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Abstract

Novel computer vision architectures monopolize the spotlight, but the impact of the
model architecture is often conflated with simultaneous changes to training method-
ology and scaling strategies. Our work revisits the canonical ResNet [13] and
studies these three aspects in an effort to disentangle them. Perhaps surprisingly,
we find that training and scaling strategies may matter more than architectural
changes, and further, that the resulting ResNets match recent state-of-the-art mod-
els. We show that the best performing scaling strategy depends on the training
regime and offer two new scaling strategies: (1) scale model depth in regimes
where overfitting can occur (width scaling is preferable otherwise); (2) increase
image resolution more slowly than previously recommended [55]. Using improved
training and scaling strategies, we design a family of ResNet architectures, ResNet-
RS, which are 1.7x - 2.7x faster than EfficientNets on TPUs, while achieving
similar accuracies on ImageNet. In a large-scale semi-supervised learning setup,
ResNet-RS achieves 86.2% top-1 ImageNet accuracy, while being 4.7x faster than
EfficientNet-NoisyStudent. The training techniques improve transfer performance
on a suite of downstream tasks (rivaling state-of-the-art self-supervised algorithms)
and extend to video classification on Kinetics-400. We recommend practitioners
use these simple revised ResNets as baselines for future research.

1 Introduction

The performance of a vision model is a product of the architecture, training methods and scaling
strategy. Novel architectures underlie many advances, but are often simultaneously introduced with
other critical – and less publicized – changes in the details of the training methodology and hyper-
parameters. Additionally, new architectures enhanced by modern training methods are sometimes
compared to older architectures with dated training methods (e.g. ResNet-50 with ImageNet Top-1
accuracy of 76.5% [13]). Our work addresses these issues and empirically studies the impact of
training methods and scaling strategies on the popular ResNet architecture [13].

We survey the modern training and regularization techniques widely in use today and apply them to
ResNets (Figure 1). In the process, we encounter interactions between training methods and show a
benefit of reducing weight decay values when used in tandem with other regularization techniques.
An additive study of training methods in Table 1 reveals the significant impact of these decisions: a

Correspondence to Irwan Bello and Barret Zoph {ibello,barretzoph}@google.com. Code and check-
points available in TensorFlow: https://github.com/tensorflow/models/tree/master/
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Figure 1: Improving ResNets to state-of-the-art performance. We improve on the canonical ResNet [13]
with modern training methods (as also used in EfficientNets [55]), minor architectural changes and improved
scaling strategies. The resulting models, ResNet-RS, outperform EfficientNets on the speed-accuracy Pareto
curve with speed-ups ranging from 1.7x - 2.7x on TPUs and 2.1x - 3.3x on GPUs. ResNet (•) is a ResNet-200
trained at 256×256 resolution. Training times reported on TPUs.

canonical ResNet-200 with 79.0% top-1 ImageNet accuracy is improved to 82.2% (+3.2%) through
improved training methods alone. This is increased further to 83.4% by two small and commonly
used architectural improvements: ResNet-D [15] and Squeeze-and-Excitation [21]. Figure 1 traces
this refinement over the starting ResNet in a speed-accuracy Pareto curve.

We offer new perspectives and practical advice on scaling vision architectures. While prior works
extrapolate scaling rules from small models [55] or from short training duration [39], we design
scaling strategies by exhaustively training models across a variety of scales for the full training
duration (e.g. 350 epochs instead of 10 epochs). In doing so, we uncover strong dependencies
between the best performing scaling strategy and the training regime (e.g. number of epochs, model
size, dataset size). These dependencies are missed in any of these smaller regimes, leading to sub-
optimal scaling decisions. Our analysis leads to new scaling strategies summarized as (1) scale the
model depth when overfitting can occur (scaling the width is preferable otherwise) and (2) scale the
image resolution more slowly than prior works [55].

Using the improved training and scaling strategies, we design a family of re-scaled ResNets, ResNet-
RS, across model various scales (Figure 1). ResNet-RS models use less memory during training
and are 1.7x - 2.7x faster on TPUs (2.1x - 3.3x faster on GPUs) than the popular EfficientNets
on the speed-accuracy Pareto curve. In a large-scale semi-supervised learning setup, ResNet-RS
obtains a 4.7x training speed-up on TPUs (5.5x on GPUs) over EfficientNet-B5 when co-trained on
ImageNet [30] and an additional 130M pseudo-labeled images.

Finally, we conclude with a suite of experiments testing the generality of the improved training and
scaling strategies. We first demonstrate that our scaling strategy improves the speed-accuracy Pareto
curve of EfficientNet. Next, we show that the improved training strategies yield representations that
rival or outperform those from self-supervised algorithms (SimCLR and SimCLRv2 [4, 5]) on a suite
of downstream tasks. The improved training strategies also extend to video classification, yielding an
improvement from 73.4% to 77.4% (+4.0%) on the Kinetics-400 dataset.

Through combining lightweight architectural changes (used since 2018) and improved training and
scaling strategies, we discover the ResNet architecture sets a state-of-the-art baseline for vision
research. This finding highlights the importance of teasing apart each of these factors in order to
understand what architectures perform better than others. We summarize our contributions:

• An empirical study of regularization techniques and their interplay, which leads to a training
strategy that achieves strong performance (e.g. +3.2% top-1 ImageNet accuracy, +4.0% top-1
Kinetics-400 accuracy) without having to change the model architecture.
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• An empirical study of scaling which uncovers strong dependencies between training and the best
performing scaling strategy. We propose a simple scaling strategy: (1) scale depth when overfitting
can occur (scaling width can be preferable otherwise) and (2) scale the image resolution more
slowly than prior works [55]. This scaling strategy improves the speed-accuracy Pareto curve of
both ResNets and EfficientNets.

• ResNet-RS: a Pareto curve of ResNet architectures that are 1.7x - 2.7x faster than EfficientNets
on TPUs (2.1x - 3.3x on GPUs) by applying the training and scaling strategies. Semi-supervised
training of ResNet-RS with an additional 130M pseudo-labeled images achieves 86.2% top-1
ImageNet accuracy, while being 4.7x faster on TPUs (5.5x on GPUs) than the corresponding
EfficientNet-NoisyStudent [57].

• Empirically show that representations obtained from supervised learning using modern train-
ing techniques rival or outperform state-of-the-art self-supervised representations (SimCLR [4],
SimCLRv2 [5]) on suite of downstream computer vision tasks.

2 Characterizing Improvements on ImageNet

Since the breakthrough of AlexNet [30] on ImageNet [45], a wide variety of improvements have
been proposed to further advance image recognition performance. These improvements broadly arise
along four orthogonal axes: (a) architecture, (b) training/regularization methodology, (c) scaling
strategy and (d) using additional training data.

(a) Architecture. The works that perhaps receive the most attention are novel architectures. Notable
proposals since AlexNet include VGG [49], ResNet [13], Inception [52, 53], and ResNeXt [58].
Automated search strategies for designing architectures have further pushed the state-of-the-art [67,
41, 55]. There have also been efforts in going beyond standard ConvNets for image classification, by
adapting self-attention [56] to the visual domain [2, 40, 20, 47, 8, 1].

(b) Training and Regularization Methods. ImageNet progress has simultaneously been boosted
by innovations in training (e.g. improved learning rate schedules [34, 12]) and regularization methods,
such as dropout [50], label smoothing [53], stochastic depth [22], dropblock [11] and data augmenta-
tion [61, 59, 6, 7]. Regularization methods have become especially useful to prevent overfitting when
training ever-increasingly larger models [23] on limited data (e.g. 1.2M ImageNet images).

(c) Scaling Strategies. Increasing the model dimensions (width, depth and resolution) has been
another successful axis to improve quality [44, 17]. ResNet architectures are typically scaled up
by adding layers (depth): ResNets-18 to ResNet-200 and beyond [14, 62]. Wide ResNets [60]
and MobileNets [19] instead scale the width. Increasing image resolutions consistently improves
performance: EfficientNet uses 600 image resolutions [55] while both ResNeSt [62] and TResNet [43]
use 400+ image resolutions for their largest model. In an attempt to systematize these heuristics,
EfficientNet proposed the compound scaling rule, which jointly scales network depth, width and
image resolution using a constant scaling factor. However, Section 7.1 shows this scaling strategy is
sub-optimal for not only ResNets, but EfficientNets as well.

(d) Additional Training Data. Finally, ImageNet accuracy is commonly improved by training on
additional sources of data (either labeled, weakly labeled, or unlabeled). Pre-training on large-scale
datasets [51, 35, 27] has significantly pushed the state-of-the-art, with ViT [8] and NFNets [3] recently
achieving 88.6% and 89.2% ImageNet accuracy respectively. Using pseudo-labels on additional
unlabeled images [57, 37] in a semi-supervised learning fashion has also been a fruitful avenue for
improving accuracy. We present semi-supervised learning results in Section 7.2.

3 Related Work

Improved training methods combined with architectural changes to ResNets have routinely yielded
competitive ImageNet performance [15, 31, 43, 62, 1, 3]. [15] achieved 79.2% top-1 ImageNet
accuracy (a +3% improvement over their ResNet-50 baseline) by modifying the stem and downsam-
pling block and using label smoothing and mixup. [31] further improved the ResNet-50 model with
additional architectural modifications such as Squeeze-and-Excitation [21], selective kernel [32], and
anti-alias downsampling [63], while also using label smoothing, mixup, and dropblock to achieve
81.4% accuracy. [43, 62] incorporate several architectural modifications to the ResNet architectures
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along with improved training methodologies to outperform EfficientNet models on the speed-accuracy
Pareto curve on GPUs. Many prior works do remark the importance of improved training and regular-
ization methods. However experiments are still largely concerned with architectural changes and the
simultaneous introduction of improved training techniques can make it hard to identify where the
gains come from1.

Additionally, due to the ever-increasing performance of machine learning accelerators, newer ar-
chitectures are routinely pushed to much larger scales than the original ResNets [13]. As a result,
works that propose novel architectures do not (cannot) compare against properly trained and scaled
ResNets (since such a baseline did not exist), making it challenging to evaluate the significance of the
proposed architectural changes compared to simple ResNets.

Lastly, prior work often puts little emphasis on studying scaling strategies or advocates for scaling
strategies which we find to be sub-optimal. For example, the largest models in EfficientNet [55],
TResNet [43] and ResNeSt [62] use 600, 448 and 416 image sizes respectively, which our scaling
analysis reveals to be excessively large. RegNet [39] advocates for width scaling, which we find only
works well when overfitting does not occur (e.g. 10 epochs).

In contrast to other works, we only consider lightweight architectural changes (that are widely used
since 2018) and keep the architecture fixed. Instead, we focus exclusively on training and scaling
strategies to build a Pareto curve of models. Perhaps surprisingly, we find that doing so suffices to
outperform models that were introduced after ResNets: our improved training and scaling methods
lead to ResNets that are significantly faster than EfficientNets on TPUs on GPUs (see Section 7.1).
We note that our scaling improvements are sometimes orthogonal to the architectural innovations
introduced in prior works in which case we expect them to be additive.

4 Methodology

Architecture. Our work studies the ResNet architecture, with two widely used architecture changes,
the ResNet-D [15] modification and Squeeze-and-Excitation (SE) in all bottleneck blocks [21].
These architectural changes are used in used many architectures, including TResNet, ResNeSt and
EfficientNets. The exact details of our architecture can be found in Appendix E. In our experiments,
we sometimes use the original ResNet implementation without SE (referred to as ResNet) to compare
different training methods. Clear denotations are made in table captions when this is the case.

Regularization and Data Augmentation. We apply weight decay, label smoothing, dropout and
stochastic depth for regularization. Dropout [50] is a common technique used in computer vision and
we apply it to the output after the global average pooling occurs in the final layer. Stochastic depth
[22] drops out each layer in the network (that has residual connections around it) with a specified
probability that is a function of the layer depth. We use RandAugment [7] data augmentation as
an additional regularizer. RandAugment applies a sequence of random image transformations (e.g.
translate, shear, color distortions) to each image independently during training. Our training method
closely matches that of EfficientNet, where we train for 350 epochs, but with a few small differences
(e.g. we use Momentum with cosine learning rate schedule as opposed to RMSProp with exponential
decay). See Appendix D for details.

Hyperparameter Tuning. To select the hyperparameters for the various regularization and training
methods, we use a held-out validation set comprising 2% of the ImageNet training set (20 shards
out of 1024). This is referred to as the minival-set and the original ImageNet validation set (the
one reported in most prior works) is referred to as validation-set. Unless specified otherwise,
results are reported on the validation-set. The hyperparameters of all ResNet-RS models are
in Table 8 in the Appendix C.

1A notable exception is RegNet [39] which purposely makes no use of improved training techniques and
shows improvements over worsened EfficientNet baselines, but does not demonstrate ImageNet accuracies
above (a rather low) 81%. While this approach facilitates fair comparisons with prior work, it is unclear whether
improvements are sustained at larger scales with improved training setups. For example, our scaling analysis
shows that the scaling strategy advocated by RegNet does not generalize to training regimes where overfitting
can occur.
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5 Improved Training Methods

5.1 Additive Study of Improvements

We present an additive study of training, regularization methods and architectural changes in Table 1
(left). The baseline ResNet-200 gets 79.0% top-1 accuracy. We improve its performance to 82.2%
(+3.2%) through improved training methods alone without any architectural changes. Adding two
common and simple architectural changes (Squeeze-and-Excitation and ResNet-D) further boosts
the performance to 83.4%. Training methods alone cause 3/4 of the total improvement, which
demonstrates their critical impact on ImageNet performance.

Improvements Top-1 ∆
ResNet-200 - 256x256 79.0 —
+ Cosine LR Decay 79.3 +0.3
+ Increase training epochs 78.8 † -0.5
+ EMA of weights 79.1 +0.3
+ Label Smoothing 80.4 +1.3
+ Stochastic Depth 80.6 +0.2
+ RandAugment 81.0 +0.4
+ Dropout on FC 80.7 ‡ -0.3
+ Decrease weight decay 82.2 +1.5
+ Squeeze-and-Excitation 82.9 +0.7
+ ResNet-D 83.4 +0.5

Model Regularization Weight Decay
1e-4 4e-5

ResNet-50 None 79.7 78.7 (-1.0)
ResNet-50 RA-LS 82.4 82.3 (-0.1)
ResNet-50 RA-LS-DO 82.2 82.7 (+0.5)

ResNet-200 None 82.5 81.7 (-0.8)
ResNet-200 RA-LS 85.2 84.9 (-0.3)
ResNet-200 RA-LS-SD-DO 85.3 85.5 (+0.2)

Table 1: (Left) Additive study of training , regularization and architecture improvements. The
baseline ResNet-200 is trained at resolution 256×256 for the standard 90 epochs using a stepwise learning
rate decay schedule. All numbers are reported on the ImageNet validation-set and averaged over 2
runs. † Increasing training duration to 350 epochs only becomes useful once the regularization methods are
used, otherwise the accuracy drops due to over-fitting. ‡ dropout hurts as we have not yet decreased the
weight decay. (Right) Decreasing weight decay improves performance when combining regularization
methods such as dropout (DO), stochastic depth (SD), label smoothing (LS) and RandAugment (RA). Image
resolution is 224×224 for ResNet-50 and 256×256 for ResNet-200. All numbers are reported on the ImageNet
minival-set from an average of two runs.

5.2 Importance of decreasing weight decay when combining regularization methods

Table 1 (right) highlights the importance of changing weight decay when combining regularization
methods together. When applying RandAugment and label smoothing, there is no need to change
the default weight decay of 1e-4. But when we further add dropout and/or stochastic depth, the
performance can decrease unless we further decrease the weight decay. The intuition is that since
weight decay acts as a regularizer, its value must be decreased in order to not overly regularize the
model when combining many techniques. Furthermore, [65] presents evidence that the addition of
data augmentation shrinks the L2 norm of the weights, which renders some of the effects of weight
decay redundant. Other works use smaller weight decay values, but do not point out the significance
of the effect when using more regularization [54, 55].

6 Improved Scaling Strategies

The prior section demonstrates the significant impact of training methodology and we now show
the scaling strategy is similarly important. In order to establish scaling trends, we perform an
extensive search on ImageNet over width multipliers in [0.25,0.5,1.0,1.5,2.0], depths
of [26,50,101,200,300,350,400] and resolutions of [128,160,224,320,448]. We
train these architectures for 350 epochs, mimicking the training setup of state-of-the-art ImageNet
models, and increase regularization with model size in an effort to limit overfitting. See Appendix F
for regularization and model hyperparameters.
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Figure 2: Scaling properties of ResNets across vary-
ing model scales. Error approximately scales as a power
law with FLOPs (linear fit on the log-log curve) in the
lower FLOPs regime but the trend breaks for larger
FLOPs. We observe diminishing returns of scaling the
image resolutions beyond 320×320, which motivates
the slow image resolution scaling (Strategy #2). All
results are on the ImageNet minival-set.

FLOPs do not accurately predict perfor-
mance in the bounded data regime. Prior
works on scaling laws observe a power law
between error and FLOPs in unbounded data
regimes [25, 16]. In order to test whether this
also holds in our scenario, we plot ImageNet er-
ror against FLOPs for all scaling configurations
in Figure 2.

For the smaller models, we observe an overall
power law trend between error and FLOPs, with
minor dependency on the scaling configuration
(i.e. depth, width and image resolution). How-
ever, the trend breaks for larger model sizes and
we observe a large variation in ImageNet perfor-
mance for a fixed amount of FLOPs, especially
in the higher FLOP regime. Therefore the ex-
act scaling configuration (i.e. depth, width and
image resolution) can have a big impact on per-
formance even when controlling for the same
amount of FLOPs.

The best performing scaling strategy depends on the training regime. We next look directly at
latencies2 on the hardware of interest to identify scaling strategies that improve the speed-accuracy
Pareto curve. Figure 3 presents accuracies and latencies of models scaled with either width or depth
across four image resolutions and three different training regimes (10, 100 and 350 epochs). We
observe that the best performing scaling strategy, especially whether to scale depth and/or width,
highly depends on the training regime.

6.1 Strategy #1 - Depth Scaling in Regimes Where Overfitting Can Occur

Depth scaling outperforms width scaling for longer epoch regimes. In the 350 epochs setup
(Figure 3 - right), we observe depth scaling to significantly outperform width scaling across all image
resolutions. Scaling the width is subject to overfitting and sometimes hurts performance even with
increased regularization. We hypothesize that this is due to the larger increase in parameters when
scaling the width. The ResNet architecture maintains constant FLOPs across all block groups and
multiplies the number of parameters by 4× every block group. Scaling the depth, especially in the
earlier layers, therefore introduces fewer parameters compared to scaling the width.

Width scaling outperforms depth scaling for shorter epoch regimes. In contrast, width scaling
is better when only training for 10 epochs (Figure 3 - left). For 100 epochs (Figure 3 - middle), the
best performing scaling strategy varies between depth scaling and width scaling, depending on the
image resolution. The dependency of the scaling strategy on the training regime reveals a pitfall
of extrapolating scaling rules. We point out that prior works also choose to scale the width when
training for a small number of epochs on large-scale datasets (e.g. ∼40 epochs on 300M images),
consistent with our experimental findings that scaling the width is preferable in shorter epoch regimes.
In particular, [27] train a ResNet-152 with 4x filter multiplier while [3] scales the width with ∼1.5x
filter multiplier.

6.2 Strategy #2 - Slow Image Resolution Scaling

In Figure 2, we also observe that larger image resolutions yield diminishing returns. We therefore
propose to increase the image resolution more gradually than previous works. This contrasts with
the compound scaling rule proposed by EfficientNet which leads to very large images (e.g. 600 for
EfficientNet-B7, 800 for EfficientNet-L2 [57]). Other works such as ResNeSt [62] and TResNet [43])
scale the image resolution up to 400+. Our experiments indicate that slower image scaling improves
not only ResNet architectures, but also EfficientNets on a speed-accuracy basis (Section 7.1).

2FLOPs is not a good indicator of latency on modern hardware. See Section 7.1 for a more detailed discussion.
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Figure 3: Scaling of ResNets across depth, width, image resolution and training epochs. We com-
pare depth scaling and width scaling across four different image resolutions [128,160,224,320] when
training models for 10, 100 or 350 epochs. We find that the best performing scaling strategy depends
on the training regime, which reveals the pitfall of extrapolating scaling rules from small scale regimes.
(Left) 10 Epoch Regime: width scaling is the best strategy for the speed-accuracy Pareto curve. (Middle)
100 Epoch Regime: depth scaling is sometimes outperformed by width scaling. (Right) 350 Epoch Regime:
depth scaling consistently outperforms width scaling by a large margin. Overfitting remains an issue even
when using regularization methods. Model Details: All models start from a depth of 101 and are increased
through [101,200,300,400]. All model widths start with a multiplier of 1.0x and are increased through
[1.0,1.5,2.0]. For all models, we tune regularization in an effort to limit overfitting (see Appendix F).
Accuracies are reported on the ImageNet minival-set and training times are measured on TPUs.

6.3 Designing Scaling Strategies

Our scaling analysis surfaces two common pitfalls in prior research on scaling strategies.

Pitfall #1: Extrapolating scaling strategies from small-scale regimes. Scaling strategies found in
small scale regimes (e.g. on small models or with few training epochs) can fail to generalize to larger
models or longer training iterations. The dependencies between the best performing scaling strategy
and the training regime are missed by prior works which extrapolate scaling rules from either small
models [55] or shorter training epochs [39]. We therefore do not recommend generating scaling rules
exclusively in a small scale regime because these rules can break down.

Pitfall #2: Extrapolating scaling strategies from a single and potentially sub-optimal initial
architecture. Beginning from a sub-optimal initial architecture can skew the scaling results. For
example, the compound scaling rule derived from a small grid search around EfficientNet-B0, which
was obtained by architecture search using a fixed FLOPs budget and a specific image resolution.
However, since this image resolution can be sub-optimal for that FLOPs budget, the resulting scaling
strategy can be sub-optimal. In contrast, our work designs scaling strategies by training models across
a variety of widths, depths and image resolutions.

Summary of Improved Scaling Strategies. For image classification, the scaling strategies are
summarized as (1) scale the depth in regimes where overfitting can occur (scaling the width is
preferable otherwise) and (2) slow image resolution scaling. Experiments indicate that applying these
scaling strategies to ResNets (ResNet-RS) and EfficientNets (EfficientNet-RS) leads to significant
speed-ups over EfficientNets. We note that similar scaling strategies are also employed in recent
works that obtain large speed-ups over EfficientNets such as LambdaResNets [1] and NFNets [3].
For a new task, we recommend running a small subset of models across different scales, for the full
training epochs, to gain intuition on which dimensions are the most useful across model scales. While
this approach may appear more costly, we point out that the cost is offset by not searching for the
architecture.

7 Experiments with Improved Training and Scaling Strategies

7.1 ResNet-RS on a Speed-Accuracy Basis

Using the improved training and scaling strategies, we design ResNet-RS, a family of re-scaled
ResNets across a wide range of model scales (see Appendix C and E for experimental and architectural
details). Figure 4 and Table 2 compare EfficientNets against ResNet-RS on a speed-accuracy Pareto
curve. We find that ResNet-RS match EfficientNets’ performance while being 1.7x - 2.7x faster on
TPUs (2.1x - 3.3x faster on GPUs). We point that these speed-ups are superior to those obtained by
TResNest and ResNeSt3, suggesting that ResNet-RS also outperform TResNet and ResNeSt.

3TResNet and ResNeSt report ∼1.3 - 2.0x speed-ups over EfficientNet on a GPU V100.
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Figure 4: Speed-Accuracy Pareto curve comparing ResNets-RS to EfficientNet. ResNet-RS (annotated
with depth - image resolution) are 1.7x - 2.7x faster than the popular EfficientNets when closely matching their
training setup. Although ResNet-RS has more parameters and FLOPs, the model employs less memory and runs
faster on TPUs and GPUs. See Appendix C and I for more results and profiling details.

Model Image Resolution Params (M) FLOPs (B) V100 Latency (s) TPUv3 Latency (ms) Top-1

EfficientNet-B0 224 5.3 0.8 0.47 90 77.1
EfficientNet-B1 240 7.8 1.4 0.82 150 79.1
ResNet-RS-50 160 36 4.6 0.31 70 78.8

EfficientNet-B2 260 9.2 2.0 1.03 210 80.1
ResNet-RS-101 160 64 8.4 0.48 (2.1×) 120 (1.8×) 80.3

EfficientNet-B3 300 12 3.6 1.76 340 81.6
ResNet-RS-101 192 64 12 0.70 170 81.2
ResNet-RS-152 192 87 18 0.99 240 82.0

EfficientNet-B4 380 19 8.4 4.0 710 82.9
ResNet-RS-152 224 87 24 1.48 (2.7×) 320 (2.2×) 82.8
ResNet-RS-152 256 87 31 1.76 (2.3×) 410 (1.7×) 83.0

EfficientNet-B5 456 30 20 8.16 1510 83.7
ResNet-RS-200 256 93 40 2.86 570 83.4
ResNet-RS-270 256 130 54 3.76 (2.2×) 780 (1.9×) 83.8

EfficientNet-B6 528 43 38 15.7 3010 84.0
ResNet-RS-350 256 164 69 4.72 (3.3×) 1100 (2.7×) 84.0

EfficientNet-B7 600 66 74 29.9 6020 84.7
ResNet-RS-350 320 164 107 8.48 1630 84.2
ResNet-RS-420 320 192 128 10.16 2090 84.4

Table 2: Details of ResNet-RS models in Pareto curve. See Table 8 for hyperparameters and Section I for
profiling details.

This large speed-up over EfficientNet may be non-intuitive since EfficientNets have significantly
reduced parameters and FLOPs compared to ResNets. We next discuss why a model with fewer
parameters and fewer FLOPs (EfficientNet) is slower and more memory-intensive during training.

FLOPs vs Latency. While FLOPs provide a hardware-agnostic metric for assessing computational
demand, they may not be indicative of actual latency times for training and inference [19, 18, 39]. In
custom hardware architectures (e.g. TPUs and GPUs), FLOPs are an especially poor proxy because
operations are often bounded by memory access costs and have different levels of optimization on
modern matrix multiplication units [24]. The inverted bottlenecks [46] used in EfficientNets employ
depthwise convolutions with large activations and have a small compute to memory ratio (operational
intensity) compared to the ResNet’s bottleneck blocks which employ dense convolutions on smaller
activations. This makes EfficientNets less efficient on modern accelerators compared to ResNets.
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Figure 4 (table on the right) illustrates this point: a ResNet-RS model with 1.8x more FLOPs than
EfficientNet-B6 is 2.7x faster on a TPUv3 hardware accelerator.

Parameters vs Memory. Parameter count does not necessarily dictate memory consumption during
training because memory is often dominated by the size of the activations4. The large activations
used in EfficientNets also cause larger memory consumption, which is exacerbated by the use of
large image resolutions, compared to our re-scaled ResNets. A ResNet-RS model with 3.8x more
parameters than EfficientNet-B6 consumes 2.3x less memory for a similar ImageNet accuracy (Table
in Figure 4). We emphasize that both memory consumption and latency are tightly coupled to the
software and hardware stack (TensorFlow on TPUv3) due to compiler optimizations such as operation
layout assignments and memory padding.

Improving scaling of EfficientNets The scaling analysis from Section 6 reveals that scaling the
image resolution results in diminishing returns. This suggests that the compound scaling rule
advocated in EfficientNet which jointly increases model depth, width and resolution at a constant rate
is sub-optimal. To test this hypothesis, we apply the slow image resolution scaling strategy (Strategy
#2) to EfficientNets and train several versions with reduced image resolutions, without changing
the width or depth. Figure 5 (Appendix) demonstrates a marked improvement of the re-scaled
EfficientNets (EfficientNet-RS) on the speed-accuracy Pareto curve over the original EfficientNets.

7.2 Semi-Supervised Learning with ResNet-RS

We next measure how ResNet-RS performs as we scale to larger datasets in a large scale semi-
supervised learning setup. We train ResNets-RS on the combination of 1.3M labeled Ima-
geNet images and 130M pseudo-labeled images, in a similar fashion to Noisy Student [57].
We use the same dataset of 130M images pseudo-labeled as Noisy Student, where the
pseudo labels are generated from an EfficientNet-L2 model with 88.4% ImageNet accuracy.

Model V100 (s) TPUv3 (ms) Top-1

EfficientNet-B5 8.16 1510 86.1
ResNet-RS-152 1.48 (5.5x) 320 (4.7x) 86.2

Table 3: ResNet-RS are efficient semi-supervised learn-
ers. ResNet-RS-152 with image resolution 224 is 4.7x faster
on TPU (5.5x on GPU) than EfficientNet-B5 Noisy Student
for a similar ImageNet accuracy.

Models are jointly trained on both the la-
beled and pseudo-labeled data and training
hyperparameters are kept the same. Ta-
ble 3 reveals that ResNet-RS models are very
strong in the semi-supervised learning setup
as well, achieving a strong 86.2% top-1 Im-
ageNet accuracy while being 4.7x faster on
TPU (5.5x on GPU) than the corresponding
EfficientNet model.

7.3 Transfer Learning to Downstream Tasks with ResNet-RS

We now investigate whether the improved supervised training strategies yield better representations
for transfer learning and compare them with self-supervised learning algorithms. Recent self-
supervised learning algorithms claim to surpass the transfer learning performance of supervised
learning and create more universal representations [4, 5]. Self-supervised algorithms, however, make
several changes to the training methods (e.g training for more epochs, data augmentation) making
comparisons to supervised learning difficult.

Fairly comparing supervised learning and self-supervised learning. In an effort to closely match
SimCLR’s training setup and provide fair comparisons, we restrict the RS training strategies to a
subset of its original methods. Specifically, we train for for 400 epochs with cosine learning rate
decay, data augmentation (RandAugment), label smoothing, dropout and decreased weight decay
but do not use stochastic depth or exponential moving average (EMA) of the weights. We choose
this subset to closely match the training setup of SimCLR: longer training (800 epochs) with cosine
learning rate decay, a tailored data augmentation strategy, a tuned temperature parameter in the
contrastive loss and a tuned weight decay.

Table 4 compares the transfer performance of supervised learning with or without improved train-
ing strategies (respectively denoted RS and Supervised) against SimCLR/SimCLRv2 [4, 5] on five
downstream tasks: CIFAR-100 Classification [29], Pascal Detection & Segmentation [9], ADE
Segmentation [64] and NYU Depth [48]. Our experiments demonstrate that the improved training

4Activations are typically stored during training as they are used in backpropagation. At inference, activations
can be discarded and parameter count is a better proxy for actual memory consumption.
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Model Training Epochs CIFAR-100 Pascal Pascal ADE NYU
Method Accuracy Detection Segmentation Segmentation Depth

ResNet-152 Supervised 90 85.5 80.0 70.0 40.2 81.2
ResNet-152 SimCLR 800 87.1 83.3 72.2 41.0 83.5
ResNet-152 SimCLRv2 800 84.7 79.1 73.1 41.1 84.7
ResNet-152 RS 400 88.1 82.2 78.2 42.2 83.4

Table 4: Representations from supervised learning with improved training strategies rival or outper-
form representations from state-of-the-art self-supervised learning algorithms. Comparison of supervised
training methods (supervised, RS) and self-supervised methods (SimCLR, SimCLRv2) on a variety of down-
stream tasks. The improved training strategies (RS) greatly outperforms the baseline supervised training, which
highlights the importance of using improved supervised training techniques when comparing to self-supervised
learning algorithms. All models employ the vanilla ResNet architecture and are pre-trained on ImageNet.

strategies significantly improve transfer performance, in line with works that observe that higher Ima-
geNet accuracy strongly correlates with improved transfer learning performance [28]. Furthermore,
we find that the improved supervised representations (RS) rival or outperform SimCLR/SimCLRv2,
even when restricted to a smaller subset. These results challenge the notion that self-supervised
algorithms lead to more universal representations than supervised learning when labels are available.

7.4 Revised 3D ResNet for Video Classification Improvements Top-1 ∆

3D ResNet-50 73.4 –
+ Dropout on FC 74.4 +1.0
+ Label smoothing 74.9 +0.5
+ Stochastic depth 76.1 +1.2
+ EMA of weights 76.1 –
+ Decrease weight decay 76.3 +0.2
+ Increase training epochs 76.4 +0.1
+ Scale jittering 77.4 +1.0
+ Squeeze-and-Excitation 77.9 +0.5
+ ResNet-D 78.2 +0.3

Table 5: Additive study of regularization ,

training and architecture improvements
with 3D-ResNet on video classification.

We conclude by applying the training strategies to the
Kinetics-400 video classification task [26], using a
3D ResNet as the baseline architecture [38]. Table 5
presents an additive study of the RS training recipe
and architectural improvements. The training strategies
extend to video classification, yielding a combined im-
provement from 73.4% to 77.4% (+4.0%). The ResNet-
D and Squeeze-and-Excitation architectural changes
further improve the performance to 78.2% (+0.8%).
Similarly to our study on image classification (Table 1),
we find that most of the improvement can be obtained
without architectural changes.

8 Conclusion
By updating the de facto vision baseline with modern training methods and an improved scaling
strategy, we have revealed the remarkable durability of the ResNet architecture. Simple architectures
set strong baselines for state-of-the-art methods: the accuracy gains that motivate complicated
architectural changes may be surpassed with thoughtful scaling and training strategies. Our work
suggests that the field has myopically overemphasized architectural innovations at the expense
of experimental diligence, and we hope it encourages further scrutiny in maintaining consistent
methodology for both proposed innovations and baselines alike. We do not foresee any negative
societal impact of our work. We include further discussion in the Appendix B.
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