
HePCo: Data-Free Heterogeneous Prompt
Consolidation for Continual Federated Learning

Shaunak Halbe∗ James Seale Smith Junjiao Tian Zsolt Kira
Georgia Institute of Technology

Abstract

In this paper, we focus on the important yet understudied problem of Continual
Federated Learning (CFL), where a server communicates with a set of clients
to incrementally learn new concepts over time without sharing or storing any
data. The complexity of this problem is compounded by challenges from both
the Continual and Federated Learning perspectives. Specifically, models trained
in a CFL setup suffer from catastrophic forgetting which is exacerbated by data
heterogeneity across clients. Existing attempts at this problem tend to impose large
overheads on clients and communication channels or require access to stored data
which renders them unsuitable for real-world use due to privacy. We study this
problem in the context of Foundation Models and showcase their effectiveness in
mitigating forgetting while minimizing overhead costs and without requiring access
to any stored data. We achieve this by leveraging a prompting based approach
(such that only prompts and classifier heads have to be communicated) and
proposing a novel and lightweight generation and distillation scheme to aggregate
client models at the server. We formulate this problem for image classification
and establish strong baselines for comparison, conduct experiments on CIFAR-100
as well as challenging, large-scale datasets like ImageNet-R and DomainNet. Our
approach outperforms both existing methods and our own baselines by more than
7% while significantly reducing communication and client-level computation costs.

1 Introduction

Federated Learning (FL) is a privacy-preserving learning paradigm that enables learning a global
model through communication with a distributed set of clients. These clients have exclusive access to
private data, and collaborate with a central server to learn a shared task by communicating parameters
such as model weights, gradients, or learning statistics. For example, the popular FedAvg [1] method
works by iteratively aggregating client models by averaging model weights. Classical FL methods
such as FedAvg have garnered significant attention due to the increasing demand for user privacy and
the growth of edge computing.

However, currently most federated learning methods focus on learning statically, that is across a fixed
set of categories determined a-priori. In non-federated works, on the other hand, there has been
a great deal of progress on learning an increasing number of categories incrementally, referred to
as continual learning (and more specifically class-incremental learning) [2, 3]. In addition to the
problem of catastrophic forgetting, incremental learning breaks current assumptions in FL, namely
that the data is Independent and Identically Distributed (IID), has been shown to cause issues of model
divergence [4, 5]. While heterogeneous federated learning [5] approaches have been developed, they
do not support the dynamic data distributions that occur in continual learning and the real-world.

∗Correspondence to shalbe9@gatech.edu.

International Workshop on Federated Learning in the Age of Foundation Models in Conjunction with NeurIPS
2023 (FL@FM-NeurIPS’23). This workshop does not have official proceedings and this paper is non-archival.

Figure 1: Prompt learning using Foundation Models for communication efficient Continual Federated
Learning.

Such a setting has immense practical impact and finds direct applications in healthcare, autonomous
vehicles, and chat-bots.

Therefore, in this paper we look at the understudied problem of Continual Federated Learning
(CFL) [6, 7, 8]. While a few CFL methods exist, they address the issue of forgetting using approaches
such as: inter-client interference reduction, knowledge distillation and image-level generative replay.
Specifically, they often communicate full model weights, real/synthesized image-level data, or
gradients. Additionally, some methods store old data in memory buffers or train a generative model
to mimic local data; at the very least, all methods share complete models parameters with the server
which can lead to privacy leaks with advancements in model inversion and other extraction techniques
[9]. As a result, many of these methods fail to effectively uphold the principles of CFL, such as
communication efficiency, computational efficiency and privacy.

To mitigate forgetting while adhering to the core principles of CFL, we propose HePCo:
Heterogeneous Prompt Consolidation (Fig. 1). Our method is driven by the goals of (i) minimizing
communication costs, (ii) improving client privacy, and (iii) client-level computation efficiency.
We first propose to leverage prompting-based methods, which have shown successful results in the
rehearsal-free continual learning setting. This also has the benefit of utilizing frozen Foundation
Models, meaning that only prompts and classifiers have to be transmitted, reducing communication
costs. The key contribution of our approach is then to answer the question of how to merge prompts
from different clients in a scalable manner. Towards this end we propose a lightweight method for
generating pseudo-data and distilling client model information. Importantly, we distill data from
both the past task label distribution as well as the current task label distribution, preventing both
catastrophic forgetting and performance degradation due to client heterogeneity.

2 Related Work

Continual Federated Learning methods currently suffer from various limitations in terms of per-
formance, efficiency and privacy. FedWeiT [6] aims to learn better client models by minimizing
interference across client weights. FedWeiT incurs considerable overheads in terms of communication,
computation and storage. GLFC [10] uses a prototype based approach with a memory buffer to store
old data. This poses a threat to privacy of client data. CFed [7] proposes a distillation based approach
that makes use of an unlabelled surrogate dataset to aggregate client models as well as to rehearse
old tasks. However the requirement for a curated dataset can severely impact real-world applicability.
TARGET [11] combats forgetting through a generative replay of images from past tasks. However,
CFed and TARGET introduce overheads at both client and server sides, which may not be ideal for
some practical scenarios. FedCIL [8] leverages an Auxiliary Classifier GAN (ACGAN) to alleviate
forgetting by synthesizing old images for replay. However, generating images to mimic local datasets
can be viewed as a privacy risk especially in light of recent research on model inversion attacks [9]. In
contrast, our approach prioritizes client privacy by generating in the latent space which cannot easily
be traced back to the image space. Further, this benefits communication and compute efficiency.

3 Problem Formulation

In this section, we describe the formulation by introducing the class-incremental learning and
heterogeneous federated learning aspects in our CFL setting.

2

Class-Incremental Federated Learning. We focus on the class-incremental learning scenario,
where a model is tasked with learning new classes over time. Under this setting, a global model
is learned through a sequence of N global tasks T = {T 1, T 2, ..., TN}. As this is done in a federated
setup, each task is learned through R independent rounds by randomly sampling a set of stateless
clients C = {c1, c2, c3, ..., cS} in each round. In a stateless setting, new clients are visited in each
round. Previously seen data cannot be accessed at any time during the training.

Heterogeneous Federated Learning. To simulate a real-world heterogeneous federated learning
scenario, we use three configuration parameters to control the level of heterogeneity with increasing
granularity: split ratio, category ratio, and imbalance ratio. At the top level, the most common
heterogeneity is varying local dataset sizes. A specific client ci can be exposed to a subset of the
current task dataset Dt as their local dataset Dt

i , and the size |Dt
i | varies from each other. We denote

this as the split ratio γ = |Dt
i |/|Dt|. At a lower level, the local dataset Dt

i consists of a subset of the
categories from those in the current global task. Specifically, a global task T t consists of categories
Kt, where |Kt| 2 denotes the number of unique categories 3. In a given round r, each client ci sees
data containing Kt

i ∈ Kt categories. We denote κ = Kt
i/K

t as the category ratio which is a value
between 0 and 1. At the lowest level, each category can have a different amount of data. We follow
[12] to also create an artificial long-tail distribution for local data which is different for each client.
This distribution is governed by an imbalance ratio β. If β = 1, each client ci is allocated samples
uniformly from Kt

i categories. In summary, a smaller split ratio γ, a smaller category ratio κ, or a
smaller imbalance ratio β increases heterogeneity thereby increasing the complexity of the task.

As discussed before, combining client models in a heterogeneous setting causes the obtained model
to forget global knowledge from the previous rounds as shown by [13, 14]. Also, training clients
on locally-available datasets induces forgetting of global knowledge outside the local distributions.
Intra-task forgetting [7] measures such performance drops induced by the data heterogeneity
(non-IIDness) across clients. Inter-task forgetting measures the drop in performance on old tasks
{T 1, T 2, ..., T t−1} after learning a new task T t.

4 Method

In this section, we describe our novel approach called HePCo (Heterogenous Prompt Consolidation)
which tackles forgetting and heterogeneity using a data-free distillation strategy applied in the model’s
latent space. Unlike prior CFL works, we first propose to leverage the current state of art prompting
methods in continual learning. Such methods optimize learnable parameters that augment the input to
a pretrained transformer model (prompt tuning) or its underlying attention mechanism (prefix tuning).
These methods have been shown to obtain strong performance without requiring rehearsal.

Despite these advantages, there is a key challenge in applying prompting to the CFL setting: It is
not obvious how the server should combine prompts learned by the individual clients on subsets
of the categories within a task. Naively performing weight averaging performs poorly (as we show in
Sec. 5) and simply maintaining a growing prompt pool scales poorly with the number of clients.Our
key novelty is therefore to propose a lightweight data-free distillation method, performed in the
latent-space of the model, which greatly mitigates intra-task and inter-task forgetting. Doing so, we
prioritize privacy and efficiency, which are crucial for federated learning. In summary, in our method
communication between clients and the server is low, the information is effectively distilled, and
the method achieves state-of-art performance. Below we detail our method and depict it in Fig. 2.

4.1 Client Side : Decomposed Prompting

L2P (Learning to Prompt) [15] is a continual learning method that maintains a prompt pool
P = {P1, P2, · · ·, PM} of size M, where Pi ∈ RLp×D are prompt parameters with Lp as the prompt
length (chosen as a hyperparameter) and D the embedding dimension. Each prompt Pi has an
associated key ki ∈ RD. An input image x is converted into a visual query q(x) ∈ RD by passing
through the frozen vision transformer encoder θpt. Prompts are selected from the pool by measuring
the cosine similarity between associated keys and the visual query to be inserted into the transformer.

2We use the terms ’category’, ’class’, and ’label’ interchangeably to refer to the target classification label.
3|·| corresponds to set cardinality.

3

Figure 2: Latent generation and distillation with underlying decomposed prompting scheme.

While L2P is quite successful in protecting against forgetting, its performance is restrained by certain
design choices [16]. Specifically, L2P uses discrete prompts that restrict capacity and introduces an
additional hyperparameter (given by N). Instead, we form our final prompt p by taking sum of the
individual prompts Pi weighted by the cosine scores. This allows us to effectively learn end-to-end,
different from the decoupled optimization in L2P. In our setting, each client learns the key and prompt
matrices while keeping the ViT backbone frozen. After each round, the key, prompt, and classifier
weights are transmitted to the server, significantly reducing communication costs compared to sharing
complete models. This also safeguards privacy by preventing the server from replicating client models
since it has no knowledge of the specific layers where these prompts need to be inserted.

4.2 Server Side : Latent Generation

At the end of each round, the server receives |C| prompt and classifier weights collected from the
active clients. First, we simply average these weights to form intermediate server weights. Due to
data heterogeneity, the local model weights diverge which degrade the performance of this aggregated
model. We therefore propose to fine-tune the server model using data-free distillation in the latent
space to prevent this degradation. We generate pseudo data in the latent space of the visual query
q(x) ∈ RD which is essentially the output space of the vision encoder. The advantage of generating
in this space is that it allows us to fine-tune both the classifier and the key-prompt weights without
needing a forward-pass through the encoder! We use a lightweight feedforward neural network as
our conditional generator with a D dimensional output. We encode a class label (from categories in
current task t) using an embedding layer and concatenate the obtained class embedding with noise
vector of dimension Dnoise drawn from the standard normal distribution N (0,1) to form the input
of the generator. From the generator, we obtain a pseudo latent of dimension D conditioned on the
class label as follows:

z = G(ϵ, y; θgen), (1)

where z ∈ RD is the generated pseudo latent and ϵ ∈ RDnoise ∼ N (0,1) is the noise vector. For
effective knowledge distillation, pseudo data should conform to the latent space of the client models.
We optimize for a classification loss which is a sum of classification losses for each individual client,
similar to [17]. The total classification loss can be given as:

Lcls =
∑
c∈C

Lc
cls and, (2)

Lc
cls =

∑
c∈C

LCE(ϕ(z;wc), y) (3)

where Lc
cls is the cross-entropy loss between the prediction of local model c given latent z and sampled

class label y. Here, ϕ denotes the classifer (last layer). However, optimizing for just the classification
loss encourages the generator to produce pseudo latents which are easy to be classified and hence
less effective for distillation. Our goal is to generate latents that create a discrepancy between the
intermediate server model and clients, thereby providing a learning opportunity for the server. To
promote the generation of such hard samples, we maximize two disagreement losses (one for prompts
and one for classifier) between server and client models. To measure the disagreement with respect
to the classifier, we compute the Kullback-Leibler (KL) divergence between the predictions of the
intermediate server model and each individual client model. Next, to measure the disagreement with

4

respect to the prompting mechanism, we introduce a Mean-Squared Error (MSE) loss between the
final prompts generated by the server and all clients. By training the generator to maximize these
losses, we increase the potency of pseudo-latents for effective distillation in both parts of the network.

LKL =
∑
c∈C

σ(ϕ(z;w))||σ(ϕ(z;wc))

(4a)

LMSE =
∑
c∈C

LMSE(ρ(z;w), ρ(z, wc))

(4b)

where σ denotes the softmax function and ρ denotes the prompting mechanism described in 4.1. We
train the generator by optimizing for these these losses jointly as:

min
θgen

Eϵ∼N (0,1) [Lcls−λKLLKL−λMSELMSE] (5)

A model fine-tuned with only current task pseudo-data suffers from inter-task forgetting as shown
in our ablation experiments in Appendix B. To prevent this, we train a separate copy of the generator
(θ̂gen) to generate latents corresponding to the previously seen tasks. Here the classification loss
Lcls is computed for the previous task server model and Ldis is measured between previous and
intermediate server model.

4.3 Server Side : Latent Space Knowledge Distillation

Once the generator is trained to generate pseudo-latents corresponding to the current and previous
tasks, we use it to efficiently fine-tune the classifier and prompting components of the intermediate
server model. We use the key, prompt and classifier weights corresponding to the current round
client models and the last-task server model to fine-tune the server model. As it operates in a low
dimensional latent space, this distillation process is computationally cheap compared to traditional
distillation that trains the entire network. While we introduce additional server overhead, it is
important to note that, in the context of CFL, clients are typically edge devices with limited
computing power, while servers have ample computational resources. We prioritize client-level
efficiency while making efficient use of the server’s resources. In Appendix, we compute this
overhead and show that it is competitive to that incurred by existing state-of-the-art (SOTA) methods.
To perform knowledge distillation, we first generate a batch of pseudo-data from the generators
corresponding to the current round and previous task. We mix the current and previous task batches
to form a single composite batch according to a hyperparameter named replay ratio which determines
the size of the previous task batch relative to the current round batch.

First, to fine-tune the weights used for prompting, we pass the pseudo-data through the prompting
mechanism of a model to obtain final prompts p which would serve as the target for distillation.
Note, we do not require full models to generate these targets. Now to fine-tune the server model,
we optimize for the Mean Squared Error (MSE) loss between the final prompts generated by the
intermediate server model and each individual model (clients and last-task server).

Lprompt =
∑
c∈C

Lc
MSE + ζyt−1Lt−1

MSE , (6)

where Lc
MSE denotes the MSE loss between client c and the intermediate server model and Lt−1

MSE de-
notes the MSE loss between the intermediate model and the previous task server model. Further, ζyt−1
is an indicator variable which is set to 1 if y was seen in previous tasks and 0 if present in current task.
Finally, to fine-tune the classifier of the server model, we minimize the cross entropy loss. The
cross-entropy loss is computed between the predictions of the server for a batch of pseudo latents
and the class labels that the pseudo latents were conditioned on.

5 Experiments

Setup. We appropriately adapt three image classification datasets commonly used in continual learn-
ing [16], to fit our specific setting. ImageNet-R and DomainNet capture real-world distribution shifts
that can be challenging for models pre-trained on ImageNet to generalize to and are widely recognized
benchmarks for evaluating continual learning in Foundation Models. We divide these datasets into
10-task (CIFAR-100, ImageNet-R) and 5-task (DomainNet) benchmarks. For all experiments reported
in Table 1, we consider a class balanced setting (β = 1) and use a category ratio κ = 0.6 which means

5

Table 1: Results (%) for the class-balanced setups reported over 3 independent trials.

Datasets (β = 1) CIFAR-100 ImageNet-R DomainNet
Method AN (↑) FN (↓) AN (↑) FN (↓) AN (↑) FN (↓)

Prompting (Centralized) 85.35 - 72.28 - 71.33 -
FedAvg-FT 10.23± 1.10 31.74± 0.80 12.03± 0.75 29.07± 0.66 18.76± 0.44 32.81± 1.22

FedLwF.MC [20] 59.08± 1.06 12.39± 0.76 52.87± 0.61 13.34± 0.38 62.39± 1.12 10.76± 0.50
FedAvg-Prompt 67.34± 1.42 8.38± 0.42 51.15± 0.68 8.84± 0.52 51.03± 2.23 12.03± 0.45

CFed [7] 72.26± 1.56 8.82± 0.64 45.64± 1.32 11.74± 1.22 63.32± 0.78 7.12± 0.66
TARGET [11] 73.56± 1.42 6.83± 0.91 52.38± 1.16 8.88± 0.96 61.84± 1.66 7.94± 0.52
HePCo (Ours) 76.54± 1.14 6.61± 0.73 59.96± 0.94 7.08± 0.40 64.01± 0.36 6.83± 0.31

Table 2: Results (%) for class-imbalanced setup

Datasets CIFAR-100 ImageNet-R DomainNet
Method AN (↑) AN (↑) AN (↑)

Imbalance ratio (β) β = 0.05 β = 0.01 β = 0.05 β = 0.01 β = 0.05 β = 0.01
FedAvg-FT 8.81± 1.53 9.18± 1.26 9.26± 1.02 8.88± 1.24 13.02± 1.29 11.65± 1.84

FedLwF.MC [20] 50.40± 0.88 40.39± 1.06 19.94± 0.78 13.34± 1.41 57.34± 0.84 52.46± 0.72
FedAvg-Prompt 62.72± 1.79 54.43± 1.57 36.51± 0.86 28.16± 1.12 47.73± 1.25 43.23± 1.03

CFed [7] 70.26± 1.20 62.04± 1.62 34.62± 1.41 25.74± 1.08 59.89± 0.68 55.22± 0.80
TARGET [11] 66.47± 1.22 58.13± 1.54 30.20± 1.35 19.84± 1.41 56.44± 0.45 51.82± 0.58
HePCo (Ours) 70.34± 1.08 61.70± 1.48 45.45± 0.98 41.68± 1.44 61.10± 0.76 58.82± 0.84

that if a task contains 10 categories, each active client is randomly assigned 6 of these categories.
Further, we use a uniform split ratio γ = 0.1 which allows a client to be assigned 10% of the examples
corresponding to the subset of categories. We evaluate all methods using the standard continual learn-
ing metrics of final average accuracy AN and average forgetting FN [18, 19]. As noted by [16], AN is
the more informative metric as it encompasses both forgetting and plasticity (new task performance).
We conduct further analysis with respect to efficiency and overhead costs in the Appendix C.

Baselines. For fair comparison with existing SOTA methods, we adapt their implementations to use
the same ViT backbone. We introduce a simple yet strong baseline FedAvg-Prompt, where the server
model is aggregated by simply averaging the prompt components of the clients. For completeness,
we also report the naive sequentially finetuned baseline that we call FedAvg-FT. Finally, we report
the performance of our decomposed prompting scheme in a centralized, traditional continual learning
setting. This can be thought of as an upper bound for all prompt-based methods included here.

5.1 Main Results

The results presented in Tables 1 and 2 demonstrate the dominant performance of our method across
all datasets and setups. The gains achieved by our method are more pronounced in the ImageNet-R
setup which has longer task sequences and offer a significant shift from the pretrained distribution.
All baselines that fine-tune the entire model are seen to struggle with longer sequences (CIFAR,
Imagenet-R), showing significant forgetting. Under the class-balanced setting of Table 1, our approach
achieves absolute improvements of more than 7% on ImageNet-R in average accuracy compared to
TARGET [11], which is the current SOTA. For the class-imbalanced settings in Table 2, our approach
outperforms the competition by even wider margins. The notable performance drops observed across
all methods highlight the complexity of this setting. Most importantly, HePCo achieves these solid
results while enjoying low communication costs and without introducing any additional costs at the
client-side. Furthermore, our approach faithfully aligns with the principles of Federated Learning
(FL) by not assuming access to any storage, be it surrogate datasets or generated images, in contrast
to other methods we have compared against. We include further analysis in Appendix B.

6 Conclusion

In conclusion, we propose HePCo (Heterogeneous Prompt Consolidation) for continual federated
learning. Our method harnesses the prompt learning capabilities of foundation models to facilitate a
data-free distillation framework for consolidating heterogeneous clients. We demonstrate the superior
performance of our method through a series of experiments that emulate challenging real-world
scenarios. By requiring clients to share parts of their models, we significantly reduce communication
costs and enhance privacy. Importantly, our approach does not impose any additional overheads on
the client side, making it highly valuable for real-world deployment. We include a discussion on the
limitations of our work in Appendix D.

6

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No.
2239292

References
[1] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera

y Arcas. Communication-efficient learning of deep networks from decentralized data, 2023.

[2] Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating con-
tinual learning scenarios: A categorization and case for strong baselines. arXiv preprint
arXiv:1810.12488, 2018.

[3] Gido M van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

[4] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. 2018.

[5] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence
of fedavg on non-iid data, 2020.

[6] Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. Federated
continual learning with weighted inter-client transfer, 2021.

[7] Yuhang Ma, Zhongle Xie, Jue Wang, Ke Chen, and Lidan Shou. Continual federated learning
based on knowledge distillation. In Lud De Raedt, editor, Proceedings of the Thirty-First Inter-
national Joint Conference on Artificial Intelligence, IJCAI-22, pages 2182–2188. International
Joint Conferences on Artificial Intelligence Organization, 7 2022. Main Track.

[8] Daiqing Qi, Handong Zhao, and Sheng Li. Better generative replay for continual federated
learning, 2023.

[9] Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramèr,
Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models,
2023.

[10] Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu, Xiao Wang, and Qi Zhu. Federated
class-incremental learning, 2022.

[11] Jie Zhang, Chen Chen, Weiming Zhuang, and Lingjuan Lv. Addressing catastrophic forgetting
in federated class-continual learning, 2023.

[12] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss, 2019.

[13] Gihun Lee, Minchan Jeong, Yongjin Shin, Sangmin Bae, and Se-Young Yun. Preservation of
the global knowledge by not-true distillation in federated learning, 2022.

[14] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification, 2019.

[15] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su,
Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning, 2022.

[16] James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun
Kim, Assaf Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual
decomposed attention-based prompting for rehearsal-free continual learning. arXiv preprint
arXiv:2211.13218, 2022. Accepted for publication at CVPR 2023.

[17] Lin Zhang, Li Shen, Liang Ding, Dacheng Tao, and Ling-Yu Duan. Fine-tuning global model
via data-free knowledge distillation for non-iid federated learning, 2022.

7

[18] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-GEM. In International Conference on Learning Representations, 2019.

[19] Raphael Gontijo Lopes, Stefano Fenu, and Thad Starner. Data-free knowledge distillation for
deep neural networks. arXiv preprint arXiv:1710.07535, 2017.

[20] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains
with residual adapters. Advances in neural information processing systems, 30, 2017.

[21] Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[23] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi
Ren, Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting
for rehearsal-free continual learning. arXiv preprint arXiv:2204.04799, 2022.

[24] Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough. Predicting the
computational cost of deep learning models, 2018.

[25] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network
training, 2021.

[26] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying
the carbon emissions of machine learning, 2019.

8

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Appendix

A Experimental Details

Implementation Details. For fair comparison, we use the ViT-B/16 backbone pretrained on Imagenet-
1K as the encoder for all methods. We resize images to 224 × 224 and normalize to [0,1]. We
implement our methods in PyTorch and use the PyTorch Image Models library [21] to obtain
pretrained checkpoints. In our experiments, the total number of classes for CIFAR-100, ImageNet-R
and DomainNet are 100, 200 and 345 respectively. We use 2 NVIDIA A40 GPUs for all experiments.

Training Details. For all methods, we use the Adam [22] optimizer with β1 = 0.9 and β2 = 0.999
and train for 10 local epochs in each round. We learn each task through R = 10 communication
rounds by selecting C = 5 stateless clients per round. Thus, we have 100 total rounds for a 10-task
setup and 50 for a 5-task setup.

Hyperparameter Search. As done in DualPrompt [23] we use 20% of the training dataset
as our validation data and conduct a hyperparameter search. We arrive at using a batch
size of 64 for both local and server-side training. We use a learning rate of 1e−3 for our
method and the prompting-based baselines and a learning rate of 5e−5 for all baselines that
tune the entire model (FedAvg, FedLwF.MC). We search for learning rates in the values of
{1e−6, 5e−5, 1e−5, 5e−4, 1e−4, 5e−3, 1e−3, 5e−2, 1e−2}. For our method, we use a three-layer fully-
connected network as our generator. We encode the class label using an embedding matrix of
embedding length 64 and concatenate it with a noise vector of dimension 64. Our generator ar-
chitecture can be described with having the following input sizes per layer : [128, 256, 1024] and
an output size of 768 which is the dimension of the visual query. We train the generator for 100
epochs using a batch size of 64 and a learning rate of 1e−4 using the Adam optimizer. We fine-tune
the server model using a learning rate of 1e−4 for 200 epochs. We use a replay ratio of 0.5 for
our method, which means we mix 50 pseudo-latents corresponding to previous tasks for every 100
pseudo-latents corresponding to the current task. We conduct a search over values like [0, 0.125,
0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1] and find 0.5 to result into the best average accuracy AN . We
observe a stability-plasticity trade-off controlled by this hyperparameter with larger values leading to
lower forgetting (FN) but lower current task accuracies (plasticity) and smaller values yielding the
opposite effect. Through the hyperparameter search we choose λKL and λMSE values to be 1 and
0.1 respectively.

B Ablation Studies

We perform ablations experiments on CIFAR-100 in the class-balanced setting from Table 1 and
report in Table A

Ablating distillation of previous server model. By removing the previous task server model from
the distillation and generation steps, we highlight its efficacy in alleviating forgetting. By ablating
this component, we observe a significant drop in performance indicated by a rise in forgetting (FN)
and a drop in average accuracy (AN). The underlying intuition is that without the replay of past task
data, the method strongly prioritizes learning of the current task leading to a loss of knowledge from
previously seen tasks.

Ablating disagreement losses in generation. To demonstrate the effectiveness of disagreement
losses in generation, we set both the lambda coefficients to zero and observe a 6% drop. As discussed
before, the intuition here is that in absence of the disagreement losses, the generator is prone to
generate easily discriminable examples that lead to low classification loss but are less effective in
distillation. To further highlight the importance of the individual losses, i.e LMSE and LKL, we
individually ablate them and observe performance drops.

Ablating distillation targets. In this experiment, we avoid distillation for the prompt components and
the classifier separately and observe a decline in performance in both cases. The drop in performance
is more pronounced when we ablate distillation for the classifier. This experiment highlights our
decision to fine-tune both prompt components and classifiers by operating in the latent space.

Varying the category ratio. Figure A shows the performance of all methods for different values of
category ratio. We observe that HePCo consistently outperforms competing methods without requir-

9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Category Ratio

20

30

40

50

60

70

80

90

Av
er

ag
e

Ac
cu

ra
cy

 A
N
(%

)

HePCo
TARGET
CFed
FedLWF.MC
FedAvg-Prompt

Figure A: Comparison of the methods under
different category ratios

Method AN (↑)

HePCo (Ours) 76.54± 1.14

Ablate previous server model 61.15± 2.13

Ablate LKL & LMSE 70.22± 1.45
Ablate LKL 71.39± 1.34

Ablate LMSE 74.11± 1.31

Ablate prompt distillation 74.42± 1.22
Ablate classifier distillation 68.46± 0.91

Table A: Ablation Results (%) on 10-task CIFAR
100. AN gives the accuracy averaged over tasks
and FN gives the average forgetting.

ing any hyperparameter or design changes. The performance gap between HePCo and the competing
methods widens with the category ratio, indicating its effectiveness in settings with high heterogeneity.

C Overhead Costs

Memory Overhead. Our method introduces additional parameters forming the prompting mechanism.
The additional parameters amount to ~9.4% of the original size of the ViT encoder. Our method
only needs to communicate the total learnable parameters in the model which includes the classifier
and prompt components amounting to ~9.5% of the original model size. Methods that finetune the
entire model need to learn and communicate all parameters in the encoder and classifier. Hence, our
approach required only 9.5% of the communication costs compared to these approaches. Furthermore,
the current state-of-the-art methods like CFed and TARGET require communicating a dataset of
images (obtained from the surrogate dataset or a generative mechanism) after every round or task
which significantly increases the communication overhead in addition to sharing complete models!

Computation Overhead. Our method does not require any extra computation at the client side
but introduces an overhead at the server side. This overhead includes the time required to train the
generators and perform knowledge distillation. To quantify this overhead, we conducted bench-
marking using 2 NVIDIA TITAN RTX GPUs in a 5 client setup, as described in the experiments
section. Our method adds an extra 220 seconds of computational time at the server side per round,
in contrast to the 166 seconds introduced by CFed and the 190 seconds incurred by TARGET. It is
crucial to emphasize that our method imposes no additional overhead on the client side, unlike CFed
and TARGET, where the client is effectively responsible for learning the current task and distilling
knowledge from past tasks. In most practical federated learning scenarios, edge devices have limited
computational capacity compared to the server. Our approach prioritizes client-level efficiency, even
if it entails a slight trade-off in server-level efficiency.

Storage Overhead. As our method operates in a stateless FL setup, we do not require clients to
maintain any state information or additional storage. Our approach requires the server model to store
the classifier and prompt components corresponding to the last task model which is used in distillation
resulting into a storage cost equal to ~9.5% of the base encoder model size. Other baselines [20]
incur extra storage costs at the client side equal to the size of entire encoder and classifier i.e ~86M
parameters. Additionally, CFed and TARGET incur costs equivalent to storing an entire image dataset
at both server and individual client levels.

In summary, our approach attains state-of-the-art performance while imposing lower overheads
compared to existing methods.

D Discussion

Limitations. It is worth noting that prompting-based methods are still relatively new and not
extensively studied, making the interpretation of these prompts challenging. Therefore, future work
should focus on testing the robustness of these methods in diverse setups to ensure their effectiveness
in different scenarios. One potential limitation of this work is in the computation overhead introduced

10

at the server, which may be an issue for some use-cases. Although the generation and distillation
procedures are relatively lightweight, they still rely on server-side compute resources, which may
not be universally accessible in all scenarios. Additionally, our approach necessitates clients to use
pretrained vision transformers, leaving open the question of how this framework can be extended to
accommodate other architectures. These are interesting avenues for future research.

Broader Impact. The machine learning community is increasingly leaning towards the adoption of
large-scale models for various applications. However, updating these models with new data poses a
significant challenge. Retraining models from scratch each time new data arrives is computationally
expensive and can have substantial financial [24] and environmental [25, 26] implications. Our
approach offers a solution by enabling incremental learning on new data without the need for
complete model retraining. Additionally, our use of prompting techniques allows for significant
reductions in communication and local computation costs while enhancing privacy, which is especially
critical for on-device edge computing applications.

11

	Introduction
	Related Work
	Problem Formulation
	Method
	Client Side : Decomposed Prompting
	Server Side : Latent Generation
	Server Side : Latent Space Knowledge Distillation

	Experiments
	Main Results

	Conclusion
	Experimental Details
	Ablation Studies
	Overhead Costs
	Discussion

