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Abstract

In this paper, we present non-asymptotic optimization guarantees of gradient de-
scent methods for estimating structured transition matrices in high-dimensional
vector autoregressive (VAR) models. We adopt the projected gradient descent
(PGD) for single-structured transition matrices and the alternating projected gradi-
ent descent (AltPGD) for superposition-structured ones. Our analysis demonstrates
that both gradient algorithms converge linearly to the statistical error even though
the strong convexity of the objective function is absent under the high-dimensional
settings. Moreover our result is sharp (up to a constant factor) in the sense of
matching the phase transition theory of the corresponding model with indepen-
dent samples. To the best of our knowledge, this analysis constitutes first non-
asymptotic optimization guarantees of the linear rate for regularized estimation
in high-dimensional VAR models. Numerical results are provided to support our
theoretical analysis.

1 Introduction

Learning the network structure through high-dimensional time series data has been an important focus
of research for the past decades. There are lots of application examples ranging from macroeconomic
analysis [1–3] to connectivity measuring among financial firms [4], gene regularity network inference
[5] and radar signals processing [6, 7]. To perform these tasks, vector autoregressive (VAR) models
play a critical role in both theory and application. For example, VAR models are widely adopted
to characterize the spatially and temporally colored disturbance for multichannel adaptive signal
detection in [7–11].

Under the low-dimensional settings where the dimension of the transition matrix and the number
of time series are relatively small, the theory of VAR models is well established, see e.g., [12].
However, lots of meaningful applications are under the high-dimensional settings where the problem
dimension far exceeds the number of time series and additional structure information of parameters is
required to guarantee successful recovery. For the cases where the samples are independent, both
theoretical properties and practical algorithms of high-dimensional statistical problems have been
studied by considerable literature during the past few years, including but not limited to [13–17].
For the correlated time series cases, the corresponding results are still developing. By assuming
that the spectral norm of the transition matrix is less than 1, Loh and Wainwright consider VAR
models regularized by the l1-norm in [18]. Under the double asymptotic framework, Han and Liu
also consider VAR models under the similar assumption in [19]. In [20], Basu and Michailidis
analyze sparse transition matrices estimation of VAR models with a milder stability assumption by
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introducing the spectral density. Recently, Melnyk and Banerjee extend the analysis to structured
VAR models regularized by any suitable norm in [21].

Compared with the progress on the statistical analysis of VAR models, much less is known about their
computational issues. For instance, Basu et al. [22] make exploration in this direction by proposing
the fast network structure learning algorithm (FNSL) for the penalized recovery procedure. Their
analysis does not take the structure information of the parameter into account and it only establishes
a sub-linear convergence rate for the FNSL.

In this paper, we first provide the non-asymptotic optimization guarantee of PGD for VAR models
with single-structured transition matrices. Our analysis illustrates that the distance between iteration
points of PGD and the real transition matrix would converge linearly to the statistical error despite
the objective function is not strongly convex under the high-dimensional settings. Our result is sharp
in the sense that the minimal requirement of samples to guarantee the linear rate matches the phase
transition of the model with independent samples up to a constant factor.

On the other hand, considering the parameter to be estimated only has one type of low-dimensional
structure or is single-structured might be too oversimplified for messy real applications. So
superposition-structured models have received more attention of researchers in last decade. Typical
examples include robust PCA [23, 24], multi-task learning [25] and robust matrix sensing [26].
For these scenarios, we employ AltPGD to solve related optimization problems and establish the
corresponding non-asymptotic optimization guarantee. Our results show that AltPGD also enjoys a
linear convergence rate, which is much more efficient than the sub-linear rate in [22]. At the same
time, our analysis avoids a drawback in [22] that the estimation error does not converge to zero when
the number of measurements approaches infinity.

Last but not the least, we also illustrate that AltPGD is a practical algorithm to solve the general
superposition-structured statistical model in [27]. Apart from the time series case, our analysis also
adapts to multi-task learning and robust PCA.

2 Problem formulation

In this paper, we consider a d-dimensional vector-valued stationary time series {x0, · · · ,xn} gen-
erated by a VAR model of lag 1 with serially uncorrelated Gaussian errors. The VAR(1) model is
defined as

xt+1 = ΓT? xt + et+1, t = 0, · · · , n− 1, (1)

where Γ? ∈ Rd×d is the transition matrix and et
iid∼ N (0,Σe). This model can be reformulated in

the matrix form

Y = XΓ? +E, (2)

where Y = [x1, · · · ,xn]T ∈ Rn×d, X = [x0, · · · ,xn−1]T ∈ Rn×d, and E = [e1, · · · , en]T ∈
Rn×d.

The goal of the VAR(1) model is to recover the transition matrix Γ? from the observation matrix Y
and the data matrixX . In the high-dimensional settings with n� d2, tractable recovery is possible
when the transition matrix Γ? is well structured. Thus we introduce a convex regularizer R(·) to
promote the structure of Γ?. Then a popular way to estimate Γ? is to solve the following constrained
least square problem

min
Γ

1

2n
||Y −XΓ||2F,

s.t. R(Γ) ≤ R(Γ?),
(3)

where || · ||F represents the Frobenius norm of a matrix.

When the transition matrix Γ? is superposition-structured in which Γ? is the sum of two single-
structured components, i.e., Γ? = S? + L?, we adopt two convex functions RS(·) and RL(·) to
characterize the structures of its two components and solve the following constrained problem to
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estimate S? and L?

min
S,L

1

2n
||Y −X(S +L)||2F,

s.t. RS(S) ≤ RS(S?),

RL(L) ≤ RL(L?).

(4)

3 Single-structured transition matrices estimation via PGD

In this part, we consider the case where the transition matrix to be estimated in (1) only has one
type of low-dimensional structure which is characterized by a convex functionR(·). To estimate the
transition matrix Γ?, we solve the problem (3) via the PGD update (summarized in Algorithm 1).

By setting fn(Γ) = ||Y −XΓ||2F/(2n), we could write the iteration of PGD as
Γk+1 = PK(Γk − µ∇fn(Γk)), (5)

where µ is the step size, K = {Γ | R(Γ) ≤ R(Γ?)} is the descent set and PK represents the
orthogonal projection onto the set K. We also introduce the concept of the descent cone C =
cone(K − Γ?), where cone(·) is the conic hull of a set.

Algorithm 1 PGD for single-structured transition matrices estimation
Input: Initial point Γ0, step size µ, iteration number K.
for k = 0 to K − 1 do

Γk+1 = PK(Γk − µ∇fn(Γk))
end for
Output: ΓK

To guarantee consistent estimation, we propose the following stability assumption for the VAR model
(1), which is also imposed in [20, 22].
Assumption 1 (Stability). The characteristic polynomial of the VAR model (1) satisfies det(A(z)) 6=
0 on the unit circle of the complex plane {z ∈ C : |z| = 1}, where A(z) = Id×d − ΓT? z.

In the non-asymptotic analysis of the VAR model (1), we use the following two quantities
M(fx) = ess sup

θ∈[−π,π]
λmax(fx(θ)), (6)

m(fx) = ess inf
θ∈[−π,π]

λmin(fx(θ)), (7)

where fx(θ) is the spectral density function defined as

fx(θ) :=
1

2π

∞∑
l=−∞

Σx(l)e−ilθ, θ ∈ [−π, π]. (8)

Here we useΣx(l) to represent

Σx(l) = E[xtx
T
t+l], t, l ∈ Z. (9)

Specially, we writeΣx(0) = Σx for simplicity.

Compared with the model with independent samples, there is dependency among the rows of data
matrix X in the VAR model (2), which is the main challenge when deriving the deviation bounds
required by the estimation problem. For Gaussian processes, this dependency could be characterized
by the covariance matrix Υx = E[vec(XT )vec(XT )T ], where vec(·) represents the column-wise
vectorization of a matrix. The following lemma indicates that the concept of the spectral density
function is a convenient tool to bound the extreme eigenvalues of Υx.
Lemma 1 (Proposition 2.3 in [20]). Donate Υx = E[vec(XT )vec(XT )T ], where X is the data
matrix in the VAR model (2). We could bound the extreme eigenvalues of Υx as

2πm(fx) ≤ λmin(Υx) ≤ λmax(Υx) ≤ 2πM(fx). (10)
In particular, we also have

2πm(fx) ≤ λmin(Σx) ≤ λmax(Σx) ≤ 2πM(fx). (11)
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For stable and invertible ARMA processes which include the model (1), the spectral density (8) has a
closed form expression based on the matrix valued polynomials [20, Equation (2.4)]. Furthermore,
the concrete calculation of the upper bound ofM(fx) and the lower bound of m(fx) for the model
(1) is provided in [20, Proposition 2.2] which indicates m(fx) andM(fx) could be bounded away
from zero and infinity. In this way, we could introduce the quantities κmin and κmax to simplify the
expression of our analysis.
Assumption 2 (Boundness). Suppose there are positive constants κmin and κmax satisfying

0 <
κmin

2π
≤ m(fx) ≤M(fx) ≤ κmax

2π
. (12)

With the above assumption, we could represent the extreme eigenvalues of Υx andΣx in a concise
way

κmin ≤ λmin(Υx) ≤ λmax(Υx) ≤ κmax, (13)
κmin ≤ λmin(Σx) ≤ λmax(Σx) ≤ κmax. (14)

In our analysis, we use the Gaussian width to quantify the size of a set T

ω(T ) := Esup
x∈T
〈g,x〉, where g ∼ N (0, I).

We are now ready to present the non-asymptotic optimization guarantee of PGD for the problem (3).
Theorem 1. Consider the VAR model (1) satisfying Assumptions 1 and 2. Suppose Γ? is single-
structured and R(·) is a convex function. Starting from a point Γ0 satisfying R(Γ0) ≤ R(Γ?),
we solve the optimization problem (3) via PGD with the step size µ = 1/κmax. If the number of
measurements satisfies

√
n > 2C

κmax

κmin
(ω(C ∩ SF ) + u), (15)

then the PGD update (5) would obey

||Γk+1 − Γ?||F ≤ ρ
k+1||Γ0 − Γ?||F +

ξ

1− ρ
(16)

with probability at least 1− c exp(−u2). Here

ρ = 1− κmin

κmax
+ C

ω(C ∩ SF ) + u√
n

< 1− κmin

2κmax
, (17)

ξ = C ′
1

√
κmax

||Σe||
1
2
ω(C ∩ SF ) + u√

n
, (18)

ξ

1− ρ
=

1

1− ρ
· C ′ 1
√
κmax

||Σe||
1
2
ω(C ∩ SF ) + u√

n
< 2C ′

√
κmax

κmin
||Σe||

1
2
ω(C ∩ SF ) + u√

n
, (19)

|| · || represents the spectral norm of a matrix, SF represents the sphere with unit Frobenius norm and
c, C, C ′ are absolute constants.
Remark 1 (Sharpness). Our result demonstrates that PGD can converge linearly to the statistical
error despite the objective function fn(Γ) is not strongly convex under the high-dimensional settings.
And the linear convergence is achieved when the number of measurements is of order ω(C ∩ SF )2,
which matches the phase transition of the model with independent samples [15, 16].
Remark 2 (Impact of correlated samples). Our result also provide some insights for the impact of
correlated samples. It is not hard to find that the temporal dependency is characterized by κmax and
κmin which appear in the convergence rate, the estimation error, and the required number of samples.
Let κ = κmax/κmin. Clearly, a smaller κ will lead to a faster convergence rate with smaller required
samples and estimation error.
Remark 3 (Comparison with related works). The existing works on structured VAR models such as
[19–21] are mainly concerned with establishing the statistical error bounds for different recovery
procedures. Our work focuses on algorithmic analysis and reveals how many samples would ensure
that the algorithm achieves a fast convergence rate. On the other hand, our work could be regarded
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as a generalization of the result in [17] from independent samples to time series. This generalization
is nontrivial, since new mathematical tools (e.g., two deviation inequalities: Lemmas 4 and 5) are
required to address time-series settings. To the best of our knowledge, Lemma 5 seems to be the first
non-asymptotic result for the VAR models which yields the unified estimation error bounds for both
independent and correlated samples. Furthermore, our analysis demonstrates PGD enjoys a linear
convergence for structured VAR models, which is much more efficient than the sub-linear convergence
rate of FNSL in [22]. Additionally, the linear convergence rate of PGD is also illustrated in [18] for
the VAR(1) model with a sparse transition matrix, when the spectral norm of the transition matrix
is strictly less than 1. Compared with the result in [18], our analysis adapts to general structured
signals with the milder Assumption 1.
Remark 4 (Extension). In Theorem 1, we set the step size µ = 1/κmax for a concise expression of
the result. In fact, any step size satisfying µ ≤ 1/κmax could achieve a linear convergence rate by
providing the corresponding number of measurements. In [20, 21], VAR(d) models are reformulated
as VAR(1) models. With the same reformulation, our analysis also adapts to VAR(d) models.

Our analysis for the VAR model (1) also adapts to the multi-task learning problem with inde-
pendent samples.1 Different from the time series setting, the measurements Y = XΓ? + E in
this case are generated from xt

iid∼ N (0,Σx) and et
iid∼ N (0,Σe), for t = 1, · · · , n, where

X = [x1, · · · ,xn]T ∈ Rn×d and E = [e1, · · · , en]T ∈ Rn×d are independent.
Corollary 1. Consider the multi-task learning problem with the above conditions. Under Assumption
2, we solve the optimization problem (3) via PGD with the step size µ = 1/κmax and a starting point
Γ0 satisfyingR(Γ0) ≤ R(Γ?). If the number of measurements satisfies

√
n > 2C

κmax

κmin
(ω(C ∩ SF ) + u), (20)

then the update (5) would obey

||Γk+1 − Γ?||F < (1− κmin

2κmax
)k+1||Γ0 − Γ?||F + 2C ′

√
κmax

κmin
||Σe||

1
2
ω(C ∩ SF ) + u√

n
(21)

with probability at least 1− c exp(−u2), where c, C, C ′ are absolute constants.

4 Superposition-structured transition matrices estimation with AltPGD

In this part, we consider the case where the transition matrix Γ? to be estimated in (1) is superposition-
structured, that is, Γ? = S? +L?. To estimate S? and L?, we solve the optimization problem (4) via
AltPGD (summarized in Algorithm 2).

We set fn(S,L) = ||Y −X(S +L)||2F/(2n) and write the update of AltPGD as

Sk+1 = PKS
(Sk − µ∇Sfn(Sk,Lk)),

Lk+1 = PKL
(Lk − µ∇Lfn(Sk,Lk)),

(22)

where KS = {S | RS(S) ≤ RS(S?)} and KL = {L | RL(L) ≤ RL(L?)}. We also introduce
two descent cones CS = cone(KS − S?) and CL = cone(KL − L?), which would be used in our
analysis.

Algorithm 2 AltPGD for superposition-structured transition matrices estimation
Input: Initial points S0 and L0, step size µ, iteration number K.
for k = 0 to K − 1 do
Sk+1 = PKS

(Sk − µ∇Sfn(Sk,Lk))
Lk+1 = PKL

(Lk − µ∇Lfn(Sk,Lk))
end for
Output: SK and LK

In this part, we considerRS(·) andRL(·) both belong to decomposable norms defined in [14].
1In addition, our analysis framework could also be used in the problem to estimate Γ? and the precision

matrixΣ−1
e simultaneously [28].
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Definition 1 (Decomposable norm). A regularization functionR(·) is decomposable with respect to
a subspace pair (M,M⊥), if

R(α+ β) = R(α) +R(β), ∀α ∈M, β ∈M⊥. (23)
Here,M is referred to as the model subspace which captures the constraints determined by the model
andM ⊆ M. M⊥ is called the perturbation subspace indicating the deviation from the model
subspaceM.

For common structure priors such as sparsity, group-sparsity and low-rank property, the corresponding
regularization functions l1-norm, l1,2-norm and nuclear norm all belong to decomposable norms with
low-dimensional model subspaces.

For the superposition-structured transition matrix Γ? = S? +L?, we assumeRS(·) is decomposable
with respect to a subspace pair (MS ,M⊥S ), which is suit for the single-structured parameter S?.
Similarly,RL(·) is decomposable with respect to a subspace pair (ML,M⊥L ) suit for L?.

Due to the superposition-structured property of the transition matrix, we need to impose an additional
assumption about the interaction between the two different structured components to guarantee the
separate estimation.
Assumption 3 (Structural incoherence). Given the subspace pairs (MS ,M⊥S ) and (ML,M⊥L ) for
the two parameters S? and L?. Suppose the covariance matrixΣx defined in (9) satisfies

max
{
σ̄max(PMS

ΣxPML
), σ̄max(PM⊥

S
ΣxPML

),

σ̄max(PMS
ΣxPM⊥

L
), σ̄max(PM⊥

S
ΣxPM⊥

L
)
}
≤ κmin

8
, (24)

where σ̄max(·) for a matrix Σ is defined as σ̄max(Σ) = sup
V ,U∈SF

〈V ,ΣU〉 and κmin is defined

in (12). Here PMS
, PML

, PM⊥
S

and PM⊥
L

donate the orthogonal projection operators onto the
corresponding subspaces.
Remark 5 (Related works). Several similar assumptions have been imposed in [27, 29, 30]. This
type of assumptions is first proposed by Yang and Ravikumar in [27], where they use the structural
incoherence assumption to restrict the interaction between different components of superposition-
structured statistical models and the C-Linear condition guarantees the structural incoherence
under the linear regression setting and the Gaussian design. Meng et al. generalize the C-Linear
assumption to the Structural Fisher Incoherence assumption in [29] for the estimation of sparse
plus low-rank matrices in Gaussian Graphical Models. In [30], Greenewald and Hero introduce
the structural incoherence assumption to robust Kronecker product PCA models. Our Assumption
3 is also motivated by [27] and would reduce to the C-Linear condition in [27] when we consider
Σ-Gaussian ensemble where the rows ofX in (2) are generated independently from N (0,Σx).
Remark 6 (Nonidentifiability). There are also other conditions used in literature to deal with
the nonidentifiability concern. In [22], Basu et al. refer to the spikiness condition, which is first
introduced in [31] for matrix completion and then is extended to matrix decomposition in [32]. In
[27], Yang and Ravikumar compare the structure incoherence used here with the spikiness condition
and illustrate the structure incoherence could address a drawback of the spikiness condition that
the estimation error does not approach zero when the number of samples approaches infinity and
requires weaker conditions at the same time. Another common condition used in [23–26] for sparse
plus low-rank matrices recovery is the incoherence condition which is first proposed in [33, 34]. In
[31, 32], the authors illustrate that the spikiness condition is a milder condition than the incoherence
condition and is more suitable for the noisy models because of the consideration of singular values.

We now present the non-asymptotic optimization guarantee of AltPGD for the problem (4).
Theorem 2. Consider the VAR model (1) satisfying Assumptions 1,2 and 3. Suppose Γ? is
superposition-structured and Γ? = S? +L?, where S? and L? are two single-structured parameters
whose structures are characterized by two decomposable normsRS(·) andRL(·) respectively. Start-
ing from points S0 and L0 satisfying RS(S0) ≤ RS(S?) and RL(L0) ≤ RL(L?), we solve the
optimization problem (4) via AltPGD with the step size µ = 1/κmax. If the number of measurements
satisfies

√
n > 4C

κmax

κmin
(ω(CS ∩ SF ) + ω(CL ∩ SF ) + u), (25)
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then the update (22) would obey

||Sk+1 − S?||F + ||Lk+1 −L?||F ≤ ρ
k+1(||S0 − S?||F + ||L0 −L?||F) +

ξ

1− ρ
(26)

with probability at least 1− c exp(−u2). Here

ρ = 1− 3

4

κmin

κmax
+ C

ω(CL ∩ SF ) + ω(CS ∩ SF ) + u√
n

< 1− κmin

2κmax
, (27)

ξ

1− ρ
=

1

1− ρ
· C ′ 1
√
κmax

||Σe||
1
2
ω(CL ∩ SF ) + ω(CS ∩ SF ) + u√

n

< 2C ′
√
κmax

κmin
||Σe||

1
2
ω(CL ∩ SF ) + ω(CS ∩ SF ) + u√

n
, (28)

and c, C, C ′ are absolute constants.
Remark 7 (Related works). Our analysis makes progress on three aspects compared with the result
in [22]. First, we illustrate the linear convergence rate of AltPGD compared with the sub-linear
rate of FNSL. Second, our analysis indicates the requirement of samples for the linear rate and the
statistical error, which are absent in the analysis of optimization in [22]. Third, Theorem 2 addresses
a drawback of the result in [22] that the estimation error does not converge to zero when the number
of samples approaches infinity.

Our analysis framework is also valid for robust PCA considered in [32, 27]. Suppose we have n i.i.d.
sample zi ∈ Rd, where zi = ui + vi, ui ∼ N (0,L?), vi ∼ N (0,S?), ui and vi are independent.
Here we set L? is a low-rank matrix and S? is a sparse matrix. We could write the sample matrix
as Y = 1

n

∑n
i=1 ziz

T
i = L? + S? +E, where E = 1

n

∑n
i=1 ziz

T
i − (L? + S?) is a Wishart noise

matrix. In this setting, we have the data matrixX = Id×d and solve the problem

min
S,L

1

2
||Y − S −L||2F,

s.t. ||vec(ST )||1 ≤ ||vec(ST? )||1, ||L||? ≤ ||L?||?,
(29)

where || · ||1 represents the l1-norm of a vector and || · ||? represents the nuclear norm of a matrix.
Corollary 2. Consider the robust PCA model where S? is a sparse matrix with s? non-zero entries
and L? is a r?-rank matrix. Under Assumption 3 where Σx = Id×d and κmin = κmax = 1 in this
setting, we solve the optimization problem (29) via AltPGD with the step size µ = 1 and starting
points S0 and L0 satisfying ||vec(ST0 )||1 ≤ ||vec(ST? )||1 and ||L0||? ≤ ||L?||?. If the number of
measurements satisfies

√
n > C ′(

√
s? log d+

√
r?d+ u), (30)

then the update of AltPGD would obey

||Sk+1 − S?||F + ||Lk+1 −L?||F

≤ (
1

4
)k+1(||S0 − S?||F + ||L0 −L?||F) +

4

3
C||S? +L?||

√
s? log d+

√
r?d+ u√

n
, (31)

with probability at least 1− c exp(−u2). Here c, C and C ′ are absolute constants.

5 Numerical results

5.1 Synthetic data

In this section, we apply PGD and AltPGD1 to network learning problems and compare the perfor-
mance with FNSL proposed in [22]. We regularize sparse matrices by the l1-norm and low-rank
matrices by the nuclear norm.2 All simulations are run on a PC with Intel i5-6500 and 16GB memory.

1The step size is selected as the inverse of the maximum eigenvalue of the estimated covariance matrix of the
samples and the estimated covariance matrix is derived fromXTX/n.

2The projection onto the l1-norm ball follows the procedure in [35] and the projection onto the nuclear norm
ball is a union of the singular value decomposition and the projection onto the l1-norm ball.
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We first introduce several performance metrics for network estimation. For the estimated transition
matrix Γ̂ and the real transition matrix Γ? whose entries are denoted by γ̂ij and γ?ij respectively, we
define the true positive rate (TPR) and false alarm rate (FAR) as

TPR :=
]{γ̂ij 6= 0 and γ?ij 6= 0}

]{γ?ij 6= 0}
, FAR :=

]{γ̂ij 6= 0 and γ?ij = 0}
]{γ?ij = 0}

.

We also introduce the estimation error (EE), where EE := ||Γ̂− Γ?||F/||Γ?||F.

5.1.1 Network learning with a sparse transition matrix

First we consider Γ? ∈ Rd×d is a sparse matrix with s? non-zero entries. We suppose each
row of Γ? has s?/d non-zero entries whose values follow a standard normal distribution. Then
we rescale Γ? to guarantee the stability of the process. In this simulation, we set d = 100 and
s? = 3500. To illustrate the effect of the numbers of samples, we perform the simulation under three
scenarios n = 1000, 1500, 2000 and each scenario is repeated for 100 trials. For FNSL, we choose
the regularization parameter λS as O(

√
n log d) according to Propositions 1 and 3 in [22]. Both

algorithms start from Γ0 = 0.

Table 1: Performance comparison between PGD and FNSL on sparse network learning problems

d = 100 Method TPR (%) FAR (%) EE Total time (s)

n = 1000
PGD 79.49 11.04 0.476 3.18
FNSL 73.64 14.19 0.489 75.59

n = 1500
PGD 83.45 8.91 0.396 5.16
FNSL 78.43 11.62 0.417 140.16

n = 2000
PGD 85.82 7.63 0.350 6.14
FNSL 81.30 10.07 0.373 183.79

In Table 1, we record the experimental results for the two algorithms under different numbers of
samples. The results illustrate that PGD enjoys better performance with much less computation time
than FNSL and support our analysis in Theorem 1.

5.1.2 Network learning with a low-rank transition matrix

Then we consider Γ? ∈ Rd×d is a low-rank matrix whose rank is r?. Suppose Γ? is constructed by
Γ? = UV T , where U ,V ∈ Rd×r? are matrices with independent standard Gaussian entries. We
also rescale Γ? to guarantee the stability of the process. We set d = 100, n = 8000, r? = 2 and
repeat the scenario for 100 times. For FNSL, we choose the regularization parameter λL as O(

√
nd)

according to Propositions 1 and 3 in [22]. The result in Figure 1(a) illustrates that the updates of PGD
enjoy a faster convergence rate than those of FNSL, as predicted in Theorem 1.

5 10 15 20 25 30 35 40 45 50

Iteration

10
0

10
1 FNSL

PGD

(a) Convergence rate
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(b) Squared estimation error
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Figure 1: Convergence results of PGD for low-rank transition matrices estimation.

We also perform simulations under different dimensions d and different numbers of samples n to
verify the order of estimation error, where we set r? = 4 and each scenario is repeated for 100 times.
The results in Figure 1(b) and 1(c) indicate that all the squared empirical error curves behave as
f(t) ∝ t−1 and support our theoretical results in Theorem 1.
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5.1.3 Network learning with a superposition-structured transition matrix

In this part, we suppose the transition matrix in the VAR model (1) is superposition-structured.
Specially, we consider Γ? = S? + L?, where S? is a sparse matrix with s? non-zero entries and
L? is a rank-r? matrix. The construction of S? and L? follows the same procedure as the above
simulations. First, we set d = 100, s? = 3500 and r? = 2. To illustrate the effect of the numbers of
samples, we perform the simulation under three scenarios n = 1500, 2000, 2500 and each scenario is
repeated for 100 trials. For FNSL, we choose the regularization parameters λS as O(

√
n log d) and

λL as O(
√
nd) according to Propositions 1 and 3 in [22]. Both algorithms start from S0 = 0 and

L0 = 0.

Table 2: Performance comparison between AltPGD and FNSL on estimation of sparse plus low-rank
transition matrices

d = 100 Method TPR (%) FAR (%) EE Total time (s)

n = 1500
AltPGD 78.26 11.70 0.475 19.16
FNSL 71.18 15.52 0.486 309.76

n = 2000
AltPGD 81.06 10.20 0.421 26.05
FNSL 74.65 13.65 0.438 436.46

n = 2500
AltPGD 83.19 9.05 0.379 32.27
FNSL 77.49 12.12 0.399 544.08

In Table 2, we record the experimental results for the two algorithms under different numbers of
samples. The results illustrate that AltPGD enjoys better performance with much less computation
time than FNSL.

Then we compare the convergence rates of AltPGD and FNSL. We set d = 100, n = 8000,
s? = 3500, r? = 3 and repeat the scenario for 100 times. The result in Figure 2(a) illustrates the
efficiency of AltPGD.

We also perform simulations under different dimensions d and different numbers of samples n to
verify the order of estimation error, where we set s? = 300, r? = 3 and each scenario is repeated
for 100 times. The results in Figure 2(b) and 2(c) indicate that all the squared empirical error curves
behave as f(t) ∝ t−1 and support our theoretical results in Theorem 2.
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Figure 2: Convergence results of AltPGD for sparse plus low-rank transition matrices estimation.

5.2 Real data

Next, we analyze the temporal dynamics of the log-returns of stocks in the S&P 500 index. The
stock data consists of 1259 daily closing prices for 434 companies in the S&P 500 index between
February 8, 2013 and February 7, 2018 [36]. In this way, we get 1259 data vectors, each of which
contains the closing prices of all stocks on a trading day. To ensure the data stationary, we calculate
the log-returns {rt}T−1t=1 of stocks by

rt,i = log(
pt+1,i

pt,i
), t = 1, · · · , T − 1, (32)
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where pt,i is the closing price of stock i at day t. In this way, we construct the data matrix X =
[r1, · · · , rT−2]T and the observation matrix Y = [r2, · · · , rT−1]T .

We adopt the VAR model (1) with the regularizer R(·) = || · ||1 to study the evolution of stock
log-returns over the 2013-2018 period and then solve the model with PGD. The constrained parameter
is selected through 5-fold cross validation. In Figure 3, we present the sparsity patterns of two parts of
the transition matrix Γ̂ estimated by PGD, which indicate meaningful Granger causal effects [37, 38]
among the log-returns of stocks. The 434 companies belong to 10 different sectors, such as materials
(22 stocks), energy (29 stocks), consumer staples (31 stocks) and financials (83 stocks). In Figure
3(a) and 3(b), the log-returns of stocks in the energy sector have stronger Granger causal effects,
and the Granger causal effects of the consumer staples sector and the financials sector are weaker.
For comparison, we present the sparsity patterns of the transition matrix estimated by FNSL in [22],
which illustrate a similar Granger causal network.
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Figure 3: Sparsity patterns of the transition matrix Γ̂ estimated by PGD.
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Figure 4: Sparsity patterns of the transition matrix Γ̂ estimated by FNSL.
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