (%) in detail. We use ‘-’ to denote unavailability, and ‘*’ to denote the results evaluated by us.
1083

1084

Model	CAD		Dev.		Creative		Scientific		Office		OS		Avg.
	Text	Icon	Text	Icon	Text	Icon	Text	Icon	Text	Icon	Text	Icon	
GPT-4o	2.0	0.0	1.3	0.0	1.0	0.0	2.1	0.0	1.1	0.0	0.0	0.0	0.8
Claude Comp. Use	14.5	3.7	22.0	3.9	25.9	3.4	33.9	15.8	30.1	16.3	11.0	4.5	17.1
SeeClick	2.5	0.0	0.6	0.0	1.0	0.0	3.5	0.0	1.1	0.0	2.8	0.0	1.1
Qwen2-VL-7B	0.5	0.0	2.6	0.0	1.5	0.0	6.3	0.0	3.4	1.9	0.9	0.0	1.6
CogAgent-18B	7.1	3.1	14.9	0.7	9.6	0.0	22.2	1.8	13.0	0.0	5.6	0.0	7.7
UI-R1-3B	11.2	6.3	22.7	4.1	27.3	3.5	42.4	11.8	32.2	11.3	13.1	4.5	17.8
ZonUI-3B	31.9	15.6	24.6	6.2	40.9	7.6	54.8	18.1	57.0	26.4	19.6	7.8	28.7
GUI-R1-7B	23.9	6.3	49.4	4.8	38.9	8.4	55.6	11.8	58.7	26.4	42.1	16.9	31.0
UI-TARS-7B	20.8	9.4	58.4	12.4	50.0	9.1	63.9	31.8	63.3	20.8	30.8	16.9	35.7
UI-AGILE-7B	49.2	14.1	64.3	15.2	53.0	9.8	72.9	25.5	75.1	30.2	45.8	20.2	44.0
GUI-G ² -7B	55.8	12.5	68.8	17.2	57.1	15.4	77.1	24.5	74.0	32.7	57.9	21.3	47.5
Infigui-G1-7B	57.4	23.4	74.7	24.1	64.6	18.2	80.6	31.8	75.7	39.6	57.0	29.2	51.9
GTA1-7B	53.3	17.2	66.9	20.7	62.6	18.9	76.4	31.8	82.5	50.9	48.6	25.9	50.1
GTA1-32B	43.7	23.4	82.5	28.3	69.2	14.7	79.9	31.8	80.8	43.4	70.1	32.6	53.6
OpenCUA-7B	-	-	-	-	-	-	-	-	-	-	-	-	50.0
OpenCUA-32B	-	-	-	-	-	-	-	-	-	-	-	-	55.3
SE-GUI-7B	51.3	42.2	68.2	19.3	57.6	9.1	75.0	28.2	78.5	43.4	49.5	25.8	43.2
GUI-Actor-7B	-	-	-	-	-	-	-	-	-	-	-	-	44.6
UI-Ins-7B	60.9	20.3	75.3	18.6	65.2	18.9	81.3	29.1	79.7	37.7	57.0	25.8	52.2
UI-Ins-32B	51.8	29.7	83.1	26.9	69.7	18.9	83.3	34.5	88.7	50.9	70.1	34.8	57.0

1105

1106

1107

1108

1109

1110 Table 14: Performance comparison on the **UI-I2E-Bench** benchmark. We report aggregated accuracy (%) in detail. We use ‘-’ to denote unavailability, and ‘*’ to denote the results evaluated by us.
1111

1112

Model	Grouped by Platform			Grouped by Implicitness		Overall
	Web	Desktop	Mobile	Explicit	Implicit	
Qwen2.5-VL-7B	56.9	41.6	61.7	58.4	51.0	53.8
Qwen2.5-VL-72B	49.0	47.2	55.3	49.6	52.5	51.4
OS-Atlas-4B	54.6	19.9	58.6	51.5	39.9	44.3
OS-Atlas-7B	52.2	48.9	68.1	63.2	55.8	58.6
Aguvis-7B	45.1	47.6	60.3	61.1	48.4	53.2
Uground-V1-2B	66.4	49.5	59.9	72.9	47.9	57.4
Uground-V1-7B	70.8	65.7	73.5	81.3	63.6	70.3
Uground-V1-72B	74.7	74.6	78.2	84.5	71.3	76.3
UI-TARS-2B	62.2	54.0	66.7	74.1	54.5	62.0
UI-TARS-7B	56.5	58.0	65.7	71.4	55.3	61.4
UI-TARS-1.5-7B	79.5	68.8	74.1	81.3	68.2	73.2
UI-TARS-72B	77.1	69.8	75.5	80.9	69.4	73.7
UI-I2E-VLM-4B	60.9	38.9	61.4	61.9	48.3	53.4
UI-I2E-VLM-7B	62.1	64.0	76.2	72.0	67.9	69.5
Infigui-G1-7B	84.6	66.3	83.0	85.0	72.7	77.4
GTA1-7B*	77.5	71.3	83.5	87.0	72.8	78.2
GTA1-32B*	93.3	77.6	84.4	91.4	78.7	83.5
UI-Ins-7B	90.5	72.8	83.8	88.9	76.3	81.1
UI-Ins-32B	95.7	81.9	88.2	92.9	83.9	87.3

1132

1133

1134

1135

1136 Table 15: Performance comparison on the **ScreenSpot-V2** benchmark. We report aggregated accuracy (%) in detail. We use ‘-’ to denote unavailability, and ‘*’ to denote the results evaluated by us.

1137

1138

1139

1140

Model	Mobile		Desktop		Web		Avg.
	Text	Icon/Widget	Text	Icon/Widget	Text	Icon/Widget	
SeeClick	78.4	50.7	70.1	29.3	55.2	32.5	55.1
OS-Atlas-Base-7B	95.2	75.8	90.7	63.6	90.6	77.3	85.1
UI-TARS-7B	96.9	89.1	95.4	85.0	93.6	85.2	91.6
UI-TARS-72B	94.8	86.3	91.2	87.9	91.5	87.7	90.3
GUI-G ² -7B	98.3	91.9	95.4	89.3	94.0	87.7	93.3
UI-R1-3B	98.2	83.9	94.8	75.0	93.2	83.7	89.5
Qwen2.5-VL-7B	97.6	87.2	90.2	74.2	93.2	81.3	88.8
Qwen2.5-VL-32B	<u>97.9</u>	88.2	<u>98.5</u>	79.3	91.2	86.2	91.3
UGround-v1-7B	83.6	<u>90.5</u>	85.8	86.3	95.5	83.2	87.7
UI-Tars-1.5-7B	92.2	81.5	91.0	84.2	95.5	84.5	89.0
InfigUI-G1-7B	99.0	91.9	94.3	82.1	97.9	<u>89.2</u>	93.5
GTA1-7B	99.0	88.6	94.9	89.3	92.3	86.7	92.4
GTA1-32B	98.6	89.1	96.4	86.4	95.7	88.7	93.2
Phi-ground-7B	90.2	76.4	93.6	75.9	96.5	62.0	83.8
OpenCUA-7B	-	-	-	-	-	-	92.3
OpenCUA-32B	-	-	-	-	-	-	93.4
GUI-Actor-7B	97.6	88.2	96.9	85.7	93.2	86.7	92.1
SE-GUI-7B	-	-	-	-	-	-	90.3
LPO	<u>97.9</u>	82.9	95.9	86.4	95.6	84.2	90.5
UI-Ins-7B	99.0	<u>90.5</u>	97.9	81.4	<u>97.4</u>	<u>91.6</u>	94.0
UI-Ins-32B	98.6	90.0	99.0	<u>87.9</u>	97.0	93.1	94.9

1159

1160

1161

1162

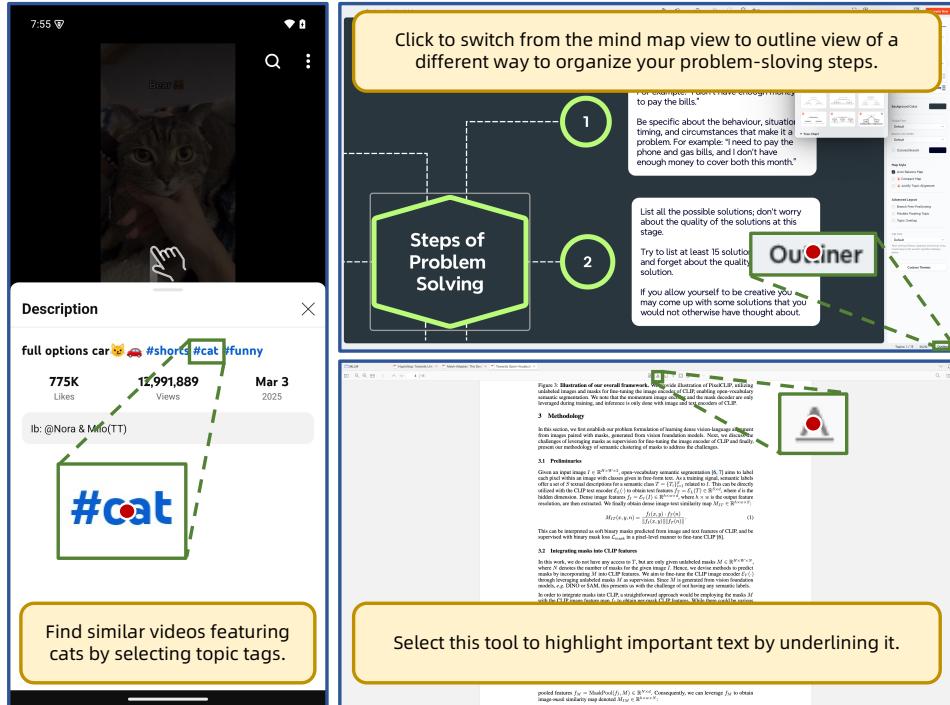


Figure 7: Success Examples of UI-Ins-32B

1186

1187

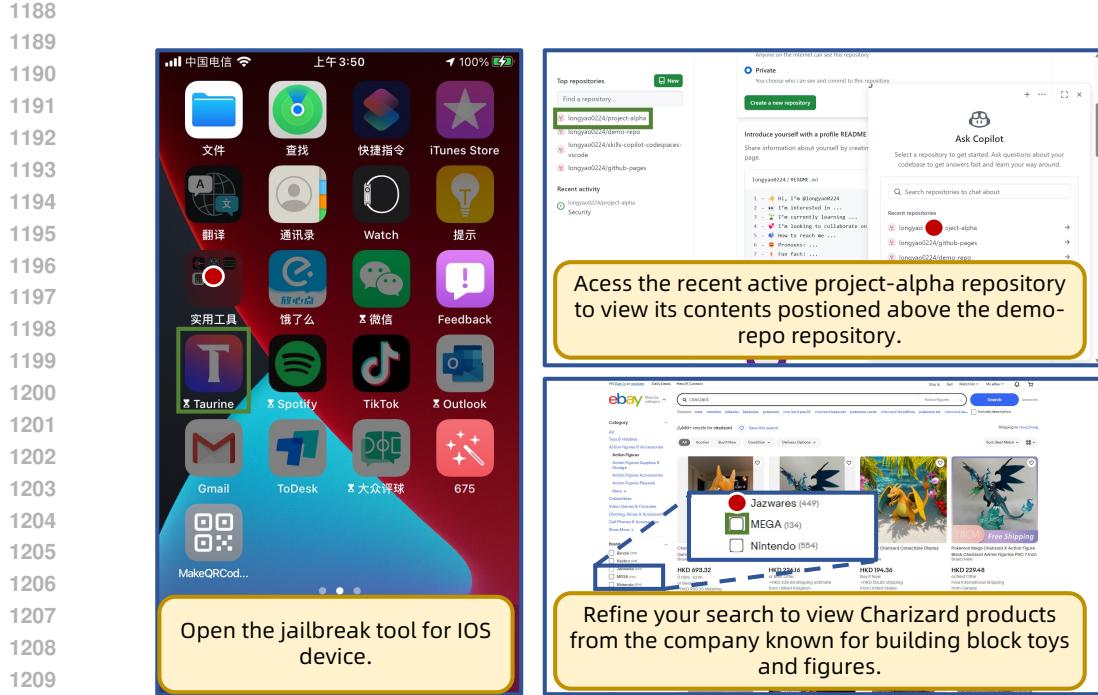


Figure 8: Failure Examples of UI-Ins-32B, these examples need more layout knowledge of corresponding app.

Figure 9: Failure Examples of UI-Ins-32B, these examples caused by hallucination.

Table 16: Performance comparison across different reasoning perspectives. ‘App.’ is Appearance, ‘Func.’ is Functionality, ‘Spa.’ is Spatial, ‘Goa.’ is Goal, and ‘No.’ indicates no specific perspective provided.

Perspective	MMBench-GUI L2	UI-I2E	Showdown	SS.Pro	SS.V2
Appearance (App.)	75.7	69.8	66.4	37.1	91.1
Functionality (Func.)	75.4	68.6	65.7	35.7	89.7
Spatial (Spa.)	74.7	68.0	66.4	34.5	90.6
Goal (Goa.)	74.7	67.8	65.7	35.8	90.1
No Perspective (No.)	76.3	70.1	67.5	37.1	90.6