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ABSTRACT

Transformers lie at the core of modern AI, yet their susceptibility to adversarial
perturbations raises reliability concerns. Empirical defenses often lack guarantees,
while certification-based approaches provide them at nontrivial computational
cost. We introduce RAHP (Robustness-Aware Head Pruning), a certification-
guided pruning framework for Transformers. RAHP scores each attention head
with a composite of (i) ∆CLEVER, the predicted increase in a certified-robustness
lower bound when masking that head, and (ii) Fisher information, the estimated
accuracy cost of removing it. We prune heads that maximize robustness gain
per accuracy cost. Across evaluated tasks, RAHP yields compact models with
stronger CLEVER lower bounds and minimal change in clean accuracy, and it
improves resistance to a wide variety of strong attacks. By leveraging a certified
metric to steer structural pruning, RAHP makes certification-oriented robustness
more practical and scalable.

1 INTRODUCTION

The field of artificial intelligence has witnessed a paradigm shift with the emergence of transformer
architectures, which have revolutionized not only natural language processing but also computer
vision, speech recognition, and numerous other domains. However, as these models become in-
creasingly common in critical applications, a fundamental question emerges: how robust are these
systems when faced with unexpected inputs, or adversarial attacks?

In recent years, research has revealed critical vulnerabilities in Transformer-based models, demon-
strated through concrete adversarial attacks that exploit these weaknesses. These attacks are often
invisible to human readers: small changes at the token or character level, harmless word substi-
tutions, or reworded sentences may appear trivial, yet they can cause a model to make drastically
different decisions. These manipulations occur at various levels. At the character level, minor edits
(e.g., ”hotel” → ”h0tel”) preserve readability but can mislead the model (Ebrahimi et al., 2017). At
the word level, replacing a word with a semantically similar alternative (e.g., ”terrible” → ”awful”)
retains the meaning for humans but alters the model’s internal representation (Gan et al., 2021). At
the sentence level, paraphrasing (e.g., ”The movie was surprisingly good.” → ”I was taken aback
by how enjoyable the film was.”) maintains the intended message but may shift the model’s re-
sponse (Krishna et al., 2023). Such perturbations can lead to changes in embedding vectors, noisy or
misleading representations, out-of-vocabulary tokens, or fragmented tokenization, which ultimately
result in unstable or incorrect model behavior.

Robustness refers to a model’s ability to maintain reliable performance in the face of variations,
imperfections, or challenges in the input data (Freiesleben & Grote, 2023). This includes resilience
to noise, shifts in data distribution, and deliberate adversarial manipulations (Brown et al., 2023).
Broadly speaking, robustness can be categorized into three key types. Adversarial robustness con-
cerns the model’s ability to resist carefully crafted perturbations designed to cause incorrect outputs,
even when the changes are imperceptible to humans (Shao et al., 2021). Distributional robust-
ness focuses on how well a model generalizes when the test data distribution deviates from the
training distribution, a common challenge in real-world deployment (Samuel & Chechik, 2021).
Certified robustness, in contrast, offers formal guarantees. It quantifies the maximum perturbation
under which a model’s prediction is guaranteed to remain unchanged, typically using techniques
rooted in provable bounds or integer programming methods (Zeng et al., 2023; Kumar et al., 2023).
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While adversarial and distributional robustness are essential in practice, they often rely on empirical
testing or assumptions about the nature of future inputs. Certified robustness provides a rigorous,
model-agnostic foundation for developing robustness-oriented methods, making it a principled and
compelling focus for algorithmic design and research.

Building on these three categories, the mechanisms to achieve robustness differ in emphasis. For ad-
versarial robustness, the dominant recipe is to expose the model to worst-case perturbations during
training (adversarial training) and/or add sensitivity-controlling penalties such as input-gradient reg-
ularization or virtual adversarial training that smooths the output locally around each sample (Madry
et al., 2017; Ross & Doshi-Velez, 2018). For distributional robustness, methods optimize for per-
formance under plausible distribution shifts rather than single samples, e.g., group DRO to raise
worst-group accuracy and invariance-seeking objectives such as Invariant Risk Minimization (IRM)
for OOD generalization (Sagawa et al., 2019; Arjovsky et al., 2019). For certified robustness, train-
ing and evaluation rely on provable bounds that guarantee prediction invariance within a perturbation
set, via randomized smoothing, or convex relaxations of the adversarial region (Cohen et al., 2019;
Wong & Kolter, 2018); metrics such as CLEVER (Weng et al., 2018) provide attack-agnostic lower
bounds that are widely used to assess robustness even when certification is not directly optimized. A
key strength of certified approaches is that their guarantees are independent of any particular attack
strategy, enabling model and threat-agnostic comparisons across methods.

Pruning removes parameters, neurons, or components (e.g., attention heads) to simplify the network
while preserving accuracy. Beyond efficiency, pruning can also shape decision geometry by reducing
unstable non-linearities and eliminating fragile pathways, which has been observed to improve em-
pirical robustness, especially when combined with robust training objectives (Sehwag et al., 2020).
Recent work further shows that pruning can improve certified robustness: relaxing or removing
unstable ReLUs can tighten verification bounds and raise certified accuracy, and strategically graft-
ing linearity in place of weak non-linear units likewise boosts certifiable guarantees (Zhangheng
et al., 2022; Chen et al., 2022). In this spirit, we extend robustness-aware pruning to Transformers:
we use the CLEVER score (Weng et al., 2018) as a guiding, certification-oriented signal along-
side accuracy-preservation criteria to rank attention heads for removal, and show across tasks that
targeting pruning by a certified-robustness metric increases a model’s robustness while minimally
affecting clean performance.

In this work, we translate this certified-robustness-guided pruning idea into practice by introducing
RAHP: Robustness-Aware Head Pruning. RAHP treats every attention head as a candidate for
removal and scores it with two complementary scores: (i) Fisher information, which estimates the
accuracy loss incurred if the head is pruned, and (ii) ∆CLEVER, which estimates the increase in
certified robustness achieved by masking that head. By pruning the heads that maximize a weighted
trade-off between these scores, RAHP compresses the model while widening its provable pertur-
bation radius. Because the CLEVER score is embedded directly in the pruning rule, RAHP is, to
our knowledge, the first Transformer pruning framework that optimizes certified robustness and effi-
ciency simultaneously, achieving stronger guarantees without costly adversarial retraining and with
negligible impact on clean accuracy.

2 RELATED WORKS

Prior work strengthens Transformer robustness by smoothing predictions or explicitly optimizing
against perturbations. R-Drop enforces output consistency across different dropout masks via a
bidirectional KL term, reducing variance and sharpening decision margins (Wu et al., 2021). Child-
Tuning masks gradients to update only a “child” subset of parameters, stabilizing fine-tuning on
limited data and improving robustness without overfitting the full model (Xu et al., 2021). SMART
augments fine-tuning with small, principled adversarial perturbations plus a KL smoothness regular-
izer in representation space (Jiang et al., 2019). FreeLB performs multi-step adversarial training in
the embedding space to craft stronger perturbations while accumulating informative gradients (Zhu
et al., 2019). These methods improve robustness but offer no attack-agnostic guarantees.

A complementary line pursues certified robustness with formal guarantees. Randomized smoothing
wraps a base classifier with Gaussian noise to certify an ℓ2 radius per input (Cohen et al., 2019).
Symbolic/interval bound propagation adapts certification to NLP by bounding worst-case effects of
discrete edits such as synonym or character substitutions (Huang et al., 2019). Finally, CLEVER
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Figure 1: RAHP Method Overview: For each head, (a) compute Fisher score, (b) compute
∆CLEVER score, and (c) combine into a composite score. (d) Mark the top-γ heads by Fisher
as non-prunable and rank the remaining heads by composite score. (e) Prune the top-K heads.

estimates attack-agnostic lower bounds on the minimal adversarial distortion, and is widely used
as a certification-oriented assessment metric even when certificates are not computed (Weng et al.,
2018). These approaches clarify trade-offs between guarantees and accuracy/compute.

Pruning has emerged as a structural route to robustness by removing fragile pathways or reducing
unstable non-linearities. Beyond empirical gains, recent studies show pruning can improve certi-
fied robustness by tightening verification bounds and reducing neuron instability (Zhangheng et al.,
2022; Chen et al., 2022). In parallel, ROSE (Robust Selective Fine-Tuning) selectively updates
robust parameters during adaptation, improving adversarial robustness and offering a strong base-
line for comparison in NLP (Jiang et al., 2022). Our work follows this structural perspective for
Transformers, but differs by using a certified-robustness–oriented signal (CLEVER) to guide which
attention heads to remove.

In our experiments, we compare against these approaches to evaluate the benefits of our method.

3 METHODOLOGY

As illustrated in Figure 1, we propose a two-score pruning framework that, in a single global step
across all layers, removes self-attention heads to enhance robustness without sacrificing accuracy.

Concretely, each attention head is assigned two complementary scores: a CLEVER-based robust-
ness score that reflects the change in robustness when the head is masked, and a Fisher-based im-
portance score that quantifies the accuracy cost of its removal. After normalization, the two signals
are combined into a composite score, and all heads are ranked globally. To safeguard accuracy, a
fixed fraction γ of the most Fisher-important heads are explicitly protected from pruning. The re-
maining heads are pruned according to the target pruning ratio ρ, removing those with the highest
composite scores. Finally, the pruned model can be optionally fine-tuned slightly on the training
data to mitigate potential clean performance loss.

3.1 NOTATION

We define the notation used throughout this paper as follows. Let f(·) denote a Transformer-based
sequence classifier. The model produces logits z = f(x) ∈ RC corresponding to C output classes.

The Transformer model consists of L attention layers, where each layer ℓ ∈ {0, . . . , L−1} contains
H attention heads. A specific head is identified by the tuple (ℓ, h), with h ∈ {0, . . . , H − 1}. A
binary head mask is defined as M ∈ {0, 1}L×H , where Mℓ,h = 0 indicates that the head (ℓ, h)
is pruned, and Mℓ,h = 1 indicates that it is retained. Finally, the classification margin for a given
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Algorithm 1 Robustness-Aware Head Pruning
Input: Model f ; dataset D; weights α, β; prune ratio ρ; non-prunable fraction γ
Output: Pruned head mask M ∈ {0, 1}L×H

1: Initialize M ← 1L×H (all heads active)
2: for ℓ = 0 to L− 1 do
3: for h = 0 to H − 1 do
4: M ′ ←M with M ′

ℓ,h ← 0

5: ∆Cℓ,h ← Ex∼D

[
g(f(x,M′))

∥∇xg(f(x,M′))∥2+ε
− g(f(x,M))

∥∇xg(f(x,M))∥2+ε

]
6: Fl,h ← E(x,y)∼D

∥∥∇θl,hJ(f(x), y)
∥∥2

2

7: Iℓ,h ← log(Fℓ,h + ε)
8: end for
9: end for

10: I ′ℓ,h ← normalize(Iℓ,h)
11: ∆C′

ℓ,h ← normalize(∆Cℓ,h)
12: N ← top-γ fraction of heads with highest Iℓ,h (non-prunable heads)
13: for (ℓ, h) over all heads do
14: if (ℓ, h) ∈ N then
15: Sℓ,h ← −∞ (protect non-prunable heads)
16: else
17: Sℓ,h ← β ·∆C′

ℓ,h − α · I ′ℓ,h
18: end if
19: end for
20: K ← ⌊ρ · L ·H⌋
21: Prune top-K heads with largest Sℓ,h by setting Mℓ,h ← 0
22: Fine-tune f on D using the updated M (optionally)
23: return M

output is defined as g(z) = zc − zc′ , where zc is the logit of the correct class, and zc′ is the highest
logit among all incorrect classes.

3.2 CLEVER-BASED ROBUSTNESS SCORE

To quantify model robustness, we adapt the CLEVER (Cross-Lipschitz Extreme Value for nEtwork
Robustness) score (Weng et al., 2018). The CLEVER score provides a lower bound on the minimum
perturbation needed to cause a misclassification, with higher scores indicating greater robustness. It
is formally defined as the minimum ratio of the classification margin to the norm of its gradient with
respect to the input, approximated via extreme value theory.

We estimate this score for a batch of samples, where the score for a single input x is:

C(x,M) =
g(f(x,M))

∥∇xg(f(x,M))∥2 + ϵ
. (1)

Here, f(x,M) is the model’s forward pass using the head mask M , and ϵ is a small constant for
numerical stability. The gradient is taken with respect to the input embeddings.

To assess the contribution of an individual head (ℓ, h), we measure the change in CLEVER score
when this head is removed. Formally, letting M be the current mask and M ′

ℓ,h the same mask but
with head (ℓ, h) pruned, we define the Robustness Score as:

∆Cℓ,h = Ex∼D

[
C(x,M ′

ℓ,h)− C(x,M)
]

(2)

where the expectation is taken over the dataset D.

The interpretation of ∆Cℓ,h is straightforward:

• If ∆Cℓ,h = 0, pruning head (ℓ, h) has no effect on robustness.
• If ∆Cℓ,h > 0, the model becomes more robust after pruning (ℓ, h), making them good

pruning candidates.
• If ∆Cℓ,h < 0, pruning (ℓ, h) weakens robustness and such heads are best kept.
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In practice, the higher the ∆Cℓ,h value, the more robust the pruning of head (ℓ, h) contributes to
the overall model. This makes ∆CLEVER a natural robustness-oriented reward signal within our
composite pruning criterion.

3.3 FISHER-BASED ACCURACY SCORE

To prevent the pruning process from significantly degrading model accuracy, we must quantify the
importance of each attention head to the model’s primary task. For this, we use the Fisher In-
formation (FI), which measures the sensitivity of the model’s loss to changes in its parameters.
Because FI provides a principled sensitivity estimate, it has been widely adopted as a pruning cri-
terion (Molchanov et al., 2016; Theis et al., 2018; Molchanov et al., 2019; Liu et al., 2021; Kwon
et al., 2022; Sung et al., 2021). Heads with high FI are considered more critical to the model’s
performance, as pruning them would likely incur a large accuracy cost.

We approximate the diagonal of the FI matrix for the parameters θℓ,h of each head (ℓ, h). For a
single data point (x, y), the FI is estimated as the squared gradient of the loss function J (e.g.,
Cross-Entropy) with respect to the head’s parameters:

Fl,h(x, y) =
∥∥∇θl,hJ(f(x), y)

∥∥2
2
. (3)

Averaging over the dataset D yields the head-level Fisher estimate:

Fl,h = E(x,y)∼D [Fl,h(x, y)] . (4)

For numerical stability and to temper the heavy-tailed distribution of Fisher values, we apply a log
compression before scoring. The resulting Fℓ,h acts as the Accuracy Score: heads with high Fisher
values are strongly tied to minimizing task loss and should therefore be preserved, whereas heads
with low Fisher values tend to contribute little to accuracy and are good candidates for pruning.

3.4 COMPOSITE SCORE & PRUNING RULE

After computing both the robustness and accuracy metrics for all heads, we combine them into a
single signal that guides the pruning decision. Specifically, we normalize each metric across the
entire model to a [0, 1] range, obtaining ∆C ′

ℓ,h (normalized robustness gain) and I ′ℓ,h (normalized
accuracy cost). To stabilize the scale of the Fisher estimates, we first apply a log transformation
Iℓ,h = log(Fℓ,h + ε), and then normalize Iℓ,h across all heads to yield I ′ℓ,h.

The Composite Score Sℓ,h for head (ℓ, h) is then defined as:

Sℓ,h = β ·∆C ′
ℓ,h − α · I ′ℓ,h, (5)

where α and β control the trade-off between robustness and accuracy preservation. A higher value
of Sℓ,h indicates that pruning the head yields stronger robustness improvements (large ∆C ′

ℓ,h) while
incurring only a small accuracy penalty (low I ′ℓ,h).

To ensure that accuracy-critical heads are not mistakenly removed, we protect a fixed fraction γ of
heads with the highest Fisher values (the non-prunable set). These are excluded from consideration
regardless of their composite score. The remaining heads are globally ranked by Sℓ,h in descending
order, and pruning is applied to the top K = ⌊ρ · L ·H⌋ heads. Sorting in descending order ensures
that we remove precisely those heads with the best trade-off: the highest robustness gain combined
with the lowest accuracy cost. Put differently, the higher the composite score, the more it reflects a
desirable balance of large robustness gains with minimal accuracy loss.

Finally, the pruned model can be optionally fine-tuned on the original dataset to recover any residual
performance loss. This one-shot, global ranking strategy enables RAHP to jointly optimize robust-
ness and accuracy without iterative per-layer pruning. The complete algorithm is summarized in
Algorithm 1.
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4 EXPERIMENTS

4.1 DATASETS & MODELS

We evaluate our method using four tasks from the GLUE (Wang et al., 2018) and AdvGLUE (Wang
et al., 2021) benchmarks. GLUE is a widely used benchmark for natural language understanding
that evaluates model performance on clean, human-written text. AdvGLUE extends this by provid-
ing human-verified adversarial counterparts for each GLUE task, constructed via 14 diverse attack
techniques targeting model vulnerabilities. This allows us to measure robustness against realistic
adversarial perturbations. To ensure reliable comparison, we avoid synthetic or automatic attack
generation, which often introduces invalid or semantically ambiguous examples.

SST-2 (Socher et al., 2013) is a binary sentiment classification task where models must predict
whether a single sentence from a movie review expresses positive or negative sentiment.

RTE (Bentivogli et al., 2009) is a natural language inference task derived from multiple textual
entailment challenges. Each example consists of a premise and a hypothesis, and the model must
determine whether the hypothesis can be logically inferred from the premise.

QNLI (Rajpurkar et al., 2016) is a question-answering-derived task where the model must decide
whether a given context sentence contains the answer to a corresponding question.

QQP (Quora, 2018) is a large-scale semantic similarity benchmark based on real user-submitted
questions from Quora. Each pair of questions must be classified as paraphrases or not, testing a
model’s ability to detect semantic equivalence and redundancy.

For this experiment, we use two widely adopted Transformer architectures: RoBERTaBASE, with
125 million parameters, 12 layers, and 12 attention heads per layer; and RoBERTaLARGE, with 355
million parameters, 24 layers, and 16 attention heads per layer. These models are strong baselines
for both standard and adversarial evaluations.

4.2 EXPERIMENTAL SETTINGS

Across all experiments, we fixed the pruning hyperparameters to values that provided the most stable
and effective performance. Specifically, we set the trade-off weights to β = 1 and α = 0.5, which
we found to be the most effective combination for balancing robustness and importance. You can
find a detailed analysis of alternative weightings in Section 5.

For the pruning configuration, we employed a prune ratio of 60%, meaning that only 40% of the
attention heads remain active after pruning. In addition, we enforced a non-prunable fraction of
γ = 10%. Here as well, a detailed analysis can be found in Section 5.

Model Pruning
Volume

SST-2 RTE QNLI QQP Avg Avg
GLUE AdvGLUE GLUE AdvGLUE GLUE AdvGLUE GLUE AdvGLUE GLUE+AdvGLUE ∆ ↓

RoBERTaBASE

Vanilla 0% 94.29 24.05 77.91 28.15 92.97 27.43 91.58 19.49 56.98 64.41
R-Drop 0% 95.32 27.84 79.86 31.36 93.30 28.92 91.86 37.44 60.74 58.70
CHILD-TUNINGD 70% 94.21 23.82 75.52 16.54 92.36 31.89 91.64 17.95 55.49 65.88
SMART 0% 94.98 35.95 77.54 24.44 93.35 34.29 91.04 46.58 62.27 53.91
FreeLB 0% 94.89 35.81 78.42 32.10 93.12 36.22 92.04 44.10 63.34 52.56
ROSE-First 60% 94.84 37.67 78.34 35.49 92.19 44.19 89.56 44.44 64.59 48.29
ROSE-Second 60% 93.78 36.99 78.16 37.97 92.41 34.63 90.48 45.73 63.77 49.88
ROSE-Ensemble 60% 94.09 39.36 78.63 38.02 92.64 39.59 90.39 47.44 65.02 47.84
RAHP 60% 94.56 38.90 78.95 39.60 92.78 42.19 91.96 48.14 65.89 47.36

RoBERTaLARGE

Vanilla 0% 96.08 56.08 85.92 61.73 94.58 63.38 92.09 40.60 73.81 36.72
R-Drop 0% 96.59 53.38 85.56 66.67 95.01 55.95 92.35 44.80 73.79 37.18
CHILD-TUNINGD 70% 95.91 51.35 85.92 61.73 94.30 58.11 92.03 43.59 72.87 38.35
SMART 0% 96.67 59.12 85.02 69.14 94.91 61.04 92.12 50.85 76.11 32.14
FreeLB 0% 96.49 59.32 86.76 66.91 94.99 62.30 92.60 48.21 75.95 33.53
ROSE-First 60% 95.58 57.77 85.13 70.62 94.08 64.02 90.67 60.26 77.27 28.20
ROSE-Second 60% 96.29 60.59 85.08 67.49 94.72 63.68 91.68 55.90 76.93 30.03
ROSE-Ensemble 60% 96.10 60.81 85.92 71.11 94.26 64.64 91.46 60.51 78.10 27.67
RAHP 60% 96.32 62.02 85.96 71.25 94.74 67.51 90.31 57.12 78.15 27.36

Table 1: Accuracy on GLUE and AdvGLUE benchmarks, averaged over 5 random seeds. The last
column shows the drop from GLUE to AdvGLUE (lower is better). Bold indicates the best result;
all baseline results are based on Jiang et al. (2022).
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4.3 MAIN RESULTS

Table 1 presents the performance of RAHP compared to a range of competitive baselines across four
representative GLUE tasks and their adversarial counterparts in AdvGLUE. Results are reported for
both RoBERTaBASE and RoBERTaLARGE, averaged over five random seeds.

For RoBERTaBASE, RAHP achieves the highest overall average score of 65.89 across GLUE and
AdvGLUE, while also attaining the lowest degradation from clean to adversarial performance
(∆ = 47.36). This represents a consistent improvement over the ROSE variants, which were the
strongest pruning-based baselines. Notably, RAHP narrows the robustness gap without sacrificing
performance on the clean GLUE tasks, highlighting its ability to better preserve essential attention
heads under heavy pruning (60%).

For RoBERTaLARGE, the trend is even more pronounced. RAHP reaches a new state of the art with an
average score of 78.15, improving upon the best ROSE variant (78.10) while yielding the smallest
drop between GLUE and AdvGLUE (∆ = 27.36). This reduction in performance degradation
indicates that RAHP not only maintains clean-task accuracy but also enhances resilience to human-
crafted adversarial examples.

Figure 2 illustrates the layer-wise distribution of pruned heads in RoBERTaBASE on the SST-2 task
across different pruning ratios. At a low pruning ratio of 10%, pruning is almost exclusively con-
centrated in the later layers, particularly from layer 9 onward. Increasing the ratio to 20% preserves
this pattern while extending pruning upward to layer 8, suggesting that robustness-aware pruning
first targets redundancy in the deepest layers before affecting earlier components.

This trend becomes more pronounced as the pruning ratio grows. For ratios of 40% and above, the
distribution follows a clear structural pattern: layers 9–12 consistently absorb the highest pruning
rates, often exceeding 80% of their heads. From layer 8 downward, the proportion of pruned heads
gradually decreases, reaching a minimum around layers 5–6. Interestingly, pruning volumes then
rise again in the earliest layers (layers 1–4), indicating that shallow layers also contain removable
redundancy once the deeper layers have been heavily pruned.

Overall, these results reveal a non-uniform pruning distribution: robustness-aware pruning strongly
favors removing heads in the deepest layers, followed by shallow layers at high pruning volumes,
while the middle layers are relatively more protected. This layered trend aligns with prior observa-
tions that attention heads in later layers are more redundant, whereas middle layers encode features
more central to task accuracy, as suggested in other papers (Ling et al., 2024; Zhang et al., 2024;
Sajjad et al., 2023; Gromov et al., 2024).

Figure 2: Distribution of pruned heads per layer in RoBERTaBASE (SST-2) across pruning ratios.
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4.4 ANALYSIS OF PRUNING BEHAVIOR

To better understand RAHP’s internal behavior, we visualize the per–head Fisher and CLEVER
scores and examine how they interact in pruning. All results below are reported for RoBERTaBASE.

Figure 3 shows side-by-side heatmaps of the normalized Fisher importance values and normalized
∆CLEVER scores. Each cell corresponds to an attention head, indexed by its layer (rows) and head
position (columns). The Fisher heatmap highlights heads with the largest gradient-based sensitiv-
ity, while the ∆CLEVER heatmap indicates robustness changes when individual heads are removed
(brighter values correspond to larger robustness gains). Interestingly, Fisher values reveal clear
structural patterns: for instance, head 10 consistently exhibits high Fisher importance across layers,
suggesting it encodes strongly loss-sensitive features shared throughout the network. By contrast,
the ∆CLEVER map highlights different subsets of heads whose removal improves robustness, par-
ticularly concentrated in mid-to-late layers. This contrast underscores the complementary nature
of the two metrics: Fisher emphasizes heads that are critical for loss optimization and therefore
important for preserving model accuracy, whereas ∆CLEVER identifies heads most relevant for
robustness gain. In practice, this complementarity ensures that RAHP does not overfit to a single
criterion but instead balances accuracy preservation with robustness gains. Thus, we aim to retain
heads that appear dark in the Fisher heatmap, as these indicate high importance for preserving ac-
curacy, while removing heads that appear light in the ∆CLEVER heatmap, as these mark positions
whose removal contributes to robustness gains.

Figure 3: Normalized Fisher and ∆CLEVER heatmaps for RoBERTaBASE, on SST-2. Fisher
highlights loss-sensitive heads, while ∆CLEVER emphasizes robustness-critical heads in mid-to-
late layers, showing their complementary roles in RAHP.

Figure 4: Composite pruning scores and RAHP decisions for RoBERTaBASE, on SST-2. Left:
composite score matrix (β = 1, α = 0.5). Right: pruning outcomes, where black crosses mark
pruned heads and red boxes denote the 10% non-prunable set.
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Figure 4 illustrates the composite pruning scores obtained after combining β = 1 with α = 0.5. The
left panel shows the full composite score matrix, while the right panel overlays RAHP’s pruning
decisions: black crosses mark heads selected for pruning, and red boxes denote heads protected as
part of the 10% non-prunable fraction. A clear pattern emerges: most pruning decisions occur in
the deeper layers, where many heads exhibit higher composite scores. This trend aligns with prior
findings that middle-to-deeper attention heads are more redundant and can be pruned with minimal
performance loss (Ling et al., 2024; Zhang et al., 2024; Sajjad et al., 2023; Gromov et al., 2024).

5 ABLATION STUDY

To assess the impact of our scoring function’s trade-off parameters, we conduct an ablation study
varying the values of α (Fisher-based accuracy cost) and β (robustness reward via ∆CLEVER).
While our earlier experiments surveyed two other methods, here we focus on two representa-
tive models: DeBERTaV3 and DistilBERT, to illustrate how both a high-capacity variant and a
lightweight distilled model respond to different (α, β) settings. Figure 5 visualizes the results for
two models: DeBERTaV3 and DistilBERT. Each point represents a specific (α, β) configuration,
evaluated by its clean accuracy and CLEVER robustness score.

The results reveal that neither a purely accuracy-driven objective nor a purely robustness-driven
objective yields a desirable trade-off. For instance, while α=0, β=1 achieves the highest CLEVER
score, it suffers from a significant drop in accuracy. Conversely, α=1, β=0 maintains high accuracy
but offers minimal robustness gains. The configuration α=0.5, β=1 consistently strikes an effective
balance across both models, and among all other models presented during the paper, significantly
improving robustness over the baseline while preserving accuracy. We adopt this setting for all main
experiments, confirming the need to balance accuracy and robustness during pruning.

Figure 5: Effect of (α, β) weights on the robustness–accuracy trade-off for DeBERTaV3 (left) and
DistilBERT (right). The star marks our recommended (0.5, 1) setting.

6 CONCLUSIONS

We proposed RAHP, a robustness-aware head pruning framework that balances certified robustness
and efficiency in Transformers. By combining Fisher-based accuracy costs with CLEVER-based
robustness rewards, RAHP prunes heads that minimally affect accuracy while improving robustness,
achieving a principled trade-off absent in prior pruning approaches. Experiments on GLUE and
AdvGLUE show RAHP consistently surpasses strong baselines, narrowing the robustness gap while
maintaining clean-task accuracy. Analysis further reveals pruning concentrates in deeper and, at
higher volumes, also shallow layers, consistent with recent findings on Transformer redundancy.

These results suggest that robustness-aware structural pruning offers a practical and scalable path
toward certifiably robust Transformers, reducing model size without costly adversarial retraining.
Future work may extend RAHP to other modalities (e.g., vision or speech) and explore adaptive
pruning ratios.
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