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Abstract

The convergence of graph learning and multi-view learning has propelled the emer-
gence of multi-view graph neural networks (MGNNs), offering strong capabilities
to address complex real-world data characterized by heterogeneous and intercon-
nected information. While existing MGNNs exploit the potential of multi-view
graphs, the inherent conflict persists between the two critical inductive biases of
multi-view learning, consistency and complementarity. Consequently, the chal-
lenge of defining and resolving this tension in the new context of multi-view
graphs remains largely underexplored. To bridge this gap, we propose Multi-
view Collaborative Graph Experts (MvCGE), a novel framework grounded in the
Mixture-of-Experts (MoE) paradigm. MvCGE establishes architectural consistency
through shared parameters while preserving complementarity via layer-wise collab-
orative graph experts, which are dynamically activated by a graph-aware routing
mechanism that adapts to the structural nuances of each view. This dual-level
design is further reinforced by two novel components: a load equilibrium loss to
prevent expert collapse and ensure balanced specialization, and a graph discrepancy
loss based on distributional divergence to enhance inter-view complementarity.
Extensive experiments on diverse datasets demonstrate MvCGE’s superiority.

1 Introduction

With the advancement of data collection and analysis capabilities, modern data is no longer treated
as isolated or singular. Instead, entities are now understood to be deeply interconnected through
complex and pervasive relationships, which are captured with increasing fidelity. Graphs, due to their
universality, are widely used to represent these relationships as a powerful modeling tool. They excel
at capturing complex dependencies and have become a cornerstone of machine learning, leading
to advanced techniques for learning representations from structured data [Liang et al., 2024; Cai
et al., 2024; Dai et al., 2016]. Beyond inter-entity relationships, the ‘non-isolation’ of data is also
manifested in the heterogeneous information sources, referred to as different views. For instance,
in social networks, a user may be associated with various types of interactions (e.g., friendship
ties vs. behavioral interactions); With multimedia systems, objects can be described using multiple
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modalities (e.g., visual features and semantic tags). This diversity introduces unique challenges,
giving rise to new paradigms like multi-view learning [Liang et al., 2025; Zhang et al., 2025; Chen et
al., 2023a; Xu et al., 2015]. For such heterogeneous data, prior work in multi-view learning provides
a foundational framework built upon two well-known key properties. Specifically, each view provides
unique information that complements the others, which is the property known as complementarity.
Since these views are rooted in the same underlying entities, there is an inherent agreement between
them, referred to as consistency. These two distinct characteristics enable multi-view learning to
outperform the single-view counterpart [Tao et al., 2019]. But these characteristics may inherently
conflict [Dong et al., 2023]. Overemphasis on either distinctive or shared information will diminish
the advantage of multi-view learning. Therefore, the effective promotion of a balance between these
two properties has become a key focus.

Both the universal inter-relationships and increasing views further extend the heterogeneity of data
from different perspectives. But interestingly, graph learning uses topology as a unifying structure,
providing a common ground to anchor, align, and integrate diverse information. Researchers have
found that graph-based multi-view learning demonstrates promising performance [Li et al., 2025;
Wan et al., 2024]. For example, Zhang et al.; Chen et al. facilitated view alignment by constructing
graphs, which significantly enhanced clustering; while Duan et al.; Huang et al. focused on semi-
supervised learning, fully exploiting the graph to amplify supervisory signals. However, these
methods remain traditional, lacking a deeper understanding of graph theory, and mainly build on the
concept of similarity preservation, struggling to cope with complex data. There is widespread interest
in empowering multi-view learning with advanced graph techniques in the era of deep learning.
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Figure 1: The illustration of MGNN paradigms
based on (a) shared model, (b) multi-channel
model, and (c) MvCGE.

Recently, Graph Neural Networks (GNNs) have
rapidly developed and become a powerful technol-
ogy for graph learning. Spectral GNNs [Deffer-
rard et al., 2016] effectively extend convolutions
to non-Euclidean graph data; Graph Convolutional
Network (GCN) [Kipf and Welling, 2017], estab-
lished upon this, was then proposed and quickly
became a phenomenal model. Due to the power-
ful capabilities of GNNs [Xu et al., 2019] and the
synergistic effect between multi-view learning and
graphs, Multi-view GNNs (MGNNs) have become
an effective paradigm. Distinct from prior works,
MGNNs typically explicitly formulate heteroge-
neous data as multi-view graphs and utilize modern
GNN architectures. Although the graph structure is
a powerful instrument for harmonizing heterogene-
ity, the classic dilemma between consistency and complementarity persists. The primary challenge
shifts to how to define and resolve this long-standing conflict within the new context of multi-view
graphs. Existing methods have made attempts, specifically, many MGNNs adopt a unified model
that naturally allows for high collaboration between views through shared weights [Lin et al., 2024;
Chen et al., 2023b; Cheng et al., 2020; Xia et al., 2022]. But this may lead to an overemphasis on
consistency, thereby undermining complementarity. Also, in graph signal processing, a graph filter
may fail to match the potentially heterogeneous multi-view graph structures. Another pipeline builds
a multi-channel model [Chen et al., 2024a; Lu et al., 2024a; Wu et al., 2023; Li et al., 2020], where
unique parameters are assigned to each view, ensuring complementarity. Because the interaction be-
tween views relies solely on post-fusion, this approach may sacrifice intrinsic inter-view interactions
and lack architectural flexibility. The two existing pipelines are depicted in Figure 1. This raises a
critical question: How can we design a reasonable MGNN paradigm that achieves a balance between
consistency and complementarity?

In response to this challenge, we introduce a flexible and effective MGNN framework, termed
Multi-view Collaborative Graph Experts (MvCGE) in this paper. Figure 2 briefly illustrates the
architecture of MvCGE. First, by reviewing existing MGNNs through the lens of graph spectral theory,
we identify a critical limitation: shared graph filters cannot effectively handle the heterogeneous
structural properties of multi-view graphs. Drawing inspiration from Mixture of Experts (MoE), we
propose layer-wise collaborative graph experts as the foundational building block of MvCGE. This
block enables distinct graph filters, or regarded as GNN layers, to collaboratively process multi-view
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graphs, thus preserving view-specific information. Notably, the experts are shared across views,
establishing an architectural foundation for consistency. Moreover, the number of graph experts is
decoupled from the number of views, offering better flexibility. The incorporated graph-aware routing
allows for the dynamic selection of suitable graph experts based on the structural characteristics
of each view. To safeguard against model collapse and the consequent loss of complementary
information, we introduce two novel mechanisms. The load equilibrium loss ensures a balanced
allocation of training effort among the experts, avoiding dominance or over-proliferation of certain
experts. The graph discrepancy loss, grounded in graph isomorphism, treats multi-view graph latent
representations as discrete distributions and encourages experts to learn distinct representations,
preventing collapse into the same latent space. The main contributions of this paper are:

• We thoroughly review existing MGNN pipelines and reveal a critical challenge, i.e., shared
or view-specific models fail to flexibly adapt to multi-view graphs.

• We propose MvCGE, a novel MoE-inspired MGNN framework, effectively balancing
requirements for consistency and complementarity in handling heterogeneous data.

• Two innovative mechanisms are introduced to address model collapse and enhance the
protection of view-specific information from different aspects.

• Experiments on both single- and multi-view graph datasets demonstrate that MvCGE out-
performs competitors, showcasing impressive performance and generalization capabilities.

2 Related Work

Multi-view Learning Multi-view learning [Liu et al., 2023, 2022; Chen et al., 2022a] leverages
information from multiple perspectives to enhance performance, with consistency capturing shared
information and complementarity harnessing unique contributions. Graph-based approaches, known
for modeling arbitrarily distributed data, have gained prominence in this field [Sun et al., 2024;
Wan et al., 2023; Li et al., 2019]. Nie et al. proposed to automatically weight view-wise graphs in
multi-view clustering. Li et al. utilized graphs to enhance incomplete multi-view learning. Wen et al.
leveraged graphs to refine cross-view correspondences. However, these methods fail to fully exploit
graphs’ potential and lack integration with deep learning advancements.

Mixture of Experts The concept of MoE can be traced back to earlier works [Jacobs et al., 1991;
Jordan and Jacobs, 1994], designed for dynamically combining multiple specialized models to solve
complex tasks. Modern advancements have adapted MoE to deep learning, making it powerful in
vision and language models [Shazeer et al., 2017; Lepikhin et al., 2021; Fedus et al., 2022; Fang et
al., 2022; Shen et al., 2025; Miao et al., 2025]. However, the potential of MoE in multi-view learning
remains unexplored. Meanwhile, graph MoE is still in its infancy, with only a few researchers
attempting to develop MoE for graph-based tasks [Ma et al., 2024; Wang et al., 2023; Hu et al.,
2022]. There remains a lack of investigation for multi-view graphs [Wang et al., 2023].

Graph Neural Networks GNNs are a crucial tool for graph-based machine learning [Cai et al.,
2025; Wang et al., 2025; Fang et al., 2025b,a] and can be broadly divided into spectral and spatial
approaches. Spectral GNNs, utilizing spectral graph theory to extend convolution operations to
non-Euclidean space, once dominated the field. Kipf and Welling introduced the GCN, bridging the
gap between spectral and spatial paradigms, and laying the foundation for modern GNNs. Building
on these successes, MGNNs have emerged to tackle challenges in multi-view learning. Current
MGNNs follow two main pipelines. One strategy constructs a unified model with shared parameters
to process all views jointly, inherently ensuring consistency across views. To achieve this goal, Chen
et al. proposed fusing multi-view graphs, while Lu et al. developed a graph generation approach.
The other strategy employs multi-channel architectures, learning separate parameters for each view,
as exemplified by [Lin et al., 2024; Chen et al., 2024b]. However, these two pipelines often lean
toward two extremes: overemphasizing either consistency or complementarity. The former sacrifices
view-specific information, while the latter may cause divergences and misalignments between views.
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Figure 2: The illustration of a single layer of the proposed MvCGE.

3 Methodology

Notation We define an attributed graph as G = (V, E ,X), where V is the node set with cardinality
|V| = N , and E is the edge set. The graph’s topology is represented by its adjacency matrix
A ∈ {0, 1}N×N . The node attributes are represented by a feature matrix X ∈ RN×D, where D
is the dimension of the node features. The degree matrix D ∈ RN×N is a diagonal matrix where
Dii =

∑
j Aij . The graph Laplacian is defined as L = D − A or L = I − D− 1

2AD− 1
2 for its

symmetric version. A multi-view graph describes a set of graphs {Gv : v ∈ [V ]} where the node set
V is associated with heterogeneous information. The v-th graph can be defined as Gv = (V, Ev,X)
with corresponding adjacency matrix Av and shared attribute X.

Motivation In this subsection, we will discuss existing paradigms from the lens of graph filters.
To begin with, it is known that the Laplacian matrix can be decomposed as L = UΛU⊤, which
essentially induces a Fourier transform on the graph domain, where eigenvectors correspond to
Fourier components and eigenvalues represent frequencies of the graph. Take X as the input signal,
the general form of a graph convolutional layer can be written as

X̂ = fΘ(G,X), (1)

where fΘ is a function parameterized with Θ. For the early spectral GNNs [Bruna et al., 2014], the
function is specified as hΘ(L)X, where hΘ(L) is a parameterized graph filter. Due to the high compu-
tational burden, researchers then proposed to approximate the graph filter by a polynomial [Defferrard
et al., 2016], as

fΘ(G,X) =

T∑
t=0

θtL
tX, (2)

where Θ = {θt : t ∈ [T ]} are the parameters. [Defferrard et al., 2016] achieved fast localized filters
by using Chebyshev expansion, and the famous GCN [Kipf and Welling, 2017] further fixed T = 2
and simplified the convolution to bridge the spectral and spatial GNNs in a unified form. Therefore,
without loss of generality, we describe the recursive formula of multi-layer modern GNNs:

H(l+1) = fΘ(l)(G,H(l)), (3)

where H(l) ∈ RN×Dl is the input of the l-th layer, which is initialized by H(0) = X, and Θ(l) can
be regarded as the extended multi-channel parameters of the graph filter. Training GNNs through
optimizing the graph filter parameters Θ(l) in each layer results in their powerful performance in
graph-based machine learning tasks.

These GNNs have been rapidly applied to more complex and realistic multi-view graph scenarios. To
ensure consistency across views, many approaches typically adopt a unified and shared model across
all views. This strategy naturally enables highly collaborative learning among views by the weight
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sharing, which leads to good consistency, but it often struggles to effectively model the multiplex
graph structures inherent to diverse views. Considering any two views, we typically aim for the graph
filter to produce results that exhibit consensus rather than significant disagreement. However, the
effectiveness of a shared graph filter applied to two graph structures is significantly influenced by the
spectral gap between these graphs. Discussions on the transferability or stability of graph filters are
usually based on demanding assumptions [Ruiz et al., 2020; Gama et al., 2020; Levie et al., 2021].
In other words, when the structures of the two graphs differ substantially, it becomes challenging to
ensure that the graph filter achieves optimal performance across both views. An intuitive solution is
to assign a separate graph filter to each view, allowing each view to learn parameters tailored to its
own needs. This approach has been widely considered. However, while it takes into account more
complementarities compared to a shared filter, it inevitably swings to the other extreme by sacrificing
consistency in the architecture. Furthermore, the number of sub-modules is directly related to the
number of views, which limits its flexibility. To address these limitations, we aim to engineer an
MGNN framework that ensures scalable integration of inter-view dynamics, thereby better capturing
and balancing the consistency and complementarity.

Overall Framework To begin with, let us consider the input from the v-th view and define the
following layer-wise formulation:

H(l+1)
v = FΦ(l)(Gv,H

(l)
v ), (4)

where H(l)
v denotes the v-th graph embedding at the l-th layer with H

(0)
v = X, and the function FΦ(l)

with trainable parameter set Φ(l) is assembled by multiple graph convolutions:

FΦ(l)(Gv,H
(l)
v ) = RΨ(l)

({
f
Θ

(l)
m
(Gv,H

(l)
v ) : m ∈ [M ]

})
, (5)

where RΨ(l) denotes the routing function parameterized by Ψ(l), and Φ(l) = {Ψ(l),Θ
(l)
m : m ∈ [M ]}.

Building upon this, we introduce an ensemble of multiple graph filters, FΦ(l) , aiming to leverage
graph filters equipped with distinct parameters to collaboratively process graph information from
different views. Specifically, by designing the router RΨ(l) , appropriate combinations of graph
filters are selected to handle potentially heterogeneous structures from various views. Subsequently,
we consider processing a multi-view graph and constructing a multi-layer network. The proposed
MvCGE framework calculates the final representation H ∈ RN×C by

H = AΞ

({
Hv = FΦ(Gv,X) : v ∈ [V ]

})
, (6)

where Hv ∈ RN×C is the v-th learned final embedding, AΞ is a multi-view aggregation function
with parameter set Ξ, and FΦ is defined by concatenating L layer-wise functions:

FΦ := FΦ(0) ◦ · · · ◦ FΦ(l) ◦ · · · ◦ FΦ(L−1) , (7)

The entire function FΦ(l) is expected to be shared across views, thereby facilitating inherent inter-view
interactions. In our framework, FΦ is shared across views, and this characteristic ensures sufficient
interaction between the graphs of different views at the architectural level. That is, all parameters
Φ in the model are trained across the graphs of all views to capture consensus. Additionally, each
layer FΦ(l) of FΦ integrates multiple graph experts f

Θ
(l)
m

, which ensures that the model has sufficient
capacity to adapt to the data of each view, thereby capturing their complementarities. Note that the
number of graph experts M is independent of the number of views V , which provides the model with
additional flexibility. Therefore, MvCGE strikes a balance between the inherent requirements for
consistency and complementarity in multi-view learning. After outlining the framework of MvCGE,
the following subsection will discuss the details and specific implementation.

Layer-wise Collaborative Graph Experts For the aforementioned design ideas, we implement
our framework by drawing inspiration from the concept of MoE. Formally, given the input of the v-th
view in the l-th layer H(l)

v , we specify that FΦ(l) aggregate decisions from several graph experts by

[H(l+1)
v ]i,: =

∑
m∈[M ]

[Γ(l)
v ]i,mf

Θ
(l)
m
(Gv,H

(l)
v )i,:, (8)

where Γ
(l)
v ∈ RN×M is the v-th routing matrix that contains the routing weights of all the graph

filters in the l-th layer, which acts as graph experts in this framework. Through this layer-wise design,
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each layer of MvCGE can be viewed as an independent MoE and is controlled by a specific router,
allowing for more flexible selection and combination of graph experts.

Next, we specify the routing function RΨ(l) , whose role is to select the appropriate combinations of
experts for each node in each view. We propose an improved graph-aware top-k gating mechanism.
Specifically, we denote the gating weight of the i-th sample in the v-th view to the m-th expert as

[Γ(l)
v ]i,m = Softmax

(
gΨ(l)(Gv,H

(l)
v )i,:

)
s.t.

∥∥[Γ(l)
v ]i,:

∥∥
0
= K, ∀i ∈ [N ],

where the gating module gΨ(l) outputs an M -dimensional vector acting as the weights for integrating
outputs from diverse experts. Note that this module has a constraint to ensure sparse gating. In
multi-view graph learning scenarios, the design of gΨ(l) is critical, as it is key to preserving view
specificity. It must both perceive the graph and view-level patterns.

gΨ(l)(Gv,H
(l)
v )i,: = TopK

(
[P({[H(l)

v ]j,:, j ∈ Si})∥P(H(l)
v )]W

(l)
gate

)
. (9)

where P is a pooling function and Si is the node set associated with a sampled local subgraph of
node i. Therefore, P({[H(l)

v ]i,j , j ∈ Si}) and P(H
(l)
v ) respectively encode the local graph structure

and view-specific global information. Wgate ∈ R2D×M is the trainable parameter matrix mapping
the input to gating scores, respectively. We adopt Top-K sparse gating: for each node i, only the
Top-K expert logits are kept while the rest are masked out (set to −∞) before applying softmax. This
yields ∥[Γ(l)

v ]i,:∥0 = K with the remaining weights being exactly zero, such that only the experts
with top-K gating weight are selected.

Acceleration Trick When processing large-scale graphs, graph convolution operations can become
a major bottleneck due to the massive number of edges. The employment of multiple graph experts
imposes additional computational overhead. Therefore, we consider further specializing the graph
experts and propose an acceleration trick. We formalize the graph expert as

f
Θ

(l)
m
(Gv,H

(l)
v ) = ζ(PvH

(l)
v Θ(l)

m ), (10)

where ζ is a non-linear activation function, Pv is a filtering operator for the view v, and Θ
(l)
m ∈

RDl×Dl+1 is the trainable weight matrix. Here, we consider a class of simplified spectral GNNs where
the filter parameters are treated as being encoded in the trainable weights Θ(l)

m , thereby decoupling
a parameter-free operator Pv. For example, it can be the Chebyshev polynomial

∑T
t=0 Tt(Lv) for

ChebNet [Defferrard et al., 2016], and I− Lv for GCN [Kipf and Welling, 2017]. For this class of
graph experts, we only need to compute the parameter-free graph filtering once per MvCGE layer.
This result is then shared among different experts, which apply their distinct trainable weights for
different graph convolutions. This considerably accelerates the entire framework.

Regularization Although MvCGE ensures consistency through a flexible architecture, its training
faces challenges that could lead to model collapse, thereby losing the complementary information
between views.

Load Equilibrium: From the optimization perspective, due to the gating mechanism [Shazeer et al.,
2017], in some cases MvCGE may overly rely on a group of graph experts while preventing others
from being trained. This imbalance is self-reinforcing, causing the selected experts to proliferate,
while other experts become increasingly unlikely to be chosen. Ultimately, MvCGE will collapse
into a model with only a few experts activated, losing the advantage of capturing view-specific
information. To address this, we introduce a load equilibrium loss. For the v-th view, let

ρmv =
1

N

∑
i

[Γ(l)
v ]i,m, ωm

v =
1

N

∑
i

I{[Γ(l)
v ]i,m > 0}

be the average gating weight and load of expert m, we have

Leqm =
1

V

V∑
v=1

1

M

M∑
m=1

ωm
v · ρmv log ρmv , (11)

where we consider the intra-view and then the inter-view equilibrium. By minimizing Leqm, each
graph experts are encouraged to have similar selection scores and frequency.
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Graph Discrepancy: From the perspective of the latent space, even if load equilibrium is ensured and
different graph experts are given equal training opportunities, they may collapse into similar latent
spaces. Different graph experts are supposed to perform distinct filtering on multi-view graphs, rather
than collapsing into a single graph filter. To address this challenge, we take a single-layer MvCGE
as an example to elucidate the computational mechanism of the graph discrepancy loss. Given the
v-th view graph Gv, let fΘm

and fΘm′ denote any two distinct graph experts, the expert-specific
embeddings are defined as:

[Zm
v ]i,: = [Γv]i,mfΘm

(Gv,X)i,:, (12)

where Γv denotes the routing matrix and Zm
v denotes the expert-specific embedding generated by

expert fΘm
. Similarly, we obtain Zm′

v for the other graph expert. For clarity, we omit the layer index
in this single-layer illustration. Then the two embeddings are fed into the readout function, or called
pooling function as

zmv = P(Zm
v ). (13)

Here, zmv can be interpreted as a global graph embedding that encapsulates the semantic and structural
information captured by expert fΘm

. Recent studies have demonstrated that readout functions paired
with GNNs can effectively perform graph isomorphism computations [Xu et al., 2019]. Therefore,
we combine the readout function with a layer of GNN to form a model Q. Then for all V views, these
graph embeddings {zmv : v ∈ [V ]} are treated as samples drawn from a distribution PQm induced by
the function fΘm where Qm = P ◦ fΘm .

After that, we leverage Maximum Mean Discrepancy (MMD) [Gretton et al., 2012] to quantify the
discrepancy between distributions from different graph experts:

M2
H(PQ,PQ′) = ∥µQm − µQm′ ∥2H = EPQ [κ(zmv , zmv′)] + EPQ′ [κ(z

m′
v , zm

′

v′ )]− 2EPQ,PQ′ [κ(z
m
v , zm

′

v′ )],

(14)

where κ is a kernel function, e.g., Radial Basis Function kernel κ(z, z′) = exp(∥z−z′∥2

2σ2 ). Graph
embeddings z and z′ are sampled from distribution PQ and PQ′ respectively. µPQ and µPQ′ are
the means of distributions PQm

and PQm′ in the reproducing kernel Hilbert space (RKHS) H,
respectively. Then we introduce the generalization of MMD

M2
H(PQ,PQ′) = sup

{
∥µQ − µQ′∥2H : κ ∈ K

}
, (15)

where K is a family of kernels. According to [Gretton et al., 2012], we specifically estimate MMD by

M2
H

(
PQ(l)

m
,PQ(l)

m′

)
= sup

κ∈K

[
1

V 2

∑
v

∑
v′

κ(zmv , zmv′) +
1

V 2

∑
v

∑
v′

κ(zm
′

v , zm
′

v′ )− 2

V 2

∑
v

∑
v′

κ(zmv , zm
′

v′ )

]
.

(16)

Consequently, considering the multi-layer case, we propose the graph discrepancy loss:

Ldsp = − 1

L

∑
l

1

M(M − 1)

∑
m<m′

M2
H

(
PQ(l)

m
,PQ(l)

m′

)
, (17)

where Q(l)
m = P ◦ f

Θ
(l)
m

is a model combining a readout function and a graph expert. Utilizing the
two losses together ensures that the graph experts receive similar opportunities and learn meaningful
latent representations, thereby promoting MvCGE to capture complementary information.

Training Strategy The proposed MvCGE is trained using the following objective function

Ltotal = Ltsk + αLeqm + βLdsp, (18)

where Ltsk is the downstream task loss. The widely used Cross-Entropy loss is adopted for the
semi-supervised classification task:

Ltsk = −
∑
i∈Ω

∑
j

Yi,j log Ŷi,j , (19)

where Ŷ,Y ∈ R|Ω|×C are predicted and groud-truth labels, and Ω is the training set. Note that
Ŷi,: = Softmax(Hi,:).
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Table 1: Macro F1 and Micro F1 scores of all methods on multi-view datasets (mean value of ten
runs), where the best and the second-best results are highlighted in orange and blue, respectively.

Datasets ACM-M DBLP IMDB YELP AMINER
Metrics MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1

GCN 0.7860 0.7881 0.9012 0.9163 0.2429 0.5544 0.5196 0.6743 0.6842 0.8156
DGI 0.2235 0.3690 0.2432 0.3763 0.2626 0.5519 0.5034 0.6831 0.3449 0.6460
HAN 0.9147 0.9139 0.8927 0.9039 0.2389 0.5586 0.4829 0.4893 0.7234 0.8476
DMGI 0.8666 0.8681 0.6567 0.7106 0.3533 0.5726 0.5161 0.6985 0.3029 0.6546
IGNN 0.8290 0.8270 0.8681 0.8750 0.4531 0.5481 0.6449 0.7123 0.7453 0.8521
MRGCN 0.8758 0.8745 0.8949 0.9047 0.4517 0.4769 0.5435 0.7370 0.7335 0.8294
SSDCM 0.8765 0.8763 0.8942 0.8990 0.4940 0.5910 0.5270 0.7020 0.2620 0.5548
MHGCN 0.8887 0.8907 0.9300 0.9360 0.5154 0.6423 0.6085 0.7328 0.7500 0.8517
AMOGCN 0.9241 0.9238 0.9227 0.9280 0.5016 0.6506 0.6753 0.7241 0.7570 0.8338
HMGE 0.9080 0.9066 0.9156 0.9235 0.3293 0.5735 0.5857 0.7484 0.7371 0.8478

MvCGE 0.9348 0.9245 0.9256 0.9317 0.5157 0.6883 0.7776 0.8008 0.7897 0.8640

Table 2: Macro F1 and Micro F1 scores of all methods on single-view datasets (mean value of ten
runs), where the best and the second-best results are highlighted in orange and blue, respectively.

Datasets ACM Citeseer CoraFull Flickr UAI
Metrics MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1

GCN 0.8827 0.8842 0.6523 0.6909 0.5277 0.6279 0.5002 0.5104 0.4506 0.5851
SGC 0.8116 0.8087 0.6157 0.6642 0.5320 0.6292 0.4422 0.5101 0.4679 0.5652
APPNP 0.8837 0.8824 0.6510 0.6972 0.5236 0.6395 0.5124 0.5212 0.4655 0.6189
JKNet 0.8524 0.8545 0.6813 0.7292 0.5126 0.6268 0.5112 0.5431 0.4134 0.5623
DAGNN 0.8699 0.8917 0.6812 0.7290 0.5353 0.6481 0.6214 0.6065 0.4778 0.5927
GCNII 0.8978 0.8980 0.6712 0.7064 0.5828 0.6403 0.5904 0.5771 0.4869 0.6382
GNNHF 0.9052 0.9067 0.6760 0.7249 0.5846 0.6672 0.5867 0.6078 0.4495 0.5764
AMGNN 0.8996 0.8993 0.6873 0.7292 0.5664 0.6185 0.7580 0.7569 0.4787 0.6431
HiDNet 0.8958 0.8961 0.6661 0.7146 0.5304 0.6531 0.6200 0.6333 0.4568 0.6165
AGNN 0.8973 0.8974 0.6264 0.6721 0.5065 0.5930 0.5721 0.5844 0.4697 0.6206

MvCGE 0.9110 0.9114 0.6908 0.7356 0.5924 0.6693 0.7675 0.7790 0.4797 0.6591

4 Experiments

Experimental Setting To evaluate the effectiveness of MvCGE, we conducted experiments on
ten datasets, including five multi-view graph datasets (ACM, DBLP, IMDB, YELP, AMINER) and
five typical single-view graph datasets (ACM, Citeseer, CoraFull, Flickr, UAI) plus one large-scale
multi-view graph Freebase and one large-scale single-view graph OGBN-arXiv. To adapt MvCGE
to single-view graphs, we generate a supplementary view for each single-view dataset based on
the k-Nearest Neighbor algorithm, where we set k = 10. Note that, to distinguish between the
different ACM datasets, we denote the natively multi-view graph ACM as ACM-M. For different
types of datasets, we compared MvCGE with various competitors, including nine methods designed
for multi-view datasets (DGI [Velickovic et al., 2019], HAN [Wang et al., 2019], DMGI [Park et al.,
2020], IGNN [Gu et al., 2020], MRGCN [Huang et al., 2020], SSDCM [Mitra et al., 2021], MHGCN
[Yu et al., 2022], AMOGCN [Chen et al., 2024b], HMGE [Abdous et al., 2024]) and ten methods
designed for single-view datasets (GCN [Kipf and Welling, 2017], SGC [Wu et al., 2019], APPNP
[Gasteiger et al., 2018], JKNet [Xu et al., 2018], DAGNN [Liu et al., 2020], GCNII [Chen et al.,
2020], GNNHF [Zhu et al., 2021], AMGNN [Zhu et al., 2023], HiDNet [Li et al., 2024], AGNN
[Chen et al., 2023c]).

Performance In this subsection, we conduct comprehensive evaluations of MvCGE’s performance
in semi-supervised classification tasks across diverse datasets, empirically demonstrating its superior
performance compared to state-of-the-art methods. Experimental setups and analyses on these
datasets are as follows: 1) Multi-view Graphs. Here, the training ratio is set to 20% and the Macro
F1 and Micro F1 scores are recorded in Table 1. The experimental results reveal that the proposed
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MHGCN AMOGCN MvCGEHMGE 

Figure 3: The visualization of representations learned by MHGCN, AMOGCN, HMGE, and MvCGE
on the YELP dataset.

GCN DAGNN MvCGEGNNHF 

Figure 4: The visualization of representations learned by GCN, DAGNN, GNNHF, and MvCGE on
the ACM dataset.

MvCGE outperforms baseline methods across most datasets. Notably, substantial performance
gains are achieved on the Yelp dataset, primarily due to the inherent limitations of meta-path-based
approaches in effectively modeling complex non-linear cross-view relationships. In contrast, guided
by the principles of MoE, MvCGE effectively resolves the consistency-complementarity trade-off
while preserving view-specific information in multi-view learning, as validated in our experiments.
2) Single-view Graphs. Following the commonly used semi-supervised node classification settings,
we randomly select 20 samples per class for training, 500 samples for validation, and 1,000 samples
for testing, with the detailed results presented in Table 2. The figure shows that MvCGE consistently
outperforms all baseline methods and exhibits strong compatibility and adaptability to single-view
datasets. Additionally, as depicted in Appendix, we also test MvCGE on the large-scale graph
OGBN-arXiv and Freebase, showing its scalability.

Visualization We employ t-SNE [Van der Maaten L, 2008] to visualize the learned representations
of top-performing baselines on the YELP (Figures 3) and ACM datasets (Figures 4). Each node is
represented as a point, color-coded by its class label, with contour lines indicating category density
distributions. Complementary histograms along the axes reveal the embedding distributions across
dimensions. The visualizations demonstrate that MvCGE achieves superior cluster separation with
well-defined class boundaries and compact intra-class distributions. Analysis of the histogram
distributions reveals that MvCGE achieves better-separated representations in the feature space.

Sensitivity In this section, we assess the impact of varying the parameters α and β on the perfor-
mance of MvCGE, where α and β balance the loss Leqm and Ldsp, as depicted in Figure 5 (a) and
(b). It can be seen that model performance exhibits similar stable fluctuation patterns for both α and
β across ACM and YELP datasets, with the optimal performance achieved at α = 1e−1 or 1e−2 and
β = 1e−1 or 1e−3, demonstrating that the integrated two losses effectively capture complementary
information and consistently enhance performance when appropriate parameter values are selected.
Beyond this, we evaluated the model’s sensitivity to the number of experts. Specifically, we varied
the total number of experts and selected half of them, with the corresponding results presented in
Figure 6 (a). In Figure 6 (b), we fixed the total number of experts at 10 while varying the number
of selected experts. The findings indicate that choosing an optimal subset of experts, rather than an
excessive or minimal number, enhances the model’s performance.
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Figure 5: The classification performance of MvCGE w.r.t. hyperparameters α and β on the (a) ACM
dataset and (b) YELP dataset.
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Figure 6: The classification performance of MvCGE w.r.t. (a) the number of selected and total graph
experts and (b) the number of selected graph experts on the YELP dataset.

5 Conclusion

In this paper, we address the critical challenge of balancing consistency and complementarity in
multi-view graph learning. Traditional multi-view GNNs often struggle to adapt to the heterogeneous
structural properties of multi-view graphs due to rigid weight-sharing or isolated multi-channel
designs. To overcome these limitations, we propose MvCGE, a novel framework inspired by Mix-
ture of Experts, which introduces layer-wise collaborative graph experts to dynamically process
multi-view graphs while preserving both shared and view-specific information. The integration of
load equilibrium loss and graph discrepancy loss effectively mitigates model collapse and enhances
the discriminative power of learned representations. Extensive experiments across diverse datasets
demonstrate that MvCGE achieves state-of-the-art performance, showcasing its flexibility and robust-
ness in handling complex multi-view graph data. One possible limitation is that we do not discuss the
homophily and heterophily of graphs, although we adopt both types of graphs in our experiments.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the claims of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Conclusion.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions and proofs are included in Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All information needed to reproduce the main experimental results of the paper
is provided in the main body, Appendix, and source code.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is available in an anonymous link.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The details are included in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources are detailed in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper has no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets (e.g., code, data, models), used in the
paper, are properly credited and the license and terms of use explicitly are mentioned and
properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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