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Where can I put cushions?

(b)

Full of cushions

Cushion would look better 
on the couch.

(a)

Full of cushions

Cushion should go on 
armchair for comfort.

Embodied Semantic Placement

(c)

right side of the gray sofa 
leaning against the armrest 
also presents a tidy option 

for a cushion.

in the center of the gray 
sofa's seat, which is 

currently unoccupied.

Fig. 1. Semantic Placement. Consider asking an agent to place cushions in a living room. In (a), the couch on the right is already full with
cushions, and a natural human preference would be to place the cushion against the backrest of the armchair. In (b), a natural placement
preference would be center of the couch. We propose the problem of Semantic Placement (SP) – given an image and a name of an object,
a vision system must predict a semantic mask indicating a valid placement for the object in the image. For both (a) and (b) GPT4V gives
meaningful natural language responses but, as we show, struggles to localize regions precisely in pixel space. (c) Our SP predictions enable
a Stretch robot [1] from Hello Robot to perform Embodied Semantic Placement (eSP) task within a photorealistic simulated environment.

Abstract— Computer vision tasks typically involve describing
what is present in an image (e.g. classification, detection,
segmentation, and captioning). We study a visual common
sense task that requires understanding ‘what is not present’.
Specifically, given an image (e.g. of a living room) and a name
of an object ("cushion"), a vision system is asked to predict
semantically-meaningful regions (masks or bounding boxes) in
the image where that object could be placed or is likely be
placed by humans (e.g. on the sofa). We call this task: Semantic
Placement (SP) and believe that such common-sense visual
understanding is critical for assitive robots (tidying a house), AR
devices (automatically rendering an object in the user’s space),
and visually-grounded chatbots with common sense. Studying
the invisible is hard. Datasets for image description are typically
constructed by curating relevant images (e.g. via image search
with object names) and asking humans to annotate the contents
of the image; neither of those two steps are straightforward for
objects not present in the image. We overcome this challenge by
operating in the opposite direction: we start with an image
of an object in context, which is easy to find online, and
then remove that object from the image via inpainting. This
automated pipeline converts unstructured web data into a dataset
comprising pairs of images with/without the object. With this
proposed data generation pipeline, we collect a novel dataset,
containing ∼1.3M images across 9 object categories. We then
train a SP prediction model, called CLIP-UNet, on our dataset.
The CLIP-UNet outperforms existing VLMs and baselines that
combine semantic priors with object detectors, generalizes well
to real-world and simulated images and exhibits semantics-aware
reasoning for object placement. In our user studies, we find
that the SP masks predicted by CLIP-UNet are favored 43.7%
and 31.3% times when comparing against the 4 SP baselines
on real and simulated images. In addition, leveraging SP mask
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predictions from CLIP-UNet enables downstream applications
like building tidying robots in indoor environments.

I. INTRODUCTION

When tasked with putting away a cushion in a home, humans
quickly bring to bear extensive priors about how cushions are
used and where they are most frequently placed. For instance,
cushions are generally put on or near seating areas (e.g., on
a couch). However, these priors themselves are not enough:
consider an example living room shown in Fig. 1(a). As
shown in the figure, the couch already has cushions on both
armrests so, to avoid redundancy, one might place the cushion
against the back of the armchair for the comfort of anyone
who might later sit upon it. On the other hand, given the
same task with the image from Fig. 1(b), the answer might
change to placing the cushion in center of the couch to give
the room a more aesthetically pleasant feel as the armchair
already has a cushion on it. Notice that the answer from
humans about object placement changes based on changes in
the visual context. We call this task Semantic Placement (SP),
and believe that such common-sense visual understanding
is critical for assistive robots (tidying a house), AR devices
(automatically rendering an object in the user’s space), and
visually-grounded chatbots with common sense.
How can we build vision systems with SP prediction
abilities? Modern computer vision tasks have focused on
classifying, localizing, and describing what is visible in an
image (e.g. classification, object detection, segmentation, and
captioning). Most visual representation learning approaches,
e.g. CLIP [2], [3], [4], [5], [6], use losses that encourage the
learned representations to capture what is shown in the image



but are not designed to be used to answer queries about the
invisible in the image zero-shot; the visual context generated
by these models is, however, extremely valueable and we use
CLIP as the visual backbone in this work. Recent advances
in vision-and-language (VLM) foundation models has made
some progress in this direction. We can ask VLMs questions
that require reasoning about the invisible, conditioned on
visual context to infer the answers to a question. However,
existing VLMs are still in early stages and struggle to answer
queries that require precise localization in pixel space as
shown in our experiments (see Sec. III).
In this paper, we study the problem of Semantic Placement
(SP) of objects in images. In particular, given an image (e.g.
showing a living room) and name of an object ("cushion"),
a vision system is tasked to predict a pixel-level mask
highlighting semantically-meaningful regions (referred as SP
masks) in an image where that object could be placed or is
likely to be placed by humans (e.g. a couch). Learning to
predict SP masks is hard, since the target object is typically
not visible in the given image. Datasets for image description
are typically constructed by curating relevant images (e.g.
via image search with object names) and asking humans to
annotate the contents of the image; neither of those two steps
are straightforward for objects not present in the image.
To overcome this challenge, we propose to operate in the
opposite direction – specifically, we start with an image of an
object in context (which is easy to find online) and remove that
object from the image via inpainting [7], [8]. This automated
pipline converts unstructured web data into a a dataset com-
prising pairs of images with/without the object at scale without
expensive human annotation. However, inpainting models are
not perfect. We find that SP prediction models, when trained
on inpainted images, tend to latch onto inpainting artifacts.
This leads to high performance on inpainted images, but lower
performance on real images. To remedy this, we propose a
novel data augmentation method, combining results from
multiple inpainting models, diffusion based augmentations,
and common data augmentations (refer Sec. II-A section for
more details). Using this automated pipeline, we generate a
large SP dataset using real world images from LAION [9],
including ∼1.3 million images across 9 object categories.
We propose a simple method for SP mask prediction
by using a frozen CLIP [2] backbone with a language
conditioned UNet [10] decoder inspired by LingUNet [11]
and CLIPort [12], in Sec. II-C. First, we pretrain the
CLIP-UNet model on images from our SP dataset and then
finetune on a small high-quality image dataset of ∼80k
synthetic images collected from synthetic HSSD [13] scenes,
where inpainting is unnecessary as objects can be removed
programmatically from the underlying 3D scenes. We find
finetuning on this small but high-quality dataset with ground
truth object placement annotations improves performance
of our CLIP-UNet baseline and enables better generalization
to both real and synthetic images.
For evaluation we use 400 real world images from LAION [9]
and ∼18k from HSSD [13] scenes. We find that CLIP-UNet
outperforms strong baselines leveraging VLMs, including

LLaVa-1.5 [14] and GPT4V [15], and methods using open-
vocabulary object detection and segmentation models with
placement priors coming from LLMs. In user studies, we find
that the SP mask predicted by our method are favored 43.7%
times against the baselines on real images and by 31.3%
times on images from HSSD scenes.
SP mask predictions hold potential for a variety of down-
stream applications, including assistive agents, real-time AR
rendering, and visually-grounded chatbots. In this paper, we
demonstrate that SP masks predicted by CLIP-UNet enable
embodied agents to perform Embodied Semantic Placement
(eSP) task in a photorealistic, physics-enabled simulated
environment, Habitat [16], [17], [18] using Hello Robot’s
Stretch robot [1]. In eSP, an agent is spawned at a random
location in an indoor environment and is tasked with placing
an instance of a target object category at a semantically
meaningful location with access to robot observations (RGB,
Depth, and pose) and SP masks from a SP model. Using SP
masks predicted by our CLIP-UNet model, agent achieves
a 12.5% success rate on 8 categories when evaluated in 10
unique indoor scenes over 106 episodes. While the absolute
success is indeed low, we note that majority of failures ∼80%
for downstream eSP task are due to imperfect control policy
for object placement and fine-grained navigation, which is
orthogonal to the focus of this work. We show a qualitative
example of a placement prediction by our agent for object
category ‘cushion’ while performing the task in Fig. 1 (c).
In summary, our contributions include: (1) a novel task called
Semantic Placement (SP), (2) an automated data curation
pipeline leveraging inpainting and object detection models
to supervise an end-to-end SP prediction model using real-
world data, (3) a novel data augmentation method to alleviate
overfitting to inpainting artifacts, and (4) an approach that
generates SP predictions which generalize well to the real-
world and enable downstream robot execution.

II. APPROACH

A. Dataset Generation

To collect paired data for training (referred as LAION-SP)
the SP model, we propose leveraging recent advances in
open-vocabulary object detectors, segmentation models, and
image inpainting models. With these powerful off-the-shelf
“foundation” models, we can generate paired training data at
scale using images in the wild. Fig. 2 shows our automated
data generation pipeline. At the end of the pipeline, each
output image is paired with object categories and includes
masks showing where such categories can be placed. Details
follow below.
(A) Query Image. First, we gather 1M indoor images from
the LAION dataset by using text queries such as ‘living room’,
‘bedroom’, and ‘kitchen’ to filter out irrelevant images i.e.
images not from houses.
(B) Find Objects of Interest. Next, for each image we use
Detic [19], an open vocabulary object detector, to detect
objects of interest for our task. We use 9 target object
categories in this paper, specifically Plotted Plant, Lamp,
Cushion, Vase, Trash Can, Toaster, Table Lamp, Alarm Clock,
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Fig. 2. Automatic Training Dataset Generation Pipeline Utilizing Foundation Models and Web Data. Our pipeline consists of five
steps: (A) Query Images, (B) Find Objects of Interest, (C) Inpaint Objects of Interest, (D) Filter, (E) Enhance Image Quality

and Laptop. For each detected instance, we generate a
segmentation mask using SAM [20]. We use SAM masks
instead of Detic masks as they are fine-grained and result in
better inpainting performance. For details on prompts used
for SAM and Detic see Appendix A.
(C) Inpaint Objects of Interest. Using the detection results,
we pass the segmentation masks of instances of a sampled
object category and original image to one of the two inpainting
models (each sampled with 50% probability), LAMA [7]
or Stable Diffusion [21], to generate an inpainted sample.
Specifically, we randomly sample a few instances of a target
object category and 1-4 distractor objects of different category
for inpainting. We add distractor instances to make the task of
SP prediction more challenging as the model cannot simply
predict the, possibly only, free space. This also helps prevent
the model from overfitting to inpainting artifacts.
(D) Filter. Inpainting models are imperfect and we need strict
validation mechanisms to check if inpainting was successful or
not. To do so, we use 2D instance matching between original
and inpainted images using the detections from Detic [19].
Specifically, if we find an object instance post-inpainting with
IOU greater than 90% with an instance from original image,
the inpainting model failed and we discard the generated result.
Samples that pass the check are used in training dataset.
(E) Enhance Image Quality. In our initial experiments,
we found that training the SP model directly using the
dataset generated by the Filter step leads to overfitting.1

The model quickly latches onto the artifacts introduced from
the inpainting models. To mitigate this issue, we generate two
augmented versions of each inpainted image with the help of
diffusion models. To create the first augmented variant, we
add 5% Gaussian noise to the image and use SDEdit [22]
to denoise the image similar to Affordance Diffusion [23].
To create the second variant, we feed the inpainted image
to Stable Diffusion img2img [8] model and prompt it with
‘high resolution, 4k’ which, in practice, results in small object
texture changes. We find this acts as regularization and helps
avoid overfitting on inpainting artifacts during training.
In total, we generate 1,329,186 images with an object category
and its corresponding SAM mask from 48,728 unique images
queried from the LAION dataset. In addition to LAION-SP
training dataset of ∼1.3M images we also create a dataset of
400 unseen original images from LAION for our evaluation
referred as LAION-SP Val dataset.

1The model trained on the inpainted images without quality enhancement
(i.e., Step E) yields ∼0 TP zero-shot evaluating on HSSD dataset.

B. Synthentic Images

For finetuning, we collect a small high-quality image dataset
without needing inpainting from synthetic HSSD [13] scenes,
a synthetic indoor environment dataset comprising 211 high-
quality 3D scenes, containing 18,656 models of real-world
objects. Using 135 training scenes we generate ∼80k training
images across 8 object categories. Similarly, using 33 unseen
evaluation scenes we generate a dataset of ∼18k images
for evaluation with the same 8 object categories. Additional
details on data generation is in App. B.

C. Learning Semantic Placement

To learn an SP mask prediction model, we pretrain our
model using the LAION-SP dataset generated in Sec. II-
A, then finetune it using small high-quality synthetic dataset
mentioned in Sec. II-B. The inputs to the SP model include an
RGB image I in H×W×3 size and a target object category
q in text. The model outputs an affordance mask M , size
H×W×1, conditioned on the target object. Fig. 5 shows the
architecture of our proposed CLIP-UNet model. Inspired by
CLIPort [12], we use a frozen ResNet50 [24], pre-trained by
CLIP [2], to encode the input image I into a feature tensor f
up until the penulitmate layer R7×7×2048. The decoder then
upsamples the feature tensor f to f (ℓ) ∈ RHℓ×Wℓ×Cℓ at each
layer ℓ and, at the end, produces a mask M ∈ RH×W×1,
where 0 ≤ M [i, j] ≤ 1. To encode the target object category q,
we use CLIP pretrained transformer based sentence encoder
to construct a target embedding e ∈ R1024. To condition
the decoding process with the target embedding, we first
downsample it to ē ∈ RCℓ and then tile it to match the
dimension of feature tensor f (ℓ) at layer ℓ in the decoder:
ē → ē(ℓ) ∈ RHℓ×Wℓ×Cℓ , where Cℓ = {1024, 512, 256}
and ℓ ∈ {1, 2, 3}. Then, we use the tiled target embedding
to condition the visual decoder layers through an element-
wise product. As CLIP utilizes contrastive loss on the dot-
product aligned features from pooled image features and
language embeddings, the element-wise product allows us
to leverage this learned alignment while the tile operation
preserves the original dimensions of visual features. Inspired
by LingUNet [11], we apply this language conditioned
operation to the first three upsampling layers right after the
feature tensor f produced by the frozen ResNet. Following
UNet [10], we also add skip connections to decoder layers
from the corresponding layers in ResNet encoder. This way
the model preserves different levels of semantic information
from image. Refer Appendix C for training details.



III. EXPERIMENTS

A. Semantic Placement Evaluation

Fig. 3. Qualitative examples of SP masks predicted by our
CLIP-UNet model pretrained on LAION-SP dataset and finetuned
on HSSD images. (a) shows evaluation results on real image
dataset from LAION [9], (b) shows results on images from HSSD
dataset [13], and (c) shows results of placement predicted while
evaluating tidying robot on Embodied Semantic Placement (eSP).

Here we present evaluation results on two image datasets: 1.)
LAION-SP Val: 400 real images collected from LAION [9],
2.) HSSD Val: 18k images from unseen HSSD scenes [13].
First, we describe baselines used for evaluation:
LLM + Detector. In this baseline we leverage common-sense
priors from LLMs to find target receptacles for a particular
object and use a open-vocabulary detector, Detic [19], to
localize the receptacle in the image. First, for each of the
9 object categories in the dataset we prompt an LLM for
common receptacle categories on which each object is found
in indoor environment. Next, during evaluation we use Detic
to localize the segmentation mask of all valid receptacles for
a object category in an image.
LLaVA [14] and GPT4V [25]. To evaluate LLaVA and
GPT4V on SP, given the input image we prompt it to output
normalized bounding box coordinates to localize a placement
area. Next, we convert the predicted normalized bounding
box to a binary segmentation mask to use as the SP mask
for downstream applications. Refer Appendix I for GPT4V
and LLaVA prompts and sample predictions.
Ours (HSSD). Variant of our CLIP-UNet model described
in Sec. II-C trained only on data collected from HSSD scenes
i.e. no pretraining on the LAION-SP dataset from Sec. II-A.
Ours (LAION-SP→HSSD). Our CLIP-UNet model
from Sec. II-C: first pretrained on the LAION-SP dataset
and then finetuned on small image dataset from HSSD.

LAION-SP VAL HSSD VAL

Method HP (↑) HP (↑) TrP (↑) RSP (↑) RSR (↑)
1) LLM + Detector 21.5 29.8 10.1 41.0 38.2
2) LLaVA 4.9 6.8 0.0 26.3 43.4
3) GPT4V 9.4 8.3 − − −

4) Ours (HSSD) 20.1 23.0 16.2 26.6 36.5
5) Ours (SP → HSSD) 43.7 31.3 18.5 24.9 35.3

TABLE I. SP evaluation on LAION-SP and HSSD validation
splits. We show evaluation results of our model (rows 4-5), Prior +
Detector, and VLM baselines. HP denotes Human Preference, TrP
denotes Target Precision, RSP denotes Receptacle Surface Precision,
and RSR denotes Receptacle Surface Recall. We use ↑ to indicate
that larger values are preferred.
Results. Tab. I reports results of evaluating methods on
the LAION-SP and HSSD evaluation datasets. In our human
preference study, our method (row 5) is favored the most
by a large margin on real world images, and modestly in
simulated images, when asked to rank predictions from all
5 baselines from Tab. I. This demonstrates the effectiveness

of using web data for pretraining our CLIP-UNet model. In
addition to human preferences, we also conduct quantitative
evaluation using metrics from Appendix D. Our method
outperforms a strong baseline that uses an LLM prior and
object detector Detic (row 1) on target precision (TrP) by
8.4%, is comparable in the RSR metric, and performs worse
on RSP metrics. CLIP-UNet (row 5) also outperforms both
VLM baselines, i.e. LLaVA (row 2), significantly on TrP and
achieves comparable performance on the RSP metric. After
some preliminary analysis of results of the VLMs we find that,
when tasked to output the placement location as language
in addition to bounding box coordinates, these VLMs do a
good job at giving reasonable responses but fail to precisely
localize the output in the image space. More details in App. J.
These results demonstrate the difficulty of SP prediction and
highlight that there’s still scope for improvements in general-
purpose VLMs.

B. Embodied Semantic Placement

In this section, we present the results of using SP models
for the downstream application of building a tidying robot.
Specifically, in this task, an agent is spawned at a random
location in an indoor environment and is tasked with placing
an instance of a target object category at a semantically
meaningful location. We call this task Embodied Semantic
Placement (eSP). For our experiments, we use Hello Robot’s
Stretch robot [1] with the full action space as defined in [26].
To perform the task with only robot observations and SP mask
predictions from a SP model at each frame, we use a two-
stage modular policy consisting of “navigation” and “place”
policies described in Appendix G. Tab. VI in Appendix G
presents the results of evaluating the eSP policy using SP
mask predictions from LLM+Detector, LLaVa and our CLIP-
UNet (LAION-SP→HSSD) model on HSSD val split. We do
not evaluate GPT4V on eSP task due to API limitations, eSP
policy evaluation requires running inference using GPT4V
after each robot action which amounts to a total of ∼53k
frames for full evaluation. We find our CLIP-UNet eSP policy
achieves a 12.5% success on the eSP task across 10 indoor
environments, outperforming LLaVa and LLM+Detector eSP
baselines by 2− 3.5% on task success. Refer Appendix G
for more details.

IV. CONCLUSION

We propose Semantic Placement (SP), a novel task where,
given an image and object type, a vision system must predict
a binary mask highlighting semantically-meaningful regions
in an image where that object could be placed. Learning to
predict the invisible is hard. We address this challenge by
making visible objects invisible: we start with an image of an
object in context and remove that object from the image via
inpainting. This automated data curation pipeline, leveraging
inpainting and object detection models, enables us to supervise
an end-to-end SP prediction model, CLIP-UNet, using real-
world data. Our CLIP-UNet produces SP predictions which
generalize well to the real-world, are favored more by humans,
and enable downstream robot execution.
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Fig. 4. Qualitative Examples of Generated Images. We present
three examples of Cushion, Laptop, and Potted Plants, which include
raw images queried from LAION (left), identified objects of interest
and their segmentation masks obtained from SAM (middle), and the
result images after Inpainting, Flitering, and Quality Enhancement
steps (right). For clarity, we have magnified the inpainted regions,
highlighted in green dotted boxes.

APPENDIX

A. Data Generation

Category Potted Plant Lamp Cushion Vase Trash Can
# Images 207,366 320,922 323,541 417,591 13,353

Category Toaster Table Lamp Alarm Clock Laptop
# Images 23,928 5,559 14,496 2,430

TABLE II. Number of Images per Category in LAION-SP Dataset.

In this section, we provide additional details about the data
generation pipeline.
(A) Query Image. As mentioned in Sec. II-A, the complete
list of text queries to retrieve raw images from the LAION
dataset includes living room, bedroom, and kitchen.
(B) Find Objects of Interest. For each image, we use
Detic [19] and SAM [27] to find segmentation masks of
the 9 object categories of interest. First, we prompt Detic
to find all instances of each of these 9 categories within an
image. If no object is detected, the image is discarded. Next,
for each detected object instance, we compute the center
point (centerx, centery) of its bounding box [x1, y1, x2,
y2] and use this center point as a prompt for SAM [27] to
predict a segmentation mask. Among the 3 masks predicted
by SAM [27], we choose the one with the highest confidence
for downstream inpainting.
In Tab. II, we show the number of generated images per
object category. Fig. 4 showcases three qualitative examples
generated by our dataset generation pipeline, including
Cushion, Laptop, and Plotted Plant.
In Fig. 8 we visualize additional qualitative examples from
the SP training dataset generated using our automatic data
generation pipeline. Additionally, we also visualize examples
of failures detected by our Detic filter and failed inpainting
examples in Fig. 9.

B. HSSD Image Dataset

To finetune our CLIP-UNet model for SP mask prediction
on a high-quality image dataset free from inpainting artifacts,

we utilize the Habitat [16], [17] simulator along with the
HSSD [13] scene dataset. HSSD is a synthetic indoor
environment dataset comprising 211 high-quality 3D scenes,
containing 18,656 models of real-world objects. We generate
the HSSD image dataset using the Habitat simulator, which
allows us to manipulate scenes to render images with or
without object, thereby avoiding any artifacts that models
could exploit. The training dataset consists of ∼80k images
generated using 135 train scenes with 8 object categories.
Similarly, we create an evaluation dataset of ∼18k images
using 33 val scenes with 8 object categories. Next, we describe
the details of our image sampling process for different objects
using the simulator.
Image Sampling. To generate images from diverse viewpoints
for each object instance, we first sample a set of candidate
camera poses determined from polar coordinates (r, θ) relative
to the object centroid, where r ∈ {0.5m, 1.0m, 1.5m, 2m}
and θ ∈ {0◦, 10◦, ..., 360◦}. We sample two types of
viewpoints:
• Looking at Object: For images looking at the objects of

interest, we capture images with the camera’s principal axis
parallel to a ray from the camera’s center to the object’s
centroid. We only keep the frames where the object of
interest covers at least 5% of the frame. This step ensures
the inclusion of images where the target object and a valid
placement is visible.

• Random Viewpoints: To add diversity, we also generate
images from random viewpoints. Specifically, we run a
frontier exploration [28] navigation agent in the environment
to achieve ∼90% coverage. We then randomly sample N
images from the navigation trajectory, with N = 250 in our
case, and add them to our dataset. We run this navigation
agent 3 times from random locations in each scene. We do
not apply any frame coverage constraint during this phase to
include images where no possible placement for an object
exists.

After determining all the viewpoints for each object instance
in a scene, we programatically generate images with and
without objects, target placement mask, and receptacle masks
to add to our dataset.

C. Real Evaluation Dataset

For our experiments in Sec. III, we use a real image dataset
comprising 400 images, collected from the LAION dataset [9]
and 2 real-world environments from [29], [30]. Specifically,
this dataset includes 200 images from the LAION dataset
that were not seen during training, and an additional 200
images from the real-world environments from [29], [30].
We train our CLIP-UNet model in two stages. First, we
pretrain our model using the LAION-SP dataset generated
in Sec. II-A, containing 1.3M images across 9 categories
for 10 epochs using dice loss [31]. During pretraining, in
addition to diffusion model augmented images, we also
use common data augmentations, such as gaussian blurring,
additive gaussian noise, horizontal flipping, and color jitter to
mitigate inpainting artifacts. Next, we finetune the LAION-SP
pretrained model using a small, high-quality, dataset generated
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Fig. 6. IOU v.s. IOP. Top left: a hypothetical ground-truth (GT)
SP region for objects of type “book”. Top right & bottom left: two
possible SP predictions. Both predicted regions are high-quality and
should be considered true-positives. The IoU for these predictions
is, however, < 0.5 as the IOU normalizes by the large GT region.
The IOP, however, only normalizes by the predicted mask’s size
and thus is equal to 1 for both predicted regions.

using synthetic HSSD scenes [13], [16], [17] mentioned
in Sec. II-B. As the HSSD image dataset is generated using
a simulator we can manipulate the scene to render images
with/without object images without introducing any artifacts
that models can latch on to. This two-stage training improves
performance of our CLIP-UNet model and enables better
generalization to both real and synthetic images as shown
in Sec. III.

D. Evaluation Metrics

In this section, we propose metrics for evaluating SP pre-
diction performance. Before defining these metrics, we will
begin by defining what we mean by true/false positive (TP/FP)
and true/false negative (TN/FN) SP predictions.
Preliminaries. Consider an image I , an object type query
q, and an (exhaustive) set of {0, 1}-valued ground-truth
disjoint regions r1, ..., rK ∈ {0, 1}H×W describing the
locations where objects of type q can be placed in the
image I . Let the model produced region predictions be
denoted by r̂1, ..., r̂L ∈ {0, 1}H×W . Intuitively, we would
like a predicted region r̂j to be considered a true positive
(TP), if it “overlaps sufficiently” with some GT region ri.
Measuring region overlap is commonly achieved, e.g. in the
semantic segmentation and object detection literature [32],
[33], [27], using the intersection-over-union (IOU) metric,
IOU(r, r′) = r · r′/(r · r+ r′ · r′− r · r′) where · denotes the
usual dot product. The IOU works well when one wishes to

enforce that two regions overlap exactly; for SP prediction,
however, requiring exact overlap is too restrictive as it
normalizes by too large of a region, see Fig. 6. Instead we
use the intersection-over-prediction IOP(r, r′) = r ·r′/(r′ ·r′)
which normalizes only by the size of the predicted region r′.
That is, we say that r̂j is a TP if there exists some ri such
that IOP(r̂j , ri) ≥ T where T ∈ [0, 1] is some threshold
value (for us, T = 0.5). We say that r̂j is a FP if there is no
ri with IOP(r̂j , ri) ≥ T . Importantly: TPs are counted with
respect to the ground truth region ri while FPs are counted
with respect to the predicted region r̂j . This means that that if
the model predicts multiple regions r̂j which all correspond
to a single ri, then these multiple regions will be counted
as only a single TP. Additionally, number of FN equal to
number of GT regions ri not covered by any predicted region
r̂j .
Precision and recall. Given the above, we can now define
the usual recall and precision metrics for an image I as
Precision(I) = #TP

#TP+#FP and Recall(I) = #TP
#TP+#FN .

When reporting metrics on our evaluation sets, we report
the average precision and recall over all images. If an image
I has no GT masks, then Recall(I) is not well-defined and so
we do not include such images when computing the average.
We compute these metrics only on HSSD dataset as these
require access to accurate GT region annotations.
Receptacle priors. One important facet of SP prediction is an
understanding of the relationship between receptacle types and
the objects that are typically placed upon them. For instance,
you will almost always find a plunger on the floor and not on
a dining table. Indeed, it is exactly these types of receptacle
relationships that some previous work, e.g. [34], [35], [36],
have focused upon. In order to measure the model’s ability
to encode such priors, we introduce the receptacle surface
precision (RSP) and receptacle surface recall (RSR) metrics.
To compute these metrics, we first, for each object type query
q, curate a collection of receptacle types that such an object
is commonly found upon (see Sec Appendix E for more
details). We then, for each image I and object type query
q, assume we have access to segmentation masks s1, ..., sK
of receptacles upon which q is commonly found. Moreover,
as large parts of each receptacle mask will correspond to
unplaceable areas (e.g. the legs of a couch) we further
assume that each si corresponds only to the areas of the
receptacle that are “placeable”, i.e. have a surface normal that
is pointing (approximately) upward. In practice, computing



Object Category Receptacles

Cushion Couch, Bed, Sofa, Armchair
Potted Plant Coffee Table, Table, Chest of Drawers, Shelve, Kitchen Counter
Book Coffee Table, Table, Shelves, Couch, Sofa
Vase Coffee Table, Table, Chest of Drawers, Shelf, Kitchen Counter
Alarm Clock Bedside Table, Table, Chest of Drawers
Laptop Bed, Desk, Coffee Table, Table
Table Lamp Bedside Table, Chest of Drawers
Toaster Kitchen Counter
Trash Can -

TABLE III. Mapping of receptacles for each object category.

the receptacle masks can often be done automatically by
leveraging simulated environments in which object categories
and geometry are known (e.g. HSSD), or by using open-
vocabulary object detectors and depth maps for real world
images. As the results from open-vocabulary detectors and
depth maps are noisy we only report these metrics on HSSD
image dataset where we have access to ground truth. We can
then compute the RSR and RSP just as above by replacing
the GT regions ri with the surface grounded receptacle
segmentation masks si.
Target Precision (TrP). To quantify precision of SP models
at localizing possible ground truth placements we compute
the Target Precision (TrP) metric. To compute TrP, we
programatically compute the GT placement masks for an
object category from HSSD scenes and use these as GT
regions for computing the precision metrics.
Human preference (HP). To understand how humans judge
our baselines outputs, we require human annotators to rank
each model’s SP predictions from most preferred to least
preferred when shown predictions from 5 models described
in Sec. III. We then report the % of time that these annotators
rank each model’s predictions as the best, i.e. ranked above
all others, among 5 SP predictions. Further details in App. E.

E. Receptacle Priors
To compute receptacle precision and recall metrics, we use
the receptacles shown in Tab. III for each object type from
HSSD [13] scenes. To find the receptacle categories, we
retrieve a list of receptacles that have an instance of the
target object category placed on top, using metadata from
the simulator. It is important to note that since all Trash Can

instances are usually found on the floor of an environment,
there is no designated receptacle category for the Trash Can

category. Similarly, while some instances of the Potted Plant

category are also found on the floor, we do not include Floor

as a receptacle category. This exclusion is due to the fact
that the annotations for the Floor category cover the entire
scene, making it challenging to quantify which part of the
Floor annotation is a good or bad for object placement.

F. Additional Semantic Placement Experiments

HSSD VAL

Method TrP (↑) RSP (↑) RSR (↑)
1) Ours (LAION-SP) 10.1 23.7 26.3
2) Ours (HSSD) 16.2 26.6 36.5

3) Ours (LAION-SP → HSSD) 18.5 24.9 35.3

TABLE IV. LAION-SP pretraining ablations. We show the
evaluation results by training our CLIP-UNet on different datasets.

Baseline Success (↑)

1) LLM + Detector 10.5%
2) LLaVA 9.0%

3) Ours (LAION-SP → HSSD) 12.5%

TABLE VI. Embodied Semantic Place (eSP) evaluation per-
formance on HSSD VAL split. We evaluate each SP model from
Sec. III-B using a modular eSP policy with same hyperparameters.

Effectiveness of Pretraining on the SP Dataset. Tab. IV
shows results varying the CLIP-UNet training dataset. First,
evaluating the model trained on the LAION-SP dataset zero-
shot on HSSD (row 1) results in 10.1% TrP, 23.7% RSP,
and 26.3% RSR. This suggests the LAION-SP pretrained
model is, in general, good at identifying correct receptacle
surfaces in HSSD but does not, as shown by low TrP
numbers, perform very well in precisely localizing one of
the ground truth object placements. In contrast to training
on the LAION-SP dataset, if we just train from scratch on
HSSD images (row 2 vs 1) we achieve a +6.1 absolute
improvement on TrP, +2.9% on RSP, and +10.2% on RSR.
However, with small amounts of finetuning of the LAION-
SP pretrained model on HSSD dataset (row 3 vs 2), we
obtain our best performing model which obtains a further
absolute improvement of +2.3% on TrP with comparable
performance on RSP and RSR. In addition, as shown in human
preference numbers in Tab. I (row 4 vs 5), pretraining on
LAION-SP and finetuning on HSSD leads to overall better
generalization to both sim and real images.These results
effectively demonstrate that pretraining on the LAION-SP
dataset enables better generalization. See Fig. 3 for qualitative
examples of our HSSD-finetuned model’s predictions.
Open-Vocab Object Detector Ablation. Tab. V presents
results for when varying the open vocabulary object detectors
used in our LLM+Detector baseline. We compare perfor-
mance on the HSSD validation split using TrP, RSP, and
RSR metrics and consider three open vocabulary detectors:
Detic [19], OwlViT [37], and GroundedSAM [20], [38].
Overall, we find Detic achieves the highest RSP, RSR,
and comparable or better TrP compared to OwlVit and
GroundedSAM.

HSSD VAL

Method TrP (↑) RSP (↑) RSR (↑)
1) LLM + Detic 10.1 41.0 38.2
2) LLM + OwlVit 11.4 26.2 26.2
3) LLM + GroundedSAM 8.9 35.1 32.1

TABLE V. Ablations of object detectors for prior based baselines.

G. Embodied Evaluation

In this section, we present the results of using our CLIP-UNet
(LAION-SP → HSSD) model for the downstream application
of building a tidying robot. Specifically, in this task, an agent
is spawned at a random location in an indoor environment and
is tasked with placing an instance of a target object category
at a semantically meaningful location. We call this task
Embodied Semantic Placement (eSP). For our experiments,
we use Hello Robot’s Stretch robot [1] with the full action
space as defined in [26]. Specifically, the observation space,
shown in the Fig. 7, includes RGB+Depth images from the



robot’s head camera, camera pose, arm joint and gripper states,
and robot’s pose relative to the starting pose of an episode.
The robot’s action space comprises discrete navigation actions:
MOVE_FORWARD (0.25m), TURN_LEFT (30◦), TURN_RIGHT
(30◦), LOOK_UP (30◦), and LOOK_DOWN (30◦). For manip-
ulation, we use a continuous action space for fine-grained
control of the gripper, arm extension and arm lift.
1) Evaluation Dataset: For eSP evaluation, we create a
dataset consiting of 106 episodes using HSSD scenes [13],
each specified by an agent’s starting pose and a target object
category. These episodes span 8 object categories across 10
indoor environments. An episode is successful if the agent
successfully places the object on one of the semantically valid
receptacle (e.g. cushion on a bed or couch).
2) Embodied Semantic Placement Policy: In this section,
we detail the Embodied Semantic Placement Policy used
in Appendix G for evaluating the eSP task of building a
tidying robot. Our experiments employ Hello Robot’s Stretch
robot [1] with the full action space as defined in [26].
Specifically, the observation space, shown in the Fig. 7
Observations, includes RGB+Depth images from the robot’s
head camera, the camera pose, the robot’s joint and gripper
states, and the robot’s pose relative to the starting pose of an
episode. The robot’s action space comprises discrete naviga-
tion actions: MOVE_FORWARD (0.25m), TURN_LEFT (30◦),
TURN_RIGHT (30◦), LOOK_UP (30◦), and LOOK_DOWN
(30◦). For manipulation, we use a continuous action space for
fine-grained control of the gripper, arm extension and arm lift.
The head tilt, pan and gripper’s yaw, roll and pitch can be
changed by a maximum of 0.02−0.1 radians in a single step,
while the arm’s extension and lift can be changed by up to
2− 10cm per step. To perform the task with only the robot’s
observations and SP mask predictions from the CLIP-UNet at
each frame, we build a two-stage modular policy, comprising
“navigation” and “place” policies, illustrated in Fig 7 (a.) SP
Guided Navigation Policy and (b.) SP Guided Place Policy,
respectively. The details for both policies are as follows.
SP Guided Navigation Policy. Building upon the navigation
policy from [39], we replace the semantic map module with
our semantic placement (SP) map module. To construct the
SP affordance map, we predict the SP mask using egocentric
observations at each timestep. This mask is then backprojected
into a point cloud using preceived depth. We bin the point
cloud into a 3D SP voxel map and sum it over height to
derive the 2D SP map. Similar to [39], our navigation policy
employs frontier exploration [28], using the 2D SP map. We
first build a SP map by running the policy with the goal of
maximizing coverage of the environment for 250 steps. On
average, we achieve about 60% coverage of an environment
within these 250 steps. Subsequently, the agent uses the SP
map to navigate towards the SP mask instance that occupies
the largest area on the 2D map.
SP Guided Place Policy. We build upon heuristic place
policy from [26]. This policy assumes that the robot is within
interactable distance (within 0.2m) of the target receptacle
where the object is to be placed. First, the agent takes a
panoramic turn until a valid SP prediction is found (i.e. not

on the floor). This involves projecting the depth and SP
prediction onto a point cloud, transforming it into the agent’s
base coordinates, and applying a height filter. Once a valid SP
prediction is identified, we estimate a placement point at the
center of the largest slab (point cloud) for object placement
on a flat surface. To identify the largest flat surface slab, we
score each point based on the number of surrounding points
in the X/Y plane (with Z being up) within a 3cm height
threshold, similar to [26]. After determining the placement
point, we rotate the robot to facing the point. This is required
because the Stretch robot’s arm is not aligned with the camera
by default. If the robot is at least 38.5cm away from the
placement point, we move the robot forward, and re-estimate
the placement point as described in [26]. Finally, when the
robot is sufficiently close, we use inverse kinematics to
compute a sequence of actions to move the arm 15cm above
the sampled voxel (to avoid collisions) to place (or drop) the
object.
3) Results: Tab. VI presents the results of evaluating the eSP
policy using SP mask predictions LLM+Detector, LLaVa
and our CLIP-UNet (LAION-SP→HSSD) model on HSSD
val split. We do not evaluate GPT4V on eSP task due to API
limitations, eSP policy evaluation requires running inference
using GPT4V after each robot action which amounts to a
total of ∼53k frames for full evaluation. We find our CLIP-
UNet eSP policy achieves a 12.5% success on the eSP task
across 10 indoor environments, outperforming LLaVa and
LLM+Detector eSP baselines by 2− 3.5% on task success.
We observe that our CLIP-UNet eSP agent can effectively
reason about appropriate object placements in these settings.
For example, in a living room scenario near a couch, the agent
determines that a book should be placed on the coffee table,
as shown in Fig. 1(c). For qualitative videos and additional
examples, please refer the supplementary.

H. Human Evaluation

To assess the performance of various methods on the Semantic
Placemen (SP) task, we conduct a human evaluation study
using Amazon Mechanical Turk. Specifically, we conduct
a user preference experiment in which human annotators
are asked to compare SP mask predictions from 5 models
(baselines from Tab. I) and rank them from most to least
preferred. We conduct two types of the user study: one with
the real image dataset and another with images from the
HSSD [13] scene dataset used in our experiments. For each
study, we randomly select 400 images from the evaluation
split of the respective datasets. Each Amazon Mechanical
Turk worker is assigned 20 images to evaluate preferences,
and each worker is allowed to participate in the study only
once. We report percentage of times annotators rank each
model’s SP predictions as the best (i.e. ranked above all other
SP predictions) in Tab. I of the main paper.

I. Baseline Details

Prior + Detector. For this baseline we leverage common-
sense priors available in LLMs to find target receptacles
for a particular object and use a open-vocabulary detector,



Object Category Receptacles

Cushion Couch, Bed, Sofa, Armchair, Bench
Potted Plant Window Sill, Table, Chest of Drawers, Shelve, Balcony
Book Coffee Table, Table, Bookshelf, Desk, Nightstand, Bed
Vase Coffee Table, Table, Shelf, Mantle, Window Sill
Alarm Clock Bedside Table, Nightstand, Desk, Shelf
Laptop Desk, Table, Workstation
Table Lamp Desk, Nightstand, End Table, Shelf
Toaster Kitchen Counter, Shelf, Pantry
Trash Can Kitchen, Bathroom, Bedroom, Office

TABLE VII. Prior + Detector Baseline. Mapping of receptacles
from a LLM for each object category.

Detic [19], to localize the receptacle in the image. For each
of the 9 object categories in the dataset we prompt an LLM
for common receptacle categories on which each object is
found in indoor environment, shown in Tab. VII. Next, during
evaluation we use object detector to localize the segmentation
mask of all valid receptacles for a object category in an image.
LLaVA. VLMs like LLaVa [14] connect vision encoders
to LLMs, enabling general purpose vision-and-language
understanding. To evaluate LLaVA on the SP task, given an
input image, we prompt it to output normalized bounding
box coordinates for localizing a placement area. The prompt
we use is as follows:

“You are a smart assistive robot tasked with cleaning this

house. Localize the area in image as a bounding box in

normalized coordinates to place the <object_category>”.

Subsequently, we convert the predicted normalized bounding
box into a binary segmentation mask, which is then used
as the SP mask predictions for downstream applications.
Refer Fig. 10 and Fig. 11 for qualitative examples.
GPT4V [25]. Similar to LLaVA [14], GPT4V is a multimodal
LLM renowned for its vision-and-language understanding
capabilities. To evaluate GPT4V for the SP task, we feed it
an input image and prompt it to output normalized bounding
box coordinates. These coordinates are then localized to a
placement area and converted into a binary segmentation
mask for use as SP mask predictions. We use the following
prompt:
“Here is an image of an indoor living environment.

We would like to determine all places in the image

where one could potentially place an object of type

<object_type> so that environment remains tidy. For

example, you should not place a blender on the floor as

blenders are not typically found on the floor.

Please respond, in text, with a list of bounding box

coordinates of potential locations. These bounding box

coordinates should be of the form

[min x, min y, max x, max y]

where x and y are 0-1 valued and correspond to the

fraction of the image along the width and height of the

image with the top left of the image as the origin. Each

set of coordinates should be on a new line. If there are

no locations in the image where a <object_type> could

be placed, respond only with ‘NONE’. Respond ONLY with

these coordinates or NONE, do not include any other

text in your response.”

Subsequently, the predicted normalized bounding boxes
are converted to binary segmentation masks as SP mask
predictions for downstream evaluation. Refer Fig. 10 and
Fig. 11 for qualitative examples.

J. Qualitative Results

In Fig. 10 and Fig. 11, we visualize qualitative examples
from the CLIP-UNet, Prior + Detector (Detic), LLaVA, and
GPT4V baselines. These examples are images in the SP real
evaluation split, which were used for human evaluation.

K. Failure Modes

In this section, we describe various failure modes of our
CLIP-UNet model observed during its evaluation on the SP
task and in the downstream embodied evaluation of the eSP
task.
1) Semantic Placement: Refer to Fig. 14 for examples of
failure modes in SP mask predictions by our CLIP-UNet
model. The common failure modes include:
Surface Grounding. Predictions that are not properly
grounded to a surface of the receptacle in the image.
Incorrect Receptacle. Predictions with a 0 Intersection over
Prediction (IoP), indicating no overlap with any of the visible
receptacles in the image.
Geometry Unaware. Our method, by design, is not capable
of predicting SP masks that are object shape aware (as our
model’s only knowledge about the object is the object’s
category). Consequently, we sometimes observe placements
predicted by the model that are not geometry-aware, meaning
the SP masks highlight areas where there is insufficient space
to place a new object.
Misc. This category contains all other failure cases, including
predictions from the model that are noisy, placed on the
floor/ceiling, or involve closed receptacles, etc.
2) Embodied Semantic Placement: The majority of eSP
evaluation failures come from the navigation and place
planner, which include:
Navigation Failure. In 53.5% of cases, the navigation policy
fails to reach within 0.2m of the predicted SP mask. This is
often due to the requirement for precise navigation around
clutter.
Place Failure. The place policy fails 31.0% of the time
to execute fine-grained control to realize the highlighted
SP prediction. Occasionally, realizing SP predictions is not
feasible with the Stretch embodiment. For example, if a SP
mask indicates a placement at the center of a dining table, the
robot might be unable to reach it due to the table’s size and the
maximum arm extension of the Stretch robot. This highlights
the need for future work in learning SP in an embodiment-
aware manner to improve downstream performance.



Fig. 7. Embodied Evaluation Pipeline. We build a two-stage modular policy consisting of: 1.) SP Guided Navigation Policy: Uses frontier
exploration and semantic placement affordance 2D map to navigate to placement area, 2.) SP Guided Place Policy: Uses predicted SP
mask, projects it onto a pointcloud to sample placement point and uses IK planner to place the object.

Incorrect SP Masks. In 15.5% of cases, the placement
predicted by the SP mask is incorrect, such as when the
SP mask is placed on an incorrect receptacle.
Refer to the attached videos in the supplementary material
for examples of these failure modes.

L. Limitations

Our approach is fundamentally constrained by the limitations
of open-vocabulary object detectors, segmentation models,
and inpainting models. Since we employ these advanced
“foundation” models off-the-shelf for automatic data genera-
tion, the quality of our generated data is heavily dependent on
the performance of these models. Moreover, the occasional
poor performance of these models can introduce biases
into the training dataset, which downstream models might
exploit. For example, false positive detections from open-
vocabulary detectors (e.g. a ceiling light detected as a lamp)
may lead to biases in predicting SP masks for lamps on the
ceiling. Similarly, imperfect inpainting models can produce
artifacts like partially inpainted generations that bypass our
detector-based validations, resulting in training data that may
instill unrealistic biases in our model. While finetuning on
simulated data from HSSD can mitigate some of these biases,
it might also introduce a domain gap for sim-to-real transfer.
Collecting high-quality real-world data for finetuning could
help to alleviate this limitation. Another challenge is that
deploying the SP prediction model zero-shot for applications
like eSP might yield SP predictions that are not realizable
given the robot’s physical capabilities. A potential solution
could involve finetuning the SP model with the downstream
task in an end-to-end manner. This aspect, however, remains
as part of future work.



Fig. 8. Qualitative examples from SP train data generated using our proposed automatic data generation pipeline.



Fig. 9. Qualitative examples of inpainting failure during SP data generation using our proposed automatic data generation pipeline.



Fig. 10. Qualitative examples of SP masks predicted by all the baselines on SP Real val dataset



Fig. 11. Qualitative examples of SP masks predicted by all the baselines on SP Real val dataset



Fig. 12. Qualitative examples of SP masks predicted by all the baselines on SP HSSD val dataset



Fig. 13. Qualitative examples of SP masks predicted by all the baselines on SP HSSD val dataset



Fig. 14. Qualitative examples of failure modes of SP mask prediction by our approach


