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Abstract

Recent advances in vision language models (VLM) have been driven by contrastive
models such as CLIP, which learn to associate visual information with their
corresponding text descriptions. However, these models have limitations in
understanding complex compositional scenes involving multiple objects and their
spatial relationships. To address these challenges, we propose a novel approach that
diverges from commonly used strategies, which rely on the design of finegrained
hard-negative augmentations. Instead, our work focuses on integrating inductive
biases into CLIP-like models to improve their compositional understanding. To
that end, we introduce a binding module that connects a scene graph, derived
from a text description, with a slot-structured image representation, facilitating
a structured similarity assessment between the two modalities. We also leverage
relationships as text-conditioned visual constraints, thereby capturing the intricate
interactions between objects and their contextual relationships more effectively.
Our resulting model not only enhances the performance of CLIP-based models
in multi-object compositional understanding but also paves the way towards more
accurate and sample-efficient image-text matching of complex scenes.

1 Introduction

Recent advancements in multi-modal representation learning have primarily been enabled by the intro-
duction of CLIP [Radford et al., 2021]. CLIP learns aligned image-text representations from Internet-
scale data. Despite its success, CLIP exhibits limitations in understanding complex scenes composed
of multiple objects [Kamath et al., 2023, Yuksekgonul et al., 2023a, Doveh et al., 2023b, Paiss et al.,
2023]. For instance, while capable of recognizing individual objects, CLIP struggles with interpreting
spatial relationships among objects in the scene(e.g., “the cat is to the left of the mat” vs. “the cat
is to the right of the mat”) and adequately associating objects with their corresponding attributes (e.g.,
“a red square and a blue circle” vs. “a blue square and a red circle”). The process of acquiring this
compositional understanding of the world is known as the binding problem in the literature, and may
be decomposed into segregation, representation, and composition problems [Greff et al., 2020b].

Efforts to improve the compositional understanding of CLIP-like models have largely relied on
leveraging hard negative examples1, either in the text space [Kalantidis et al., 2020, Yuksekgonul
et al., 2023b, Zhang et al., 2024b, Doveh et al., 2023b, Paiss et al., 2023] – to improve sensitivity to the
order of words and subtle textual differences – or the image space [Awal et al., 2024, Le et al., 2023,
Zhang et al., 2024a] – to improve sensitivity to subtle visual differences. Although these methods have
somewhat improved CLIP-like models’ performance on scene compositionality benchmarks [Par-
calabescu et al., 2022, Zhao et al., 2022, Yuksekgonul et al., 2023b, Hsieh et al., 2023b], they do not

1Hard-negatives are additional samples that either contain subtle visual changes in the image and/or subtle
linguistic/semantic difference in the caption and are sampled as negatives in the same batch.
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explicitly address the binding problem as they focus mainly on enhancing the model’s representation
capabilities with additional data, hindering their generalization to unseen scene compositions.

Yet, the literature on object-centric representation learning [Eslami et al., 2016, Greff et al., 2020a,
Locatello et al., 2020, Wu et al., 2023, Seitzer et al., 2023] has long focused on devising methods
to address the segregation and representation problems as a way to facilitate the subsequent
compositional processing of images. This has led to the development of inductive biases to segregate
different objects in a scene into distinct representational slots, which have been shown to naturally
scale to an increasing number of visual objects and relations [Locatello et al., 2020, Webb et al., 2023,
Mondal et al., 2024, Elsayed et al., 2022]. To the best of our knowledge, advances in object-centric
representation learning are yet to be explored in the vision-language domain.

Therefore, in this paper, we focus on enhancing the compositional scene understanding of CLIP-like
models by leveraging advances from object-centric representation learning. In particular, we propose
to endow CLIP-based vision-language architectures with segregation and composition capabilities.
Our core idea is to adapt the slot-centric representation paradigm for CLIP architectures and
dynamically align each representational slot with the object entities mentioned in the text. To do
so, we design a binding module that connects a scene graph, derived from the textual description,
with a slot-structured image representation. We utilize the scene graph’s relationships as constraints
to effectively capture the complex interactions among the visual entities represented as slots. Our
enhanced model, which we refer to as Object-Centric CLIP (OC-CLIP), not only boosts CLIP’s
performance in understanding multi-object compositional scenes but also improves the sample
efficiency of the model when trained from scratch.

Our contributions are summarized as follows:

• We introduce OC-CLIP, a pretraining method which endows CLIP-based architectures with
inductive biases to address the binding problem.

• We evaluate the sample efficiency of our approach against methods leveraging hard negative
augmentations in a controlled 3D environment and show the overall efficiency of OC-CLIP
compared to both text and image based a hard-negative augmentations.

• We demonstrate that OC-CLIP significantly enhances the binding of object-centric attributes
and spatial relationships across a representative set of challenging real-world compositional
image-text matching benchmarks. Notably, we report an increase of 16.5% accuracy in the
challenging swap-attribute split of SugarCrepe compared to OpenCLIP [Ilharco et al., 2021]
finetuned in-domain, and go from random chance to more than 89% on COCO-spatial and 92%on
GQA-spatial from the Whatsup benchmark [Kamath et al., 2023].

• We show the scaling potential of OC-CLIP when trained from scratch on noisy data [Changpinyo
et al., 2021, Sharma et al., 2018]. We report an increase of 12.7% accuracy in zero-shot ImageNet
classification compared to OpenCLIP.

2 Related Work

Contrastive Pretraining of VLMs. Vision-language models (VLMs) have made substantial strides
in both the vision and multi-modal domains [Bordes et al., 2024]. Modern VLMs are pretrained on
vast, diverse and oftentimes noisy multi-modal datasets [Changpinyo et al., 2021, Schuhmann et al.,
2022, Ilharco et al., 2021, Zeng et al., 2022], and have shown substantial improvements when applied
to various zero-shot tasks. CLIP [Radford et al., 2021] presented a contrastive learning approach
used for pretraining, which involves training the model to differentiate between similar and dissimilar
image-text pairs. This approach encourages the model to learn a shared representation space for
images and text, where semantically similar pairs are close together and dissimilar pairs are far apart.
Following CLIP’s lead, image-text contrastive learning has become a prevalent strategy for VLM
pretraining [Liu et al., 2023, Cai et al., 2024, Liu et al., 2024a, Dai et al., 2023, Zhai et al., 2022b,
Chen et al., 2022, Beyer et al., 2024, Fini et al., 2023]. Contrastive vision-language pretraining spans
numerous downstream applications, including zero-shot image classification [Zhai et al., 2022a,
Radford et al., 2021, Metzen et al., 2024, Gao et al., 2021], text-to-image generation [Podell et al.,
2023, Abdal et al., 2021, Ramesh et al., 2022, Saharia et al., 2022], as well as assessing text-image
alignment [Moens et al., 2021, Cho et al., 2023]. In this work, we are particularly interested in the
ability of CLIP-based models to evaluate compositional text-image alignment.
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Compositional Understanding Benchmarks. Several benchmarks have been developed to assess
the compositional understanding of VLMs. In this work, we focus on benchmarks structured as
cross-modal retrieval tasks where the model needs to distinguish between correct and incorrect
text descriptions given an image, and evaluations are based on accuracy metrics. The majority
of these benchmarks [Zhao et al., 2022, Yuksekgonul et al., 2023a, Parcalabescu et al., 2022]
rely on the rule-based construction of negative captions and the generation of their associated
image counter-factuals [Zhang et al., 2024a, Awal et al., 2024]. Yet, many of these benchmarks
may be solved by leveraging the language prior exclusively [Goyal et al., 2017, Lin et al., 2024],
hence disregarding the information from the visual input. To address this, benchmarks such
as SugarCrepe [Hsieh et al., 2023a] leverage large language models to generate plausible and
linguistically correct hard negatives, and show that previously introduced text-based hard negative
strategies are not always effective [Yuksekgonul et al., 2023b] – e.g., when considering attribute
and object swaps between textual descriptions. Other benchmarks focus on assessing the VLMs’
spatial understanding [Kamath et al., 2023, Yuksekgonul et al., 2023b, Zhang et al., 2024a], and
propose to finetune CLIP-based models on data containing a high proportion of spatial relationships
since these relationships tend to be under-represented in commonly used pretraining datasets.
Interestingly, Kamath et al. [2023] show that even when finetuning with in-domain data containing
an over-representation of spatial relationships, state-of-the-art models still exhibit a close to random
chance performance. In this work, we test the hypothesis that spatial relationship failures are due
to the lack of composition in the similarity score computation used to train CLIP-like models.

Object-centric Binding Inductive Biases. CLIP has been shown [Yuksekgonul et al., 2023a] to
be pushed to learn disentangled, bag-of-words-style representations from the contrastive loss and the
easily distinguishable negatives typically used for pretraining. Although the learned representations
might be effective for objects presented in isolation, they struggle with scenes containing multiple
objects [Tang et al., 2023]. For example, consider a simple scene with a green apple and a yellow
banana. In this case, the model must maintain and correctly link the attributes (“green”, “yellow”) to
the objects (“apple”, “banana”), without mixing the concepts – e.g., “yellow apple” or ‘green banana”.
This exemplifies the importance of devising robust mechanisms within the CLIP architecture and/or
training to accurately handle multiple objects, while preventing feature interferences. In this work,
we focus on equipping CLIP with object-centric binding inductive biases and take inspiration
from the architectures proposed in the unsupervised object-centric visual representation learning
literature [Locatello et al., 2020, Wu et al., 2023, Seitzer et al., 2023, Assouel et al., 2022]. Many
recent image-only approaches follow a simple inductive bias introduced by slot attention [Locatello
et al., 2020], where an image – encoded as a set of input tokens – is soft partitioned into K slots.
In particular, attention maps are computed via an inverted cross attention mechanism [Wu et al.],
where the softmax is applied along the query dimension in order to induce a competition between
the slots to explain different groups of input tokens. In this work, we extend these inductive biases
to define text-conditioned visual slots from the input image.

3 Method

Our goal is to enhance CLIP-based architectures with object-centric binding and composition
capabilities. Our method starts by extracting representations of distinct open-ended objects and
relationships in a textual description, as well as representations of patches in an image. Next, a
binding module matches the text representation of objects to the relevant image patches, producing
a slot-centric representation of the image. Finally, a structured similarity score compares the
slot-centric representation with the textual representations of different objects, and leverages the
extracted relationships as constraints applied to the visual slots. Our key contributions lie in the
design of the binding module2 and the proposal of the structured similarity score, which we detail
in sections 3.1 and 3.2, respectively. Figure 1 presents an overview of the proposed approach. Our
approach relies on a scene-graph representation of the text modality. We assume the parser is given
and orthogonal to our approach and discuss the choice of the parsing method in Appendix A.4.

Notation. We denote as x an image of shape Rh×w×3 and as x̄ = [x̄1, ..., x̄N ] = Eϕ(x) ∈ RN×d

its patch-level encoding, where Eϕ is an image encoder – typically a pre-trained ViT [Dosovitskiy
et al., 2020] – N is the number of patches and d the dimensionality of the patch embeddings. We
denote as t the text description, or caption, associated with x. We extract a scene graph. For example,

2Code for the binding module is given in the Appendix Fig 16.
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Figure 1: Object-Centric CLIP (OC-CLIP) overview. OC-CLIP begins with scene parsing, where
we utilize a text parser (e.g., Llama3-based) to extract objects and relations from the input caption.
The extracted text objects and relations are then fed into a text encoder, which generates distinct
text embeddings for both nodes and relations. In parallel, the corresponding image is processed
by an image encoder to produce patch-level image embeddings. These image embeddings are then
combined with the text entity embeddings and passed through a binding module, which outputs
visual token slots embeddings. Both modality are aligned in a new space using a structured similarity
score that matches nodes embeddings to visual slots and models relational constraints between them.

the scene graph of “A red apple to the left of a blue car” will be represented with the set of nodes
{“red apple”, “blue car”} and the set of edges {(“to the left of”, “red apple”, “blue car”)}. In practice,
we represent N as a matrix of node features N, where each row contains the embedding of a node
in the graph. Moreover, we represent each si and oi in the relationship tuples as indices referencing
the nodes (rows) in N.

3.1 Binding Module

Our first contribution resides in the binding module. The idea is that when comparing the content
of a caption and an image we do not want the features of different objects to interfere with each
other but rather keep them separate at a representational level. The role of the binding module is
thus to extract a slot-centric representation of an image where the content of the slots are pushed
to represent the nodes of the associated scene graph.

To do so, we implement the binding module using a inverted cross-attention layer [Wu et al.], where
the queries are the nodes from our scene graph and the keys and values are the image patches. We
normalize the attention coefficients over the queries’ dimension in order to introduce a competition
between queries to explain different parts of the visual input. We follow common practice and set
the attention’s softmax temperature to

√
D, with D being the dimensionality of the dot-product

operation. Applying the softmax along the queries’ dimension pushes all the candidate keys to be
softly matched to at least one query. However, captions mostly describe specific parts of the image,
and rarely capture all the visual information. Since we want only the relevant visual information
to be captured by the queries, we add a set of default query tokens, stored in a matrix Qdefault,
which participate in the competitive attention mechanism – with the goal of absorbing the visual
information not captured in the caption. These default query tokens are dropped in the subsequent
computation steps of our model (akin to registers in ViT backbones [Darcet et al., 2024]). We find
the default query tokens crucial to stabilize the training our model.

The binding module computations are formalized as follows:

Q = WqN,

K,V = Wkx̄,Wvx̄,

Q′ = [Q;Qdefault],

Attn(Q′,K,V) = softmax
(
Q′ ·KT

√
D

, dim=’Q’
)
·V,

S,Sdefault = Attn(Q′,K,V). (1)

Here, Wq, Wk, and Wv are the linear projection weight matrices for the queries, keys, and values,
respectively, S are the visual slots, Sdefault are the visual slots from default query tokens, which are
discarded for subsequent steps, and [.] denotes the concatenation operation.
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Thus, the output of this binding module are the visual slots S. Intuitively, these slots are pushed
to represent the visual objects, or entities, that correspond to the nodes of the scene graph. Their
object-centric learning is driven by the structured similarity that we detail in the next section.

3.2 Structured similarity score

Our second contribution resides in the introduction of a structured similarity score, whose goal is to
promote the constraints imposed by the scene graph on the learnable visual slots. Our proposed struc-
tured similarity score is composed of an object scoring function and a relationship scoring function.
The object scoring function assesses the presence of each node in the scene graph (objects present in
the caption). We model this function as the sum of the cosine similarity between each textual node
representation Ni and its assigned visual slot Si. The relationship scoring function encourages the
relational constraints imposed by each edge in the scene graph and is defined as a learnable function
fϕ of the relationship embedding ri, and the visual slot representations Ssi and Soi corresponding to
the subject and object of the relationship, respectively. We derive the overall structured similarity
score over the visual slots S from an image x and a graph G = ({N i}i=1..M , {(ri, si, oi)}i=1..P )

such that: S(x,G) = α
∑

i=1..M cosine(Ni,Si)+β
∑

i=1..P fϕ(r
i,Ssi ,Soi )

αM+βP where α and β are learned pa-
rameters controlling the strength of each score. M and P are the number of nodes and relationships
in the scene graph G, respectively.

We define fϕ as follows:
fϕ(r,S

s,So) = cosine (r, fs([r,Ss]) + fo([r,S
o])) , (2)

where [.] denotes the concatenation of two vectors and fs and fo are MLPs that reduce the dimen-
sionality of their inputs. Note that we model the relationship scoring function so that it keeps the
same scale as the object scoring function and can take the order of the relationship into account.

3.3 Training

The model is trained using the following loss L = Litc+Lrel where Litc is the image-text contrastive
loss defined to minimize the distance between image and scene graph representations from paired
text-image data while maximizing the distance between image and scene graph representations from
unpaired text-image data as:

Litc = −
B∑
i=1

(
log

expS(xi,Gi)∑B
j=1 exp

S(xj ,Gi)
+ log

expS(xi,Gi)∑B
j=1 exp

S(xi,Gj)

)
, (3)

where B is the number of elements in the batch. Note that the S is the structured similarity score
defined in Eq. 3.2. Lrel is the loss that pushes the model to learn a non-symmetric relationship scores:

Lrel = −
B∑
i=1

log
expS(xi,Gi)

expS(xi,Gi) +expS(xi,Ḡi) +expS(xi,G̃i)
, (4)

where Ḡ and G̃ are altered scene graphs. In Ḡ, we swap the order of the subject and the object of
a relationship, whereas in G̃, we randomly chose the relationship’s subject and object from the nodes
in the scene graph. We ablate the main components of OC-CLIP in Appendix A.2

4 Results

We evaluate OC-CLIP’s inductive biases in 3 different settings:

• Addressing CLIP’s binding problem. We show the efficiency of OC-CLIP in addressing
the binding problem compared to finegrained hard-negative based augmentation on a synthetic
dataset.(Section 4.1).

• Compositional understanding. We showcase OC-CLIP’s compositional understanding, in
domain, on real-world object-centric attribute binding and spatial relationship understanding
benchmarks (Section 4.2).
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• Scaling on noisy data. We show that OC-CLIP consistently outperforms a CLIP-based model in
both zero-shot single object classification and zero-shot compositional understanding multi-object
text retrieval, when training both models fully from scratch on larger-scale and noisy dataset
(Section 4.3).

4.1 Addressing CLIP’s bag-of-words behavior

In this section, we aim to assess the efficiency and effectiveness of leveraging finegrained hard-
negatives (swap attributes negatives) OC-CLIP and CLIP-like models in addressing the binding
problem. To do so, we use a synthetic dataset with a closed-set vocabulary, from which we can
enumerate all possible object-attribute conjunctions and systematically evaluate the potential of
CLIP-like models and OC-CLIP in addressing simple swap-attribute retrieval tasks under varying
hard-negative sample sizes.

Dataset. We consider a controlled 3D environment based on PUG [Bordes et al., 2023] and build
a dataset composed of a single textured animal, or pairs of animals, in different backgrounds. We
use a combination of 4 textures, 20 animal classes, and 5 different backgrounds – e.g., see example
in Figure 2a. We follow prior benchmarks [Hsieh et al., 2023a] and perform a text-retrieval task
between the correct caption and the associated negative caption. We give additional details about
the subsets compositions in Appendix A.6.

Baseline and OC-CLIP training. We train models on data splits from our synthetic data, while
considering an increasing proportion of hard-negative samples. We consider a CLIP model initialized
with OpenCLIP weights Ilharco et al. [2021]. We also initialize OC-CLIP’s text and vision backbones
with OpenCLIP weights, but train OC-CLIP’s binding module from scratch.

Results. Our results, presented in Figures 2b and 2c, show that simply adding more hard-negatives to
OpenCLIP’s training plateaus and is not sample-efficient, as the swap-attribute binding performance
always underperforms OC-CLIP trained on less data without any targeted hard-negatives in a simple
object-attribute binding task. On seen object pairs, with 70% of the possible pairs and 70% of their
corresponding swap-attribute hard-negatives CLIP plateaus at 81% compared to OC-CLIP which
solves the task at 97% on the same training data size and no swap attributes hard-negatives. We
hypothesize that the root cause of this issue lies in the representation format used in CLIP’s original
formulation, which relies on a single vector to capture complex semantic relationships. Our proposed
method introduces inductive biases that allow the model to learn more structured representations,
avoiding superposition of features [Greff et al., 2020b] and effectively mitigating the bag-of-words
behavior.

(a) Synthetic data example
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(c) Unseen object pairs

Figure 2: Efficiency and effectiveness of OC-CLIP: Analysis on synthetic data. Performance of
the finetuned OpenCLIP and OC-CLIP models on a binary classification task between a caption and
its corresponding hard-negative given a synthetic image, as shown in (a). Performance is shown as
a function of the percentage of animal pairs (y-axis) seen during training and the proportion of hard-
negatives used in the training data (x-axis). Results shown for (a) seen and (b) unseen object pairs.

4.2 Compositional Understanding

In this section, we verify that the observations made in the controlled environment presented in
Section 4.1 also transfer to real-word datasets, thereby assessing the real-world compositional
understanding of OC-CLIP.

Datasets. We train OC-CLIP and finetune OpenCLIP in-domain on a set of datasets relevant
for real-world compositional understanding. The training text descriptions representing positive
samples are taken from COCO [Lin et al., 2014], Visual-Genome (VG) [Krishna et al., 2017]
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and GQA [Hudson and Manning, 2019]. The latter annotates images coming from Visual
Genome [Krishna et al., 2017] with objects and both spatial and non-spatial relationships, and thus
contains a high representation of spatial prepositions. We evaluate the different models on the most
challenging benchmarks representative of compositional understanding, ensuring that we validate
both their attribute binding and spatial relationship understanding capabilities. In particular, we
use SugarCrepe [Hsieh et al., 2023b] and ARO-A [Yuksekgonul et al., 2023a] for attribute binding
and ARO-Relation (ARO-R) [Yuksekgonul et al., 2023a], COCO-spatial and GQA-spatial [Kamath
et al., 2023] for spatial relationship understanding. Although Hsieh et al. [2023b] showed that other
benchmarks such as VL-Checklist [Zhao et al., 2023], COCO-Order and Flickr-Order splits of
ARO [Yuksekgonul et al., 2023a] were easily hackable because the negatives are not semantically
correct, we include the results on those benchmarks for reference in Appendix A.5.

Training. As in section 4.1, we initialize the text and vision backbones of OC-CLIP with pre-trained
model weights, and train the binding module of OC-CLIP from scratch. In particular, we initialize
the text backbone with OpenCLIP weights [Ilharco et al., 2021] and consider two different vision
backbones, OpenCLIP (ViT-B-16) [Ilharco et al., 2021] and DinoV2 (ViT-B-14) [Oquab et al., 2024],
to show the flexibility of our binding module and learned structured similarity score. We noticed that
taking the patches from earlier layers in OpenCLIP helps the training and ablate it in Appendix A.2.
We use a batch size of 128 and a learning rate of 2 · 10−4 to train OC-CLIP for 100 epochs. We use a
batch size of 256 – following previous finetuning approaches [Kamath et al., 2023, Yuksekgonul et al.,
2023b] – and a learning rate of 4 · 10−6 for 20 epochs to finetune the OpenCLIP baseline. We run all
the models for 3 seeds and report the mean performance along with their standard deviation. Note that
since OC-CLIP’s binding module is trained from scratch, OC-CLIP’s learned vision-language-aligned
space does not rely on the vision-language alignment captured by the CLS token of OpenCLIP’s
backbone (in fact, we drop the CLS token). Therefore, the new representation space learned by
OC-CLIP can only be expected to generalize within the vocabulary it has been trained on. 3

Baselines. We report the performance of a representative set of strong baselines which we separate
in two groups: the first group of baselines are models trained contrastively and finetuned in-domain
(on COCO/VG) and the second group are hard-negative-based and recaptioning-based methods,
further divided into small scale and large scale. For the first group, we include OpenCLIP – referred
to as OpenCLIP-FT –, BLIP [Li et al., 2023a], and XVLM [Zeng et al., 2022]. BLIP is augmented
with an image-text matching loss and XVLM uses bounding boxes to assist the object-centric
binding. Note that these two baselines are also equipped with a language modeling objective
which may help identify unplausible captions. For the second group, we select methods that
augment the dataset with rule-based text hard-negatives (NegCLIP [Yuksekgonul et al., 2023b]),
language-model-based hard-negatives (CE-CLIP Zhang et al. [2020] and CLIP-SVLC [Doveh et al.,
2023b]), and image-&-language-model-based hard-negatives (CLIP-CC [Zhang et al., 2024a]). We
also include dense recaptioning baselines such as DAC [Doveh et al., 2023a] for reference.

Attribute Binding Results. We evaluate the attribute binding capabilities of OC-CLIP and baselines
on SugarCrepe [Hsieh et al., 2023b] and ARO-A [Yuksekgonul et al., 2023b] benchmarks. We report
the results in Table 1. When comparing OpenCLIPFT to OC-CLIP (ours – both models), we observe
notable performance boosts on the hard SugarCrepe’s swap-attribute, and swap-object. In particular,
OC-CLIPB-14 achieves improvements of +16.5% on the hard swap attribute split, +20.4% on the swap
object split, and a smaller +4.1% on the replacement relationship split. Moreover, both OC-CLIP
models perform similarly to OpenCLIPFT on the remaining SugarCrepe splits. This is to be expected
since the remaining splits do not require precise binding to distinguish between positive and negative
captions and may therefore be solved with a bag-of-words-like representation. We additionally
compare OC-CLIP to finetuned versions of CLIP that rely on in domain hard-negatives (NegCLIP,
CE-CLIP, CC-CLIP, MosaiCLIP) and with dense recaptioning (DAC-LLM and DAC-SAM). In
particular DAC finetunes OpenCLIP with ∼ 3M VLM-generated dense captions (along with their
corresponding hard negatives) that significantly increase the vocabulary coverage compared to
methods that only finetune in domain (e.g., on COCO). Interestingly, OC-CLIP still outperforms
them on both swap-attribute and swap-object, showing improvements of +13.6% and +8.4% over the
second best performing method, respectively. Those results confirm the behavior that we observed

3Important note : Although OC-CLIP is compared in domain against post-training baselines of CLIP, our
approach is a pretraining strategy and can only be compared in domain. We discuss this point further in the
Appendix A.1
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in Section 4.1 and the inefficiency of hard-negative methods in solving the binding problem of
CLIP-like models, even at the scale of DAC finetuning.

MODEL
SWAP ADD REPLACE ARO

OBJECT ATTRIBUTE OBJECT ATTRIBUTE OBJECT ATTRIBUTE RELATION ATTRIBUTION

Zero-shot
OPENCLIP 68.2 66.2 82.7 80.3 93.8 82.8 67.3 63.2

In-domain ft baselines
BLIP 66.2 76.2 - - 96.5 81.9 68.35 88.0

XVLM 64.9 73.9 - - 95.2 87.7 77.4 86.8
OPENCLIPFT-B-16 63.1 ±0.6 72.4±1.1 93.4 ±0.2 83.1 ±0.5 95.4 87.0 ±0.6 75.5 ±0.6 60.0

Hard-Negative - small scale
NEGCLIP 75.2 75.4 88.8 82.8 92.7 85.9 76.5 71
CE-CLIP 72.8 77 92.4 93.4 93.1 88.8 79 76.4
CC-CLIP 68.6 73.6 86.7 90.3 95.9 87.9 76.2 -

CLIP-SVLC - - - - - - - 73.0
MOSAICLIP - - - - - - - 78.0

Hard-Negative/Dense Captioning - large scale
DAC-LLM 75.1 74.1 89.7 97.7 94.4 89.3 84.4 73.9
DAC-SAM 71.8 75.3 87.5 95.5 91.2 85.9 83.9 70.5

Ours
OC-CLIP B-32 76.5 ±0.5 85.6 ±0.5 86.5±0.7 85.7±0.7 91.3 ±0.6 88.6 ±0.2 75.4 ±0.3 82.5±0.1

OC-CLIP B-16 76.6 ±0.6 87.5 ±0.5 91.1±0.4 83.8 ±1.0 94.6 ±0.4 87.9 ±0.1 76.0 ±0.4 83.2±0.3

OC-CLIP B-14 83.5 ±0.2 88.9 ±0.6 92.8±0.1 84.8 ±0.1 95.9 ±0.4 89.2±0.1 79.6 ±0.3 84.0±0.

Table 1: Attribute binding: Performance on SugarCrepe and ARO-A. Both OpenCLIP-FT
and OC-CLIP are initialized with the same OpenCLIP checkpoints. OC-CLIP is trained with
two ViT base backbones with different resolutions: OpenCLIP’s backbone (B-16) and Dinov2
(B-14).OC-CLIP’s bidning module is always trained from scratch.

Relationship Understanding Results. We evaluate the spatial relationship understanding capabilities
of OC-CLIP and baselines on COCO-spatial, GQA-spatial, and ARO-Relation (ARO-R). Note that
ARO-Relation contains both spatial and non-spatial relations but about half of the test examples
consists of left/right relationships understanding. We report the results in Table 2 and show consistent
improvements of both OC-CLIP models over the baseline models and across the 3 datasets. In
particular, the best OC-CLIP model outperforms OpenCLIP-FT by +44.1% on COCO-spatial, +43.6%
on GQA-spatial, and +34.8% on ARO-R. When compared to contrastive VLMs finetuned with
in-domain data (XVLM, BLIP), OC-CLIP models exhibit superior performance, with improvements
between +10% and +27% over the strongest contrastive finetuned VLM. Finally, when compared to
baselines leveraging hard-negatives (NegCLIP), OC-CLIP remains the highest performer. Additional
results on the ARO benchmark are reported in Table 9 of the Appendix.

4.3 Training OC-CLIP from scratch MODEL COCO-SPATIAL GQA-SPATIAL ARO-R

XVLM 73.6 67 73.4
BLIP 56.4 52.6 59

NEGCLIP 46.4 46.7 80.2
OPENCLIPFT 45.6 ±0.2 49.1±1.1 50.1±0.4

OC-CLIP (B-16) 86.3 90.0 84.3
OC-CLIP (B-14) 89.7 92.7 84.9

Table 2: Spatial relationship understanding:
Performance on COCO-spatial, GQA-spatial
from the Whats’up Benchmark and ARO-R.
We finetune both OpenCLIP (OpenCLIPFT here)
and OC-CLIP in-domain on COCO, Visual
Genome, and GQA data. Both models are
initialized with the same OpenCLIP checkpoints.

In this section, we aim to assess the potential
of OC-CLIP when trained fully from scratch
from scene-graphs obtained from large scale
non-human-curated captioning dataset.

Datasets. We train both ViT-B-16 Open-
CLIP model and OC-CLIP fully from scratch
on increasingly large dataset sizes using
CC3M [Sharma et al., 2018], CC12M [Chang-
pinyo et al., 2021] and the combination of
both datasets. We evaluate all models on
ImageNet [Deng et al., 2009] zero-shot classi-
fication in this section, and report results on the
ELEVATER suite [Li et al., 2022] in Appendix (Table 6). We also evaluate zero-shot compositional
understanding of the models on the challenging swap-object and swap-attribute splits of SugarCrepe,
and on Winoground [Thrush et al., 2022].

Baseline and OC-CLIP training. Both CLIP and OC-CLIP architectures are trained fully from
scratch for 5, 15, or 25 epochs, using a batch size of 4096, a learning rate of 1 · 10−3, 2k steps of
learning rate warm-up, and a cosine decay. As recommended by Mu et al. [2021], we use AdamW
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optimizer with 0.5 of weight decay and β2 set to 0.98. We use a ViT-B-16 backbone for both models.
Since OC-CLIP’s text bakcbone only needs to encode single objects and relationships, we use a
smaller text bakcbone with a context length of 20 and only 6 layers instead of 12 . Note that we
do not tune the hyper-parameters in this experiment. We further discuss those design choices in
Appendix A.3.

(a) Sample efficiency (b) Zero-shot accuracy

Figure 3: Scaling the training on noisy data. CLIP and OC-CLIP
are trained from scratch on varying sizes of data (3M, 12M and
15M) for a varying number of epochs. OC-CLIP shows (b) better
zero-shot compositional understanding performance on SugarCrepe’s
swap-attribute and swap-object, and on Winoground (I = Image score
and T = Text score), as well as (a) better sample efficiency shown on
zero-shot ImageNet classification.

Results. We start by
verifying the sample
efficiency of OC-CLIP
using ImageNet [Deng
et al., 2009] zero-shot
classification performance
in Figure 3a. We show
that OC-CLIP shows better
sample-efficiency than the
baseline trained on the
same data, while using a
smaller text backbone. We
then evaluate OC-CLIP
on zero-shot classifica-
tion and compositional
understanding in Figure 3b.
Interestingly, OC-CLIP
shows performance gains in
general zero-shot classifica-
tion (+12.8% on ImageNet,
when trained from scratch
on CC3M+CC12M) while
also showcasing substantial improvements in zero-shot compositional understanding. For example,
OC-CLIP exhibits a notable +12.7% and +6.6% in SugarCrepe’s swap-attribute and swap-object
splits, respectively. This experiment shows that the structured training of OC-CLIP is also effective
when scaling to noisy image-caption dataset and, therefore, does not solely rely on high-quality
human captions. We additionally report extensive zero-shot downstream classification performance
on the ELEVATER [Li et al., 2022] suite and discuss the computation trade-off of our approach in
Appendix A.3. We leave further scaling for future work.

5 Conclusion and limitations

Conclusion. In this paper, we proposed Object-Centric CLIP (OC-CLIP), a pretraining method to en-
hance the compositional scene understanding of CLIP-like models by leveraging advances from object-
centric representation learning. Our approach adapts the slot-centric representation paradigm to CLIP
and dynamically aligns each representational slot with the objects mentioned in the text description.
This is achieved by the introduction of a binding module and a structured similarity score that allows
to train OC-CLIP in a contrastive way. We evaluated our approach against finegrained hard-negative
augmentation strategies and demonstrated that OC-CLIP significantly enhances the binding of object-
centric attributes and spatial relationships across a representative set of challenging real-world com-
positional image-text matching benchmarks.Finally, we show the scaling potential of OC-CLIP to be
trained from scratch on a noisy dataset [Changpinyo et al., 2021, Sharma et al., 2018]. Notably, we re-
port performance gains in zero-shot classification (+12.8% in ImageNet 6) while maintaining substan-
tial improvements in zero-shot SugarCrepe swap-attribute (+12.7%) and swap-object (+6.6%) splits.

Limitations and Future Work. Our OC-CLIP model has several limitations and avenues for
future work. Notably, our approach relies on a parser to extract object-centric attributes and spatial
relationships from text descriptions. While we have chosen an LLM-based parser, which is discussed
in Appendix A.4, studying the different biases of LLM-based parser families could be interesting.
Additionally, while we show the scaling potential of OC-CLIP at 15M scale ( A.1, A.3), the model
needs further scaling to be fully comparable to all the CLIP variants, trained at least at 400M scale.
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Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
2024. URL https://arxiv.org/abs/2304.07193.

Roni Paiss, Ariel Ephrat, Omer Tov, Shiran Zada, Inbar Mosseri, Michal Irani, and Tali Dekel.
Teaching clip to count to ten. In ICCV 2023, 2023.

Letitia Parcalabescu, Michele Cafagna, Lilitta Muradjan, Anette Frank, Iacer Calixto, and Albert
Gatt. Valse: A task-independent benchmark for vision and language models centered on linguistic
phenomena. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), page 8253–8280. Association for Computational Linguistics,
2022. doi: 10.18653/v1/2022.acl-long.567. URL http://dx.doi.org/10.18653/v1/2022.
acl-long.567.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis, 2023. URL https://arxiv.org/abs/2307.01952.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pages
8748–8763. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al.
Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski,
Srivatsa Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev.
Laion-5b: An open large-scale dataset for training next generation image-text models, 2022. URL
https://arxiv.org/abs/2210.08402.

Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik Zietlow, Tianjun Xiao, Carl-Johann
Simon-Gabriel, Tong He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox, and Francesco
Locatello. Bridging the gap to real-world object-centric learning, 2023. URL https://arxiv.
org/abs/2209.14860.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A
cleaned, hypernymed, image alt-text dataset for automatic image captioning. In Iryna Gurevych
and Yusuke Miyao, editors, Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 2556–2565, Melbourne, Australia,
July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1238. URL
https://aclanthology.org/P18-1238/.

Yingtian Tang, Yutaro Yamada, Yoyo Minzhi Zhang, and Ilker Yildirim. When are lemons purple?
the concept association bias of vision-language models. In The 2023 Conference on Empirical
Methods in Natural Language Processing, 2023. URL https://openreview.net/forum?id=
5sGLPiG1vE.

Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela, and Can-
dace Ross. Winoground: Probing vision and language models for visio-linguistic compositionality.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5238–5248, 2022.

13

https://arxiv.org/abs/2304.07193
http://dx.doi.org/10.18653/v1/2022.acl-long.567
http://dx.doi.org/10.18653/v1/2022.acl-long.567
https://arxiv.org/abs/2307.01952
https://arxiv.org/abs/2210.08402
https://arxiv.org/abs/2209.14860
https://arxiv.org/abs/2209.14860
https://aclanthology.org/P18-1238/
https://openreview.net/forum?id=5sGLPiG1vE
https://openreview.net/forum?id=5sGLPiG1vE


Taylor Webb, Shanka Subhra Mondal, and Jonathan D Cohen. Systematic visual
reasoning through object-centric relational abstraction. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural
Information Processing Systems, volume 36, pages 72030–72043. Curran Associates,
Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
e3cdc587873dd1d00ac78f0c1f9aa60c-Paper-Conference.pdf.

Yi-Fu Wu, Klaus Greff, Google Deepmind, Gamaleldin F. Elsayed, Michael C. Mozer, Thomas Kipf,
and Sjoerd van Steenkiste. Inverted-attention transformers can learn object representations: Insights
from slot attention. URL https://api.semanticscholar.org/CorpusID:266090680.

Ziyi Wu, Jingyu Hu, Wuyue Lu, Igor Gilitschenski, and Animesh Garg. Slotdiffusion: Object-centric
generative modeling with diffusion models, 2023. URL https://arxiv.org/abs/2305.11281.

Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, and Xiaolong
Wang. Groupvit: Semantic segmentation emerges from text supervision, 2022. URL https:
//arxiv.org/abs/2202.11094.

Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and
why vision-language models behave like bags-of-words, and what to do about it?, 2023a. URL
https://arxiv.org/abs/2210.01936.

Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and
why vision-language models behave like bags-of-words, and what to do about it? In International
Conference on Learning Representations, 2023b. URL https://openreview.net/forum?id=
KRLUvxh8uaX.

Yan Zeng, Xinsong Zhang, and Hang Li. Multi-grained vision language pre-training: Aligning texts
with visual concepts, 2022. URL https://arxiv.org/abs/2111.08276.

Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov,
and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18123–18133, 2022a.

Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov,
and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning, 2022b. URL https:
//arxiv.org/abs/2111.07991.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training, 2023. URL https://arxiv.org/abs/2303.15343.

Jianrui Zhang, Mu Cai, Tengyang Xie, and Yong Jae Lee. Countercurate: Enhancing physical
and semantic visio-linguistic compositional reasoning via counterfactual examples, 2024a. URL
https://arxiv.org/abs/2402.13254.

Le Zhang, Rabiul Awal, and Aishwarya Agrawal. Contrasting intra-modal and ranking cross-
modal hard negatives to enhance visio-linguistic compositional understanding, 2024b. URL
https://arxiv.org/abs/2306.08832.

Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D Manning, and Curtis P Langlotz. Con-
trastive learning of medical visual representations from paired images and text. arXiv preprint
arXiv:2010.00747, 2020.

Tiancheng Zhao, Tianqi Zhang, Mingwei Zhu, Haozhan Shen, Kyusong Lee, Xiaopeng Lu, and
Jianwei Yin. Vl-checklist: Evaluating pre-trained vision-language models with objects, attributes
and relations. arXiv preprint arXiv:2207.00221, 2022.

Tiancheng Zhao, Tianqi Zhang, Mingwei Zhu, Haozhan Shen, Kyusong Lee, Xiaopeng Lu, and
Jianwei Yin. Vl-checklist: Evaluating pre-trained vision-language models with objects, attributes
and relations, 2023. URL https://arxiv.org/abs/2207.00221.

Chenhao Zheng, Jieyu Zhang, Aniruddha Kembhavi, and Ranjay Krishna. Iterated learning improves
compositionality in large vision-language models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13785–13795, 2024.

14

https://proceedings.neurips.cc/paper_files/paper/2023/file/e3cdc587873dd1d00ac78f0c1f9aa60c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/e3cdc587873dd1d00ac78f0c1f9aa60c-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:266090680
https://arxiv.org/abs/2305.11281
https://arxiv.org/abs/2202.11094
https://arxiv.org/abs/2202.11094
https://arxiv.org/abs/2210.01936
https://openreview.net/forum?id=KRLUvxh8uaX
https://openreview.net/forum?id=KRLUvxh8uaX
https://arxiv.org/abs/2111.08276
https://arxiv.org/abs/2111.07991
https://arxiv.org/abs/2111.07991
https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2402.13254
https://arxiv.org/abs/2306.08832
https://arxiv.org/abs/2207.00221


A Appendix

Impact Statement. This paper presents work whose goal is to advance the field of machine learning,
specifically the multi-modal architecture of CLIP. CLIP itself has broad applications and impact thus
our proposed technique shall be considered when such models are used.

A.1 OC-CLIP as a Pretraining alternative to CLIP

Our method is not intended to be a post-training method –but rather a pre-training strategy showcasing
the benefits of object-centric inductive biases in the context of contrastive pretraining. When using
our binding module in the in-domain setting (Section 4.2), we do not expect to maintain CLIP’s
zero-shot performance. As our binding and relationship modules are trained from scratch, they do
not rely on the previously aligned CLS tokens (in fact, we drop the vision CLS token completely). As
a result, our model can only be expected to work well within the vocabulary domain it is exposed to
when tested for its zero-shot performance.

Given that we only inherit the vision tokens from the CLIP vision backbone, we believe that it’s
still worthwhile to check whether our training is detrimental to the inherited vision tokens. We
probe this by computing linear evaluations of the pre-trained CLIP-based vision backbone vs the
vision backbone after our OC-CLIP training strategy on COCO/VG. To do so, we average-pool the
patch-tokens that serve as input to the binding module and train a linear probe on commonly used
image classification datasets. We report those results in Table 4 and observe that our training strategy
did not significantly impact the generalizability of the backbone despite only training on COCO/VG.
In order to further motivate our approach as a good pretraining alternative, we also compare to
additional baselines trained from scratch on CC3M/CC12M specifically designed to address the lack
of compositional generalization in CLIP models. Specifically, we compare to NegCLIP [Yuksekgonul
et al., 2023b], which augments CLIP training with rule-based hard negatives and IL-CLIP [Zheng
et al., 2024], a novel iterated learning method for contrastive learning, which improves compositional
understanding. Our results in Table A.1 show the effectiveness of our proposed inductive biases as an
effective alternative to CLIP training.

Training Data Model SC-add SC-replace SC-swap Wino (T2I) Imagenet

CC3M

OpenCLIP-3M 61.9 64.3 52.9 8.1 13.7
NegCLIP 59.3 59.2 60.1 11.8 11.8
IL-CLIP 66.1 67.0 54.5 13.3 14.2
OC-CLIP 74.6 73.0 64.7 12 19.6

CC12M

OpenCLIP-12M 67.5 70.0 60.2 7.2 31.4
NegCLIP 65.0 70.2 67.2 7.3 28.9
IL-CLIP 73.8 73.0 62.9 10.1 32.8
OC-CLIP 81.7 79.8 72.9 13.0 42.4

Table 3: Training from scratch on CC3M/CC12M comparison of OC-CLIP with OpenCLIP,
IL-CLIP, and NegCLIP. Comparison is done on SugarCrepe [Hsieh et al., 2023b] swap splits,
Winoground [Thrush et al., 2022] T2I score and Imagenet [Deng et al., 2009]
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OpenCLIP 87.1 95.8 83.3 63.9 30.1 80.3 82.8 65.6 97.8 95.9 93.9 88.3 20.1 79.5 91.2 99.2 73.1
OC-CLIP 87.0 96.0 83.7 64.0 30.0 79.8 82.8 65.6 97.9 96.0 93.9 88.0 20.0 79.6 91.1 99.3 73.2

Table 4: Linear average pooling of CLIP vs OC-CLIP. CLIP is pretrained on Laion400M and OC-
CLIP is trained on COCO/VG.
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A.2 Ablations

In Table 5 we ablate the key design choices of our model. Specifically, we investigate two key
components of the model: the use of competitive (inverted) cross-attention and the local graph
contrastive loss. On the one hand, results show that removing the competitive cross-attention
mechanism greatly affects fine-grained attribute binding (decreasing from 89.0 to 85.9). On the
other hand, removing the local graph contrastive loss significantly impacts downstream relational
understanding, with accuracy decreasing from 80.5 to 72.8. Adding attention layers helps relational
understanding (boosting performance from 77.6 to 80.5), while adding more default tokens does not
necessarily help with attribute binding. These findings highlight the importance of the main design
choices behind OC-CLIP.

LOC LOSS COMP. X-ATT ATTN LAY DEFAULT REL ATT

✓ ✓ ✓ 1 80.5 89.0

✓ ✓ ✓ 4 79.2 87.6
- ✓ ✓ 1 72.8 87.7
✓ - ✓ - 78.3 85.9
✓ ✓ - 1 77.6 87.8

Table 5: Ablation of OC-CLIP’s main components. Fine-grained accuracy on attribute binding and
relational splits of SugarCrepe

We then further discuss some important design choice of OC-CLIP. Notably :

• The similarity score coefficients α and β that control the weight of the objects and relations
in the global graph-image similarity score.

• Binding module inductive biases and their impact on compositional understanding perfor-
mance.

• Local Loss impact on downstream compositional understanding of relationships.
• Layer selection with OpenCLIP backbone.

Similarity Score OC-CLIP’s structured global similarity score is a combination of the object and
relationship components respectively weighted by two learnt parameters α and β balancing the
different contributions. We let the model learn those parameters throughout the training. However,
during preliminary experiments we tested a different combinations of initial coefficient within the
[1.5, 1, 0.5, 0.1] grid and noticed that the model was always converging to a α

β ∼ 3 without any
difference in the downstream compositional performance. We thus fix the initial coefficients to
α = 1.5 and β = 0.5 and treat them as parameters.

Default Token and Competitive Cross Attention In the binding module we propose to use an
inductive biases to encourage the query tokens to attend to different groups of patches. In order to
do so we use a competitive attention mechanism, the so called inverted cross attention common to
many object-centric image encoder architecture [Locatello et al., 2020, Wu et al.]. We found that
the use of inverted cross attention impacts slightly the fine-grained attribute binning performance
(see ATT performance in Table 5), -Comp Att model does not use any inverted cross attention and is
rather implemented with a regular cross attention mechanism, the softmax being done along the keys
dimensions.). The finegrained attribute understanding (ATT) is affected by the absence of competitive
attention between query slots going from 89.0% to 85.9% accuracy.

Local Graph Contrastive Loss In designing the structured similarity score of OC-CLIP
the relational component is formulated as the following cosine similarity fϕ(r,S

s,So) =
cosine(r, fs([r,Ss]) + fo([r,S

o]). In theory both fs([r,S
s]) and fo([r,S

o]) can collapse to ig-
nore the subject object visual representation. In order to prevent such collapse we propose to add
a local graph contrastive loss that shares similarity with hard-negative based learning. We enforce
the model to model with a higher similarity the graph composed of the same nodes but with either
swapped object and subject indices or shuffle objects and subjects indices within the local graph. In
both of those cases the relation component of the structured similarity score becomes (for a single
relation graph) :

swap G̃; cosine(r, fs([r,Ss]) + fo([r,S
o]) (5)
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Figure 4: ViT features layer ablation.

swap G̃; cosine(r, fs([r,So]) + fo([r,S
s]) (6)

shuffle Ḡ; cosine(r, fs([r,Sj!=s]) + fo([r,S
i!=o]) (7)

This prevents the model from collapsing because ground-truth G is distinguishable from G̃ and Ḡ only
if the visual representations are not ignored in the relationships components. As shown in Table 5,
removing the local loss effectively impacts downstream relational understanding on SugarCrepe with
a REL accuracy decreasing from 80.5 to 72.8 hence showing the effectiveness of the local graph
contrastive loss.

Scoring dimensionality Our structured similarity score allows the text encoder to focus on encoding
information about individual objects and their relationships, rather than the entire scene configuration.
To achieve this, we experimented with different dimensionality for both the object scoring bottleneck
and the relationship scoring bottleneck. Specifically, each of these scores is designed as a cosine
distance between a text representation and a visual component (as described in Section 3.2), with
each operating at a bottleneck dimension of dobj and drel. In contrast, OpenCLIP represents both the
scene caption and the visual representation at a shared dimension of d = 512. We expect that our
model can operate effectively at a much lower dimensionality, as it requires less capacity to encode
single objects and relationships. We present an ablation study of these two dimensions in Figure 5
and notice that our model is quite robust when we operate on lower dimensional space (eg. 128). We
use this results to scale our experiments and train the model from scratch with a smaller text encoder
as explained in the next section A.3 corresponding to experiments shown in Section 4.3.

Layer Selection Previous work focusing on dense segmentation tasks[Xu et al., 2022] show that
taking features from earlier layer in CLIP’s ViT help with fine-grained tasks. Here we ablate OC-
CLIP’s version using the OpenCLIP pretrained backbone when inserting the binding module after
layer L− k for k ∈ [0..4], 0 being the last layer. Results on merged Sugarcrepe splits are given in
Figure 4. The object related queries seem to decrease as a function of k where as the replace rel split
is increasing with k. To that end, we actually insert our binding module after layer L− 2, where L is
the index of the last transformer layer of the ViT.

(a) Swap Att (b) Swap Obj (c) Replace Obj (d) Replace Att (e) Replace Rel

Figure 5: Score dimensionality ablations In this ablations we keep the initialization seed fixed and
vary the dimensionality of the relation score drel (x-axis) and object score dobj(y-axis) and report the
performance on the swap and replace splits of sugarcrepe.

A.3 Experiments on CC3M/12M.

In the compositional understanding experiments we compare our approach with data-centric finetuning
methods that do not add any additional parameters. These methods are expected to retain some of
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CLIP (3m) 12.8 44.9 19.9 27.9 1.2 1.3 9.7 12.6 1.3 76.1 15.8 13.5 6.9 24.9 0.6 44.3 17.8 11.1 51.2 7.8 47.4 13.9
OC-CLIP (3m) 15.3 57.1 24.8 33.1 1.2 1.6 13.3 16.3 9.9 82.0 16.2 22.0 4.5 30.8 0.7 55.6 22.5 12.5 52.0 11.6 50.1 19.2
CLIP (12m) 42.7 63.2 30.2 42.7 15.5 3.1 14.5 52.6 13.1 85.7 12.3 28.5 8.3 34.9 3.9 54.4 33.9 11.8 51.4 11.2 51.9 30.5
OC-CLIP (12m) 54.1 74.5 44.6 51.4 21.1 3.7 19.4 66.4 7.4 91.9 31.8 40.6 8.1 41.9 5.9 56.1 45.7 12.7 49.2 9.7 50.2 42.3
CLIP (15m) 43.4 72.3 33.8 44.2 15.8 2.3 14.0 53.8 9.2 89.1 24.0 30.0 11.0 28.0 3.3 50.1 37.4 12.5 50.6 10.2 50.1 32.2
OC-CLIP (15m) 54.5 82.3 46.6 54.1 20.2 3.7 22.1 69.2 5.2 94.2 26.8 44.4 9.4 29.9 5.9 52.9 47.3 14.5 51.3 9.0 49.9 45.0

Table 6: Zero-shot evaluation of CLIP vs OC-CLIP. Trained on varying size of data ( cc3m, cc12m,
merged 15m) for 25 epochs.

the general capabilities of the initial backbone. In contrast, our binding and relationship modules
is trained from scratch, which means it may not generalize as well to unseen data and can only be
expected to work well within the vocabulary domain it has been exposed to (eg. COCO/VG/GQA in
our experiments setting). However an interesting question would be to asses whether such inductive
biases and structured similarity object might have some sclaing potential on noisy and non human
curated datasets such as CC12M [Changpinyo et al., 2021]. To answer that question we propose
to train both CLIP and OC-CLIP architectures from scratch on combinations of CC3M, CC12M
and CC3M+12M and compare both of their general understanding and compositional downstream
performance. In addition to the zero-shot evaluation, we also provide a computational analysis of the
binding module to gain insights into its behavior and limitations.

Training Details In order to show the potential of OC-CLIP to learn from scene-graph obtained
from a non human-curated captioning dataset we train both ViT-B-16 OpenCLIP model and OC-CLIP
from scratch on CC3M [Sharma et al., 2018], CC12M [Changpinyo et al., 2021] and the merge of
both (15M) . We did not tune the hyperparameters and used the same hyperparameters as suggested
in [Mu et al., 2021]. Both models are trained for 5, 15, and 25 epochs, using a batch size of 4096, a
learning rate of 1e− 3, 2k steps learning rate warmup and a cosine decay after. As recommended by
Mu et al. [2021] we used AdamW optimizer with 0.5 of weight decay and β2 set to 0.98.We report
extensive zero-shot downstreeam classification performance on the ELEVATER [Li et al., 2022]
suite in Table 6. We did not use any templates and use raw labels instead. Both models were trained
using 4x8 V100 GPUS with a local batch size of 128. OC-CLIP shows performance gains in both
zero-shot classification (a notable +12.7% in ImageNet) when trained on the same setting. These
experiments show that the structured training of OC-CLIP can scale to automatic alt-text captioning
dataset. We leave further scaling for future work as the main focus of our work is to emphasize the
binding problem that arises when using a vector-based representation and a set of inductive biases as
a way of operating on a more structured representation (eg. scene graph).

Computational analysis of OC-CLIP In OC-CLIP the visual and text modalities representations
are no longer independent (as opposed to CLIP). A image representation is the results of some
text-conditioned mechanism operated by the binding module. It essentially extracts relevant visual
slots that constitutes the nodes of the scene graph coming from the caption. As a result, there is some
notable computational overhead introduced by the additional cross-attention operations of the binding
module. In particular :

• 1. The text encoder needs to encode the N nodes and R relations of the scene graph as
opposed to a single sentence encoding in CLIP.

• 2. For each Image-Graph pair, The N text nodes cross-attends to Nim patches of the ViT in
order to extract the structured visual slots.

When training OC-CLIP from scratch we propose to mitigate those two overheads respectively by :

• 1. Using a smaller embedding width (256 vs 512) and number of layers (6 vs 12) in the text
encoder. Indeed OC-CLIP only need to encode information about objects and relationships
and we expect such encoding to require much less capacity than an encoder that needs to
encode a whole caption composed of multiple objects and relations between them.
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• 2. We operate on a reduced embedding space 256 for the binding module and thus first
project the ViT-B-16 patches from a 768 to a 256 embedding space before computing the
nodes to patch cross attention logits.

• 3. We use the SigLip [Zhai et al., 2023] loss to make efficient use of batch chunking and
gradient checkpointing.

We only perform experiments with a B-16 architecture for the ViT but perform the computational
analysis fro both B and L backbones. We report the results in Table 7 We note that there is a significant
overhead with a base architecture 2.2x but since the binding module perform the same number of
operations no matter what the ViT is we show that when scaling the ViT backbone, the binding
module is not the bottleneck anymore and the computational overhead is reduced (1.3x).

Model ViT Backbone Text (w,l,ctx) Binding Module GFLOPs Text GFLOPS Vision GFLOPs Total GFLOPs
OC-CLIP B (256, 6, 20) 12(*num workers) 180 1k 2.2x

CLIP B (512, 12, 77) - 186 1k 1x
OC-CLIP L (256, 6, 20) 12(*num workers) 180 4.9k 1x

CLIP L (512, 12, 77) - 186 4.9k 1.3x
Table 7: Computational Comparison of CLIP and OC-CLIP. Calculations are made for a local batch
size (per GPU) of 64. We give the Total GFLOPs based on a global batch size of 8192 (=128 num
workers). When scaling the ViT backbone the computational overhead of the binding module remains
fixed and is not the main bottleneck anymore.

A.4 Scene Graph Parsing Discussion

Comparison of different parsing methods Although the parsing method is not the core of our
contribution we provide here a couple of qualitative and quantitative comparisons to motivate
the choice of using an LLM to perform the parsing of the captions despite the pre-processing
computational overhead it entails. We identify 3 families of parsing method that operate on text-only
input and provide insights on their respective :

• Automatic parsing methods : method based on hand-crafted rules about the semantics in
order to extract tags and more complex dependency graphs. TagAlign also compares to nltk
and justifies the choice of going to an llm-based method. We consider a representative of
those automatic parsing methods based on spacy [Honnibal and Montani, 2017].

• Finetuned factual scene graph parser trained in a supervised way to extract scene graph.
We consider a representative of them, a state-of-the-art factual scene graph parser based on
T5 model [Li et al., 2023b] trained to extract fine-grained scene graph information about the
objects and relations in an input caption.

• LLM-based, here we choose llama3-8b as a representative and leave the extensive analysisof
the bias/cues of different llm families of model for future work.

We identified failures modes of automatic parsing and finetuned that are relevant to compositional
understanding of clip-like models and justify the use of an llm-based parsing method and summarize
them in Table 8. We show on one hand that automatic parsing methods are prone to oversimplification,
missing relations and mistaking an attribute modifiers with an object. On the other hand supervised
scene graph parser seems to be prone to relation classification error and important atteibute binding
error when the different objects mentioned in a caption share the same label tag.

Caption Spacy T5 LLM

A brown cat is lying on a computer Objects: a brown cat, a computer
Relations: {on, 0, 1} (Oversimplification error)

Objects: brown cat, computer
Relations: {lay on, 0, 1} (Relation classification error)

Objects: brown cat, computer
Relations: {lying on, 0, 1}

A man is on the left of the dog Objects: a man, the left, a dog (Wrong POS)
Relations: {of, 1, 2} (Missing relation)

Objects: man, dog
Relations: {at the left of, 0, 1}

Objects: man, dog
Relations: {on the left of, 0, 1}

A woman in blue and a woman in red Objects: a woman, red, a woman, (Wrong POS)
Relations: {, 0, 1}, {in, 0, 2}, in, 2, 3}

Objects: blue red clothes, woman (Wrong attribute binding)
Relations: {wear, 0, 1}

Objects: woman in red, woman in blue
Relations: {}

Table 8: Comparison of parsing errors made by different parsers.

We additionally train OC-CLIP on COCO captions parsed by those 3 different parsing models and
compare the downstream compositional understanding performance in Figure 6. Coherent with the
qualitative analysis the choice of the parsing family mostly impact relational understanding. We
observe for the SugarCrepe swap object (replace rel resp.) a decrease of 9.3% (resp. 14.1%) for spacy
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Figure 6: Downstream Compositional Understanding of OC-CLIP when trained on different parsing
of COCO-Captions.

and 3.4% (resp. 6.3%) for a supervised T5 model as compared to OC-CLIP on scene graphs extracted
by llama3-8b. Close to our work, TagAlign[Liu et al., 2024b] also quantitatively and qualitatively
analyze the objects tags than can be extracted with an nltk-based and llm-based parser and show that
training CLIP with an additional object and attribute tag classification loss with tags coming from an
llm results in better downstream zero-shot semantic segemntation.

Limitations of LLM-based parsing for OC-CLIP We also acknowledge that using and LLM as a
parser may also have some limitations and evaluating the impact of the downstream performance of
different LLMs or VLMs is an interesting question. In particular, llm-based parsing might not extract
accurate scene graphs, especially when the dependency between the objects in a captions is rather
complex or ambiguous. And informing the parser in prompt with visual information might be an
interesting direction. However the exact instanciation of the LLM-based parser used is orthogonal to
our contribution and we leave this analysis for future work.

Scene Graph Parsing cost We performed the parsing by serving instances of Llama3.1-8b on v100
GPUs. Each datasets is then chunked in N process that do not require any GPUs and send requests
to the served LLM parsers through vllm4 to maximize the throughput of the parallelized requests.
For reference we parsed the COCO datasets (∼ 500k captions) parallelizing 10 instances of the
parser, and with 128 chunks in 3.5 hours and Visual-Genome (∼ 200k captions) with 8 instances, 64
chunks in 1.7hours. The parsing time can further be optimized by serving more instances, using more
performant GPUs (A100, H100 etc..), serving each instance in parallel in more GPUs to maximized
the number of requests that can be processed per second. For the cc3m and cc12m, in order to
accelerate the parsing, we kept the LLM parser local using ollama5 on v100 GPUs. CC3M was
chunked into 500 and CC12M into 1000 smaller chunks, we launched the jobs sequentially. CC12M
took about 3days to parse but could likewise be accelerated using faster GPUS.

A.5 Additional Compositional Understanding results

Our main goal is to evaluate CLIP-like models compositional understanding in plausible and gram-
matically correct cases. Hsieh et al. [2023b] have identified exploitable textual biases in previous
mainstream procedurally-generated hard negatives benchmarks like the COCO and Flickr set of
ARO and VL-checklist. Specifically they show that procedurally generated hard negatives are either
highly grammatically incorrect and can be identified by a blind model or by a good language model
that can measure the plausibility of the caption. The SugarCrepe is thus designed to pfollow the
same fine-grained taxonomy on attributes, objects, relationships as VL-checklist but ensures that the
hard-negative are not distinguishable by a blind model. The main results of our paper thus focus
on this benchmark. We however also give the performance of our model on the full ARO suite and
VL-Checklist in Table 9 for reference.

A.6 PUG Dataset

In this section we describe in more details the content of the synthetic experiments, give more context
on the motivation along with additional results.

4https://github.com/vllm-project/vllm
5https://ollama.com/
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MODEL VL-CHECKLIST ARO

OBJECT RELATION ATTRIBUTE ATTRIBUTION RELATION COCO-ORDER FLICKR-ORDER

CLIP 80.0 63.0 67.4 63.2 60.0 47.9 60.2
BLIP 82.2 70.5 75.2 63.2 60.0 47.9 60.2
XVLM 85.8 70.4 75.1 86.8 73.4 - -

Hard-negative Methods
CLIP-SVLC 85.0 68.9.7 72.0 73.0 80.6 84.7 91.7
NEGCLIP 84.1 63.5 70.9 71 81 86 91
CE-CLIP 84.6 71.8 72.6 76.4 83.0 - -
MOSAICLIP 88.5 77.0 75.5 77 82.6 - -
Dense captioning+Hard-Negative
DAC-LLM500K 66.5 56.8 57.4 63.8 60.1 50.2 61.6
DAC-LLM3M 87.3 86.4 77.3 73.9 81.3 94.5 95.7
DAC-SAM3M 88.5 89.7 75.8 70.5 77.2 91.2 93.9
DCI 80.7 70.1 68.7 67.6 76.2 88.6 91.3
DCINEG 88.4 61.3 70.4 62.0 57.3 39.4 44.6

OC-CLIP 90.7 80.0 75.6 84.0 84.9 94.2 84.8

Table 9: Results (%) on VL-Checklist and ARO Benchmark.

Motivation The rise of data-centric hard negative methods were motivated by the bag-of-words
behaviour [Yuksekgonul et al., 2023b] of CLIP noticed in ”simple swap-attribute” retrieval tasks.
Hard-negative methods propose to mitigate this behaviour by finetuning CLIP-like models on data
points with minimal changes but semantically different meanings. However we experimentally
observed that all the methods fail to increase performance specifically in swap attribute kind of
splits. In order to further isolate the root cause, we propose a series of synthetic experiments that
compare covering more hard-negative data points with OC-CLIP on varying proportion of training
samples and hard-negative samples. By restricting the environment to a closed-set vocabulary of
backgrounds, attributes, and object classes, we can enumerate all possible hard-negatives, allowing
us to systematically evaluate the effectiveness of different approaches. Our results show that simply
adding more hard-negatives plateaus and is not sample-efficient, as the swap attribute binding
performance always underperforms OC-CLIP trained on less data without any hard-negatives in
a simple object-attribute binding task 2. However, when combined with OC-CLIP inductive bias,
hard-negatives complementarily improve downstream performance. This suggests that our model,
OC-CLIP, is a more sample-efficient approach to addressing the bag-of-words behavior of CLIP
models. We hypothesize that the root cause of this issue thus lies in the representation format
used in CLIP’s original formulation, which relies on a single vector to capture complex semantic
relationships. Our proposed method introduces inductive biases that allow the model to learn more
structured representations, avoiding superposition of features [Greff et al., 2020b] and effectively
mitigating the bag-of-words behavior. Through these synthetic experiments, we demonstrate the
effectiveness of our approach and provide insights into the sample-efficiency limitations of existing
data-centric methods.

Dataset splits The synthetic experiments we propose are based on the controlled 3D environment
PUG [Bordes et al., 2023]. We operate in a 3D envrionment with pairs or single textured animals in
different backgrounds. The factors of variation are :

• 5 Backgrounds : desert, arena, ocean floor, city, circus
• 20 Animals : goldfish, caribou, elephant, camel, penguin, zebra, bear, crocodile, armadillo,

cat, gecko, crow, gianttortoise, rhinoceros, dolphin, lion, orca, pig, rabbit, squirrel
• 4 textures : red, white, asphalt, grass
• 2 spatial constraints for pairs : left/right, above/under

The different splits We then construct splits that aim at evaluating separately attribute binding and
spatial relationships understanding. In all the different splits, we include images with single animals
in all the possible background-texture-animal conjunctions.

Attribute Binding Splits The attribute binding training and testing splits are constructed as follows
: (1) - We list all the possible pairs of animals,(2) - We randomly and i.i.d. select a percentage %
Ntrain of pairs to include in the train split, (3) - For each training pair we select a pair of assigned
attribute (for example if cat and caribou are in the train split we will assign red to cat and white to
caribou and will remove all the other attribute-animal conjunction from the training. This is done
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such that we can control for the replace attribute hard negative presence. (4) - For each pair in the
training set we separate the corresponding hard negative examples with the same bag of words but
swapped attributes (referred to as Seen Pairs in Figure 7) and the same pair but a different bag of
words ( referred to as Different Bag-of-words in 7) , (5) - finally we also isolate unseen pairs of
animals. We also include the accuracy on the training pairs that do not have their corresponding hard
negatives in the test set).
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Figure 7: Attribute Binding on PUG - Additional Results Performance of the finetuned OpenCLIP and
OC-CLIP models on a binary classification task between a caption and its corresponding hard-negative. We do
that for captions that mention Pairs of animals (top row) like the example in Figure (a) and for captions that
mention a single animal (bottom row) like the example in Figure (b).To assess the models’ performance, we
compute the accuracy across two dimensions. The first one is the percentage of animal pairs (y-axis) seen during
training (animals like elephants and fish could be seen either alone or with other animals but never together).
The second dimension (x-axis) is the number of hard-negatives used in the training data. For instance, whether
we have the combination “red elephant” and “white fish” in the training data while we only have “white elephant”
and “red fish” in the test data.

Spatial Relation understanding Splits For these splits we do not assign specific pairs of attributes
to train/test split but rather consider pairs of animals and their order with respect to the spatial
relationship tested and systematically include all the possible attributes assignment to those pairs. We
then construct the different splits by restricting the number of pairs and their spatial configuration.

Hard Negative Samples For both tasks the hard negative samples we consider are align with the
test tasks taxonomy. For attribute binding we always test the model’s ability to distinguish between
eg. a red cat and a white caribou and a white cat and a red caribou. Hence we consider as a hard
negative sample any image that corresponds to the swapped attribute version of a training pairs. To
augment the dataset with hard negative, we sample i.i.d. a percentage % Nhard of the training pairs
and include in their corresponding hard negatives in the train set. Similarly for the spatial relationship
understanding task, we test the model’s ability to distinguish between eg. a red cat to the left of a
white caribou and a white caribou to the left of a red cat. Hence we consider as a hard negative
sample any image that corresponds to the swapped order with respect to the relationship tested of the
animal pairs seen during training.

A.6.1 Spatial Relation Understanding

In this section, we aim to evaluate the spatial relationship understanding capabilities of the models.
To do so, we conduct controlled experiments using data splits where not all pairs of animals are seen
during training. The relations considered in these experiments are “left/right” and “above/below”.
Hence, the task is to choose between the original caption of the form “X left of Y” and the caption
with the swapped order “Y left of X”. We consider the following generalization axes:

• Unseen object order: This axis tests the generalization when swapping the order of objects
in a relationship. For example, “elephant to the left of fish” may be used for training, while
“elephant to the right of fish” is used for evaluation
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• Unseen object pairs: This axis test for unseen pairs of animals in seen relationships.

We follow the experimental setup of section ??, and finetune OpenCLIP and OC-CLIP while
considering the effect of adding different % of hard negative images and/or different % of object
pairs to the training data.

We test both models on image-text retrieval tasks and report the results in Figure 8. Figure 8(b) shows
the results for the unseen object order generalization, whereas Figure 8(c) presents the results for the
unseen object pairs. As shown in Figure 8(b), OC-CLIP outperforms OpenCLIP in all data regimes
considered, with improvements between 6% and 18%. Similarly, as shown in Figure 8(c), OC-CLIP
improves upon OpenCLIP in all data regimes, yielding absolute improvements between 5% and 20%.

(a) Example image
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(c) Unseen object pairs

Figure 8: Spatial Relationship Understanding. We finetune OpenCLIP and train OC-CLIP’s
binding module on splits containing different % of animals pairs (y-axis) and different % of
hard-negative image in the training split (x- axis). We test the models on images with either unseen
order (b) or unseen pairs (c) during training. The testing is done against the swapped order of the
ground truth caption as shown in the visual example (a).

A.7 Parsing

For the parsing of the training and testing data we used a llama-3-70b Instruct model with the
following prompt :
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Parsing Prompt

Given a caption, your task is to parse it into its constituent noun phrases and relationships. The
noun phrases should represent independent visual objects mentioned in the caption without semantic
oversimplification. For each caption, output the parsed noun phrases (e.g., entities) and relationships in
JSON format, placing the dictionary between [ANS] and [/ANS] brackets. In the relationships, use
indices to specify the subject and object of the relationship mentioned in the caption. The indices of the
subject and object should be integers. Here are a few examples:

C a p t i o n : A l a r g e brown box wi th a g r e e n t o y i n i t
Outpu t :
[ANS]
{

” e n t i t i e s ” : [
” l a r g e brown box ” ,
” g r e e n t o y ”

] ,
” r e l a t i o n s h i p s ” : [

{
” r e l a t i o n s h i p ” : ” i n ” ,
” s u b j e c t ” : 1 ,
” o b j e c t ” : 0

}
]

}
[ / ANS]

[ . . . ] More examples

PAY ATTENTION to the following:
- Relationships MUST relate two different entities in the caption and NOT be unary. For example, in
the caption ’red suitcases stacked upon each other’, ’stacked upon each other’ is not considered a
relationship.
- Do not forget any relationships.
- Relationships MUST be directed. ’and’ is not a relationship.
- Pay attention to spatial relationships like ’behind’, ’left of’, ’with’, ’below’, ’next to’, etc. ’and’ is not
a relationship.
- Check the right dependencies when the relationships are not direct. In the caption template a X with a
Y in it, it refers to X.
- Pay attention to co-references.

Now, parse the following caption into its constituting entities and relationships. You MUST
place the answer between [ANS] and [/ANS] delimiters.
Caption:

To showcase the effectiveness of this parser, we are showcasing below the most and least common
entities and relations that are find by this parser across MS-COCO and CC12M. In Figure 9, we can
see that the most common entities are people for the COCO dataset as well as for CC12M in Figure
11. We also plot the least common entities in Figure 10. Finally, we also compute the number of
tokens that is require for modelling the entities and relations. In Figure 14, we display the frequency
of the number of tokens use to encode the relations and entities on COCO. Using just 10 tokens, we
can encode most of the entities and relations, thus we do not need to have a text encoder that take
into input 77 tokens but can use a much smaller one instead. In Figure 15, we show a similar plot but
normalized. Even on a dataset with noisy captions like CC12M, most entities and relations can be
encoded with less than 20 tokens.

A.8 Datasets

Training Data For the compositional experiments we train both OpenCLIP and OC-CLIP on a
aggregated data form COCO-Captions (COCO) [Lin et al., 2014], Visual Genome (VG) [Krishna
et al., 2017] and GQA [Hudson and Manning, 2019]. All these datasets cover the same 110k images
from COCO but focus on different kind of annotations. COCO provide global scene annotation,
Visual Genome emphasizes specific region descriptions and general relationships and GQA annotates
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Figure 9: Plot of the most common entities and relations that were extracted by our LLM-based
parser for the COCO datasets.

both objects and spatial relationships. Both Visual Genome and GQA have annotated scene graph
that we do not need to parse to train OC-CLIP. For OpenCLIP, we sample 2 region annotations from
VG to from a caption following this template A photo of a {Region 1} and a {Region 2}. Similarly to
get the captions from GQA, if there is a relationship we follow Kamath et al. [2023] and give the
model a caption following this template A photo of {Subject} {Rel} {Object}. If only objects are
mentionned we sample up to 3 objects and give the model a caption following this template A photo
of {Obj1},{Obj2},{ Obj3} .

A.9 Training Details and Hyperparameters

In table 10 we detail the hyperparameters of the OC-CLIP architecture for results in real-world
compositional understanding (section 4.2).

Optimization Details In order to train OC-CLIP we followed prior work and use Adam Optimizer
with β1 and β2 set to 0.9 and 0.95 and a weight decay of 0.2. We used different learning rate for
the pretrained backbones and for our modules that we train from scratch : learning rate of 2e−4 for
the binding and the scoring modules, learning rate of 2e−5 for the text Transformer backbone, and a
smaller rate of 1e−6 for the ViT backbone. We also used a warmup schedule for both of the text (1k
steps) and the vision (5k steps) backbones followed by a cosine decay. We train the model for a total
of 100 epochs.
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Figure 10: Plot of the least common entities and relations that were extracted by our LLM-based
parser for the COCO datasets.

A.10 Binding Module Code

See Figure 16
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Figure 11: Plot of the most common entities and relations that were extracted by our LLM-based
parser for the CC12M dataset.

Hyperparameter/Parameter Init Architecture Value

Binding Module
– Image Patches Processing Linear 768 × 256
– Self-Attention #Layers/#Heads 2/4
– Self-Attention MLP ratio/act 2/nn.GELU
– Keys K, Values V Linear 256, 256
– Normalization Keys/Values LayerNorm 256

Grouping Module
– Cross-Attention #Heads 1
– Queries Linear 256
– Normalization Queries LayerNorm 256
– Num Default Tokens Qdefault nn.Param(Nd,256) 1

Scoring Functions
– Object Scoring Function cosine sim
– Relation Scoring subject fs MLP(128 + 256, 128) 2 layers
– Relation Scoring object fo MLP(128 + 256, 128) 2 layers
– Coef ent init (learned parameter) 1.5
– Coef rel init (learned parameter) 0.5

Table 10: Table of hyperparameters for OC-CLIP architecture
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Figure 12: Distribution of the number of tokens require for modeling the entities and relations on
COCO (we do not need more than 8 tokens to capture 99% of the entities in COCO). Since we need
less token, we can leverage a smaller text encoder to extract the entities and relations.
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Figure 13: Distribution of the number of tokens require for modeling the entities and relations on
CC12M (we do not need more than 14 tokens to capture 99% of the entities in CC12M). Since we
need less token, we can leverage a smaller text encoder to extract the entities and relations.
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Figure 14: Distribution of the number of tokens require for modeling the entities and relations on
COCO (we do not need more than 8 tokens to capture 99% of the entities in COCO). Since we need
less token, we can leverage a smaller text encoder to extract the entities and relations.
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Figure 15: Distribution of the number of tokens require for modeling the entities and relations on
CC12M (we do not need more than 14 tokens to capture 99% of the entities in CC12M). Since we
need less token, we can leverage a smaller text encoder to extract the entities and relations.

30



Figure 16: Code for the Binding Module
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Figure 17: Top entities and relation for CC3M
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Figure 18: Top entities and relation for CC12M
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Figure 19: Top entities and relation for COCO
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”
provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist”,

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The 3 parts of our Results section each verify the 3 claims listed in the
introduction

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss limitations of our method (scale, computational overhead, parsing)
extensively in our appendices.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: No theoritical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all the training parameters, dataset preprocessing, and pseudo
code of our binding module to reproduce the results.
Guidelines:

36



• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Pseudo code is given, we plan on releasing the code later.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the details are given in Appendix A.9

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

38



• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We added an impact statement in the Appendix
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We plan to release the code later.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

40

paperswithcode.com/datasets


Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

41

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Method
	Binding Module
	Structured similarity score
	Training

	Results
	Addressing CLIP's bag-of-words behavior
	Compositional Understanding
	Training OC-CLIP from scratch

	Conclusion and limitations
	Appendix
	OC-CLIP as a Pretraining alternative to CLIP
	Ablations
	Experiments on CC3M/12M.
	Scene Graph Parsing Discussion
	Additional Compositional Understanding results
	PUG Dataset 
	Spatial Relation Understanding

	Parsing
	Datasets
	Training Details and Hyperparameters
	Binding Module Code


