
Position: Automatic Environment Shaping is the Next Frontier in RL

Younghyo Park * 1 Gabriel B. Margolis * 1 Pulkit Agrawal 1

Abstract
Many roboticists dream of presenting a robot with
a task in the evening and returning the next morn-
ing to find the robot capable of solving the task.
What is preventing us from achieving this? Sim-
to-real reinforcement learning (RL) has achieved
impressive performance on challenging robotics
tasks, but requires substantial human effort to set
up the task in a way that is amenable to RL. It’s
our position that algorithmic improvements in pol-
icy optimization and other ideas should be guided
towards resolving the primary bottleneck of shap-
ing the training environment, i.e., designing obser-
vations, actions, rewards and simulation dynamics.
Most practitioners don’t tune the RL algorithm,
but other environment parameters to obtain a de-
sirable controller. We posit that scaling RL to
diverse robotic tasks will only be achieved if the
community focuses on automating environment
shaping procedures.

1. Introduction
The advent of foundation models for speech, vision, and lan-
guage processing has revolutionized Artificial Intelligence.
It is widely believed that robotics is the next frontier, and
the race to develop a foundation model for robotics is on-
going. The critical challenge in this pursuit is the limited
availability of robotic data: trajectories of observations and
robot actions. This starkly contrasts with computer vision
and natural language processing, where large amounts of
readily available internet data can be used. One way to
gather robotic data is to deploy robots for many tasks in
diverse environments. However, such deployment is only
feasible if robots create value, i.e., successfully solve the
task often enough. The result is a chicken-and-the-egg sit-

*Equal contribution 1Improbable AI Lab, Massachusetts Insti-
tute of Technology, Cambridge, MA, USA. Correspondence to:
Younghyo Park <younghyo@mit.edu>, Gabriel B. Margolis
<gmargo@mit.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

uation – robots need to be useful to be deployed, but for
them to be useful requires collecting enough data to train a
controller that creates value. The real question, therefore, is
bootstrapping data collection.

A natural way to collect data is by teleoperating a robot
to perform diverse tasks. However, this paradigm is chal-
lenging to scale as the human effort grows linearly with
the amount of data that needs to be gathered. To ease data
collection, recent works have made teleoperation more ca-
pable and easier (Zhao et al., 2023; Fu et al., 2024), but
it doesn’t change the linear scaling. At some point in the
future, it is plausible that we will have enough data to train
a large model that will reduce the number of demonstrations
required to learn a new task and make the human effort
sub-linear. However, we are far from that point. The pri-
mary reason is that policies obtained via supervised learning
on a small dataset of demonstrations (i.e., learning from
demonstration) have limited robustness and generalization
and, therefore, cannot be used to collect data autonomously
in more diverse settings.

In theory, given a reward function or by inferring a reward
function from the demonstrations, autonomous data collec-
tion is possible using reinforcement learning (RL). It has
been hard to realize this promise of RL because training
in the real world often requires babysitting the robot to
ensure safe operation, ensuring the reward function is not
hacked, performing resets, and the data inefficiency of RL
algorithms means they run for a long time before useful
behaviors are discovered. Real-world RL training is an ac-
tive area of research (Luo et al., 2024), and recent work
has shown the plausibility of learning locomotion behaviors
from real-world RL training (Wu et al., 2023; Lei et al.,
2023). However, real-world RL is yet to achieve state-of-
the-art robotic controllers, which means the data it generates
is sub-optimal.

A related line of work bypasses the difficulty of training in
the real world by training with RL in simulation and then
successfully deploying policies in reality (i.e., sim-to-real
RL). Such training has achieved state-of-the-art behaviors
across many robot morphologies and complex tasks involv-
ing legged locomotion (Miki et al., 2022; Ji et al., 2023;
Hoeller et al., 2023; Zhuang et al., 2023; Cheng et al., 2023;
Jenelten et al., 2024), dexterous manipulation (Andrychow-

1

Position: Automatic Environment Shaping is the Next Frontier in RL

Sample
Environment

Modeling

Environment Shaping dd

Optimal Control Solver

Behavior Evaluation

Behavior
Reflectionc

Environment
Shaping dd

Optimal Control Solver

Evaluation and Reflection

Figure 1. Flowchart of a typical behavior generation pipeline using reinforcement learning with simulation, illustrating four distinct
subtasks of sample environment modeling, environment shaping, RL training, and outer feedback loop with behavior evaluation and
reflection. We highlight the manual, task-driven environment shaping as a key, yet often overlooked, bottleneck in generalizing the
success of RL. We thus advocate for automating the environment shaping process to broaden RL’s applicability.

icz et al., 2020; Chen et al., 2023; Handa et al., 2023; Yin
et al., 2023), drone racing (Song et al., 2023; Kaufmann
et al., 2023) and others. A single general-purpose RL al-
gorithm, PPO (Schulman et al., 2017), has powered these
successes. Consequently, one might believe that a recipe
for scaling to diverse tasks and collecting a sizeable high-
quality dataset of trajectories exists. However, the reality
is that immense manual task-specific modeling and engi-
neering are required – something we call environment shap-
ing (a generalization of the term reward shaping to include
other environment choices to ease optimization) – to make
things work, which is the primary bottleneck in our opin-
ion. Although the environment shaping bottleneck is highly
relevant to robotics, it exists in any domain where reinforce-
ment learning is applied to real-world problems, including
transportation systems (Wei et al., 2018), autonomous driv-
ing (Wu et al., 2017), finance (Liu et al., 2021), and power
management (Vázquez-Canteli et al., 2019).

We expand the previous usage of the term environment shap-
ing (Co-Reyes et al., 2020) to include all choices such as
designing reward function, curriculum, observation/action
spaces, initial state distribution, reset functions performed
manually to make training possible. These issues have been
individually studied for a long time (Selfridge et al., 1985;
Ng et al., 1999; Singh et al., 2009; Eßer et al., 2023), but
a holistic and critical analysis of the human effort required
to make these choices even with the latest algorithmic ad-
vances has not been made.

Using examples from recent applications of RL to robotics,
this position paper argues that the primary bottleneck
for scaling up reinforcement learning is its need for man-
ual environment shaping. Specifically, this is a call to
action for the RL research community:

• Distinguish modeling from shaping design choices in RL
environments. Many works describe the final shaped en-
vironment but not a repeatable procedure that can transfer
the same shaping to a new robot or task.

• Prioritize research into automatic environment shaping as
a pathway to generalize domain-specific successes in RL.

• Prioritize benchmarks that measure the total expense of
applying reinforcement learning to real-world robotics
tasks, by including environments with ‘unshaped’ ver-
sions and corresponding human-shaped baselines. The
point being that existing benchmarks have already per-
formed environment shaping (i.e., hide the true problem)
and, therefore do not serve as good candidates for further
research into better algorithms. 1

2. Robotic Behavior Generation with RL
To support a precise definition of environment shaping, we
first describe a typical workflow for generating robotic be-
haviors using reinforcement learning (RL) in simulation
(Figure 1).

We decompose behavior generation into four subtasks; sam-
ple environment generation (Sec 2.1), environment shaping
(Sec 2.2), RL training (Sec 2.3), and the outer feedback loop
with behavior evaluation and reflection (Sec 2.4). In delin-
eating these substages, we pinpoint typical human efforts
involved in the process.

2.1. Modeling Sample Environments

Consider p̂(e) as the oracle distribution of the target envi-
ronment we want to deploy our robots in. Our goal is to
generate behavior that is performant (with respect to objec-
tive J) and robust under p̂(e),

max
π

Eê∼p̂(e)J(π; ê)

The target environment can either be a specific real-world
environment that already exists (e.g. kitchen at a specific lo-
cation) or a generic concept (e.g. typical household kitchen).

Unfortunately, it’s extremely difficult to model this oracle

1 https://auto-env-shaping.github.io/

2

https://auto-env-shaping.github.io/

Position: Automatic Environment Shaping is the Next Frontier in RL

Figure 2. Example of environment complexity: an overloaded and
disorganized real-world dishwasher.

distribution either way; it requires comprehensive knowl-
edge of all possible environmental variables and conditions,
which is often infeasible due to the complexity, variability,
and limited observability in the real world. Innate vagueness
of generic concepts is often an issue as well. Just imagine
modeling a true oracle distribution of a chaotic real-world
dishwasher in simulation! (Figure 2)

In contrast, modeling a single sample environment, ê, a spe-
cific instance drawn from oracle environment distribution,

ê ∼ p̂(e),

and importing that to a simulation is much more feasible.
This is why robotics practitioners typically start the behav-
ior generation process by first designing a single sample
environment: (a) modeling and importing robots and neces-
sary assets in simulation, and (b) manually placing them in
their default poses. We often generate a set of those sample
environments to kick things off. This is what practitioners
do for the first blue box in Figure 1.

Such a set of sample environments actually serves a purpose:
it is a useful representative testbed environment that can
be used to estimate the behavior performance under the
true oracle distribution p̂(e). Combined with any form of
task specification r (Agrawal, 2022), we define a simulated
testbed E test where the trained behaviors can be evaluated.
Definition 2.1 (Test Environment). Let {ê1, · · · , ên} be a
set of n sample environments each independently drawn
from oracle environment distribution p̂(e). The simulated
counterparts are denoted as êsim,i. Given a task specification
r, a test environment E test is defined as a set of tuples:

E test = {⟨êsim,i, r⟩}i=1,··· ,n,

where the generated behavior π will be evaluated in.

Meanwhile, to prevent the behavior from overfitting to a few
sample environments within E test, one can maintain two sets

of sample environments; the test environment can be strictly
held out from the rest of the behavior generation pipeline,
letting it serve the sole purpose of behavior evaluation. A
distinct set of sample environments then can be used to
effectively guide the remaining design choices. We call that
a reference environment, E ref, as illustrated in Figure 1.

Definition 2.2 (Reference Environment). A Reference En-
vironment E ref is a distinct set of sample environments that
provides useful context to the shaping algorithm. Trained
behaviors will not be evaluated here to avoid overfitting.

For instance, when designing a robotic behavior for un-
loading a dishwasher, sample environments would include
multiple instances of dishwashers loaded with varying con-
figurations of dishes and utensils. Sampled configurations
then could be split into a set of reference environments for
guiding the shaping and a set of held-out test environments
for evaluation. This diversity in configurations provides the
shaping algorithm with a broad context, incentivizing it to
infer the underlying distribution of object placements. The
goal is for the reinforcement learning (RL) trainer to sample
from this inferred distribution during training, ensuring that
the generated behaviors are robust and adaptable to various
real-world scenarios without overfitting to a specific set of
environments.

2.2. Shaping Reference Environments

A straightforward subsequent step of behavior generation
might be to directly use the reference environments E ref as
an RL environment, with the expectation that algorithms like
Proximal Policy Optimization (PPO) (Schulman et al., 2017)
will find performant and generalizable behaviors. However,
this approach often falls short due to the inherent sparsity
of these environments.

Reference environments often present a challenging opti-
mization landscape for RL algorithms due to their sparse
nature. For example, it might be rare to obtain nonzero
rewards or the observation space might be dominated by
spurious features that encourage poor local minima. To miti-
gate these challenges, human engineers typically go through
a process of shaping the elements of E ref. This modification,
aimed at enhancing the learnability of the environment, in-
cludes introducing denser learning signals and additional
modifications encouraging effective exploration. The result-
ing shaped environment (Co-Reyes et al., 2020) then used as
a training ground for the subsequent optimal control solver.

Definition 2.3 (Shaped Environment). A Shaped Environ-
ment E shaped is a modification of a reference environment,
i.e., E shaped = f(E ref). The transformation f incorporates
design choices specifically optimized for learning perfor-
mance, smoothing the optimization landscape enabling the
solver to find better solutions with maximal performance in

3

Position: Automatic Environment Shaping is the Next Frontier in RL

E test. The transformation function

f : E ref → E shaped (1)

is defined as shaping function.

The shaping process for a robotics environment usually in-
volves manually explored design choices, including shaping
the reward (Ng et al., 1999; Singh et al., 2009), modifying
the action space (Peng & Van De Panne, 2017; Aljalbout
et al., 2023), designing curricula on the environment dy-
namics, initial state distributions, and goal distributions
(Selfridge et al., 1985; Matiisen et al., 2019; Portelas et al.,
2020; Lee et al., 2020), crafting the state space (Yu et al.,
2023), and shaping the right failure conditions for early ter-
mination (Co-Reyes et al., 2020). We describe details of
common shaping operations in Sec 3.1.

2.3. RL Training

Once the shaped environment is obtained, the next step
of behavior generation is to use RL algorithms, i.e., PPO
(Schulman et al., 2017), to find a behavior π that best per-
forms on the shaped environment E shaped. Formally, the
algorithm aims to find an optimal behavior π for the follow-
ing optimization problem:

max
π

Eτ∼π

[
T∑

t=0

γtrt(st, at))

]
s.t. st+1 ∼ p(st, at; E shaped).

(2)

While the RL training process also requires a range of de-
sign decisions, such as algorithmic choices and hyperparam-
eter adjustments, these areas are relatively well-researched
and documented (Parker-Holder et al., 2022; Kiran & Ozy-
ildirim, 2022).

However, we note that in a pratical context of robotic be-
havior generation, tuning the RL setting (e.g. neural archi-
tecture search for policy or hyperparameter tuning) is often
underprioritized compared to the effort put into environment
shaping. In IsaacGymEnvs (Makoviychuk et al., 2021), for
instance, simple Multilayer Perceptron (MLP) networks are
employed, and off-the-shelf RL algorithm implementations
are utilized with their default configurations. This shows
that algorithms like PPO and their default settings are capa-
ble enough when paired with ideally shaped environment.

2.4. Optimizing Environment Shaping via Iterative
Behavior Evaluation and Reflection

Once an optimal behavior π⋆ is obtained via RL training,
the behavior is evaluated on the test environment E test and
reflected by human engineers. Denoting the reflection pro-
cess as H of analyzing the generated behavior π⋆ in test

environment E test and coming up with a better environment
shaping f ,

H : fk × J(π⋆
k; E test) → fk+1, (3)

robotic behavior generation process can be formally defined
as an iterative optimization process over the environment
shaping function f ,

fk+1 = H
(
fk, J(π

⋆
k; E test)

)
where π⋆

k = argmax
π

J(π; E shaped
k),

E shaped
k = fk(E ref), f0 = Iidentity

(4)

which aims to find an optimal shaping function f ∈ F for
the following bi-level optimization problem:

max
f∈F

J(π⋆; E test)

s.t. π⋆ ∈ argmax
π

J(π; E shaped), E shaped = f(E ref).
(5)

After shaping is applied, the new environment may not re-
flect the original task; therefore, note that the outer level of
the bilevel optimization maximizes J(π∗; Etest) which is
the return evaluated in the original test environments without
any shaping. If the inner level optimizes a shaped environ-
ment well, but with poor correspondence to the original task,
it will be dispreferred by the outer loop.

3. The Current State of Environment Shaping
Having established the role of environment shaping oper-
ations in successful behavior generation, we now probe
deeper into the unique challenges that the problem of en-
vironment shaping and its optimization procedure presents.
Specifically, we make the following arguments with sup-
porting experiments and analysis:

• Popular RL benchmark environments are artificially made
easy for RL with task-specific environment shaping. We
should benchmark our algorithms in unshaped environ-
ments if we want them to solve new problems without
task-specific environment shaping step. (Section 3.1)

• Shaping multiple attributes of the environment at once
(reward, observation space, action space, etc.) is a tricky,
non-convex optimization problem (Section 3.2).

• Reward shaping is not the only problem. Existing au-
tomation efforts focus too narrowly on rewards (Section
3.3).

3.1. RL Benchmarks for Robotics are Artificially Easy

Benchmark environments for robot reinforcement learning
include task-specific environment shaping to make it fea-
sible to help baseline RL algorithms perform reasonably

4

Position: Automatic Environment Shaping is the Next Frontier in RL

AllegroHand Reward Change

all shaped 38777 –

sparse reward 0 ↓ 38777
unshaped action space 21530 ↓ 17247
unshaped observation space 2114 ↓ 36663
no early termination 0 ↓ 38777
single initial state 0 ↓ 38777
single goal state 141155 ↑ 102378

Humanoid Reward Change

all shaped 7554 –

sparse reward 5237 ↓ 2317
unshaped action space 67 ↓ 7487
unshaped observation space 0 ↓ 7554
no early termination 705 ↓ 6849
single initial state 5735 ↓ 1819

Anymal Reward Change

all shaped −45 –

sparse reward −2789 ↓ 2744
unshaped action space −2499 ↓ 2454
unshaped observation space −2656 ↓ 2611
no early termination −43 ↑ 2
single initial state −17 ↑ 28
single goal state −2516 ↓ 2470

Table 1. Impact of environment shaping on policy optimization.
Removing task-specific design choices in the reward, action space,
state space, early termination, or initialization incurs performance
reductions. Top row: environment with original shaped design
choices. Each subsequent row shows performance after training
with a corresponding unshaped design choice. The performance of
all policies is evaluated in a fully unshaped environment.

well. However, these modified environments might not fully
assess how RL algorithms progress towards solving vari-
ous control problems independently, treated as a black-box,
without needing task-specific adjustments.

In this section, we outline the common task-specific design
choices associated with different aspects of environment
shaping, while formally defining what an unshaped counter-
part — one with minimal or no human engineering required
— would look like. We consider a case study of the IsaacGy-
mEnvs task suite (Makoviychuk et al., 2021).

Action Space. How would an unshaped action space look,
and how shaped is the action space in the case environ-
ments?

For a typical robot in rigid multibody simulation, the un-
shaped action space would be the motor torques: passing in
the policy output a directly to the motor as a torque τ — no
scaling or transforming the outputs, no gains to be tuned.

Designing a shaped action space for a robot is thus equiva-
lent to the problem of choosing a low-level controller (and

1 def shaped_action_space(self):
2 # scale the targets by the joint limits
3 self.cur_targets = scale(self.actions,
4 self.shadow_hand_dof_lower_limits,
5 self.shadow_hand_dof_upper_limits)
6
7 # compute the moving average of targets
8 self.cur_targets = self.alpha * self.cur_targets +
9 (1 - self.alpha) * self.prev_targets

10 self.cur_targets = tensor_clamp(self.cur_targets,
11 self.shadow_hand_dof_lower_limits,
12 self.shadow_hand_dof_upper_limits)
13 self.prev_targets = self.cur_targets[:]
14
15 # compute the torques according to PD control law
16 torque = 3 * (self.cur_targets - self.

shadow_hand_dof_pos) - 0.1 * self.
shadow_hand_dof_vel

17
18 # apply torques
19 self.gym.set_dof_actuation_force_tensor(self.sim,

gymtorch.unwrap_tensor(torque))

1 def unshaped_action_space(self):
2 # directly apply the prediction action as torques
3 self.gym.set_dof_actuation_force_tensor(self.sim,

gymtorch.unwrap_tensor(self.actions))

Figure 3. Action space shaping: (Top) Original shaped action
space with task-specific features. (Bottom) Unshaped action space
consisting of joint torque commands. Some shaped code has been
slightly modified from the source to increase brevity and clarity
while preserving the original logic.

its corresponding parameters) that converts a policy out-
put a with different physical meanings into an executable
motor torque τ that can drive the actuators. The low-level
controller can implement a prior like whether to resist or
comply to external forces. Examples include proportional-
derivative control, differential inverse kinematics controller,
operational space control (Khatib, 1985), or impedance con-
trol (Hogan, 1984). These are projections of the policy
outputs onto a strict subset of the space of possible torque
commands. The choice of action space can significantly
influence the performance of learning algorithms in the en-
vironment (Peng & Van De Panne, 2017).

In IsaacGymEnvs, there are multiple distinct cases of shaped
action spaces. AllegroHand uses joint position targets
with moving average smoothing as its action space (See
Figure 3 for example code). For Anymal, the relative joint
position target is used as an action space with proportional-
derivative controller. For Humanoid, scaled joint torques
are used. Table 1 empirically shows that removing these
shaping operations on action space largely impacts the train-
ing performance.

Observation Space. What is an unshaped observation
space, and how did IsaacGymEnvs shape the observation?

Crafting a shaped observation space involves strategic se-
lection and transformation of variables from an unshaped
observation — the entire state in simulation that’s been ex-

5

Position: Automatic Environment Shaping is the Next Frontier in RL

1 def shaped_observation_space(self):
2 root_states = rigid_bodies[:, self.root_handle]
3 base_quat = root_states[:, 3:7]
4 # base linear velocity (from local frame)
5 base_lin_vel = quat_rotate_inverse(base_quat,

root_states[:, 7:10]) * lin_vel_scale
6 # base angular velocity (from local frame)
7 base_ang_vel = quat_rotate_inverse(base_quat,

root_states[:, 10:13]) * ang_vel_scale
8 # transformed base orientation
9 projected_grav = quat_rotate(base_quat, gravity_vec)

10
11 # scaling/normalizing values
12 commands_scaled = scale(commands,
13 [lin_vel_scale, ang_vel_scale])
14 dof_pos_scaled = dof_pos_scale *
15 (dof_pos - default_dof_pos)
16 dof_vel_scaled = dof_vel_scale * dof_vel
17
18 # concatenate the relevant features
19 obs = torch.cat([base_lin_vel, base_ang_vel,
20 projected_grav, commands_scaled,
21 dof_pos_scaled, dof_vel_scaled,
22 actions], dim=-1)

1 def unshaped_observation_space(self):
2 # include entire unprocessed simulator state
3 obs = torch.cat([dof_pos,
4 dof_vel, torques,
5 rigid_bodies.reshape(num_envs, -1),
6 rigid_body_force.reshape(num_envs, -1),
7 commands, actions], dim = -1)

Figure 4. State space shaping: (Top) Original shaped state space
with task-specific features. (Bottom) Unshaped state space con-
tains the entire raw simulator state.

posed to the user. The process, integral to optimizing policy
learning performance, includes (a) useful transformation of
the unshaped variables (i.e., features) and (b) discarding un-
necessary variables. Figure 4 shows the details of the shaped
state space in the IsaacGymEnvs Anymal environment.

Different choices of observation space shaping can sub-
stantially impact robot performance. In the setting of
quadrupedal locomotion, Yu et al. (2023) found that dif-
ferent aspects of the task (robustness, performance) are sen-
sitive to different features included in the observation space.
Table 1 shows our findings agreeing that observation shap-
ing has a significant impact on training performance. For
Humanoid, for instance, using an unshaped observation
space makes the task completely unlearnable.

Reward. The unshaped reward represents the true objective
function we actually wish to optimize, often defined as
extrinsic reward (Singh et al., 2010; 2009) or task-fitness
function (Niekum et al., 2010).

Shaping the extrinsic reward into a more informative intrin-
sic reward to make it more conducive to RL algorithms is a
well-studied topic in the community (Ng et al., 1999; Singh
et al., 2010; Gupta et al., 2022; Eschmann, 2021). The shap-
ing procedure is usally designed to provide denser learning
signals and to prevent the policy from overly exploiting the
innate vagueness of extrinsic reward, i.e., reward hacking.

It typically involves a few commonly used strategies. One
popular strategy is to reward progress towards the goal by
adding distance metrics measuring how close the agent is
to reaching it. If some attributes of successful behavior are
known beforehand, those terms can be added to the shaped
reward (Chen et al., 2020; Margolis & Agrawal, 2023). If a
trajectory of a successful behavior is known, one can also
compute a similarity between the generated behavior and
the trajectory and try to maximize the similarity (Peng et al.,
2021). Offering bonuses for exploring new states (Pathak
et al., 2017) is also known to facilitate RL training. Table
1 shows that shaping reward has significant impact on the
training performance.

It’s worth noting, however, that defining the extrinsic re-
ward itself poses its own set of challenges, which is well
addressed in (Agrawal, 2022). The task fundamentally re-
quires translating human intentions and goals into numerical
values that an algorithm can optimize, often posing signif-
icant challenges. In the scope of this position paper, we
presume the task has been defined and consider the chal-
lenge of learning a policy to perform it.

Initial/Goal State. Let’s consider a concrete example: how
would you shape an initial state of a dishwasher to make
the behavior robust under the chaotic randomness typically
exhibited in real-world (Figure 2)? Where would you even
start shaping things from? How would an unshaped coun-
terpart look like for initial/goal state shaping?

A reasonable unshaped intial/goal state to start with are the
nominal states defined in reference environment – manually
designed sample environment with every actors (robots and
assets) staying in its nominal pose. We often assume such
nominal pose to be a mean of its underlying distribution,
commonly assumed as Gaussian or Uniform distribution.
This is indeed the most simple yet common technique of
designing initial state distribution for many robotics tasks –
we just randomly perturb robot joints and assets around its
nominal (reference) pose!

When the task gets more complex, however, this simple
approach starts to break quickly. Imagine randomly per-
turbing a single nominal state of a dishwasher, or randomly
perturbing the nominal pose of a quadruped standing on a
rough terrain; dishes and ladles, feets and terrain will be in
penetration most of the time. Doing rejection sampling can
be a stopgap solution, but it might end up rejecting most of
the samples, making the approach nearly unusable.

In practice, robotics engineers thus take a clever, but heav-
ily heurstic, task-dependent approach to shape initial states.
To randomly initialize a quadruped on a rough terrain, for
instance, people make the robot walk off a small region of
flat ground (Rudin et al., 2022), letting the simulation en-
gine figure out the phsyics constraints. To generate random

6

Position: Automatic Environment Shaping is the Next Frontier in RL

initial states for cluttered bin-picking tasks, we often drop
objects from height in random order. To obtain initial states
to train a fall-recovery policy for humanoid, we drop the
humanoid from height (Peng et al., 2021). For in-hand ma-
nipulation tasks, to obtain a diverse set of downward-facing
initial grasps to start with, we first train a grasping policy
and execute it to generate diverse initial starting configura-
tions that does not drop the object immediately (Chen et al.,
2022b). The task-specific nature of such strategies poses
challenges in automating this shaping operation.

Moreover, designing how we sample from the shaped ini-
tial/goal distribution can naturally set up a learning cur-
riculum that progresses from simpler to more challenging
tasks. Take the example of training a quadruped to run at
high-speed. Training only with high-speed commands could
hinder the learning process. Instead, shaping a goal distribu-
tion to be a wider distribution then the actual target speed,
and designing the sampling strategy to begin with slower
ones and gradually increasing, can facilitate more effective
learning of fast running behaviors (Margolis et al., 2022).

Terminal Condition. A strict definition of unshaped ter-
minal condition might be to never terminate, resembling
how the real world never terminates and never gets a chance
to reset from the beginning. However, since this poses
quite challenging problem for most learning algorithms, one
more common choice of unshaped terminal condition that
is fairly environment agnostic is to set a predefined episode
time limit.

Shaping the terminal condition thus corresponds to deploy-
ing strategies of early termination, which is known to signifi-
cantly improve training performance (Co-Reyes et al., 2020).
In IsaacGymEnvs, Anymal terminates when non-foot bod-
ies contact the ground, Humanoid terminates when the
torso falls below a certain height, and AllegroHand ter-
minates when the object falls off from the hand. Table
1 shows that early termination significantly improves the
training performance in all three tasks.

3.2. Shaping the Entire Environment is Harder than
Shaping One Component

In the previous section, we saw that policy learning can
be highly sensitive to each individual aspect of environ-
ment shaping (Table 1) and that the shaping choices in
IsaacGymEnvs vary qualitatively depending on the task.
This motivates that, to promote the development of truly
automatic behavior generation, we should consider bench-
marking against a suite of unshaped environments. If an
algorithm can learn policies in unshaped environments, it
should be applicable to newly defined tasks and environ-
ments without requiring additional manual shaping on those
environments. The unshaped environments are an appro-
priate benchmark for methods that couple automatic envi-

ronment shaping with RL, or to directly attempt to solve by
improving RL algorithms.

What kinds of methods might we try using to optimize an
entirely unshaped environment? If we aim to accomplish
this by introducing shaping, we may have to search over not
just one aspect but all aspects of shaping. To understand the
optimization landscape, suppose we have access to an oracle
that proposes the human-designed environment shaping as a
candidate, and we use this to perform a hill-climbing search
in one aspect of the environment at a time: first, optimize
the observation space, then the action space, then the reward
function, and repeat until convergence. Figure 5 illustrates
the consequence of this strategy in three environments from
IsaacGymEnvs. Each node represents a shaped version of
the environment. The node’s color indicates the trained
policy’s performance on the shared test environment (un-
shaped). Edges indicate environments that differ by one
type of change (state space, reward, etc.), and the bold ar-
rows indicate the path taken by decoupled hill-climbing on
one change at a time. We found that each environment has
multiple local maxima where the hill climbing would get
stuck in a suboptimal configuration. These local maxima
differ in at least two (as many as four!) types of shaping.
This suggests that the environment shaping design space is
non-convex in the different types of shaping. Therefore, we
should aim to develop techniques that consider shaping all
parts of the environment jointly.

3.3. Existing Automation Focuses Narrowly on Rewards

There have been prior attempts to partially automate the
process of environment shaping. However, most of the ef-
forts have focused on the subtask of reward shaping. The
concept of reward shaping was formalized by (Ng et al.,
1999) and the idea of automated reward shaping through
evolutionary search was advanced by Singh et al. (2009;
2010). Recent works have formulated the problem of re-
ward shaping as bilevel optimization with the environment
design at the top level and policy learning at the bottom
level and used LLMs (Goyal et al., 2019; Ma et al., 2023;
Xie et al., 2023) or gradient-based methods (Hu et al., 2020)
to generate candidates.

LLM-based methods can benefit from prior knowledge
about coding and robotics derived from internet training
data to act as an efficient sampler for generating candidate
shaped rewards expressed as code. Since other aspects of
the environment shaping can also be expressed as code, it is
straightforward to test how these methods extend. We evalu-
ated the LLM-based reward shaping algorithm Eureka (Ma
et al., 2023) at the task of designing the observation and ac-
tion space for the Anymal IsaacGymEnvs environment. As
in the original application to reward shaping, we generated
five generations of 16 parallel candidate shaping functions

7

Position: Automatic Environment Shaping is the Next Frontier in RL

0

1

2

3 4

5

6

78 9

10

11

12

13

14

15

16

1718

1920 21

22

23

24

25 26

27

28 29

30

31

32

33

34

35

36

37

38

39 4041

42

43

44

45

4647 48

49

50

51

52

53

54

555657

58

59

60

61

62

63

AllegroHand

0

1

2

3

4

5

6

7

8

9 10

11 12

13

14

15

16

17

18

19

20

21 22

23

24

25

26

27

28 29

30

31

32

33

34

35

36

37 38 39

40

4142

43

44

45

46

47

48

4950

5152

53

54

55

56

57 58

59

60

61

62

63

Anymal

0

1 2 3

4 56

7

8

9 10

11

12

1314

15

16

17

18 19

20

21

22

23

24

2526

27

28

29

30

31

Humanoid

min reward max reward

Figure 5. Local optima in environment shaping problems. Each
node represents a shaped training environment. Edges connect
environments that are separated by modifying one type of shaping
(action space, state space, reward function, initial state, goal, or
terminal condition). Bold arrows represent optimal choices for
hill climbing. Each environment is shown to have multiple local
optima corresponding to the top row of nodes.

using GPT-4, including the best performing candidate from
each generation in the prompt for the next generation. Eu-
reka succeeded in designing effective observation and action
spaces for this environment (Table 2) while all other aspects
of the environment were pre-shaped.

Motivated by Section 3.2, we also tested whether Eureka
can jointly optimize multiple aspects of the environment.
We found that performance drastically drops when Eureka
is tasked to jointly optimize multiple environment aspects,
i.e., shaping both the reward and observation, even though it
could optimize each individually. This suggests that shaping
multiple environment aspects jointly is yet an open problem.

4. Paths Forward to Automated Environment
Shaping

Today, no algorithm can solve diverse unshaped tasks, al-
though we know them to be solvable with environment shap-
ing by human designers. How can we fix this and generalize
successes in RL for robotics? There are a few possibilities:

Scale up computation. Existing bi-level search techniques
like Ma et al. (2023) can be extended to design environment
shaping and run with more compute resources to search over
a greater number of candidate shaping designs. Massively
parallel simulation has led to realistic robotics environments
that can train quickly (Makoviychuk et al., 2021; Rudin
et al., 2022); However, some state-of-the-art sim-to-real
methods take weeks to train a single policy due to high data
requirements or expensive subroutines (Chen et al., 2023;
Jenelten et al., 2024). This would make performing much
more outer-loop search impractical.

Improve priors. If we can’t search over more candidates,
a better way is to generate higher-quality candidates more
quickly. One possibility is that improved foundation models
will zero-shot generate better candidate shaped environ-
ments (Xian et al., 2023; Yang et al., 2023). However, it’s
hard to predict how much this will help. Another good idea
is to mechanistically understand the strategies of human de-
signers. By what mechanism does the choice of observation
space or curriculum improve performance? Co-Reyes et al.
(2020) proposed a holistic view of environment shaping
(‘Ecological Reinforcement Learning’) and studied the im-
pact of stochasticity, goal distribution, and early termination
design on learnability. Yu et al. (2023) examined the impact
of observation space on learning quadruped locomotion and
offered an explanation of how different observations can
work better for different subtasks. Eßer et al. (2023) sur-
veyed a number of works across applied reinforcement learn-
ing, comparing practitioners’ design choices. Peng & Van
De Panne (2017) analyzed a set of common action spaces
for robot control and Aljalbout et al. (2023) developed met-
rics to explain the performance gap. Kim et al. (2023) found
that constraints require less tuning than rewards to transfer
across diverse robots. If more understanding is documented
in these areas, improved biases could be implemented as a
prior, e.g., in an LLM’s context.

Shape online. Instead of iteratively improving on the en-
vironment shaping f across training runs, can we improve
it dynamically within a RL training loop? If, for exam-
ple, multi-objective reinforcement learning or bilevel opti-
mization can trade off the coefficients of multiple reward
terms (Singh et al., 2010; Zheng et al., 2018; Chen et al.,
2022a), then perhaps the LLM search can be performed
only over the form of the different reward terms, and their
relative weighting can be optimized at runtime. In other
aspects of the environment, an analogous approach would

8

Position: Automatic Environment Shaping is the Next Frontier in RL

shaping component Eureka
(Ma et al., 2023)

Human Design
(Makoviychuk et al., 2021)

Automation
Performance

⋆reward 0.986 0.973 ↑ 0.013
†observation 0.967 0.973 ↓ 0.006

†action 0.982 0.973 ↑ 0.009
◦reward × observation 0.196 0.973 ↓ 0.777

◦reward × action 0.536 0.973 ↓ 0.437
◦reward × observation × action N/A 0.973 N/A

Table 2. Evaluating (Ma et al., 2023) for ⋆reward shaping, †shaping different components, and ◦coupled shaping. Anymal task
(Makoviychuk et al., 2021) is used as an environment. Automation performance is measured by the relative gain obtained by automating
the shaping process, compared to design choices made by humans (Makoviychuk et al., 2021). Behavior is evaluated with the following
task specification: r = exp (negative distance to command). 5 iterations of outer loop for Eureka. Used latest GPT-4 model. Note that
GPT-4 failed to generate working code for results labeled N/A.

be to generate a parameterized shaping operator and auto-
matically tune its parameters. For example, the scale of the
observation or the termination height could be assigned as
parameters for online optimization.

A Robotics Benchmark for Environment Shaping. In-
stead of evaluating RL algorithms on environments pre-
shaped to work with PPO, the community should evaluate
them on unshaped environments. These environments will
be too hard to solve with existing RL algorithms. Thus, it
will be necessary to (a) study how to modify aspects of the
environment to make it efficiently solvable with RL and /
or (b) develop better RL algorithms that can handle such
challenging sparse environments.

We modified the environments in IsaacGymEnvs to use
unshaped design choices to provide a good proxy for the
task-agnostic output from procedural environment genera-
tors. To facilitate environment shaping research, our code
exposes an API for modifying the environment code, which
allows the optimizer to transform the reward, observation
space, action space, etc. by editing Python functions at run-
time. The API is designed so that any language models can
be easily integrated to perform such transformations. Our
implementation also facilitates faster evaluation of multiple
environment shaping choices by training multiple policies
in a single process, leveraging parallel simulation.

5. Conclusion
Reinforcement learning has long promised to solve decision-
making problems in a task-agnostic manner. It has found
great success in solving challenging but narrowly-scoped
tasks in robotics. In this position paper, we argued that the
key bottleneck for scalability of RL is a limited mechanis-
tic understanding of task-specific engineering (environment
shaping) that transforms environments to be solved more
easily and is universal across domains and benchmarks. We
proposed a formal definition of environment shaping as an
optimization problem and identified instances of shaping in

robotic tasks. Finally, we identified key steps forward such
as developing computationally efficient search over environ-
ment shaping; improving our tools for implementing such
shaping and understanding its impact on learning dynamics;
and defining benchmarks for this problem. We hope this
will motivate an increased focus in RL research on com-
municating and evaluating environment-shaping measures
that impact performance rather than solely emphasizing the
impact of the learning algorithm or policy architecture.

Acknowledgements
We thank the members of the Improbable AI lab for the
helpful discussions and feedback on the paper. We are
grateful to MIT Supercloud and the Lincoln Laboratory Su-
percomputing Center for providing HPC resources. This
research was partly supported by Hyundai Motor Company,
DARPA Machine Common Sense Program, the MIT-IBM
Watson AI Lab, and the National Science Foundation un-
der Cooperative Agreement PHY-2019786 (The NSF AI
Institute for Artificial Intelligence and Fundamental Interac-
tions, http://iaifi.org/). We acknowledge support from ONR
MURI under grant number N00014-22-1-2740. Research
was sponsored by the Army Research Office and was ac-
complished under Grant Number W911NF-21-1-0328. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Army
Research Office or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright
notation herein.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9

Position: Automatic Environment Shaping is the Next Frontier in RL

References
Agrawal, P. The task specification problem. In Conference

on Robot Learning, pp. 1745–1751. PMLR, 2022.

Aljalbout, E., Frank, F., Karl, M., and van der Smagt,
P. On the role of the action space in robot manipula-
tion learning and sim-to-real transfer. arXiv preprint
arXiv:2312.03673, 2023.

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz,
R., McGrew, B., Pachocki, J., Petron, A., Plappert, M.,
Powell, G., Ray, A., et al. Learning dexterous in-hand
manipulation. The International Journal of Robotics
Research, 39(1):3–20, 2020.

Chen, D., Zhou, B., Koltun, V., and Krähenbühl, P. Learning
by cheating. In Conference on Robot Learning, pp. 66–75.
PMLR, 2020.

Chen, E., Hong, Z.-W., Pajarinen, J., and Agrawal, P. Re-
deeming intrinsic rewards via constrained optimization.
Advances in Neural Information Processing Systems, 35:
4996–5008, 2022a.

Chen, T., Xu, J., and Agrawal, P. A system for general
in-hand object re-orientation. In Conference on Robot
Learning, pp. 297–307. PMLR, 2022b.

Chen, T., Tippur, M., Wu, S., Kumar, V., Adelson, E., and
Agrawal, P. Visual dexterity: In-hand reorientation of
novel and complex object shapes. Science Robotics, 8
(84):eadc9244, 2023.

Cheng, X., Shi, K., Agarwal, A., and Pathak, D. Ex-
treme parkour with legged robots. arXiv preprint
arXiv:2309.14341, 2023.

Co-Reyes, J. D., Sanjeev, S., Berseth, G., Gupta, A., and
Levine, S. Ecological reinforcement learning. arXiv
preprint arXiv:2006.12478, 2020.

Eschmann, J. Reward function design in reinforcement
learning. Reinforcement Learning Algorithms: Analysis
and Applications, pp. 25–33, 2021.

Eßer, J., Bach, N., Jestel, C., Urbann, O., and Kerner, S.
Guided reinforcement learning: A review and evaluation
for efficient and effective real-world robotics [survey].
IEEE Robotics & Automation Magazine, 30(2):67–85,
2023. doi: 10.1109/MRA.2022.3207664.

Fu, Z., Zhao, T. Z., and Finn, C. Mobile aloha: Learning
bimanual mobile manipulation with low-cost whole-body
teleoperation. arXiv preprint arXiv:2401.02117, 2024.

Goyal, P., Niekum, S., and Mooney, R. J. Using natural
language for reward shaping in reinforcement learning.
arXiv preprint arXiv:1903.02020, 2019.

Gupta, A., Pacchiano, A., Zhai, Y., Kakade, S. M., and
Levine, S. Unpacking reward shaping: Understanding
the benefits of reward engineering on sample complexity,
2022.

Handa, A., Allshire, A., Makoviychuk, V., Petrenko, A.,
Singh, R., Liu, J., Makoviichuk, D., Van Wyk, K., Zhurke-
vich, A., Sundaralingam, B., et al. Dextreme: Transfer
of agile in-hand manipulation from simulation to reality.
In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pp. 5977–5984. IEEE, 2023.

Hoeller, D., Rudin, N., Sako, D., and Hutter, M. Any-
mal parkour: Learning agile navigation for quadrupedal
robots. arXiv preprint arXiv:2306.14874, 2023.

Hogan, N. Impedance control: An approach to manipulation.
In 1984 American control conference, pp. 304–313. IEEE,
1984.

Hu, Y., Wang, W., Jia, H., Wang, Y., Chen, Y., Hao, J., Wu,
F., and Fan, C. Learning to utilize shaping rewards: A
new approach of reward shaping. Advances in Neural
Information Processing Systems, 33:15931–15941, 2020.

Jenelten, F., He, J., Farshidian, F., and Hutter, M. Dtc:
Deep tracking control. Science Robotics, 9(86):eadh5401,
2024.

Ji, Y., Margolis, G. B., and Agrawal, P. Dribblebot: Dy-
namic legged manipulation in the wild. International
Conference on Robotics and Automation, 2023.

Kaufmann, E., Bauersfeld, L., Loquercio, A., Müller, M.,
Koltun, V., and Scaramuzza, D. Champion-level drone
racing using deep reinforcement learning. Nature, 620
(7976):982–987, 2023.

Khatib, O. The operational space formulation in the analysis,
design, and control of robot manipulators. In Preprints
3rd International Symposium of Robotics Re-search, Gou-
vieux (Chantilly), France, October, pp. 7–11, 1985.

Kim, Y., Oh, H., Lee, J., Choi, J., Ji, G., Jung, M., Youm, D.,
and Hwangbo, J. Not only rewards but also constraints:
Applications on legged robot locomotion. arXiv preprint
arXiv:2308.12517, 2023.

Kiran, M. and Ozyildirim, M. Hyperparameter tuning for
deep reinforcement learning applications. arXiv preprint
arXiv:2201.11182, 2022.

Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., and Hutter,
M. Learning quadrupedal locomotion over challenging
terrain. Science robotics, 5(47):eabc5986, 2020.

Lei, K., He, Z., Lu, C., Hu, K., Gao, Y., and Xu, H. Uni-o4:
Unifying online and offline deep reinforcement learning

10

Position: Automatic Environment Shaping is the Next Frontier in RL

with multi-step on-policy optimization. arXiv preprint
arXiv:2311.03351, 2023.

Liu, X.-Y., Rui, J., Gao, J., Yang, L., Yang, H., Wang, Z.,
Wang, C. D., and Jian, G. FinRL-Meta: Data-driven
deep reinforcementlearning in quantitative finance. Data-
Centric AI Workshop, NeurIPS, 2021.

Luo, J., Hu, Z., Xu, C., Tan, Y. L., Berg, J., Sharma, A.,
Schaal, S., Finn, C., Gupta, A., and Levine, S. Serl: A
software suite for sample-efficient robotic reinforcement
learning. arXiv preprint arXiv:2401.16013, 2024.

Ma, Y. J., Liang, W., Wang, G., Huang, D.-A., Bastani,
O., Jayaraman, D., Zhu, Y., Fan, L., and Anandkumar,
A. Eureka: Human-level reward design via coding large
language models. 2023.

Makoviychuk, V., Wawrzyniak, L., Guo, Y., Lu, M., Storey,
K., Macklin, M., Hoeller, D., Rudin, N., Allshire, A.,
Handa, A., and State, G. Isaac gym: High performance
gpu-based physics simulation for robot learning, 2021.

Margolis, G. B. and Agrawal, P. Walk these ways: Tun-
ing robot control for generalization with multiplicity of
behavior. In Conference on Robot Learning, pp. 22–31.
PMLR, 2023.

Margolis, G. B., Yang, G., Paigwar, K., Chen, T., and
Agrawal, P. Rapid locomotion via reinforcement learning.
arXiv preprint arXiv:2205.02824, 2022.

Matiisen, T., Oliver, A., Cohen, T., and Schulman, J.
Teacher–student curriculum learning. IEEE transactions
on neural networks and learning systems, 31(9):3732–
3740, 2019.

Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V.,
and Hutter, M. Learning robust perceptive locomotion
for quadrupedal robots in the wild. Science Robotics, 7
(62):eabk2822, 2022.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application
to reward shaping. In Icml, volume 99, pp. 278–287.
Citeseer, 1999.

Niekum, S., Barto, A. G., and Spector, L. Genetic program-
ming for reward function search. IEEE Transactions on
Autonomous Mental Development, 2(2):83–90, 2010.

Parker-Holder, J., Rajan, R., Song, X., Biedenkapp, A.,
Miao, Y., Eimer, T., Zhang, B., Nguyen, V., Calandra, R.,
Faust, A., et al. Automated reinforcement learning (au-
torl): A survey and open problems. Journal of Artificial
Intelligence Research, 74:517–568, 2022.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International conference on machine learning,
pp. 2778–2787. PMLR, 2017.

Peng, X. B. and Van De Panne, M. Learning locomotion
skills using deeprl: Does the choice of action space mat-
ter? In Proceedings of the ACM SIGGRAPH/Eurograph-
ics Symposium on Computer Animation, pp. 1–13, 2017.

Peng, X. B., Ma, Z., Abbeel, P., Levine, S., and Kanazawa,
A. Amp: Adversarial motion priors for stylized physics-
based character control. ACM Transactions on Graphics
(ToG), 40(4):1–20, 2021.

Portelas, R., Colas, C., Weng, L., Hofmann, K., and
Oudeyer, P.-Y. Automatic curriculum learning for deep rl:
A short survey. arXiv preprint arXiv:2003.04664, 2020.

Rudin, N., Hoeller, D., Reist, P., and Hutter, M. Learning
to walk in minutes using massively parallel deep rein-
forcement learning. In Conference on Robot Learning,
pp. 91–100. PMLR, 2022.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Selfridge, O. G., Sutton, R. S., and Barto, A. G. Training
and tracking in robotics. In Ijcai, pp. 670–672, 1985.

Singh, S., Lewis, R. L., and Barto, A. G. Where do rewards
come from. In Proceedings of the annual conference of
the cognitive science society, pp. 2601–2606. Cognitive
Science Society, 2009.

Singh, S., Lewis, R. L., Barto, A. G., and Sorg, J. Intrinsi-
cally motivated reinforcement learning: An evolutionary
perspective. IEEE Transactions on Autonomous Mental
Development, 2(2):70–82, 2010.

Song, Y., Romero, A., Müller, M., Koltun, V., and Scara-
muzza, D. Reaching the limit in autonomous racing:
Optimal control versus reinforcement learning. Science
Robotics, 8(82):eadg1462, 2023.

Vázquez-Canteli, J. R., Kämpf, J., Henze, G., and Nagy, Z.
Citylearn v1. 0: An openai gym environment for demand
response with deep reinforcement learning. In Proceed-
ings of the 6th ACM international conference on systems
for energy-efficient buildings, cities, and transportation,
pp. 356–357, 2019.

Wei, H., Zheng, G., Yao, H., and Li, Z. Intellilight: A
reinforcement learning approach for intelligent traffic
light control. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data
mining, pp. 2496–2505, 2018.

11

Position: Automatic Environment Shaping is the Next Frontier in RL

Wu, C., Kreidieh, A., Vinitsky, E., and Bayen, A. M. Emer-
gent behaviors in mixed-autonomy traffic. In Conference
on Robot Learning, pp. 398–407. PMLR, 2017.

Wu, P., Escontrela, A., Hafner, D., Abbeel, P., and Goldberg,
K. Daydreamer: World models for physical robot learn-
ing. In Conference on Robot Learning, pp. 2226–2240.
PMLR, 2023.

Xian, Z., Gervet, T., Xu, Z., Qiao, Y.-L., and Wang, T.-H.
Towards a foundation model for generalist robots: Di-
verse skill learning at scale via automated task and scene
generation. arXiv preprint arXiv:2305.10455, 2023.

Xie, T., Zhao, S., Wu, C. H., Liu, Y., Luo, Q., Zhong, V.,
Yang, Y., and Yu, T. Text2reward: Automated dense
reward function generation for reinforcement learning.
arXiv preprint arXiv:2309.11489, 2023.

Yang, Y., Sun, F.-Y., Weihs, L., VanderBilt, E., Herrasti, A.,
Han, W., Wu, J., Haber, N., Krishna, R., Liu, L., et al.
Holodeck: Language guided generation of 3d embodied
ai environments. arXiv preprint arXiv:2312.09067, 2023.

Yin, Z.-H., Huang, B., Qin, Y., Chen, Q., and Wang, X. Ro-
tating without seeing: Towards in-hand dexterity through
touch. arXiv preprint arXiv:2303.10880, 2023.

Yu, W., Yang, C., McGreavy, C., Triantafyllidis, E., Belle-
garda, G., Shafiee, M., Ijspeert, A. J., and Li, Z. Identify-
ing important sensory feedback for learning locomotion
skills. Nature Machine Intelligence, 5(8):919–932, 2023.

Zhao, T. Z., Kumar, V., Levine, S., and Finn, C. Learn-
ing fine-grained bimanual manipulation with low-cost
hardware. arXiv preprint arXiv:2304.13705, 2023.

Zheng, Z., Oh, J., and Singh, S. On learning intrinsic
rewards for policy gradient methods. Advances in Neural
Information Processing Systems, 31, 2018.

Zhuang, Z., Fu, Z., Wang, J., Atkeson, C., Schwertfeger, S.,
Finn, C., and Zhao, H. Robot parkour learning. arXiv
preprint arXiv:2309.05665, 2023.

12

