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Abstract

We investigate the parameter aggregation
weights of federated learning (FL), simulate
a variety of data access scenarios for experi-
ments, and propose a model parameter weight
self-learning strategy for horizontal FL. For ap-
plication use of this study, a personalized FL
network structure model based on edge com-
puting is designed.

1 Introduction

We do research on Federated Learning (FL) on
Natural Language Processing (NLP), with emo-
tion classification as the basic task. (Huan et al.,
2021) has proposed FedBN-PW-CTC, a federated
learning-based Chinese text classification model
with FedBN as FL structure, which concluded that
for non-iid data, the weights of the parameters at
the access side have a greater effect on the accu-
racy of test sets with similar characteristics, and
the increase of the weights leads to the increase of
the accuracy of the corresponding test sets, so PW
is meaningful for non-iid data access.

2 Related Work

Federated learning (FL) was first proposed by
Google in 2016, (Hard et al., 2018) did parame-
ter weighting by weighted averaging and applied
to keystroke prediction for GBoard. (Li et al.,
2018) proposed FedProx to tackle heterogeneity
in federated networks. (Li et al., 2021) proposed
FedBN, which accelerates the convergence speed
of the model and performs better on non-iid data.
Huan W. et al. proposed FedBN-PW-CTC, a fed-
erated learning-based Chinese text classification
model based on FedBN, which has proved the ef-
fectiveness of Parameter Weighting (PW) on non-
iid datasets. In addition, (Chen et al.) proposesd
FedGame, a multi-player game to study how FL
participants make action selection decisions under
different incentive schemes. We take into account

the influence of relevant incentive mechanisms in
the subsequent weighted strategy design.

In FL-based NLP research, (Yuanhe et al., 2021)
conducted a study on FL for Chinese word sepa-
ration. In emotion classification task, (Latif et al.,
2020) conducted a study on FL-based speech senti-
ment classification. As for application use, (Abdel-
latif et al., 2021) proposed FL for non-homogenous
data on IoT. (Ma et al., 2020) proposed a design of
Smart Home System based on Collaborative Edge
Computing and Cloud Computing, which brings
inspiration to design the network structure of FL.

3 Models

3.1 Self-learning Bigram-PW Strategy

FedBN has achieved good results in FL on non-
iid data through adding batch normalization layer,
and FedBN-PW used parameter weighting method
according to the amount of data for each client par-
ticipating in FL, replacing the parameter averaging
approach of FedBN itself.

We conduct experiments based on this FedBN-
PW-CTC to verify the effect of different weighting
ratios on the accuracy of the client model, and
find that there will be a better weighting strategy
compared to both. Therefore, we propose a model
parameter weighting self-learning strategy for a
small number of data clients (clients holding much
less data than the average), before the local model is
accessed, the central model compares the changes
of multiple weight values of the local weights and
selects the optimal one as the weight of this client
model.

A weight comparison strategy, named self-
learning bigram-PW Strategy, is proposed here, as
shown in Figure 1. We experimentally verified that
too large weights are detrimental to the overall per-
formance of the model, and taking into account the
time cost problem (FL has a large time consump-
tion, too many training comparisons will waste a



basicWeight = % (n is client number)

. client data volume
parameterWeight =—————
sum data volume

AvgAccuracy = train as FedBN-Avg(basicWeight)
curWeight = parameterWeight
maxAccuracy = AvgAccuracy
while (curWeight < basicWeight) {
PWAccuracy = train as FedBN-PW (curWeight)
if (PWAccuracy > AvgAccuracy) {
optimizeWeight = curWeight
maxAccuracy = PWAccuracy
break

}
curWeight = 2 X curWeight

}

return maxAccuracy, curWeight

Figure 1: Bigram-PW Strategy Algorithm

lot of time), as well as the incentive mechanism of
FL among different clients (the fairness between
the high volume clients and the low ones). The
average weight is used as the threshold of iteration,
and the weight of the client is not increased when
the threshold is reached. By determining the best
weight at one client by means of weight iteration
comparison, we can obtain a more optimal weight
for the global model for that client of access within
an effective training time. Considering the time
consumption, we propose an optimization scheme
to adopt the weighting directly when the result of
weighting is better than Avg, which saves the time
cost and computing cost to some extent, and we ver-
ify the effectiveness and feasibility of the method
through experiments.

3.2 Personalized FL Edge Network

FL can effectively solve the data silo problem and
text classification research has a wide range of
application scenarios, so we are inspired by the
datasets in our experiments with Chinese text senti-
ment classification as the task. For the experiments
with non-homogenous datasets, we design practi-
cal application scenarios for the proposed Personal-
ized FL model, which can be used in the sentiment
discrimination part of chatbots and the sentiment
analysis part of online opinion monitoring. We use
Sentence Vector as the base vector and train it at the
personal edge side, with personalized labels, such

as age, sex, career etc., as the personal vector at
the Chinese text classification, called FedBN-PWP-
CTC. Due to the existence of dialects, language
expressions are closely related to regions, and con-
sidering about the large group network structure of
edge computing sinks to regions, we add regional
information to the output of the edge layer as edge
vector, and train in the cloud considering this vec-
tor, called FedBN-PWPE-CTC, and the network
structure is shown in Figure 2.

4 Experiment

Our dataset is selected from SMP2020-EWECT
competition, where there are 2 non-homogenous
datasets, the usual training dataset consists of
30,768 randomly extracted datasets from Weibo,
and the virus training set consists of 9,606 data,
obtained by keyword extraction from COVID-19,
with non-iid characteristics compared to the global
usual dataset. Both datasets are divided into 6 cate-
gories of emotions, surprise, Happy, Neutral, fear,
angry and sad.

4.1 Comparison of Avg and Origin PW

Firstly, we compare the accuracy of the model on
the same equal data set with data distributed as iid
and non-iid on FedBN and FedBN-PW, which is
abbreviated as Avg and PW in the subsequent ex-
periments. We simulated client2 as the access of
non-iid data, where clientO and client] have 15,384
usual data and client2 has 9,606 virus data. Com-
pare to iid-data, we find that the PW model was
almost ineffective for iid data. For non-iid data, the
Avg accuracy has a 0.3% improvement, consider-
ing that it is because the weighted weight is closer
to Avg. Therefore, we further verify the effect of
PW on different proportions of non-iid data access,
and we conduct simulations for data access with
the proportion of 0.038, 0.072, 0.135, and 0.238
respectively, using FedBN as a comparison exper-
iment, and the experimental results are shown in
Figure 3.

PW has a significant effect on the accuracy im-
provement of the whole model training when the
amount of data on one side is insufficient, and the
less the amount of data on the access side, the more
obvious the effect of PW.

In order to further verify the effect of PW, we
conduct tests on different test sets to verify the
effect of the model in different application scenar-
10s, where clientO and client held 15,384 data and
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Figure 2: Personalized FL Edge Network Structure
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Figure 3: Performance with Different Amount of Data

client2 held 9,606 data. Different test sets were
tested on the iid and non-iid training sets, the ex-
perimental results are shown in Figure 4. We find
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Figure 4: Accuracy of Avg and on Different Datasets

that for iid data, PW does not change significantly
compared to Avg on each dataset. For non-iid data,
the accuracy of PW is not as high as that of Avg
when the proportion of virus data accounts for a
certain degree. The analysis here is because the
expression of the virus training set itself is closer

to the test set of the virus data, which has some
correlation with the features of non-iid. However,
there is almost no difference in accuracy when the
proportion of data in the test set for usual and virus
is the same as the proportion for PW, which we
define as D.

To further explore this conclusion, we selected
the accuracy improvement of PW compared to Avg
in the non-iid training set with different data ac-
cesses of client2, as shown in Figure 5, testl to
testS are corresponding to those in the above ex-
periment. When the ratio of usual and virus data
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Figure 5: Accuracy Difference between Avg and PW

in the test set reaches D, there is almost no gap
between the accuracy of both Avg and PW for dif-
ferent amounts of client2 data, and we can consider
D as a threshold value, and PW will perform better
than or equal to Avg when the threshold value is
reached.

We can obviously find that the performance of
PW is very unstable when 1201 virus data are
accessed, so we performed different proportional
weighting for this training set to verify its effect,
and the accuracy change is shown in Figure 6. .

We first verify that FL. does work well compared
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Figure 6: Accuracy of Different Parameter Weightings

to local training with a small amount of data access,
but it is not true that the higher the percentage of
the training set with the same features, the higher
the accuracy of the test set, and different weights
do affect the performance of the model. Further, it
can be found that PW is an effective way in most
cases, but the weighting according to the proportion
of data we have been proposing is not always the
optimal way, and a more optimal strategy can be
selected by means of parameter scaling, verifying
the necessity of the model parameter weighting
self-learning strategy we proposed in 3.1.

4.2 PW Safety Validation

One of the cores of FL lies in data security, and we
do not assume that the access client is necessarily
honest. Therefore, we simulate the attack access of
malicious data to compare the robustness of Avg
and PW models to malicious data.

We simulate the stable access side with the hy-
brid dataset of clientO and client1, holding 15384
data respectively, and client2 for 2 types of mali-
cious data. The first one assumes that all 9606 data
of client are marked as angry (actually only 2477
are really angry), and the second one assumes that
all 9606 data of client2 are misclassified (sad is
judged as surprise, happy is judged as angry, neu-
tral is judged as fear, and vice versa). Similarly, we
also do a validation for the access of special data,
assuming that the data provided by one client is
very single, but the access of this client has a cer-
tain reference value, we extracted 2556 data with
label as happy in client2. The experimental results
are shown in Figure 7.

We can see that the PW can have better training
results under the attack of malicious data compared
to Avg. Here there is a phenomenon that because
the reverse data also has some regularity to follow
compared to the other two data, this regularity also
has some influence on the local parameters, so the
overall performance is better than the other two.
Through this experiment, we demonstrate the high
value of PW for model robustness and non-iid data.
In addition, we conduct experiments with differ-
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Figure 7: Accuracy on Avg and PW of Malicious Data

ent scales of weighting for special data, and the
experimental results are shown in Figure 8. It can

Accuracy of different weights of special data on different test sets
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Figure 8: Comparison on Weightings of Special Data

be found that the PW approach weighted by the
amount of data outperforms other scales on several
proportioned data sets, and its convergence speed
is faster. This also verifies the time optimization
measure in 3.1, when the data volume weighting
is better than Avg, the iteration can be stopped for
the reason of saving time cost.

5 Conclusion

We compare several experiments to verify that the
FedBN-PW-CTC model outperforms the FedBN
model when accessing non-iid data, and the superi-
ority of the model performance becomes more ob-
vious as the accessing client data becomes less. In
addition, we propose a model parameter weighted
self-learning strategy binary-PW by the perfor-
mance effect of PW on different test sets, and verify
the necessity of this strategy by experiments, and
simulate the wrong data and special data to verify
the robustness of the model against malicious data
attacks and the excellent performance for extreme
non-iid data access, further validating the FedBN-
PW-CTC model’s effectiveness. Finally, we design
a Personalized FL networking model based on edge
computing for the model for application use.
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