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Abstract

As a glyphic language, Chinese incorporates001
information-rich visual features below the char-002
acter level, such as radicals which can provide003
hints about meaning or pronunciation. How-004
ever, we argue that Large Language Models005
(LLMs) and Vision-Language Models (VLMs)006
fail to identify or harness these valuable fea-007
tures. Our study evaluates LLMs and VLMs in008
identifying visual information in Chinese char-009
acters, such as radicals, composition structures,010
strokes, and stroke count. Additionally, we011
design “radical prompting” to explore enhance-012
ments for LLMs in NLP tasks utilizing radical013
information. Results demonstrate most LLMs014
and VLMs struggle to recognize any visual in-015
formation in Chinese characters. The intro-016
duction of ‘radical prompting’ led to some im-017
provements in LLM performance across NLP018
tasks, but significant improvement was seen019
only when correct radicals were provided, as020
observed in part-of-speech (POS) tagging task.021

1 Introduction022

Unlike some of the alphabetical languages, a char-023

acter is not the smallest meaningful unit in Chinese.024

Most Chinese characters are composed of simpler025

characters called radicals1, which usually provide026

hints about the pronunciation or meaning of the027

character they form. Radicals and Chinese char-028

acters decompose into strokes, the smallest units.029

For example, the Chinese character “花” (mean-030

ing “flower”) has “艹” (meaning “herbal”) on the031

top, contributing to its semantic meaning, and化”032

on the bottom, indicating its pronunciation. The033

component “化” can be further decomposed into034

“亻” and “七.” Ultimately, everything can be de-035

composed into strokes as illustrated in Figure 1.036

1In its strictest sense, a radical refers to one specific build-
ing block of a Chinese character that can be used as a way
of indexing; characters with the same radical share similar
properties. In a broader definition, radicals refer to any large
components within a character, which this paper adopts.

Figure 1: Chinese character “花” displayed at the char-
acter, radical, and stroke levels from left to right. Differ-
ent radicals are shown in green, yellow, and pink colors,
while the writing order of the strokes is indicated by red
(current), gray (upcoming), and black (completed).

When encountering unknown characters, Chinese 037

speakers rely on radicals to estimate their mean- 038

ings or pronunciations and strokes to know how 039

to write them. Therefore, we evaluated LLMs and 040

VLMs on their ability to identify these visual fea- 041

tures and designed ’radical prompting’ to adopt 042

similar strategies in NLP tasks. 043

To evaluate models’ ability to recognize visual 044

information embedded in Chinese characters, we 045

constructed a dataset including over 14,000 Chi- 046

nese characters from CJK Unified Ideographs2, 047

annotated with three features: radicals, strokes, 048

and stroke count. Among these, 4,564 Simplified 049

Chinese characters are also annotated with com- 050

position structure information. Radicals provide 051

clues to the meaning or pronunciation of charac- 052

ters. Composition structures influence the order 053

and method of recognizing and decomposing char- 054

acters. Strokes dictate the sequence of writing a 055

character, and stroke count offers a measure of a 056

character’s visual complexity and density. 057

Results demonstrate LLMs and VLMs—whether 058

Chinese or multilingual—struggle to accurately 059

identify visual features in Chinese characters. Mod- 060

2Modern typefaces for Japanese and Korean languages of-
ten utilize their regional variations of Chinese characters. The
CJK Unified Ideographs refers to a set of Chinese characters
used across these three languages, where efforts have been
made to standardize and unify the characters to accommodate
their shared use in digital typography and computing.
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els display low accuracy and F1 scores, and high en-061

tropy when asked to identify radicals, structure, or062

strokes of Chinese characters. They also show high063

mean squared error (MSE) in estimating stroke064

counts. When utilizing “radical prompting” in NLP065

tasks, which asks models to utilize radical infor-066

mation on unfamiliar words or characters, LLMs067

show improvement when correct radicals are given.068

However, when not given the correct radicals, the069

improvements are minimal.070

This paper makes three key contributions to im-071

prove Chinese language processing in LLMs and072

VLMs at the character level and below: 1) It de-073

velops a dataset that captures the visual aspects074

of Chinese characters; 2) examines the challenges075

contemporary LLMs face in precisely recognizing076

the visual information of characters; 3) introduces077

’radical prompting’ to enhance the performance of078

LLMs on general NLP tasks.079

2 Related Work080

Chinese Character Decomposition in Computer081

Vision The task of decomposing Chinese charac-082

ters into constituent components aligns with the083

field of computer vision. Research within this084

domain, such as the studies by (Ma et al., 2021),085

(Xia, 1994), and (Liu et al., 2021), has explored086

analogous challenges. The work by (Zhang et al.,087

2018) employs a methodical approach by catego-088

rizing characters into structured types, such as089

top-bottom or left-right, and further decompos-090

ing sub-components according to their spatial ar-091

rangements—akin to the layered structural analysis092

which we adopt in this paper.093

Chinese decomposition dataset In reviewing094

available resources, we encountered a comprehen-095

sive dataset (Kawabata et al.) that offers decompo-096

sitions for the CJK Unified Ideographs. Although097

this collection overlaps with our dataset, it does098

not cite any authoritative sources for its data. This099

omission leads to ambiguity due to multiple decom-100

position sequences for individual characters.101

Our approach utilizes sources from authoritative102

dictionaries such as the Kangxi Dictionary (康熙字103

典) and the Xinhua Dictionary (新华字典)3, ensur-104

ing a validated framework for visual information.105

Additionally, our dataset contains systematic and106

standard stroke orders for all 14,648 characters,107

3Xinhua and Kangxi Dictionaries are renowned lexico-
graphical resources for Chinese. Digitalized Kangxi Dictio-
nary can be found here: https://www.kangxizidian.com/

which the aforementioned dataset lacks. We also 108

created a manageable subset of 4,651 Simplified 109

Chinese characters with structural classification. 110

Glyphic Embedding Strategies in LMs Recent 111

studies have sought to leverage the rich visual infor- 112

mation inherent in Chinese characters to enhance 113

language model performance. For instance, (Sun 114

et al., 2021) introduces a novel approach that incor- 115

porates different embeddings alongside glyph em- 116

beddings derived from various fonts to enrich char- 117

acter representations. Similarly, (Si et al., 2021) 118

delves into the potential of stroke encoding among 119

other glyph-based input methods to explore their 120

performance. Additionally, (Shi et al., 2015) har- 121

nesses radical information, utilizing it as a key com- 122

ponent for embedding Chinese characters. 123

These approaches share a common challenge: 124

the necessity of retraining the entire system, which 125

not only demands substantial computational re- 126

sources but also raises questions about scalability 127

and adaptability, especially since these enhance- 128

ments have predominantly been applied to smaller- 129

scale models. Tokenizing at a fine-grained level 130

also leads to slower output speeds. Our paper, in 131

contrast, zeroes in on the impact of incorporating 132

visual features of Chinese characters directly within 133

contemporary LLMs and VLMs. 134

Statistic Number

Total Characters 14,648
- Frequently used : 3,500 (24.1%)
- Commonly used : 3,000 (20.6%)
- Terminology used: 1,605 (11.0%)
- Rarely used: 5,543 (37.8%)
- With structural information: 4,651 (31.8%)

Without components 324
With 2 components 12,769
With 3 components 992
With more than 3 components 476

Unique stroke patterns 13,740

Stroke number mean 11.51
Stroke number standard deviation 3.92
Minimum stroke number 2
Maximum stroke number 39

Table 1: Key statistics of our Chinese character dataset

3 Dataset 135

To evaluate contemporary LLMs and VLMs’ profi- 136

ciency with visual information in Chinese charac- 137

ters, we compiled a dataset using characters from 138

CJK Unified Ideographs with visual features col- 139

lected from the digitized Kangxi Dictionary (康熙 140
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Figure 2: Examples of composition structures with radical in order of black, red, yellow and four types of tasks.

字典) and Xinhua Dictionary (新华字典). Our141

dataset includes 14,648 Chinese characters and142

details their corresponding radicals, strokes, and143

stroke count. A subset of 4,651 Simplified Chinese144

characters also contains structural composition in-145

formation. The detailed statistics are provided in146

Table 1 with three tiers of Chinese character fre-147

quency listed for reference. These tiers are cate-148

gorized by the Table of General Standard Chinese149

Characters published by the Chinese government.150

Structure of Chinese Characters. According151

to the digitized Kangxi dictionary, we categorize152

4651 simplified Chinese characters into eight ma-153

jor structural arrangements: top-bottom, left-right,154

top-mid-bottom, left-mid-right, wrapping, inlay,155

triple-stack, and single structure, which refers to156

characters that cannot be further segmented. Ex-157

amples of each structure are illustrated in Figure158

2, with the distribution of structure types shown in159

Figure 3. The structure of Chinese characters can160

be complex, with layers of structure compounding161

upon each other. For example, the character ’花,’162

shown in Figure 1, has a top-bottom structure, con-163

sisting of “艹” and “化.” “化” exhibits a left-right164

Figure 3: The proportion of Chinese character structures

structure which can be further decomposed into 165

“亻” and “七.” To maintain clarity, we categorize 166

all characters based on their primary structure. 167

Radicals of Chinese Characters. Radicals are 168

the major component blocks in Chinese charac- 169

ters, providing essential clues about meaning and 170

pronunciation. In our dataset, the radicals were 171
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collected using a combination of human annotation172

and APISpace’s Chinese character segmentation173

API4. After attempts at automated annotation, we174

manually reviewed and adjusted segmentations to175

ensure that at least one component is meaningful176

after segmentation, wherever feasible. For exam-177

ple, while “八” could be segmented as a left-right178

structure, we classify “八” as a single structure179

with zero radicals to avoid all radicals being mean-180

ingless strokes after segmentation. Approximately181

1,000 characters required manual adjustment due182

to empty or incorrect radicals, with more than 500183

being adjusted to avoid reduction to strokes by one184

of the authors who is a native Chinese speaker.185

The radical order follows rules: from top to bot-186

tom, left to right, outside to inside, and main part187

before inlay parts as illustrated in Figure 2, where188

the radicals are colored according to their order189

and structures. If a radical does not exist in the190

typeface, it is further split to check for existing sub-191

radicals. For example, in a left-mid-right structured192

character, if the mid part cannot be typed but can193

be split into top and bottom parts, the radical order194

will be left, mid (top), mid (bottom), and right.195

Strokes of Chinese Characters. Chinese dictio-196

naries categorize all Chinese strokes into five basic197

stroke types: “一”, “丨”, “ノ”, “丶”, and “フ’,198

which our dataset adopts. We first utilized the Xin-199

hua Dictionary (新华字典) API to annotate the200

strokes. For characters not found in the dictionary,201

we attempted to concatenate the stroke information202

of their components in order. We then manually203

reviewed the stroke information to ensure accuracy.204

The stroke count, also collected in the dataset, is205

the number of strokes required to write a character,206

offering a measure of word complexity and density.207

Unlike alphabetic languages, where word length208

can hint at complexity, Chinese characters occupy209

uniform space, making stroke count a valuable in-210

dicator of intricacy. The statistics for strokes are211

provided in Table 1 with illustrations in Figure 2.212

4 Evaluation on Visual information of213

Chinese Character214

4.1 Tasks215

Structure Recognition of Chinese Characters.216

We assess LLMs and VLMs’ proficiency in iden-217

tifying the correct structural arrangements of Chi-218

4API document in Chinese can be accessed through link:
https://www.apispace.com/eolink/api/dfsdfsfsf/apiDocument

nese characters. For this task, we provide the char- 219

acter along with eight different structure types and 220

ask the model to identify which type it is. Perfor- 221

mance is evaluated using the F1 score. 222

Radical Recognition of Chinese Characters. 223

We evaluate LLMs and VLMs’ capability to rec- 224

ognize radical information of Chinese characters 225

in two ways: character-to-radical and radical-to- 226

character. In the first type, models are expected 227

to output the character’s radical in the correct or- 228

der, which implicitly requires structural knowledge. 229

Performance is assessed by the accuracy of the first 230

three radicals and the overall F1 score, measuring 231

the recognized order and the number of radicals rec- 232

ognized, respectively. In the second type, models 233

are provided with radical information along with 234

their relative positions based on structures, and 235

they are expected to identify the correct characters. 236

Performance is evaluated by accuracy. 237

Stroke Count Identification of Chinese Charac- 238

ters. We measure the LLMs and VLMs’ effec- 239

tiveness in determining the stroke count of Chinese 240

characters. Models are tasked with identifying the 241

total number of strokes required to write each char- 242

acter. Performance is measured using Mean Abso- 243

lute Error (MAE) and Mean Squared Error (MSE). 244

Stroke Identification of Chinese Characters. 245

Similar to radical recognition, we evaluate LLMs 246

and VLMs’ ability to identify the sequence of 247

strokes required to write a character. Performance 248

is calculated using the overall F1 score, with posi- 249

tional accuracy for the first three positions. 250

4.2 Experimental Setup 251

We evaluate the visual information of Chinese 252

characters using various LLMs and VLMs. The 253

multilingual LLMs include Aya (Üstün et al., 254

2024), Claude-3 (Anthropic, 2024), Gemini-1.5, 255

GPT-3.5 Turbo (OpenAI, 2024) in zero-shot, few- 256

shot, Chain-of-Thought (CoT), and fine-tuning set- 257

tings, and GPT-4 (OpenAI, 2023). The Chinese- 258

English bilingual LLMs include ERNIE-Lite 259

(Baidu, 2024a), Kimi-v1 (MoonshotAI, 2024), and 260

several open-source LLMs such as Baichuan-13B 261

(BaichuanInc, 2024), BLOOM-7B (BigScience, 262

2024), ChatGLM-6B (Zeng et al., 2023), Chinese- 263

LLaMA-7B (HFL, 2024), InternLM-7B (InternLM, 264

2024), Orion-14B (Chen et al., 2024), Qwen-7B 265

(Bai et al., 2023), Qwen-2-72B, and Yi-6B (AI 266

et al., 2024). We also evaluate VLMs providing im- 267
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Model
Structure Radicals Stroke Count Strokes

F1 H
1st 2nd 3rd F1 Acc MSE MAE 1st 2nd 3rd

H F1
Acc H Acc H Acc H Acc Acc Acc

Close-Sourced Models (LLMs)

Aya 12.56 0.16 35.72 0.45 2.16 0.86 0.26 0.89 20.13 5.65 13.20 2.79 28.24 23.48 19.44 0.37 21.43
Claude-3 23.70 0.54 70.02 0.37 5.64 1.43 0.43 1.46 45.57 40.40 7.78 1.32 28.64 19.02 31.19 0.88 22.91
Gemini-1.5 23.04 0.56 4.20 1.00 0.04 1.72 0.38 0.77 1.37 11.26 13.23 2.76 26.66 24.52 15.14 0.81 20.24
Few-shot GPT-3.5 22.82 0.88 54.14 0.49 7.37 1.44 0.30 1.70 34.60 23.12 7.96 1.65 27.86 22.70 30.23 1.13 25.62
Zero-shot GPT-3.5 15.43 0.69 52.14 0.71 4.33 1.65 0.20 1.54 31.66 17.45 48863 5.99 30.70 21.92 26.97 0.98 25.09
Fine-tune GPT-3.5 27.14 0.33 4.12 0.50 0.00 1.65 0.00 1.18 1.23 71.66 7.36 1.46 47.50 44.58 32.67 1.08 28.64
CoT GPT-3.5 38.08 1.25 5.24 0.57 0.16 1.68 0.11 0.91 1.63 24.41 8.93 1.92 31.06 22.22 26.85 0.83 25.60
Few-shot GPT-4 45.28 0.48 58.44 0.58 6.45 1.29 0.31 0.65 41.66 38.01 7.96 1.65 24.18 18.22 21.90 1.37 20.87
Zero-shot GPT-4 35.40 0.54 57.86 0.63 6.28 1.37 0.20 0.63 41.42 38.76 12.17 1.99 27.04 21.16 21.99 1.21 22.18
Ernie-Lite-8K 7.19 0.76 18.92 1.68 3.52 2.00 0.13 1.98 11.99 3.72 44.53 5.34 29.30 23.28 20.78 1.11 23.34
Kimi-v1 24.51 0.83 7.24 0.48 0.33 1.05 0.00 0.62 1.10 50.16 19.05 3.12 33.12 21.56 19.72 1.07 22.99

Open-Sourced Models (LLMs)

Baichuan-13B 11.17 0.88 33.20 0.98 2.05 1.65 0.60 0.98 22.62 13.67 32.70 4.31 27.68 21.42 15.92 1.56 22.74
Bloom-7B 9.81 0.96 3.48 1.71 0.54 2.12 0.04 1.28 4.15 0.00 46.76 4.05 27.92 24.96 14.47 0.87 23.19
ChatGLM-6B 10.30 0.68 6.94 1.56 0.50 1.67 0.00 0.82 6.33 1.38 29.68 4.25 26.88 12.60 12.43 0.96 27.28
Chinese-LLaMA-7B 5.13 0.97 9.26 1.89 0.64 2.10 0.17 1.78 6.32 0.32 15.83 3.00 26.26 24.86 13.42 0.93 22.32
InternLM-7B 9.68 1.05 12.08 1.71 0.34 1.68 0.05 1.11 8.89 0.00 45.38 5.50 28.82 24.66 13.38 0.95 22.01
Orion-14B 9.00 1.04 5.27 1.73 0.18 1.14 0.76 0.47 9.46 3.39 31.45 4.45 28.40 22.82 19.38 0.90 24.81
Qwen-7B 5.25 1.16 17.30 1.54 0.85 1.82 0.23 1.14 12.41 1.59 34.16 4.62 25.02 20.20 21.92 1.30 23.30
Qwen-2-7B 6.76 1.50 15.42 1.74 0.68 1.99 0.22 1.53 10.70 0.42 44.48 5.39 23.16 18.50 21.54 1.40 22.68
Yi-6B 8.86 0.70 14.18 1.60 1.05 1.80 0.21 0.81 12.14 0.32 29.49 4.24 28.56 22.40 7.76 0.85 24.17

Vision Language Models (VLMs)

Claude-3V 23.70 0.54 8.80 0.39 0.61 1.49 0.00 1.38 2.44 57.30 5.93 1.22 15.40 19.60 26.80 1.22 19.62
Ernie-4V 54.30 - 41.03 - 34.21 - 12.50 - 41.67 71.79 12.54 1.78 53.85 35.90 47.37 - 30.90
Gemini-1.5V 27.15 0.36 3.00 0.76 0.41 1.41 0.00 1.20 1.53 27.08 8.83 2.28 29.60 16.80 22.00 1.00 22.04
GPT-4V 23.28 0.46 10.20 0.57 0.41 1.50 0.00 0.77 9.22 24.18 7.96 1.64 24.00 19.60 23.80 1.34 21.96
Kimi-V 45.60 - 36.73 - 19.15 - 0.00 - 32.93 42.86 15.32 2.68 30.61 26.53 16.67 - 20.70

Fine-tune PIXEL 84.57 -

Table 2: Models Performance on Chinese character visuals with each task separated by vertical lines. H: Entropy.
The top scores for each section and overall are highlighted in blue and red respectively.

ages of characters in Microsoft YaHei5 font, includ-268

ing Claude-3V, Ernie-4V (Baidu, 2024b), Gemini-269

1.5V, GPT-4V, and Kimi-V. Additionally, we assess270

the pixel-based encoder model, PIXEL (Rust et al.,271

2023). Since PIXEL is a language model lacking272

sentence completion abilities, it is only evaluated273

on the structure recognition task using a span-based274

question-answering framework after fine-tuning.275

For our evaluation, we use different sampling276

methods and settings based on the type of model.277

For LLMs, a random sample of 1,000 characters278

is selected for each task and model. Due to higher279

costs, the number of samples for VLMs is reduced280

to 500. ERNIE-V and Kimi-V, which lack API281

access, are tested manually with only 100 sam-282

ples. We incorporate few-shot learning by pro-283

viding models with three examples for each task,284

except for the structure recognition task, where one285

example per structure type is given. In the Chain-286

of-Thought (CoT) setting, models are prompted to287

break down their reasoning process step-by-step,288

5Yahei is the default Chinese font in Microsoft Office.

with detailed prompts provided in the Appendix 289

B.2. Models with fine-tuning are trained with a 7:3 290

split and tested using 1,000 samples randomly se- 291

lected from the test set. To assess consistency and 292

model entropy, each question is asked five times, 293

and the best trial out of the five for each task is 294

selected to calculate the overall results. 295

To adapt answers from models generating long 296

responses conventionally, we first let models gen- 297

erate responses freely without a specific answer 298

format. Then, we use GPT-3.5 Turbo to extract 299

answers from various model responses. For open- 300

source models and extraction-used GPT-3.5 Turbo, 301

a temperature of 0.3 is applied. Closed-source mod- 302

els generally use a temperature of 0.7 unless other- 303

wise recommended by model documentation. 304

4.3 Experimental Result 305

As illustrated in Table 2, the performance of the 306

evaluated models on Chinese character visual in- 307

formation tasks is generally low across the board. 308

For the structure recognition task, only PIXEL 309
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achieved a high score of 84.57. In contrast, the310

majority of other models scored below 30. In311

the radical-to-character task, a clear trend emerges312

where model performance is highest for the first313

component and sharply decreases for subsequent314

components. For example, GPT-3.5 in zero-shot315

achieved an F1 score of 52.14 for the first com-316

ponent, but this dropped to 4.33 for the second317

component and nearly zero for the third. This318

phenomenon is also reflected in the increase of319

entropy along positions, suggesting that models320

possess some vague knowledge of characters, par-321

ticularly the attribute radical that often appears first,322

such as “艹” in “花”. For the stroke count iden-323

tification task, the majority of models achieved a324

MSE higher than the average stroke number in the325

dataset: 11.51. Accuracy scores for stroke identifi-326

cation remained consistent across positions. How-327

ever, the overall performance remained poor with328

Ernie-4V achieving the highest overall f1 of 30.90.329

Although fine-tuning, Chain-of-Thought prompt-330

ing, and multilingual VLMs led to some improve-331

ments on various tasks, we observed a signif-332

icant drop in performance for the character-to-333

component task. For instance, the overall F1 score334

dropped from 45.57 to 2.44 when Claude-3 is pro-335

vided with images. Conversely, Chinese models336

such as Ernie-V showed substantial improvement337

with images. In the component-to-character task,338

Ernie-V achieved the highest accuracy at 71.79%339

among all, relying heavily on image information to340

extract characters for the answer and failing when-341

ever it misrecognized the character in the image.342

There are several types of characters that Ernie-V343

and Kimi-V tend to make mistakes on. Firstly, com-344

plex and dense characters are often misrecognized345

as similar, more frequently used characters. In a346

uniform space, as characters become more com-347

plex, the individual radicals within the character348

become narrower, leading to misrecognition. Sec-349

ondly, characters that are extremely similar, with350

only a single stroke difference, are often seen by351

the models as the more common variant of the two.352

Thirdly, for rare characters, Ernie-V often states353

that it does not detect any character in the image,354

while Kimi-V even refuses to allow the user to send355

the prompt when it fails to extract the character356

from the image. Models occasionally recognize a357

radical of the character as the character itself. They358

sometimes confuse the character in the image with359

black and white pictures. Examples of Kimi-V and360

Ernie-V’s behavior are provided in Appendix B.3.361

Figure 4: Example of model answer for part-of-speech
(POS) tagging with an unfamiliar Chinese word using
radical prompting. Gray blocks represent steps that also
appear in the baseline procedure, while light orange
blocks indicate the unique steps in radical prompting.

Although improvement is shown in VLMs and 362

other methods, the overall performance remains 363

poor compared to a native Chinese speaker, who 364

would achieve nearly full scores for all tasks even 365

without knowing the majority of the queried char- 366

acters. To further explore visual information in text 367

input, we experimented with the impact of Chinese 368

character encodings on visual tasks. Details and 369

results are in Appendix C. 370

5 Evaluation on Radical Prompting 371

In this section, we examine the significance of the 372

most important visual information in Chinese char- 373

acters: radicals. Similar to the strategy used by 374

Chinese speakers when encountering unfamiliar 375

words, we prompt models to use their knowledge 376

of radicals to estimate the meaning of the characters 377

when they encounter unfamiliar terms. Examples 378

of this prompting strategy are shown in Figure 4. 379

5.1 Tasks 380

Part-of-Speech (POS) tagging. We utilized 381

three datasets for this task: the GSD Simplified 382

dataset (Qi and Yasuoka, 2023), the Parallel Univer- 383

sal Dependencies (PUD) dataset (McDonald et al., 384

2023), and a new dataset we annotated using Clas- 385

sical Chinese RoBERTa (Yasuoka, 2023) with 500 386

sentences from Tang Dynasty poems6. For this 387

6The choice of classical poems is motivated by the com-
pactness of information in poetry, suggesting more informa-
tion is preserved at the sub-character level.
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Model
Part-Of-Speech Tagging

GSD PUD Poems
B RP RP (Oracle) B RP RP (Oracle) B RP RP (Oracle)

Aya 68.86 68.91(+0.1) 70.41(+1.6) 73.87 77.21(+3.34) 76.95(+3.08) 65.53 66.19(+0.66) 66.71(+1.18)
Claude-3 69.37 70.68(+1.3) 70.45(+1.1) 69.37 70.45(+1.08) 70.68(+1.31) 65.53 66.20(+0.67) 66.71(+1.18)
ERNIE-Lite-8K 27.06 24.97(-2.1) 32.73(+5.7) 30.35 30.29(-0.06) 41.29(+10.94) 44.19 42.17(-2.02) 49.07(+4.88)
GPT-3.5 59.08 64.62(+5.5) 67.56(+8.5) 62.61 69.90(+7.29) 73.46(+10.85) 53.51 59.22(+5.71) 61.39(+7.88)
GPT-4 71.55 72.14(+0.6) 72.95(+1.4) 76.20 76.72(+0.52) 77.35(+1.15) 66.94 67.11(+0.17) 67.57(+0.63)
QWen-72B 62.20 65.38(+3.2) 67.32(+5.1) 62.20 65.38(+3.18) 67.32(+5.12) 55.63 57.78(+2.15) 59.54(+3.91)

Table 3: Model performance for POS tagging with baseline(B), radical prompting without golden components (RP),
and radical prompting with oracle information (RP (Oracle)). Performance change relative to baseline is highlighted
with green for increase and red for decrease.

Models
Name Entity Recognition Chinese Word Segementation

People’s Daily Weibo GSD PUD

B RP B RP B RP B RP

Aya 38.24 36.36(-1.9) 37.88 30.83(-7.05) 87.98 89.08(+1.1) 88.68 91.05(+2.37)
Claude-3 69.74 73.79(+4.1) 45.64 46.86(+1.22) 94.90 95.16(+0.3) 94.12 94.96(+0.84)
ERNIE-Lite 12.10 12.99(+0.9) 6.72 6.90(+0.19) 88.04 88.70(+0.3) 69.54 73.57(+4.03)
GPT-3.5 56.89 55.97(-0.9) 36.65 36.64(-0.01) 95.68 94.87(-0.8) 93.91 93.70 (-0.21)
GPT-4 66.04 68.05(+2.0) 43.83 44.68(+0.85) 94.21 94.88(+0.7) 94.24 95.63(+1.39)
QWen 72B 62.73 59.59(-3.1) 31.78 35.83(+4.05) 96.59 95.57(-1.0) 89.79 91.94 (+2.15)

Table 4: Model performances for NER and CWS tasks with baseline(B) and radical prompting(RP).

task, we used a 5-word span to focus on predicting388

single word with or without radical information.389

Results on different word span sizes are shown390

in Appendix D.2. Word spans containing more391

than one punctuation mark were excluded. We de-392

signed two versions of the task: the first supplies393

the correct component and radical information of394

the central word, while the second version prompts395

the model to utilize radical without explicitly pro-396

viding it. The models’ performance on this task is397

measured using the F1 score.398

Named Entity Recognition (NER). We use two399

distinct datasets for the NER task: the People’s400

Daily dataset (Chen, 2023), which focuses on for-401

mal Chinese text, and the Weibo NER dataset (Peng402

and Dredze, 2015), which is oriented towards ca-403

sual and online Chinese text. We dropped tagging404

on nominal entities and focused on three types of405

tags: PER (person), LOC (location), and ORG (or-406

ganization), with BIO tagging standard. Due to the407

comprehensive understanding required for the NER408

task, providing radical information for each word409

and character would overwhelm the model. There-410

fore, we evaluate the efficacy of radical prompting411

by guiding the model to use radicals, rather than412

supplying all the radical information. Answers are413

evaluated using the F1 score.414

Chinese Word Segmentation (CWS). For this 415

task7, we give whole sentences from the GSD and 416

PUD datasets and ask models to separate them into 417

words. Answers are evaluated using the F1 score. 418

5.2 Method 419

Baseline. Our baseline employs the Chain-of- 420

Thought (CoT) prompting framework with steps 421

that guide the model to execute tasks. 422

Radical Prompting. We introduce a novel 423

prompting method named “radical prompting,” 424

which builds upon the CoT framework. The pro- 425

cess begins with the model identifying any unclear 426

words within a given context. Then, the model 427

is instructed to dissect these words into their con- 428

stituent radicals and attempt to utilize useful rad- 429

icals to aid the task. Steps are then provided to 430

guide the model in executing specific tasks, iden- 431

tical to the baseline, with three examples. When 432

using radical prompting, it is important to guide 433

models to critically assess information from char- 434

acter components to avoid being misguided. Thus, 435

one example intentionally includes radical infor- 436

7CWS is a unique task in Chinese language processing.
Distinguished from many other languages, Chinese does not
use delimiters such as spaces to separate words within sen-
tences. Accurately segmenting text could be beneficial.
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mation that is irrelevant. Prompt lines of radical437

prompting are listed in Appendix D.3.438

5.3 Experimental Setup439

We apply a similar strategy for model selection440

and sample number as Section 4.2. The models441

selected for evaluation are Aya, Claude-3, ERNIE-442

Lite-8K, GPT-3.5, GPT-4, and QWen-1.5 72B Chat.443

Each task and each dataset uses 2,000 sample sen-444

tences, repeated 5 times for consistency. Due to445

higher costs, Claude-3 and GPT-4 are evaluated446

using only 1,000 sample sentences. Models are447

asked to return answers in JSON format with tar-448

get sentences annotated similar to (Blevins et al.,449

2023).450

5.4 Experimental Result451

We observed varying performance impacts on the452

two tasks: when context is limited, such as in POS453

tagging, information embedded in characters be-454

comes beneficial. For the POS tagging task, perfor-455

mance generally improved across models, except456

ERNIE-Lite when correct radicals were not pro-457

vided. Most models showed significant improve-458

ment when correct radicals were supplied. For459

example, on the PUD dataset, GPT-3.5 improved460

by 7.29 points without correct radicals but gained461

an additional 10.85 points when correct radicals462

were provided. A qualitative analysis of the im-463

pact of radicals on POS tagging is provided in the464

Appendix D.1. For the NER and CWS tasks, we ob-465

served a mixture of positive and negative impacts466

after applying radical prompting. While Claude-3467

and GPT-4 show consistent improvement across468

datasets and tasks, models such as Aya exhibit a469

noticeable drop of 7.05 points in the Weibo NER470

dataset after applying radical prompting. This vari-471

ation may be attributed to the inherent difficulty of472

the tasks. Upon reviewing the models’ responses,473

we found that radicals tend to misguide the models474

when dealing with relatively new terms, such as475

transliterated foreign terms—terms that have been476

adapted to Chinese words based solely on pronun-477

ciation. This misguidance likely contributed to the478

mixed results observed.479

6 Discussion on Chinese Characters480

To investigate the importance of Chinese radicals,481

we selected a sample of 100 Chinese characters482

from our dataset and annotated them to determine483

whether the radicals directly contribute to the mean-484

ing or pronunciation of the character, as shown in485

Figure 5: Distribution of Chinese characters with mean-
ing (M) or pronunciation (P) hint from their radicals.
The smaller circle on the right shows the distribution
among all characters containing radicals with meaning
(sum of Characters M only and Characters M & P).

Figures 5. Although the majority of characters have 486

clues derived from the radicals, we found that most 487

characters contain a combination of only one mean- 488

ingful radical with other radicals hinting at pronun- 489

ciation. For example, in the character “花,” we 490

can infer that it is related to herbs from the radical 491

“艹,” while “化” only provides a pronunciation hint, 492

resulting in only vague idea of character’s meaning. 493

In 12 out of the 100 characters, none of the radicals 494

were helpful. This is due to the evolution of the 495

language, where historically, a single Chinese char- 496

acter often conveyed the meaning of a full word. 497

However, more words are now composed of two or 498

more characters, leading to individual characters 499

losing their original meanings. For example, the 500

Chinese character “况” is now commonly used to 501

mean “situation” in words like “情况” or “状况”. 502

However, the original meaning of the character is 503

“cold water” unexpectedly, which is closely related 504

to the radical “冫”, referring to cold water. 505

7 Conclusion 506

In this paper, we create a comprehensive dataset on 507

visual information in Chinese characters and eval- 508

uate the ability of LLMs and VLMs to recognize 509

this information. Our observations highlight the 510

suboptimal performance of these models in han- 511

dling information below the character level. De- 512

spite this, our experiments with ’radical prompting,’ 513

which prompts models to utilize radical informa- 514

tion, demonstrate that these sub-character features 515

can still be beneficial. The results show stable im- 516

provements in POS tagging, and mixed results of 517

improvement and decline for NER and CWS with- 518

out correct radicals provided. 519

8



Limitations520

Our study, while contributing valuable insights into521

the integration of radical prompting for Chinese lan-522

guage models, encounters several limitations that523

suggest directions for future research. First, the524

dataset employed does not encompass the full array525

of Chinese characters but is confined to commonly526

used characters. This selective coverage might af-527

fect the scalability of our findings to all Chinese528

characters especially when greater model meets un-529

known or unfamiliar character, there is a chance530

that our dataset does not cover that character.531

Additionally, the study primarily evaluates the532

effectiveness of radical prompting on a narrow se-533

lection of models and specific NLP tasks, which534

might not reflect its utility across different models535

or broader language processing applications.536

Furthermore, an intrinsic limitation of our537

methodology arises from the exclusive use of En-538

glish in our prompting lines. Incorporating Chinese539

in the prompting strategy could potentially enhance540

the relevance and effectiveness of prompts, align-541

ing better with the linguistic context of the target542

language.543
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A General Experiment Details 693

Model Versions and Snapshots The experi- 694

ments incorporated different versions of widely 695

recognized models to evaluate their performance in 696

processing Chinese characters. The specific snap- 697

shots used for each model are as follows: 698

• GPT-3.5 and GPT-4 were used with the snap- 699

shot dated 2023-11-06. 700

• Claude model’s evaluation utilized the 2024- 701

02-29 snapshot. 702

• Ernie-Lite-8K was tested using the 2023-09- 703

22 snapshot. 704

Temperature Settings 705

• Aya, Yi-6B, Qwen-7B-Chat, Baichuan-13B, 706

and Mistral-7B were set at a lower tempera- 707

ture of 0.3 as recommended. 708

• For other models not specifically mentioned, 709

a temperature setting of 0.7 was used. 710

B Details on Visual Info Evaluation 711

B.1 Structure Recognition Across Structures 712

We provide detailed result for structure recognition 713

across different structures in Table 5. 714

B.2 CoT Prompting 715

We present the prompt lines used in Figure 6, 7, 8, 716

9. 717

B.3 Chinese VLMs Behavior 718

Examples of VLMs misrecognizing images are 719

shown in Fig 10, 11, 12, 13, and 14. 720
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Model Top-Bottom Top-Mid-Bottom Left-Right Left-Mid-Right Wrapping Inlay Triple-Stack Single

GPT-3.5 Few 23.1 22.00 20.14 15.56 9.74 14.29 7.14 21.00
GPT-3.5 Zero 24.01 16.00 25.17 2.00 3.59 0.00 0.00 57.00
GPT-4 Few 35.33 0.00 64.92 7.78 4.18 28.57 21.43 32.00
GPT-4 Zero 17.26 2.00 54.94 2.00 7.17 14.29 7.14 29.50
Ernie-Lite 21.70 12.00 52.20 2.00 7.17 14.29 66.67 67.50

Yi-6B 47.34 16.86 27.54 9.32 25.11 25.00 57.14 33.18
Qwen-7B 33.21 5.56 29.12 11.32 14.56 25.00 42.86 42.95
Baichuan-13B 35.27 11.38 22.45 3.44 28.34 25.00 42.86 37.12
Mistral-7B 27.48 14.56 33.45 12.34 30.43 25.00 28.57 51.46

Table 5: Accuracy of models across different structure types of Chinese characters.

Unicode Character Structure Unicode Character Structure

U+4EBF 亿 LR U+4ED9 仙 LR
U+4EC0 什 LR U+4EE3 代 LR
U+4EC1 仁 LR U+4EEA 仪 LR
U+4EC3 仃 LR U+4EEB 仫 LR
U+4EC4 仄 WRP U+4EF0 仰 LR
U+4EC7 仇 LR U+4EF2 仲 LR
U+4ECE 从 LR U+4EF5 仵 LR
U+4ED1 仑 TB U+4EFB 任 LR
U+4ED3 仓 TB U+4EFD 份 LR
U+4ED5 仕 LR U+4F01 企 TB
U+4ED6 他 LR U+4F0A 伊 LR
U+4ED7 仗 LR U+4F0D 伍 LR
U+4ED8 付 LR U+4F0E 伎 LR

Table 6: This table showcases a randomly selected range of Unicode characters in dataset along with their respective
structures. This representation provides a snapshot of the structural information inherent in the Unicode.

Figure 6: Prompt Line of Structure Task

C Analysis on Chinese Encoding721

The difficulty of the task is primarily related to the722

lack of direct visual information provided when723

models receive Chinese characters. For example,724

the PIXEL model transforms Chinese characters725

into pixel representations, thereby capturing vi-726

sual information that significantly enhances per-727

formance, as evidenced by its outstanding F1 score728

of 85. The majority of LLMs handle Chinese text729

Figure 7: Prompt Line of Component Task
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Figure 8: Prompt Line of Stroke Number Task

Figure 9: Prompt Line of Strokes Task

Encoding Structure Acc

Unicode 39.80
Stroke 43.80
PinYin 13.85
WuBi 11.81
CangJie 11.66

Table 7: GPT-3.5 Fine-tuning’ Performance on different
way of encoding.

similarly to English text: before tokenization, each 730

Chinese character is treated as a unique Unicode 731

character. To further investigate the knowledge 732

gained through this process, we conducted a side 733

experiment on different encoding systems. 734

Setup. We fine-tuned GPT-3.5 by explicitly 735

switching all Chinese characters in the train- 736

ing and testing documents to various encod- 737

ings—namely, Unicode, stroke, Pinyin8, Wubi, 738

and Cangjie9—and evaluated them on the struc- 739

ture recognition task to assess the impact of these 740

representations on the model’s learning ability with 741

visual knowledge of Chinese characters. 742

Results. The results shown in Table 7 indi- 743

cate that Unicode encoding performs comparably 744

to stroke encoding and significantly outperforms 745

Pinyin encoding. Although Pinyin is the most com- 746

mon typeface, it is limited to phonetic information. 747

After further investigation, we discovered that the 748

order of Chinese characters in Unicode is highly re- 749

lated to the stroke count and structure of the charac- 750

ters: Unicode is ordered by the stroke count of their 751

indexing radical and the stroke count of remaining 752

parts. However, the full potential of Unicode is 753

diminished by numerous exceptions and a broad 754

spectrum of extensions that complicate its utility in 755

conveying visual knowledge. 756

where similar structures are likely grouped to- 757

gether with stroke counts in incremental order, as 758

detailed in Figure6. 759

8Pinyin is the Romanization of the Chinese characters
based on their pronunciation. In Mandarin, it’s the standard
method for typing Chinese characters.

9Wubi and Cangjie are two glyph-based input methods that
are uncommon to use.
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Figure 10: Example of Ernie-4V response to rare character with English translation.

Figure 11: Example of Ernie-4V response to extremely similar character with English translation.

Figure 12: Example of Ernie-4V response to part of the character as answer with English translation.
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Figure 13: Example of Ernie-4V response a character with different component part as answer with English
translation.

Figure 14: Example of Kimi-V reject rarely used character with English translation.
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D Detailed Radical Prompting Result760

D.1 Quantitative Analysis on POS tagging761

Accuracy762

We provide a case analysis for POS tagging in Table763

8.

Category Baseline RP (Oracle)

Correct& utilize Radical - 81.2(+81.2)
Correct without 608.6 611.2(+2.6)
Incorrect & utilize Radical - 41.8(+41.8)
Incorrect without 391.4 265.8 (-125.6)

Table 8: Quantitative analysis of GPT-3.5-Turbo’s POS
tagging accuracy on the number of correct and incorrect
predictions with and without the examination of compo-
nents using radical prompting compared to the baseline.
Improvement is shown in green.

764

D.2 Window size’s impact on POS tagging765

We evaluate the impact of different window size in766

POS tagging with GPT-3.5-Turbo in Table 9.

Window Size
Part-Of-Speech Tagging

GPT-3.5-Turbo with GSD

B RP RP (Oracle)

5 59.08 64.62(+5.5) 67.56(+8.5)
7 60.17 66.55(+6.38) 66.73(+6.56)
9 60.38 67.03(+6.65) 67.23(+6.85)

Table 9: Model performance for POS tagging with dif-
ferent word span sizes

767

D.3 Radical Prompting Prompts768

We provide our prompting lines for POS tagging,769

NER, and CWS tasks in Figure 15, 16, and 17,770

respectively.771

E Responsible NLP Miscellanea772

E.1 Intent usage773

In response to potential inquiries regarding the774

scope and legitimacy of our experiments, it is im-775

portant to clarify that all aspects of our research776

strictly adhere to the intended use cases of the777

Large Language Models (LLMs) and the NLP task778

datasets employed. Furthermore, our use of these779

models and datasets complies fully with the usage780

policies of the APIs for each model involved. We781

note that the use of rare Chinese words triggered782

some safety mechanisms in models such as Gemini-783

1.5. However, our intent complies fully with the784

ethical guidelines and usage policies provided by 785

the API providers. 786

E.2 Computational Experiments Cost 787

In our research, we utilized vLLMs for evaluation 788

on Yi 6B, Mistral 7B, Baichuan 13B, and Qwen 789

7B with a single a40 GPU. For other models, we 790

accessed them through their respective APIs. The 791

cost and running time for each model varied sig- 792

nificantly. Specifically, the time required to run a 793

single evaluation ranged from approximately 2 to 794

8 hours. 795

E.3 Avoid Data Leakage 796

For all NLP tasks assessed in this study, evalua- 797

tions were exclusively conducted on the develop- 798

ment sets of the respective datasets to prevent data 799

leakage. 800

E.4 Personally Identifying Info 801

The dataset we created for evaluating the visual 802

information of Chinese characters does not contain 803

any offensive content or personally identifying in- 804

formation. However, we acknowledge the presence 805

of individual names in the Weibo NER dataset that 806

we use for evaluation. 807

E.5 Evaluation Tools and Methodologies 808

To evaluate our Named Entity Recognition (NER) 809

tasks, we used a Perl script: conlleval.pl. 810

For other tasks, we calculated F1 score using 811

Scikit-learn. 812

E.6 AI Assistants 813

We acknowledge the use of GPT-4 for grammar 814

checking and word polishing. 815

15



Figure 15: Prompt Line of POS tagging.

Figure 16: Prompt Line of NER.
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Figure 17: Prompt line for CWS.

17
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