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Abstract
Fine-tuning Large Language Models (LLMs) on
multi-turn reasoning datasets requires N (number
of turns) separate forward passes per conversation
due to reasoning token visibility constraints, as
reasoning tokens for a turn are discarded in subse-
quent turns. We propose duplicating response
tokens along with a custom attention mask to
enable single-pass processing of entire conver-
sations. We prove our method produces identi-
cal losses to the N-pass approach while reduc-
ing time complexity from O

(
N3

)
to O

(
N2

)
and

maintaining the same memory complexity for a
transformer based model. Our approach achieves
significant training speedup while preserving ac-
curacy. Our implementation is available online2.

1. Introduction
Recent progress in LLMs has sparked a shift from models
that directly generate final responses to those that perform
explicit intermediate reasoning before generating responses
(referred to as reasoning models). Open-source reasoning
models, such as DeepSeek-R1 (Guo et al., 2025), demon-
strate high performance on several benchmarks. However,
these existing reasoning models were trained primarily on
single-turn reasoning data.

While numerous studies have investigated fine-tuning LLMs
for multi-turn dialogues to improve coherence, context
awareness, tool-calling (Wang et al., 2025; Rebedea et al.,
2024), these approaches assume non-reasoning dialogues.

Training LLMs for multi-turn reasoning conversations
presents novel challenges in managing token visibility. Fol-
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lowing industry-standard practices for multi-turn conversa-
tions (OpenAI, 2024; Anthropic, 2025), reasoning models
generate internal reasoning tokens, produce a response, and
then discard the reasoning tokens from the context in subse-
quent turns. This creates two fundamental constraints that
cannot be addressed with standard multi-turn optimization
techniques: (1) Visibility Constraints: Reasoning tokens
must be visible during generation but hidden from subse-
quent conversation turns, requiring conditional visibility
that static attention masks cannot satisfy. (2) Position ID
Discrepancy: Response tokens follow reasoning tokens dur-
ing generation but directly follow human messages in a later
context, creating positional misalignment.

While prior works have explored masking techniques and po-
sition ID assignments to control information flow and enable
selective attention within sequences for various pre-training
objectives or efficiency gains (Wang & Hegde, 2024; Du
et al., 2022; Raffel et al., 2020), none address the specific
challenges of multi-turn reasoning conversations where rea-
soning tokens must be conditionally visible across turns.

This paper addresses these challenges with two primary
contributions. (1) We present a theoretical framework fea-
turing a block-sparse visibility mask and strategic position
ID assignment scheme that enables processing an entire
multi-turn reasoning conversation in a single forward pass
while maintaining training correctness (Theorem 2.1). (2)
Due to the absence of a publicly available multi-turn rea-
soning dataset (to the best of our knowledge), we create and
release a novel dataset, MathChatsyncReasoning, in which
each assistant message is augmented with synthetically gen-
erated reasoning. (3) We provide comprehensive empirical
validation for the proposed framework on Qwen3 models.

Notation. We useD to denote a multi-turn reasoning dataset
where each conversation c ∈ D consists of alternating
human messages hi and assistant messages ai such that
c = (hi, ai)

N
i=1 for N turns. Each assistant message ai

comprises thinking tokens ti and response tokens ri. We
denote H<i = (hj , rj)

i−1
j=1 as conversation history before

turn i. For token sequence x, sx, and ex represent starting
and ending position IDs. The notation x→ A(·) indicates
sequences that x attends to, and L(·) denotes language mod-
eling loss (detailed in Appendix A.1).
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2. Single Pass Fine-tuning on Multi-Turn
Reasoning

In this section, we highlight the challenges associated
with fine-tuning language models on multi-turn reasoning
datasets. We present an optimized approach to process an
entire conversation in a single forward pass. In multi-turn
reasoning data, response tokens ri must attend to reasoning
tokens ti during the generation of ai. However, these reason-
ing tokens must not be visible during subsequent generation
of assistant messages aj>i. As a result, it is not possible to
construct a single static attention mask that supports both
conditions in a conversation within a single forward pass—a
capability that is often feasible with non-reasoning datasets.

2.1. N-Pass Approach

A straightforward solution is to perform a separate forward
pass for every turn (H<i, hi, ai) of a given conversation c.
While functionally correct, this approach is computationally
inefficient: a conversation with N assistant turns results in
N separate training examples. Consequently, the effective
size of the dataset increases from |D| to |D| × N , inflat-
ing training time proportionally. Fig. 1(a) shows causal
attention mask at the time of generation of ith turn response
tokens, and Fig. 1(b) shows causal attention mask for ith
turn response tokens when they are part of context during
j > i turns.

2.2. 1-Pass Approach

The primary challenge in applying a single forward pass
during training due to discrepancy in the attention behavior
of ri can be illustrated as follows3:

ri →

{
A(H<i, hi, ti) generation
A(H<i, hi) context

We can resolve this issue through the following steps:

Duplicating response tokens of each assistant message.
We duplicate the response tokens of each assistant message
so that one sequence (routi ) is used during generation and
attends to its associated reasoning tokens. In contrast, the
other sequence (rini ) is used only as context and does not
attend to reasoning tokens.

Custom Attention Mask. Duplication of response tokens
makes it possible to have a single attention mask that sat-
isfies visibility constraints. We define a custom masking
strategy for each type of token sequence (hi, ti, r

in
i , r

out
i ),

ensuring that each token only attends to the appropriate

3For ease of understanding, we omit the detail that each token
within a token sequence also attends to all its preceding tokens,
which must be encoded in the attention mask.

Position IDs

0 1 1

Label Mask

0 0 0

(a) (b)

Figure 1. Causal Attention Masks for N-Pass Approach repre-
sents non-zero attention. (a) Attention Mask for generation of
response tokens. (b) Attention Mask when response tokens are in
context.

subsequence:

hi → A(Hin
<i) rini → A(Hin

<i, hi)

ti → A(Hin
<i, hi) routi → A(Hin

<i, hi, ti)

Assigning Consistent Position IDs. After duplication of
response tokens, we need to assign consistent position IDs
to tokens to maintain the correct relative positions—as if
multiple forward passes were performed for each turn in
the conversation. If they are assigned sequentially, or the
duplicated assistant response tokens share the same position
IDs, it will lead to incorrect relative positions. We need
a strategic way of assigning position IDs. The following
assignment of the first position ID for each token sequence
ensures the relative positions are correct and equivalent to
N-Pass approach4:

sti = srini = ehi
+1 srout

i
= eti+1 shi+1

= erini +1

Label Mask. Duplication of the response tokens also
raises the question of which tokens should be included in
the loss calculation. The following label mask outlines the
inclusion criteria for each token type:

hi ← 0 ti ← 1 rini ← 0 routi ← 1

Fig. 2 shows custom attention mask for ith turn in the 1-Pass
Approach. It combines masks for generation and context
from the N-Pass Approach into a single mask with position
IDs and a label mask consistent with N-Pass Approach.

Theorem 2.1. Consider a language model with output dis-
tributions determined solely by attention patterns, positional

4Position IDs are assigned sequentially based on the order of
tokens within each sequence.
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Figure 2. Custom Attention Mask for 1-Pass Approach. repre-
sents non-zero attention.

encodings, and input representation. For any conversation
c as input to the model, the sum of the N-Pass language
modeling losses is equivalent to the 1-Pass loss:

L1-Pass(c) =

N∑
i=1

LN-Pass
i (H<i, hi, ai)

Proof is in the Appendix B.1

2.3. Complexity Analysis

We compare the computational complexity of our 1-Pass
method against N-Pass approach for transformer-based mod-
els with hidden dimension d (Vaswani et al., 2017). Table 1
summarizes the time and memory complexities for a con-
versation c, where ℓ denotes its characteristic turn length.

Table 1. Time and Memory Complexity for N-Pass and 1-Pass
Approach

N-PASS 1-PASS

T (c) O
(
N3ℓ2d

)
O
(
N2ℓ2d

)
M(c) O

(
N2ℓ2

)
O
(
N2ℓ2

)
The 1-Pass approach yields an asymptotic time complex-
ity improvement of one order in N , offering significant
speedups at scale. While it introduces a higher constant
memory overhead due to token replication, both methods
share the same asymptotic memory complexity. Full deriva-
tions are provided in Appendix C.

2.4. Efficient Mask Generation

While our custom attention mask (illustrated in Figure 2)
enables single-pass training, generating it involves com-
puting complex visibility patterns across token types and
conversation turns. At scale, this computation could be-
come non-trivial, particularly for longer conversations or
larger batch sizes. To ensure this remains efficient, we de-
velop an optimized mask generation algorithm that performs
all operations on GPU using vectorized tensor operations.
Additionally, we simplify the boolean logic for visibility
constraints using Karnaugh map reduction, minimizing the
number of logical operations required. We provide the com-
plete algorithm in Appendix D.2 for practitioners seeking
to implement our method efficiently.

3. Experiments
We evaluate our single-pass fine-tuning on Qwen-3 models
(4B, 8B, 32B) with QLoRA (Dettmers et al., 2023). All
experiments were run on a 8×H100 instance (CUDA 12.8,
PyTorch 2.7.0), with our method implemented in LLaMA-
Factory (Zheng et al., 2024) and benchmarked against multi-
pass baselines. See Appendix D.3 for experimental setup.

3.1. Dataset Creation

Addressing lack of a public multi-turn dataset with explicit
per-turn reasoning, we introduce MathChatsyncReasoning5,
derived from MathChatsync (Liang et al., 2024). Assistant
turns are augmented with explicit reasoning generated using
gpt-4.1-mini, conditioned on dialogue history and current
assistant response. Refer to Appendix D.1 for more details.
All our experiments are conducted on this dataset.

3.2. Experimental Setup

We use FlashAttention2 (FA2) (Dao, 2024) and FlexAtten-
tion (Dong et al., 2024) backends. Our 1-Pass method re-
quires a custom attention mask, thus using FlexAttention, as
FA2 lacks support for passing custom attention mask; FA2’s
speed motivates reporting baselines on both for fair compar-
ison. We compare our 1-Pass method (with response token
duplication) against a standard N-Pass baseline (requiring
N forward passes). Both are evaluated with and without
sequence packing6 (Krell et al., 2022). When packing is
enabled, we use llama-factory’s neat packing imple-
mentation: FA2 baselines rely on position IDs to separate
packed sequences (Kundu et al., 2024), while our 1-pass
method combines the contamination-free packing mask with
our custom attention mask via logical AND.

5https://huggingface.co/datasets/
devrev-research/MathChatSync-reasoning

6We set the cutoff length to the maximum number of tokens in
any datapoint in the dataset for all our experiments.
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(a) Speed Analysis across model sizes
(relative to FA2-N-Pass) (b)

K-pass Analysis
(relative to N-pass)

Flex-Pack configuration
(c)

Conversation Depth Analysis on
Qwen3-8B

(relative to FA2-N-Pass)

Figure 3. Training-time experiments

3.3. Results:

Training Speedup. Figure 3a shows training speedups.
Our 1-Pass method with packing (Flex-Pack-1-Pass) is
1.05×, 1.21×, and 1.22× faster than FA2-N-Pass base-
line with packing (FA2-Pack-N-Pass) on 4B, 8B, and 32B
models, respectively. Despite FlexAttention’s inherent
slowness versus FA2, our method’s single-pass efficiency
compensates. Compared to N-Pass FlexAttention with
packing (Flex-Pack-N-Pass), our Flex-Pack-1-Pass yields
1.44×, 1.54×, and 1.46× speedups for 4B, 8B, and 32B
models, respectively. Without packing, our 1-pass method
(Flex-1-Pass) lags FA2-N-Pass baseline for 8B and 32B
models. We hypothesize that this is because response-token
duplication widens the length disparity between conversa-
tions, making the method more sensitive to the absence of
packing than the N-Pass baseline. Across all experiments,
the 1-Pass variants consume roughly 33% more GPU mem-
ory than their N-Pass counterparts.

K-Pass Trade-offs. The 1-Pass and N-Pass approaches
represent two extremes: processing the entire conversation
in a single pass or in as many passes as there are turns.
We therefore also investigate intermediate settings, process-
ing each conversation in K passes. Concretely, we split
every dialogue into K contiguous chunks and apply our
single-pass mask only to the current chunk, duplicating
response tokens and computing loss exclusively for that
portion (see Appendix D.4.1 for full details). Figure 3b
reveals a speed-memory trade-off for K∈1,2,4,6,N. Our 1-
Pass method maximizes speed with ∼33% more memory
(vs. N-Pass). K=2 offers a balance (1.30×–1.37× speedups,
∼20% extra memory). Gains diminish for K > 4 because,
beyond K = 4, the extra time incurred by the longer se-
quences created through token duplication outweighs the
savings from processing a few turns together.

Conversation Scalability. The dataset contains conversa-
tions with depths from 1 to 16 turns. To analyse the effect
of depth, we partition it into three groups: G1 (1–5 turns),
G2 (6–7 turns), and G3 (8–16 turns)7. Figure 3c shows our
Flex-Pack-1-Pass speedups (vs. FA2-Pack-N-Pass) grow
with conversation depth (0.93×, 1.19×, 1.23× for G1, G2,
G3 respectively). A similar trend appears when comparing
our method without packing (Flex-1-Pass) to the FA2-N-
Pass baseline: speedups of 0.69×, 1.05×, and 1.56× for
G1, G2, and G3, respectively. This supports the theoretical
complexity reduction from O

(
N3

)
to O

(
N2

)
, as efficiency

gains become more pronounced with depth.

These results confirm single-pass training yields significant
computational savings, aligning with theoretical advantages,
making multi-turn reasoning fine-tuning practical at scale.
Please refer Appendix D.4 for comprehensive results of the
experiments conducted.

4. Conclusion
We presented an optimized 1-Pass training method for multi-
turn reasoning that reduces time complexity from O(N3)
to O(N2) via strategic token duplication and custom atten-
tion mask. Our theoretical analysis confirms loss equiva-
lence with the N-Pass method, enabling efficient training for
longer conversations. As multi-turn reasoning becomes cen-
tral to complex AI tasks, our method offers a scalable and
broadly applicable solution. Future work includes exploring
adaptive strategies to balance memory-efficiency trade-offs.
Additionally, we aim to benchmark performance on latest
back-ends such as FlashAttention3 (Shah et al., 2024) and
port our masking logic to these faster implementations.

7This uneven distribution originates from the underlying
MathChatsync dataset, which is heavily skewed toward 5–7 turn
conversations, a bias that propagates to our reasoning corpus.
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5. Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Background
A.1. Language Modeling Loss

For a token sequence (H<i, hi, ai), the language modeling loss (Radford et al., 2018) for assistant message ai can be
expressed as:

L(H<i, hi, ai) = −log(PΘ(ai|(H<i, hi)) (1)

where language model is parameterized by Θ.

B. Proofs
B.1. Proof for Theorem 2.1

We establish the equivalence by demonstrating that both approaches yield identical probability distributions over sequences,
which directly implies equal language modeling losses.

The proof proceeds in three parts: we show that (1) position encodings are equivalent, (2) attention patterns are identical,
and (3) the resulting loss functions are mathematically equivalent.

Part I: Position Encoding Equivalence. Consider the position ID assignments for turn i as defined in Section 2.2. In the
1-Pass approach, output tokens receive positions:

sti = ehi
+ 1

srout
i

= eti + 1

while input tokens from previous turns j < i receive:

srinj = ehj
+ 1

shj+1 = erinj + 1

This assignment ensures that tokens maintain the same relative positional relationships as in the N-Pass approach, where
each turn processes tokens sequentially within separate forward passes.

Part II: Attention Pattern Preservation. The custom attention mask defined in Section 2.2 ensures causal dependencies
are preserved. For turn i, the attention patterns are:

Output tokens:

ti → A
(
Hin

<i, hi

)
routi → A

(
Hin

<i, hi, ti
)

Input tokens from previous turns j < i:

hj → A
(
Hin

<j

)
rinj → A

(
Hin

<j , hj

)
These patterns exactly replicate the causal attention available in the N-Pass approach.

Part III: Loss Function Equivalence. The language modeling loss for turn i in the N-Pass approach is:

LN-Pass
i (H<i, hi, ai) = − logPθ (ti, ri | H<i, hi) (2)

By the autoregressive factorization:

LN-Pass
i (H<i, hi, ai) = − logPθ (ti | H<i, hi)− logPθ (ri | H<i, hi, ti) (3)
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The total loss across all turns is:

LN-Pass(c) =

N∑
i=1

LN-Pass
i (H<i, hi, ai) (4)

For the 1-Pass approach, the loss is computed as:

L1-Pass(c) = −
N∑
i=1

[
logPθ

(
ti | Hin

<i, hi

)
+ logPθ

(
rout
i | Hin

<i, hi, ti
)]

(5)

Key insight: Since rj = rin
j = rout

j (identical content in different positions) and the position encodings and attention patterns
are equivalent as established in Parts I and II, the internal representations are identical. Therefore:

Pθ (ti | H<i, hi) = Pθ

(
ti | Hin

<i, hi

)
(6)

Pθ (ri | H<i, hi, ti) = Pθ

(
rout
i | Hin

<i, hi, ti
)

(7)

Combining equations (4), (5), (6), and (7):
LN-Pass(c) = L1-Pass(c) (8)

C. Complexity Analysis
C.1. Input Length

C.1.1. N-PASS APPROACH

In the N-Pass approach, each turn i is processed in a separate forward pass. The input to the model at turn i is:

H<i, hi, ti, ri

because human and assistant response tokens from previous turns remain in the conversation history, while earlier reasoning
tokens are discarded.

Let LN-Pass denote the maximum input length possible for the N-Pass approach for a conversation c. It can be defined by:

LN-Pass =

N∑
i=1

(|hi|+ |ri|) +maxN
i=1|ti|, (9)

which is sum of all the human messages and response tokens for entire conversation and maximum length of thinking tokens
across turns. To simplify further, assume:

|hi|, |ti|, |ri| ∈ O(ℓ).

where ℓ denote the characteristic turn component length, defined as ℓ = P95(|hi|, |ti|, |ri| : i ∈ [1, N ], c ∈ D), where P95 is
the 95th percentile operator. Then:

LN-Pass ∈ O
(
(2N + 1)ℓ

)
= O(Nℓ). (10)

C.1.2. 1-PASS APPROACH

Our 1-Pass approach processes the entire conversation c in a single forward pass. The input length L1−Pass can be calculated
as:

L1-Pass =

N∑
i=1

(
|hi|+ |ti|+ 2|ri|

)
∈ O

(
4Nℓ

)
= O

(
Nℓ

)
. (11)

C.2. Time Complexity Analysis

For a transformer with hidden dimension d and context length n, each layer requires O(n2d) operations when n ≫
d (Vaswani et al., 2017).
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N-Pass Approach: Under the N-Pass approach, each of the N turns requires a forward pass, each operating on
O(LN-Pass) = O(Nℓ) tokens. Thus, for conversation c:

TN-Pass(c) ∈ O
(
N × (Nℓ)2d

)
= O

(
N3ℓ2d

)
. (12)

1-Pass Approach: In the 1-Pass approach, all the conversation tokens are given as input at once, thus operating on L1-Pass

tokens yielding a cost of:
T1-Pass(c) ∈ O

(
(4Nℓ)2d

)
= O

(
N2ℓ2d

)
. (13)

This represents a factor of N improvement in asymptotic complexity, with substantial gains for large N .

C.3. Memory Complexity Analysis

A transformer layer with input context length n has memory complexity O(n2) assuming n≫ d.

N-Pass Approach: Peak Memory requirement for N-Pass approach is at LN-Pass input. Thus for conversation c:

MN-Pass(c) ∈ O
(
(2N + 1)2ℓ2

)
= O

(
N2ℓ2

)
. (14)

1-Pass Approach: Memory requirement for 1-Pass approach can be given by:

M1-Pass(c) ∈ O
(
(4N)2ℓ2

)
= O

(
N2ℓ2

)
. (15)

Though 1-Pass incurs a higher constant factor due to response token replication, both approaches exhibit identical asymptotic
memory complexity.

D. Experiments
D.1. Dataset Creation

Figure 4. Dataset depth distribution: before vs. after sampling

To enable supervised training with explicit step-by-step reasoning, we construct and release MathChatsyncReasoning along
with its generation script. The dataset is obtained by augmenting the original MathChatsync corpus (Liang et al., 2024) with
a synthetically-generated rationale for every assistant turn. The procedure comprises three stages.

1. Source corpus. MathChatsync is a synthetic, dialogue-based mathematics tutoring dataset containing 144,978 conversa-
tions with alternating human and assistant messages but no reasoning traces.

2. Depth-balanced sampling. Conversation depth in MathChatsync is highly skewed toward six-turn dialogues (69 % of
all conversations; see Figure 4). To mitigate this bias, we first down-sample depth-6 dialogues from 100,443 to 30,000
instances. From the resulting pool we draw a stratified sample of 8,000 conversations.

• For each depth d, we calculate the proportion of the pool that depth represents.
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• We allocate to that depth the corresponding proportion of the 8,000-conversation budget, rounding up to the nearest
whole conversation.

• If the resulting number is below 200, we raise it to (i) 200 or (ii) the total number of conversations available at that
depth, whichever is smaller. This guarantees broad coverage across conversation depths.

The final split contains 8,797 assistant turns. Figure 4 compares the depth distribution before and after sampling.

3. Reasoning augmentation. For every assistant turn we generate an intermediate reasoning string using gpt-4.1-mini.
The model is provided with (i) the dialogue history up to the current human utterance and (ii) the assistant’s reply, and is
instructed to output only the hidden rationale that could have produced that reply. These rationales are concatenated to the
original conversations to form MathChatsyncReasoning.

D.2. Efficient mask generation

We present an efficient algorithm for generating the custom attention mask required by our 1-Pass training method. The
algorithm leverages vectorized GPU operations to compute visibility patterns without explicit loops.

Algorithm 1 Efficient Custom Attention Mask Generation

Require: Role IDs tensor R ∈ {0, 1, 2, 3, 4}B×L where B is batch size, L is sequence length
Ensure: 4D attention mask M ∈ RB×1×L×L

1: // Step 1: Compute turn IDs via cumulative sum
2: Rshift ← roll(R, shift = 1, dim = 1)
3: Rshift[:, 0]← 0
4: turn increment← (R ̸= 0) ∧ (R = 1) ∧ (Rshift ̸= 1)
5: T← cumsum(turn increment, dim = 1)
6: T[R = 0]← 0 {Zero out padding positions}
7:
8: // Step 2: Create base causal non-padding mask
9: i← [0, 1, . . . , L− 1]

10: non pad← (R ̸= 0)
11: Mbase ← (i[:,None] ≥ i[None, :]) ∧ non pad[:, :,None] ∧ non pad[:,None, :]
12:
13: // Step 3: Apply role-specific visibility constraints (K-map optimized)
14: turn equal← (T[:, :,None] = T[:,None, :])
15: Ri ← R[:, :,None]; Rj ← R[:,None, :]
16: Mfinal ←Mbase ∧

[
(Rj = 1) ∨ (Rj = 4 ∧ turn equal)

17: ∨(Rj = 3 ∧Ri ̸= 4) ∨ (Rj = 3 ∧ ¬turn equal)
18: ∨(Rj = 2 ∧ turn equal ∧Ri ̸= 3)

]
19:
20: // Step 4: Convert to 4D attention weights
21: M← where(Mfinal.unsqueeze(1), 0,−∞)
22: return M

Implementation Notes:

• All operations are performed on GPU using PyTorch’s vectorized tensor operations

• Role IDs: 0 = padding, 1 = human, 2 = thinking, 3 = response (first copy), 4 = response (second copy)

• The boolean expression in Step 3 is optimized using Karnaugh map reduction to minimize logical operations

• The algorithm avoids explicit loops by leveraging broadcasting and logical operations

• For CPU tensors, we temporarily move computation to GPU before returning results to the original device

9
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D.3. Experimental Setup

All training runs are initiated using llamafactory-cli in SFT mode. We apply QLoRA with 4-bit NF4 quantization, using a
LoRA rank of 32 and a scaling factor of α = 64. Training is performed for three epochs with bfloat16 (bf16) precision.

We enable the Liger kernel for improved efficiency. Each GPU processes a batch size of 2, with gradient accumulation over
4 steps. This setup yields an effective batch size of 64 across the 8-GPU node.

D.4. Comprehensive Results

We report the complete numerical results that support the figures in Section 3 in Tables 2, 3 and 4. We report two metrics for
every configuration:

• Throughput (“samples per sec.”) — the average number of full conversations processed per second.

• Peak GPU memory — the peak memory recorded during training.

Model Size Run Setting Samples per sec. Peak Memory(GB) Relative Speedup Relative Peak Memory
4B FA2-N-Pass(Baseline) 1.985 9 1.0 1.00

FA2-Pack-N-Pass 6.241 9 3.1 1.00
Flex Atten-N-Pass 1.286 9 0.6 1.00

Flex Atten+Packing-N-Pass 4.550 9 2.3 1.00
Flex-1-Pass 2.107 12 1.1 1.33

Flex-Pack-1-Pass 6.552 12 3.3 1.33

8B FA2-N-Pass(Baseline) 2.307 14 1.0 1.00
FA2-Pack-N-Pass 4.522 14 2.0 1.00

Flex-N-Pass 1.365 14 0.6 1.00
Flex-Packing-N-Pass 3.561 14 1.5 1.00

Flex-1-Pass 1.736 18.8 0.8 1.34
Flex-Pack-1-Pass 5.484 18.8 2.4 1.34

32B FA2-N-Pass(Baseline) 0.601 34 1.0 1.00
FA2-Pack-N-Pass 1.299 34 2.2 1.00

Flex-N-Pass 0.465 34 0.8 1.00
Flex-Packing-N-Pass 1.078 34 1.8 1.00

Flex-1-Pass 0.521 44 0.9 1.29
Flex-Pack-1-Pass 1.578 44 2.6 1.29

Table 2. Throughput and peak memory across execution strategies. FA2 = FlashAttention 2; Flex = FlexAttention. Pack denotes
dynamic sequence-packing; “1-Pass” is our proposed approach. Relative columns are computed with respect to the corresponding
FA2–N-Pass baseline.

D.4.1. IMPLEMENTING K-PASS PROCESSING

To obtain the results in Table 3 we extend our Optimised 1-Pass scheme to an intermediate K-Pass schedule. Assume a
conversation contains N assistant turns (h1, t1, r1), . . . , (hN , tN , rN ).

(a) Chunking the dialog. We partition the conversation into K contiguous chunks, each containing ⌈N/K⌉ turns (the last
chunk may be shorter).

(b) Selective token duplication. Within the current chunk we apply the same response-token duplication as in Section 2.2:
rin
i , r

out
i . All earlier chunks act purely as context and therefore retain their original, non-duplicated responses. This

progressively lowers the number of duplicated tokens as K increases, which is the main source of the memory savings
reported in Table 3.

(c) Attention and position IDs. The custom attention mask and position-ID assignment described in Section 2.2 are
applied only to the duplicated tokens of the active chunk. Context tokens keep the standard causal mask.
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Model Size K Samples per sec. Peak Memory(GB) Relative Speedup Relative Peak Memory
4B N-Pass(baseline) 4.55 9 1.00 1.00

6-Pass 3.89 10.8 0.85 1.20
4-Pass 4.76 11.5 1.05 1.28
2-Pass 5.91 11.8 1.30 1.31
1-Pass 6.55 12 1.44 1.33

8B N-Pass(baseline) 3.56 14 1.00 1.00
6-Pass 3.13 16 0.88 1.14
4-Pass 3.87 16.4 1.09 1.17
2-Pass 4.87 17 1.37 1.21
1-Pass 5.48 18.8 1.54 1.34

32B N-Pass(baseline) 1.08 34 1.00 1.00
6-Pass 0.88 39 0.82 1.15
4-Pass 1.08 40 1.00 1.18
2-Pass 1.37 41 1.27 1.21
1-Pass 1.58 44 1.46 1.29

Table 3. Speed–memory trade-off as a function of K. Each dialogue is split into K equal-length chunks that are processed sequentially
in a single forward/backward pass. K=N corresponds to the per-turn baseline, while K=1 is our single-pass method. All experiments
use the FlexAttention backend with sequence packing (Flex-Pack), the configuration that achieved the best overall speed in our primary
evaluation.

Run Setting Samples per sec. Peak Memory(GB) Relative Speedup Relative Peak Memory
Group 1 FA2-N-Pass(Baseline) 2.54 14 1.00 1

FA2-Pack-N-Pass 6.93 14 2.73 1
Flex-N-Pass 2.32 14 0.91 1

Flex-Packing-N-Pass 4.94 14 1.94 1
Flex-1-Pass 1.74 18.8 0.69 1.34

Flex-Pack-1-Pass 6.43 18.8 2.53 1.34

Group 2 FA2-N-Pass(Baseline) 1.02 14 1 1
FA2-Pack-N-Pass 2.39 14 2.34 1

Flex-N-Pass 0.87 14 0.86 1
Flex-Packing-N-Pass 2.10 14 2.06 1

Flex-1-Pass 1.07 18.8 1.05 1.34
Flex-Pack-1-Pass 2.86 18.8 2.80 1.34

Group 3 FA2-N-Pass(Baseline) 1.06 14 1 1
FA2-Pack-N-Pass 2.28 14 2.15 1

Flex-N-Pass 0.65 14 0.61 1
Flex-Packing-N-Pass 1.75 14 1.65 1

Flex-1-Pass 1.66 18.8 1.56 1.34
Flex-Pack-1-Pass 2.81 18.8 2.65 1.34

Table 4. Impact of conversation depth (Qwen-3 8B). Group 1 (1–5 turns), Group 2 (6–7 turns), and Group 3 (8–16 turns). Our 1-Pass
approach gains more speed as depth increases, in line with the theoretical O(N2) vs. O(N3) complexity gap.
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(d) Loss computation. The label mask is set to 1 for ti and rout
i inside the active chunk and 0 elsewhere, so each pass

trains only on the new turns while reusing earlier content as fixed context.

Conceptually, the K-Pass schedule interpolates between the extremes:

• K = N reproduces the per-turn baseline (no response duplication, minimal memory, maximal passes);

• K = 1 is our 1-Pass method (maximum duplication, single pass, fastest).
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