
000 NEURAL USD: AN OBJECT-CENTRIC FRAMEWORK 001 002 FOR ITERATIVE EDITING AND CONTROL 003 004

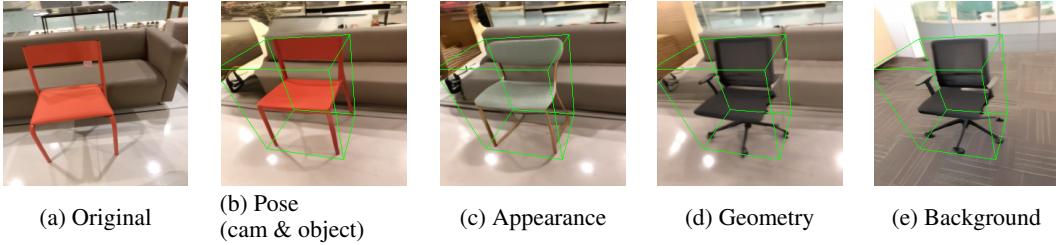
005 **Anonymous authors**

006 Paper under double-blind review

007 008 009 ABSTRACT 010

011 Amazing progress has been made in controllable generative modeling, especially
012 over the last few years. However, some challenges remain. One of them is precise
013 and iterative object editing. In many of the current methods, trying to edit the
014 generated image (for example, changing the color of a particular object in the
015 scene or changing the background while keeping other elements unchanged) by
016 changing the conditioning signals often leads to unintended global changes in the
017 scene. In this work, we take the first steps to address the above challenges.

018 Taking inspiration from the Universal Scene Descriptor (USD) standard developed
019 in the computer graphics community, we introduce the “Neural Universal Scene
020 Descriptor” or Neural USD. In this framework, we represent scenes and objects
021 in a structured, hierarchical manner. This accommodates diverse signals, mini-
022 mizes model-specific constraints, and enables per-object control over appearance,
023 geometry, and pose. We further apply a fine-tuning approach which ensures that
024 the above control signals are disentangled from one another. We evaluate several
025 design considerations for our framework, demonstrating how Neural USD enables
026 iterative and incremental workflows.



027
028
029
030
031
032
033
034 Figure 1: Demo of iterative editing using the finetuned Neural USD model. Given the original image
035 (a), we specify the camera pose and desired target obj pose as a 3D bounding box (b). The model is
036 able to precisely ‘move’ the object to the desired pose while rest of the scene elements remain fairly
037 consistent. Next in (c), we change the appearance (in this case color) while also being in the new
038 pose. Our model is able to handle these multiple requests. In (d), we retain the desired pose from
039 (b) and condition on another office chair’s geometry (or depth) and appearance. Our model is able
040 to perform these edits while leaving rest of the scene elements (notably the background) consistent
041 with the original image. Note that using these conditions we can replace an object in the image with
042 another object in any desired pose. In (e), we edit the pose, geometry and background all at the
043 same time. Our model is able to handle these requests simultaneously and generates an image that
044 respects all the given conditions. More details on the conditioning signals and additional examples
045 are in Section 4.2 and appendix E
046

047 048 049 1 INTRODUCTION 050

051 The surge in relevance of visual generative models has led to the development of a wide range of
052 conditioning approaches. These approaches enable control over generated outputs by allowing users
053 to guide the generation process using textual prompts, reference images, or other forms of input like
a desired depth map, segmentation mask, edge map and others. However, conditioning choices are

often tailor-made for specific model architectures, or limit the user to global scene edits, restricting portability across models and limiting users from performing object-level, incremental updates to their content.

Several approaches have been proposed to address the challenge of conditioning and controlling visual generative models. One area of study investigates how models can be conditioned on depth maps, edge maps, segmentation maps, and other conditioning signals (Zhang et al., 2023; Mou et al., 2023; Avrahami et al., 2022; Li et al., 2023b). These approaches allow the user to control one aspect of the scene at a time. However, these methods can result in global scene changes as a result of local conditioning signal edits. This problem compounds as we try to make multiple edits to the scene. In contrast, our framework enables multiple serial edits to the original image while preserving other visual elements not part of the edit. Another line of work uses text prompts to guide image generation and editing (Brooks et al., 2022; Rombach et al., 2022). While these approaches generate impressive results, they often limit what a user is able to express due to the challenge of describing complex scene layouts with text. Recent approaches propose object-centric conditioning formats to guide image generation (Bhat et al., 2023b; Wu et al., 2024; Liu et al., 2023a; Michel et al., 2023). These methods often struggle with handling multiple objects in a scene, or are limited in supporting conditioning modalities beyond reference images.

To address these challenges, we introduce Neural Universal Scene Descriptors (Neural USD): an object-centric conditioning standard that enables precise control of geometry, appearance, and object poses within generative models. The Neural USD is defined as an XML-style format consisting of per-object attributes (see Fig. 3 (a)). These include (1) *appearance* - encoded as feature vectors from some pre-trained embedding methods like CLIP or Dino (2) *position* - encoded as a 2d or 3d bounding box around the desired object. (3) *geometry* - includes features like depth map, segmentation mask, and edge map. In the experiments in this paper, we pre-dominantly used depth-map for geometric features. Each of these modalities is tokenized into a sequence of conditioning vectors and passed to downstream generative models for conditioning. This representation is compatible with many architectures including diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), DiTs (Peebles & Xie, 2023), and transformers (Vaswani et al., 2017; Yu et al., 2022) - thereby facilitating cross-model portability. After fine-tuning the image models with the Neural USD data, we can manually edit the objects and backgrounds in the image using a simple recipe: $\mathcal{I} = \text{Decode}(\text{Edit}(\text{USD}))$. However, naïve training on such a representation would cause challenges, as the model would have difficulty disentangling pose and appearance attributes of the conditioning signal, empirically resulting in poor object control. We solve this by training the model using a pair of images (say source, target) from a video sequence. In this case, the goal of the model is to generate the target image; the geometric and appearance conditioning comes from the source image and the pose conditioning from the target image. This results in robust object pose, geometry, and appearance control signals that are dis-entangled from one another.

In summary, our main contributions are as follows:

1. Neural USD (Fig 2): an object-centric conditioning format for a broad class of generative models that provides precise control over object position, appearance, and geometry (Fig 3 (a)). We also show how to finetune existing models using pairs of images from videos

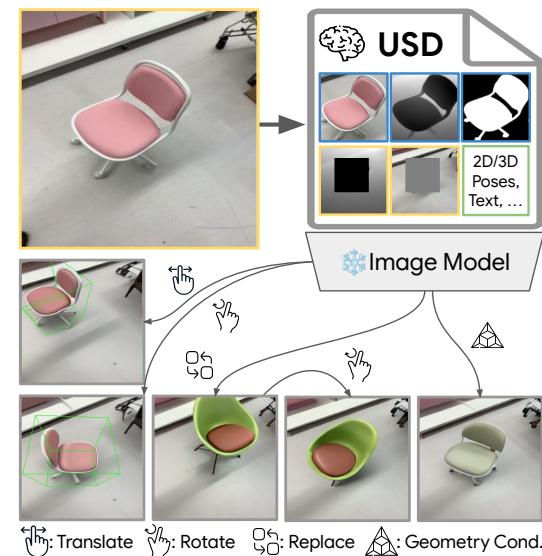


Figure 2: Neural USD enables computer graphics-style control of image models. A Neural USD represents an image as assets with appearance, geometry, and pose. Fine-tuning adapts pre-trained models to these signals while keeping appearance and geometry pose-invariant.

108 to enable learning disentangled control signals across all modalities. Our framework is
109 generic and applicable to a wide class of generative models.
110 2. Our method enables iterative editing workflows where the target object changes in ac-
111 cording with the conditioning signal and other scene elements remain fairly unchanged
112 and/or consistent with the original image (Figs. 1 and 4).
113 3. We also compare our method against several standard baselines. Our experiments show
114 that Neural USD allows for more precise object control as measured by the reconstruction
115 error (Fig. 8).

116 The rest of the paper is organized as follows. In Section 2, we discuss other related works and how
117 our approach sits within the broader generative landscape. In Section 3, we describe the Neural USD
118 framework. This includes details on how the different aspects like pose, appearance and geometry
119 are encoded and then combined into a single conditioning signal. We also discuss our approach to
120 fine-tuning and learning from pairs of images. We describe our experimental results in Section 4. In
121 Section 4.1, we give examples of how Neural USD enables object centric editing. In Section 4.2, we
122 give more examples of iterative editing. In Section 4.3, we compare our approach to other generative
123 models. We conclude the paper in Section 5.

2 RELATED WORK

128 Recent work in object-centric learning decomposes visual scenes into distinct object representations
129 for structured, interpretable image generation. Slot-based methods such as Slot Attention (Locatello
130 et al., 2020), SLATE (Singh et al., 2021), and STEVE (Singh et al., 2022b) model scenes as in-
131 dependent entities, with refinements like LSD (Jiang et al., 2023) and Slot Diffusion (Wu et al.,
132 2023) improving disentanglement. These representations support tasks including attribute manip-
133 ulation (Singh et al., 2022a), motion modeling (Seitzer et al., 2023), and 3D pose estimation (Jabri
134 et al., 2023); OSRT (Sajjadi et al., 2022) further addresses global camera pose. Yet such models
135 struggle with real-world data. Our approach leverages self-supervised visual encoders with large-
136 scale pre-trained diffusion models, enabling scalable object-centric learning in realistic settings.

137 Personalized image generation has progressed from test-time fine-tuning (DreamBooth (Ruiz et al.,
138 2022), Textual Inversion (Gal et al., 2022)) to zero-shot personalization (InstantBooth (Shi et al.,
139 2023a), ZeroShotBooth (Jia et al., 2023), BLIP-Diffusion (Li et al., 2023a), ELITE (Wei et al.,
140 2023), InstantID (Wang et al., 2024b), FastComposer (Xiao et al., 2023)). While effective, most
141 produce single-subject images without spatial control. Exceptions such as VisualComposer (Parmar
142 et al., 2025), TokenVerse (Garibi et al., 2025), and Video Alchemist (Chen et al., 2025) allow multi-
143 entity composition, but with limited control. Subject-Diffusion (Ma et al., 2023) introduces 2D
144 bounding-box conditioning but lacks 3D pose control. We extend controllability by incorporating
145 object poses, enabling structured multi-object generation and manipulation.

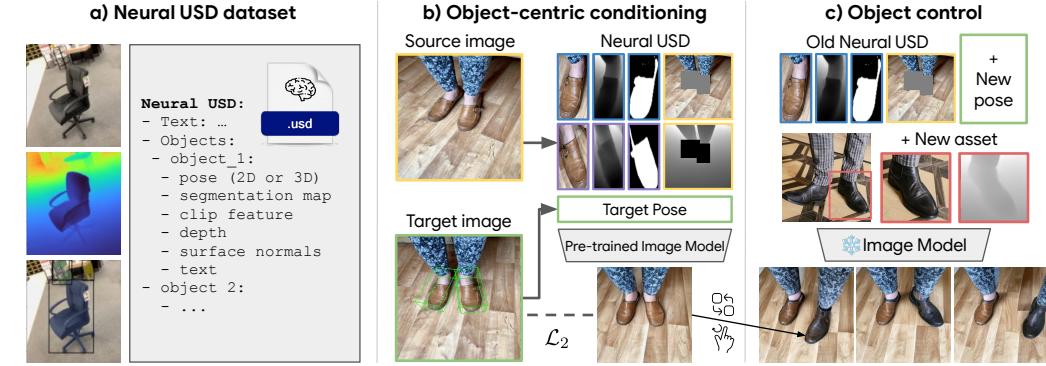
146 Spatial control in diffusion models is pursued through bounding boxes or segmentation masks.
147 Strategies include prompt manipulation (Kawar et al., 2022; Ge et al., 2023; Brooks et al., 2022),
148 attention adjustments (Xie et al., 2023; Kim et al., 2023; Chen et al., 2023; Chefer et al., 2023;
149 Feng et al., 2022; Hertz et al., 2022; Cao et al., 2023), and latent editing (Epstein et al., 2023; Shi
150 et al., 2023c; Luo et al., 2023). Fine-tuned approaches add spatial conditioning (Gafni et al., 2022;
151 Avrahami et al., 2022; Yang et al., 2022; Hu et al., 2023; Xu et al., 2023; Goel et al., 2023). GLI-
152 GEN (Li et al., 2023b) introduces attention layers for box conditioning, InstanceDiffusion (Wang
153 et al., 2024c) supports masks and scribbles, and ControlNet (Zhang et al., 2023) incorporates depth
154 and normals; Boximator (Wang et al., 2024a) extends these ideas to video.

155 3D-aware image generation pursues structured scene synthesis. GAN-based methods use explicit 3D
156 representations such as radiance fields (Chan et al., 2020; Gu et al., 2021; Chan et al., 2021; Schwarz
157 et al., 2020; Niemeyer & Geiger, 2020; Xu et al., 2022) and meshes (Chen et al., 2019; 2021; Gao
158 et al., 2022; Pavllo et al., 2020; 2021). Diffusion-based approaches (Shi et al., 2023b; Liu et al.,
159 2023b; Poole et al., 2022; Wang et al., 2022; Lin et al., 2022; Kant et al., 2024; Melas-Kyriazi et al.,
160 2023; Watson et al., 2022) transfer 2D knowledge into 3D. 3DiM (Watson et al., 2022) and Zero-1-
161 to-3 (Liu et al., 2023a) leverage multiview training but remain object-centric. More recent methods
162 address multi-object real-world scenes (Sargent et al., 2023; Pandey et al., 2023; Yenphraphai et al.,
163 2024; Alzayer et al., 2024); OBJect-3DIT (Michel et al., 2023) enables language-guided editing but

162 is synthetic-data limited. LooseControl (Bhat et al., 2023b) uses 3D bounding boxes as depth maps
163 for pose control, but is not directly applicable to editing.
164

165 We unify these directions by enabling both 2D and 3D spatial conditioning in pre-trained diffu-
166 sion models, with support for appearance and geometry inputs. Using bounding boxes as control
167 signals, our approach enables fine-grained object pose manipulation—including rotation and oc-
168 clusion—while scaling to multiple modalities and offering a general recipe for incorporating new
169 ones.
170

171 3 METHOD



185 Figure 3: Neural USD Overview. a) A Neural USD consists of assets with multiple modalities:
186 appearance, geometry, and pose. b) Pre-trained image models fine-tune on Neural USD, encoding
187 appearance and geometry from a source image and pose from a target image to reconstruct the
188 target. c) At inference, objects’ poses, geometry, and appearance can be modified, including the
189 background.

191 We propose Neural USD as an object-centric representation of a scene, composed of appearance,
192 geometry, and pose representations. Image models are trained to reconstruct target objects defined
193 in the Neural USD by using paired images extracted from video sequences. We additionally apply
194 modality dropout. This allows the model to learn disentangled appearance, geometry, and pose
195 representations. The resulting model allows for fine-grained control of objects in the scene. Such
196 a conditioning format draws parallels to the intuitive object-centric workflows used in computer
197 graphics programs such as Blender (Blender Online Community, 2018).

198 3.1 DATA

200 In this work, we explore datasets with 2D and 3D annotations readily available. Obtaining tracked
201 2D bounding boxes for video is a problem with promising solutions (Li et al., 2024). However,
202 obtaining 3D bounding box annotations at scale is still an open challenge, but may be addressed in
203 the near future given improvements in SLAM, point tracking, and depth estimation (Zhang et al.,
204 2024; Bhat et al., 2023a; Yang et al., 2024; Doersch et al., 2023).

205 We compose the Neural USD dataset by applying separate annotation models to the original datasets.
206 We acquire depth annotations by applying ZoeDepth (Bhat et al., 2023a) then crop and normalize
207 per-object depth maps. Object masks are computed by applying SAM (Kirillov et al., 2023) with
208 bounding box conditioning. Additional conditioning signals such as surface normals and point-
209 clouds can be extracted with open source models (Yang et al., 2023), though we leave this for future
210 work.

212 3.2 ASSETS IN NEURAL USD

214 We borrow the nomenclature of Neural Assets (Wu et al., 2024) to describe the components of the
215 Neural USD. A Neural USD is defined as a list of N assets $\{\hat{a}_1, \dots, \hat{a}_N\}$, where each asset \hat{a}_i is
216 defined as a tuple of attributes such as 2D or 3D bounding box coordinates $\mathcal{P}_i^{2D}, \mathcal{P}_i^{3D}$, appearance

216 descriptors such as image crops or clip embeddings \mathcal{A}_i , geometry signals from depth images, masks,
217 pointclouds, and surface normals \mathcal{G}_i , or even text \mathcal{T}_i . The resulting asset can be defined as the tuple
218 $\hat{a}_i = (\mathcal{P}_i^{2D}, \mathcal{P}_i^{3D}, \mathcal{A}_i, \mathcal{G}_i, \mathcal{T}_i, \dots)$.
219

220 3.3 ENCODING ASSETS 221

222 To make the Neural USD a compatible conditioning format for arbitrary downstream models, it must
223 first be encoded into a continuous vector representation such that the encoded appearance and ge-
224 ometry descriptors can be defined as continuous vectors $\mathcal{A}_i^{\text{emb}}, \mathcal{G}_i^{\text{emb}} \in \mathbb{R}^{K \times D}$, and pose embeddings
225 as $\mathcal{P}_i^{\text{emb}, 2D}, \mathcal{P}_i^{\text{emb}, 3D} \in \mathbb{R}^D$. This token representation enables the fine-tuning of arbitrary model
226 architectures with the Neural USD encoding, as well as separate control of pose, geometry, and
227 appearance. We now describe how appearance, geometry, and poses are encoded in this format.
228

229 3.3.1 APPEARANCE AND GEOMETRY ENCODING 230

231 Obtaining $\mathbb{R}^{K \times D}$ encodings of appearance and geometry can vary depending on the modality being
232 handled. Often times modalities can have varying dimensions (images vs. pointclouds) or different
233 semantic meaning (surface normals vs. depth). As such, we utilize separate encoders for each modal-
234 ity in the Neural USD. In the case of appearance signals in the form of images $\mathcal{I} \in \mathbb{H} \times \mathbb{W} \times \mathbb{C}$ we
235 apply a pre-trained DINOv2 (Caron et al., 2021) model to obtain output features $\mathcal{F} = \text{Encoder}(\mathcal{I}_i)$,
236 where $\mathcal{F} \in \mathbb{h} \times \mathbb{w} \times \mathbb{D}$. The first two dimensions are then flattened to obtain the resulting embedding
237 $\mathcal{A}_i^{\text{emb}} \in \mathbb{R}^{K \times D}$. Similarly, geometry features such as surface normals and depth can be processed us-
238 ing a separate pretrained DINOv2 backbone. We find that normalizing depth features on a per-object
239 basis leads to improved generalization performance, as raw metric depth signals constrain the object
240 to certain locations in the scene. Preliminary experiments using a shared backbone for both image
241 and depth yielded suboptimal results, as the model struggled to accurately represent both geometry
242 and appearance.
243

244 Approaches such as Neural Assets (Wu et al., 2024) first embed an image with a pre-trained back-
245 bone and slice the resulting feature map using the corresponding 2D bounding box locations for
246 each object. While this results in fewer forward passes, it leads to challenges when replacing objects
247 in the scene, or conditioning on modalities such as depth or points, since object features are glob-
248 ally correlated. Instead, we process each object appearance and depth feature separately, removing
249 global correlations. This can be done efficiently by pre-computing these features and storing them
250 in the Neural USD.
251

252 3.3.2 2D AND 3D POSE ENCODING 253

254 Utilizing a separate encoding for 2D and 3D pose signals provides the user access to two different
255 interfaces for controlling the position of the object in the scene. The 2D pose allows for simple
256 dragging of the object around the scene, while the 3D pose allows for more sophisticated control
257 of properties such as distance from the camera and rotation. The 2D bounding box is defined as
258 the image-normalized coordinates of the top left corner of the bounding box, as well as the image-
259 normalized height and width $p_i^{2D} = (x_i, y_i, h_i, w_i)$. We represent the 3D bounding box by projecting
260 four corners that span the bounding box to the image plane, arriving at $\{p_i^{3D,j} = (h_i^j, w_i^j, d_i^j)\}_{j=1}^4$,
261 with projected image-normalized 2D coordinates (h_i^j, w_i^j) and 3D depth d_i^j . We project the 2D
262 bounding box and the concatenated corners of the 3D bounding box with a simple multi-layer per-
263 ceptron to obtain:
264

$$\mathcal{P}_i^{\text{emb}, 2D} = \text{MLP}(p_i^{2D}), \quad (1)$$

$$\mathcal{P}_i^{\text{emb}, 3D} = \text{MLP}(p_i^{3D}), \quad (2)$$

$$p_i^{3D} = \text{Concat}[p_i^{3D,1}, p_i^{3D,2}, p_i^{3D,3}, p_i^{3D,4}]. \quad (3)$$

265 3.4 COMBINING ENCODINGS 266

267 In this section, we describe how we combine the defined encodings so that they can be used to
268 condition downstream models via cross-attention (Vaswani et al., 2017), FiLM layers (Perez et al.,
269 2017), or in place of text embeddings. To do so, we simply concatenate the appearance, geometry,
270

270 and pose tokens channel-wise.
271

$$\tilde{a}_i = \text{Concat}[\mathcal{A}_i^{\text{emb}}, \mathcal{G}_i^{\text{emb}}, \mathcal{P}_i^{\text{emb, 3D}}, \mathcal{P}_i^{\text{emb, 2D}}], \quad (4)$$

$$\tilde{a}_i \in \mathbb{R}^{K \times M}. \quad (5)$$

275 where the Neural USD asset encoding \tilde{a}_i is projected via an MLP to obtain:
276

$$a_i = \text{MLP}(\tilde{a}_i), a_i \in \mathbb{R}^{K \times D}. \quad (6)$$

278 Finally all Neural USD asset encodings are concatenated along the token dimension to obtain the
279 final Neural USD encoding:
280

$$\mathcal{N} = \text{Concat}[\tilde{a}_1, \dots, \tilde{a}_N], \mathcal{N} \in \mathbb{R}^{(N \times K) \times D}. \quad (7)$$

282 Although approaches such as Neural Assets (Wu et al., 2024) require the background to be encoded
283 separately, the flexible structure of the Neural USD allows the background to simply be defined
284 as another asset, with its corresponding appearance and geometry signals. Masking foreground
285 objects in the provided background signals led to improved results. We provide an additional pose
286 embedding during training to represent the source-to-target transform. This helps the model learn
287 not only the movement of the objects, but also that of the background scene (i.e. camera movement).
288

289 3.5 FINE-TUNING MODELS WITH NEURAL USD

290 Neural USD makes few assumptions about the downstream image model to be fine-tuned with the
291 Neural USD. Given that a Neural USD is simply a sequence of tokens, it is amenable to conditioning
292 via cross-attention or FiLM layers; techniques supported by nearly all architectures currently used
293 in generative modeling. In this work, we use Stable Diffusion v2.1 (Rombach et al., 2022), an exem-
294 plary open source generative model which is widely used. Given the relatively poor performance of
295 Stable Diffusion v2.1 compared to SOTA models, we do not expect SOTA-level prediction quality
296 and instead demonstrate new conditioning capabilities that can be applied to image models. Both the
297 encoders and the image model are fine-tuned end to end using the training objective defined in the
298 following section. During training, we randomly zero out tokens for the entire asset, for modalities
299 of an asset, or for 2D and 3D pose signals. This helps individual modality features to be invariant
300 of other modality features, allowing for precise control. Modality dropout also allows the use of
301 Classifier Free Guidance (Ho & Salimans, 2022) during evaluation.
302

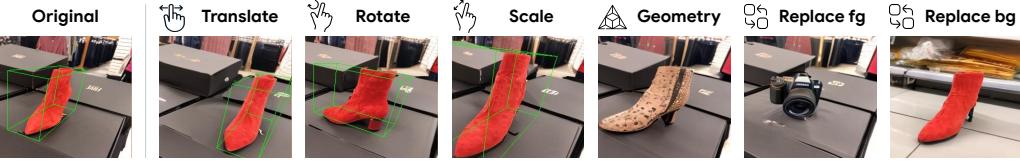
303 3.6 LEARNING FROM PAIRS OF IMAGES

304 The naïve approach of using individual images with Neural USD annotations leads to the entangle-
305 ment of conditioning signals, whereby the model only uses the appearance and geometry encodings
306 and entirely disregards the pose encodings, thereby limiting pose control of objects in the scene.
307 The use of video sequences yields a promising solution to this challenge. Video sequences offer
308 multiple views of objects in the scene, granting us access to a variety of sources information when
309 constructing our Neural USD encoding. Specifically, we extract appearance, geometry, and other
310 spatial conditioning signals from a source image I_{src} by cropping out these elements with the corre-
311 sponding 2D bounding-box annotations. The 2D and 3D target poses are referenced from a target
312 image I_{tgt} . The Neural USD encoding is composed using the source spatial modalities and target
313 poses and provided to the image model. The training objective is to reconstruct I_{tgt} using the denois-
314 ing diffusion loss of Stable Diffusion v2.1 (Rombach et al., 2022). This training recipe encourages
315 the model to learn appearance and geometry encodings that are not correlated with pose encodings.
316 The resulting model can be controlled via multiple independent control signals.
317

318 4 EXPERIMENTS

319 Through our experiments, we try to answer the following questions: 1) Does Neural USD allow for
320 precise object pose, appearance and geometry control? 2) Does Neural USD allow multiple edits to
321 be made to an object while keeping other elements unchanged? 3) How does Neural USD compare
322 to other generative model conditioning approaches?
323

For all our experiments, we used the following datasets.



324
325
326
327
328
329
330 Figure 4: Neural USD allows users to perform a variety of pose, appearance, and geometry modi-
331 cations to both the foreground and the background objects. Camera pose remains fixed.
332

345
346 Figure 5: Object replacement examples with appearance and geometry conditioning (top) and ge-
347 ometry conditioning (bottom). Camera pose is fixed
348

- *MOVi-E* (Greff et al., 2022) is a synthetic generated using Blender scenes with up to 23 objects and consists of object and camera movement.
- *Objectron* (Ahmadyan et al., 2020) increases visual complexity by capturing single- and multi-object real world scenes. It consists of 15k videos of nine categories of objects.
- *Waymo Open* (Sun et al., 2020) is a dataset of real-world self-driving cars captured by a car-mounted camera from multiple angles.
- *EgoTracks* (Tang et al., 2023) is an annotated version of *Ego4D* (Grauman et al., 2022) consisting of 22.5k object tracks derived from 5.9k videos. The dataset contains a vast number of objects, many of which are only seen once, and challenging egocentric movement. Unlike the other datasets, EgoTracks only contains 2D bounding boxes.

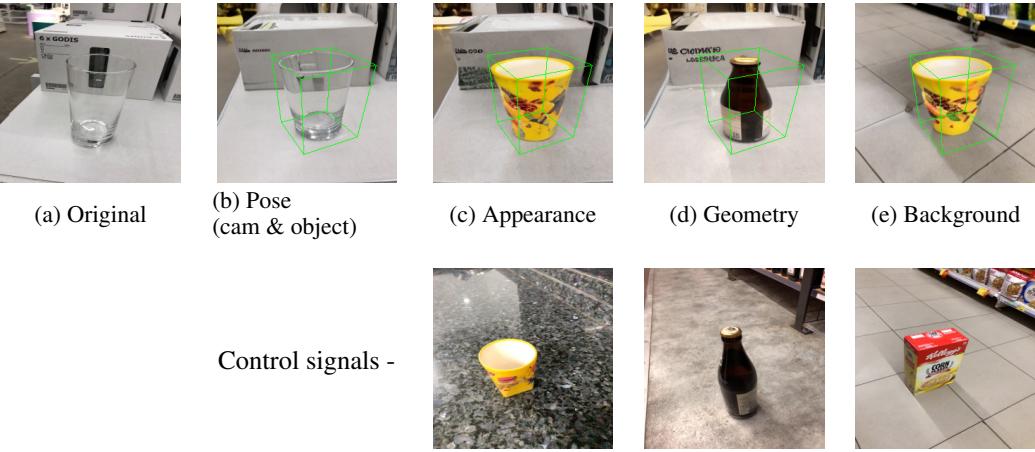
357 Each of these datasets consists of video sequences of scenes containing various objects with 2D and
358 3D bounding box annotations. We filter out objects with small bounding boxes and randomly flip
359 images. We list additional dataset information in section A.
360

361 4.1 POSE, APPEARANCE AND GEOMETRIC CONTROL

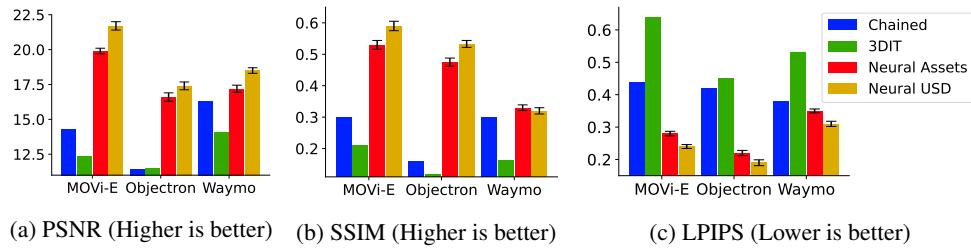
363 Neural USD exposes various ways for the user to interact with the image model that were previously
364 unavailable. In Fig. 4, we demonstrate how Neural USD can let the user translate, rotate, and scale
365 objects as desired. Additionally, users can choose to condition solely on geometry, which leads to
366 novel appearances that satisfy the 3D structure of the original object. Neural USD also exposes the
367 ability to replace objects with other desired objects, or to replace the background in an image. In
368 Fig. 5, we show how Neural USD can be used to replace objects in a scene through geometric and
369 appearance conditioning. In all of these examples, we see that other elements in the scene do not
370 change. Additional editing examples can be found in section F.

371 4.2 ITERATIVE EDITING

373 Neural USD allows users to make multiple edits to a given image. Throughout the sequence of
374 edits, other scene elements either do not change or change in ways that are ‘continuation’ of the
375 original image. For example, new features of the background might be visible but the new features is
376 consistent with the original background. Thus, our method does not make does not make unintended
377 global changes. In Fig. 1, we showed how we can first change the pose of the object, then change the
pose as well as the appearance and eventually all three elements (pose, appearance and geometry)



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Figure 6: Given the original image (a), we specify the camera pose and desired target pose as a 3d bounding box (b). Next in (c), we condition the image to look like ‘yellow cup’. In (d), we condition the original image to have the desired pose as in (b) and geometry and appearance like the bottle. Note that this corresponds to replacing the original glass with this new bottle; whereas in (c), the glass changed its appearance. In (e), we again edit the pose (as in b), appearance (as in c) and background (make the background same as the bottom image) all at the same time.



408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Figure 7: Object control performance on MOVi-E, Objectron, and Waymo. Values measure quality of target reconstruction for single and multi-object scenes.

at the same time. In Fig. 6, we show another example. In this case, we also give more details on the conditioning images. Even more examples are available in Section E. To the best of our knowledge, this is the first model/framework to allow for such precise object control and enable iterative workflows.

4.3 COMPARISON AGAINST OTHER MODELS

We evaluated neural USD and baselines using two different criteria. The first simply measures the model’s ability to correctly reconstruct the target image from the provided source encodings and target pose. We use SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018), and PSNR. We use these criteria to compare the model to other 3D-aware image editing approaches. These include *Neural Assets* (Wu et al., 2024), *Object 3DIT* (Michel et al., 2023), and *Chained* (Wu et al., 2024). *Object 3DIT* is limited in its ability to render large viewpoint changes as it does not encode camera poses, while *Neural Assets* only supports 3D bounding box and RGB appearance conditioning.

Fig. 7 shows that Neural USD outperforms Object 3DIT, Chained and improves over Neural Assets while introducing a more flexible conditioning format with additional control inputs. For these experiments, we extract source and target frames from the dataset which contain multi-object changes and compare the model’s ability to accurately reconstruct the target image.

Next, we compare our approach to non 3D-aware baselines that allow for modification to images using other conditioning signals such as text, geometry, or appearance. We include *Instruct-Pix2Pix* (Brooks et al., 2022), which uses text descriptions to modify a source image, *Control-*

432 *Net* (Zhang et al., 2023), which supports various control signals during image generation, *T2I-Adapter* (Mou et al., 2023), which learns various adapters to support additional spatial control signals, and *Stable Diffusion v2.1* (Rombach et al., 2022), a large pre-trained text-to-image model. Additionally, we include a *VqVAE* baseline, consisting of a convolutional encoder, finite scalar quantization (Mentzer et al., 2023), and a *UViT* (Hoogeboom et al., 2023) decoder, and trained with a multi-scale denoising diffusion loss (Hoogeboom et al., 2023). A more comprehensive discussion of baselines is included in section B.

433 We measure the performance of these methods along two axes: reconstruction and controllability. To determine the model’s reconstruction performance, we supply it with all available conditioning 434 signals extracted from a source image and measure the similarity between the source image and the 435 model prediction. Controllability is measured by providing a control input that describes the 436 difference between the source scene and the target scene, and measuring the similarity between the 437 model prediction and the target image.

438 Fig. 8 shows that the Neural USD out-performs all the above 439 models along these two axes. ControlNet, Stable Diffusion, 440 *T2I* adapters, and *VqVAE* only expose reconstruction 441 interfaces, and don’t allow for object-centric or global edits of an 442 input image. As such, measuring their controllability is 443 challenging, since proposing modifications to input conditioning 444 signals like depth, edge maps, or masks is non-trivial. Alternatively, 445 *InstructPix2Pix* does provide an interface for image-level edits via text, but does not allow for reconstruction of an 446 image from input conditioning signals. Approaches that allow 447 for both include *Object 3DIT*, *Neural Assets*, and *Neural USD*. 448

449 5 CONCLUSION

450 Neural USD introduces an object-centric conditioning framework 451 for generative models, enabling precise control over appearance, 452 geometry, and pose. Inspired by the Universal Scene Descriptor (USD), 453 it encodes structured per-object attributes into conditioning vectors, 454 ensuring cross-model compatibility. Using a fine-tuning approach with paired video frames, Neural 455 USD disentangles control signals for independent object 456 manipulation. Our framework enables a user to make multiple edits 457 iteratively to the generated image such that other elements in the scene 458 are consistent and do not change. Our experiments show superior 459 performance in structured scene synthesis and object control; showcasing 460 the potential of Neural USD as a flexible and portable standard for generative modeling.

461 In the future, we would like to scale our approach across various axes. Some of these include, 462 training with a larger and more “modern” base model. Currently, we use StableDiffusion. Going 463 forward, we would like to replace this with flux as this enables better visual quality. Our current 464 results show the effectiveness of our approach on multiple datasets like Objectron, Waymo etc. 465 Another possible direction is to scale our approach to much larger datasets.

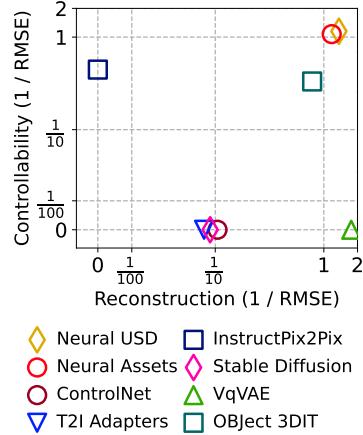


Figure 8: Reconstruction vs. Controllability performance on MOViE, Objectron, and Waymo. Axes are log-scale and values are reported as $1/\text{RMSE}$.

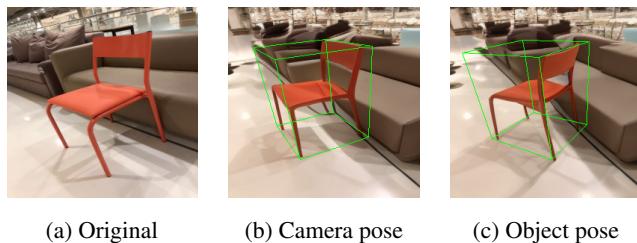


Figure 9: Demo of iterative editing using the finetuned Neural USD model. Given the original image (a), we specify the camera pose (b). We then specify an additional object pose change (c).

486 REFERENCES

487

488 Adel Ahmadyan, Liangkai Zhang, Jianing Wei, Artsiom Ablavatski, and Matthias Grundmann. Ob-
489 jectron: A large scale dataset of object-centric videos in the wild with pose annotations, 2020.
490 URL <https://arxiv.org/abs/2012.09988>.

491 Hadi Alzayer, Zhihao Xia, Xuaner Zhang, Eli Shechtman, Jia-Bin Huang, and Michael Gharbi.
492 Magic fixup: Streamlining photo editing by watching dynamic videos. *ArXiv*, abs/2403.13044,
493 2024. URL <https://api.semanticscholar.org/CorpusID:268537350>.

494

495 Omri Avrahami, Thomas Hayes, Oran Gafni, Sonal Gupta, Yaniv Taigman, Devi Parikh, Dani
496 Lischinski, Ohad Fried, and Xiaoyue Yin. Spatext: Spatio-textual representation for control-
497 lable image generation. *2023 IEEE/CVF Conference on Computer Vision and Pattern Recog-
498 nition (CVPR)*, pp. 18370–18380, 2022. URL <https://api.semanticscholar.org/CorpusID:254018089>.

499

500 Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, and Matthias Müller. Zoedepth: Zero-
501 shot transfer by combining relative and metric depth, 2023a. URL <https://arxiv.org/abs/2302.12288>.

502

503 Shariq Farooq Bhat, Niloy Jyoti Mitra, and Peter Wonka. Loosecontrol: Lifting controlnet
504 for generalized depth conditioning. *ArXiv*, abs/2312.03079, 2023b. URL <https://api.semanticscholar.org/CorpusID:265693942>.

505

506

507 Blender Online Community. *Blender - a 3D modelling and rendering package*. Blender Foundation,
508 Stichting Blender Foundation, Amsterdam, 2018. URL <http://www.blender.org>.

509

510 Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to follow im-
511 age editing instructions. *2023 IEEE/CVF Conference on Computer Vision and Pattern Recog-
512 nition (CVPR)*, pp. 18392–18402, 2022. URL <https://api.semanticscholar.org/CorpusID:253581213>.

513

514 Ming Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinjiang Zheng. Masac-
515 trl: Tuning-free mutual self-attention control for consistent image synthesis and editing. *2023
516 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 22503–22513, 2023. URL
517 <https://api.semanticscholar.org/CorpusID:258179432>.

518

519 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
520 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of
521 the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 9650–9660, October
522 2021.

523

524 Eric Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. pi-gan: Peri-
525 odic implicit generative adversarial networks for 3d-aware image synthesis. *2021 IEEE/CVF
526 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 5795–5805, 2020. URL
527 <https://api.semanticscholar.org/CorpusID:227247980>.

528

529 Eric Chan, Connor Z. Lin, Matthew Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio
530 Gallo, Leonidas J. Guibas, Jonathan Tremblay, S. Khamis, Tero Karras, and Gordon Wetzstein.
531 Efficient geometry-aware 3d generative adversarial networks. *2022 IEEE/CVF Conference on
532 Computer Vision and Pattern Recognition (CVPR)*, pp. 16102–16112, 2021. URL <https://api.semanticscholar.org/CorpusID:245144673>.

533

534 Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite:
535 Attention-based semantic guidance for text-to-image diffusion models. *ACM Transactions
536 on Graphics (TOG)*, 42:1 – 10, 2023. URL <https://api.semanticscholar.org/CorpusID:256416326>.

537

538 Minghao Chen, Iro Laina, and Andrea Vedaldi. Training-free layout control with cross-
539 attention guidance. *2024 IEEE/CVF Winter Conference on Applications of Computer Vi-
540 sion (WACV)*, pp. 5331–5341, 2023. URL <https://api.semanticscholar.org/CorpusID:258041377>.

540 Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Yuwei Fang, Kwot Sin Lee, Ivan Sko-
541 rokhodov, Kfir Aberman, Jun-Yan Zhu, Ming-Hsuan Yang, and Sergey Tulyakov. Multi-subject
542 open-set personalization in video generation. *arXiv preprint arXiv:2501.06187*, 2025.

543

544 Wenzheng Chen, Jun Gao, Huan Ling, Edward James Smith, Jaakkko Lehtinen, Alec Jacobson, and
545 Sanja Fidler. Learning to predict 3d objects with an interpolation-based differentiable renderer.
546 In *Neural Information Processing Systems*, 2019. URL <https://api.semanticscholar.org/CorpusID:199442423>.

547

548 Wenzheng Chen, Joey Litalien, Jun Gao, Zian Wang, Clément Fuji Tsang, S. Khamis, Or Litany,
549 and Sanja Fidler. Dib-r++: Learning to predict lighting and material with a hybrid differ-
550 entiable renderer. In *Neural Information Processing Systems*, 2021. URL <https://api.semanticscholar.org/CorpusID:240353816>.

551

552 Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush Gupta, Yusuf Aytar, Joao Carreira,
553 and Andrew Zisserman. Tapir: Tracking any point with per-frame initialization and temporal
554 refinement, 2023. URL <https://arxiv.org/abs/2306.08637>.

555

556 Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Hickman, Krista Reymann,
557 Thomas B. McHugh, and Vincent Vanhoucke. Google scanned objects: A high-quality dataset of
558 3d scanned household items, 2022. URL <https://arxiv.org/abs/2204.11918>.

559

560 Dave Epstein, A. Jabri, Ben Poole, Alexei A. Efros, and Aleksander Holynski. Diffusion self-
561 guidance for controllable image generation. *ArXiv*, abs/2306.00986, 2023. URL <https://api.semanticscholar.org/CorpusID:258999106>.

562

563 Weixi Feng, Xuehai He, Tsu-Jui Fu, Varun Jampani, Arjun Reddy Akula, P. Narayana, Sugato
564 Basu, Xin Eric Wang, and William Yang Wang. Training-free structured diffusion guidance for
565 compositional text-to-image synthesis. *ArXiv*, abs/2212.05032, 2022. URL <https://api.semanticscholar.org/CorpusID:254535649>.

566

567 Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv Taigman. Make-
568 a-scene: Scene-based text-to-image generation with human priors. *ArXiv*, abs/2203.13131, 2022.
569 URL <https://api.semanticscholar.org/CorpusID:247628171>.

570

571 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel
572 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
573 inversion. *ArXiv*, abs/2208.01618, 2022. URL <https://api.semanticscholar.org/CorpusID:251253049>.

574

575 Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen, K. Yin, Daiqing Li, Or Litany, Zan Gojcic,
576 and Sanja Fidler. Get3d: A generative model of high quality 3d textured shapes learned from
577 images. *ArXiv*, abs/2209.11163, 2022. URL <https://api.semanticscholar.org/CorpusID:252438648>.

578

579 Daniel Garibi, Shahar Yadin, Roni Paiss, Omer Tov, Shiran Zada, Ariel Ephrat, Tomer Michaeli,
580 Inbar Mosseri, and Tali Dekel. Tokenverse: Versatile multi-concept personalization in token
581 modulation space. *arXiv preprint arXiv:2501.12224*, 2025.

582

583 Songwei Ge, Taesung Park, Jun-Yan Zhu, and Jia-Bin Huang. Expressive text-to-image generation
584 with rich text. *2023 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 7511–
585 7522, 2023. URL <https://api.semanticscholar.org/CorpusID:258108187>.

586

587 Vudit Goel, Elia Peruzzo, Yifan Jiang, Dejia Xu, Niculae Sebe, Trevor Darrell, Zhangyang
588 Wang, and Humphrey Shi. Pair-diffusion: Object-level image editing with structure-and-
589 appearance paired diffusion models. *ArXiv*, abs/2303.17546, 2023. URL <https://api.semanticscholar.org/CorpusID:257834185>.

590

591 Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Gird-
592 har, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, Miguel Martin, Tushar Nagarajan,
593 Ilija Radosavovic, Santhosh Kumar Ramakrishnan, Fiona Ryan, Jayant Sharma, Michael Wray,
Mengmeng Xu, Eric Zhongcong Xu, Chen Zhao, Siddhant Bansal, Dhruv Batra, Vincent Car-
tillier, Sean Crane, Tien Do, Morrie Doulaty, Akshay Erapalli, Christoph Feichtenhofer, Adriano

594 Fragomeni, Qichen Fu, Abrham Gebreselasie, Cristina Gonzalez, James Hillis, Xuhua Huang,
595 Yifei Huang, Wenqi Jia, Weslie Khoo, Jachym Kolar, Satwik Kottur, Anurag Kumar, Federico
596 Landini, Chao Li, Yanghao Li, Zhenqiang Li, Karttikeya Mangalam, Raghava Modhugu, Jonathan
597 Munro, Tullie Murrell, Takumi Nishiyasu, Will Price, Paola Ruiz Puentes, Merey Ramazanova,
598 Leda Sari, Kiran Somasundaram, Audrey Southerland, Yusuke Sugano, Ruijie Tao, Minh Vo,
599 Yuchen Wang, Xindi Wu, Takuma Yagi, Ziwei Zhao, Yunyi Zhu, Pablo Arbelaez, David Cran-
600 dall, Dima Damen, Giovanni Maria Farinella, Christian Fuegen, Bernard Ghanem, Vamsi Krishna
601 Ithapu, C. V. Jawahar, Hanbyul Joo, Kris Kitani, Haizhou Li, Richard Newcombe, Aude Oliva,
602 Hyun Soo Park, James M. Rehg, Yoichi Sato, Jianbo Shi, Mike Zheng Shou, Antonio Torralba,
603 Lorenzo Torresani, Mingfei Yan, and Jitendra Malik. Ego4d: Around the world in 3,000 hours of
604 egocentric video, 2022. URL <https://arxiv.org/abs/2110.07058>.

605 Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth,
606 David J. Fleet, Dan Gnanapragasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Ab-
607 hijit Kundu, Dmitry Lagun, Issam Laradji, Hsueh-Ti, Liu, Henning Meyer, Yishu Miao, Derek
608 Nowrouzezahrai, Cengiz Oztireli, Etienne Pot, Noha Radwan, Daniel Rebain, Sara Sabour, Mehdi
609 S. M. Sajjadi, Matan Sela, Vincent Sitzmann, Austin Stone, Deqing Sun, Suhani Vora, Ziyu Wang,
610 Tianhao Wu, Kwang Moo Yi, Fangcheng Zhong, and Andrea Tagliasacchi. Kubric: A scalable
611 dataset generator, 2022. URL <https://arxiv.org/abs/2203.03570>.

612 Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. Stylererf: A style-based 3d-aware
613 generator for high-resolution image synthesis. *ArXiv*, abs/2110.08985, 2021. URL <https://api.semanticscholar.org/CorpusID:239016913>.

614 Amir Hertz, Ron Mokady, Jay M. Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
615 Prompt-to-prompt image editing with cross attention control. *ArXiv*, abs/2208.01626, 2022. URL
616 <https://api.semanticscholar.org/CorpusID:251252882>.

617 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL <https://arxiv.org/abs/2207.12598>.

618 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
619 neural information processing systems*, 33:6840–6851, 2020.

620 Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. Simple diffusion: End-to-end diffusion for
621 high resolution images, 2023. URL <https://arxiv.org/abs/2301.11093>.

622 Liucheng Hu, Xin Gao, Peng Zhang, Ke Sun, Bang Zhang, and Liefeng Bo. Animate anyone:
623 Consistent and controllable image-to-video synthesis for character animation. *2024 IEEE/CVF
624 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 8153–8163, 2023. URL
625 <https://api.semanticscholar.org/CorpusID:265499043>.

626 A. Jabri, Sjoerd van Steenkiste, Emiel Hoogeboom, Mehdi S. M. Sajjadi, and Thomas Kipf. Dorsal:
627 Diffusion for object-centric representations of scenes et al. *ArXiv*, abs/2306.08068, 2023. URL
628 <https://api.semanticscholar.org/CorpusID:259190298>.

629 Xuhui Jia, Yang Zhao, Kelvin C. K. Chan, Yandong Li, Han-Ying Zhang, Boqing Gong, Tingbo
630 Hou, H. Wang, and Yu-Chuan Su. Taming encoder for zero fine-tuning image customization
631 with text-to-image diffusion models. *ArXiv*, abs/2304.02642, 2023. URL <https://api.semanticscholar.org/CorpusID:257952647>.

632 Jindong Jiang, Fei Deng, Gautam Singh, and Sung Tae Ahn. Object-centric slot diffu-
633 sion. *ArXiv*, abs/2303.10834, 2023. URL <https://api.semanticscholar.org/CorpusID:257632090>.

634 Yash Kant, Ziyi Wu, Michael Vasilkovsky, Guocheng Qian, Jian Ren, Riza Alp Guler, Bernard
635 Ghanem, S. Tulyakov, Igor Gilitschenski, and Aliaksandr Siarohin. Spad: Spatially aware
636 multi-view diffusers. *2024 IEEE/CVF Conference on Computer Vision and Pattern Recog-
637 nition (CVPR)*, pp. 10026–10038, 2024. URL <https://api.semanticscholar.org/CorpusID:267547881>.

648 Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Hui-Tang Chang, Tali Dekel, Inbar Mosseri,
649 and Michal Irani. Imagic: Text-based real image editing with diffusion models. *2023 IEEE/CVF*
650 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6007–6017, 2022. URL
651 <https://api.semanticscholar.org/CorpusID:252918469>.
652

653 Yunji Kim, Jiyoung Lee, Jin-Hwa Kim, Jung-Woo Ha, and Jun-Yan Zhu. Dense text-to-image
654 generation with attention modulation. *2023 IEEE/CVF International Conference on Computer*
655 *Vision (ICCV)*, pp. 7667–7677, 2023. URL <https://api.semanticscholar.org/CorpusID:261101003>.
656

657 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
658 Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
659 Segment anything, 2023.

660 Dongxu Li, Junnan Li, and Steven C. H. Hoi. Blip-diffusion: Pre-trained subject representation for
661 controllable text-to-image generation and editing. *ArXiv*, abs/2305.14720, 2023a. URL <https://api.semanticscholar.org/CorpusID:258865473>.
662

664 Siyuan Li, Lei Ke, Martin Danelljan, Luigi Piccinelli, Mattia Segu, Luc Van Gool, and Fisher Yu.
665 Matching anything by segmenting anything, 2024. URL <https://arxiv.org/abs/2406.04221>.
666

668 Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan
669 Li, and Yong Jae Lee. Gligen: Open-set grounded text-to-image generation. *2023 IEEE/CVF*
670 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 22511–22521, 2023b. URL
671 <https://api.semanticscholar.org/CorpusID:255942528>.
672

672 Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten
673 Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d
674 content creation. *2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition*
675 (*CVPR*), pp. 300–309, 2022. URL <https://api.semanticscholar.org/CorpusID:253708074>.
676

677 Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
678 Zero-1-to-3: Zero-shot one image to 3d object. *2023 IEEE/CVF International Conference on*
679 *Computer Vision (ICCV)*, pp. 9264–9275, 2023a. URL <https://api.semanticscholar.org/CorpusID:257631738>.
680

682 Yuan Liu, Chu-Hsing Lin, Zijiao Zeng, Xiaoxiao Long, Lingjie Liu, Taku Komura, and Wen-
683 ping Wang. Syncdreamer: Generating multiview-consistent images from a single-view im-
684 age. *ArXiv*, abs/2309.03453, 2023b. URL <https://api.semanticscholar.org/CorpusID:261582503>.
685

686 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
687 Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot at-
688 tention. *ArXiv*, abs/2006.15055, 2020. URL <https://api.semanticscholar.org/CorpusID:220127924>.
689

691 Grace Luo, Trevor Darrell, Oliver Wang, Dan B Goldman, and Aleksander Holynski. Readout
692 guidance: Learning control from diffusion features. *2024 IEEE/CVF Conference on Com-*
693 *puter Vision and Pattern Recognition (CVPR)*, pp. 8217–8227, 2023. URL <https://api.semanticscholar.org/CorpusID:265608773>.
694

695 Jiancang Ma, Junhao Liang, Chen Chen, and H. Lu. Subject-diffusion: Open domain personal-
696 ized text-to-image generation without test-time fine-tuning. *ArXiv*, abs/2307.11410, 2023. URL
697 <https://api.semanticscholar.org/CorpusID:260091569>.
698

699 Luke Melas-Kyriazi, Iro Laina, C. Rupprecht, and Andrea Vedaldi. Realfusion 360° reconstruction
700 of any object from a single image. *2023 IEEE/CVF Conference on Computer Vision and Pat-*
701 *tern Recognition (CVPR)*, pp. 8446–8455, 2023. URL <https://api.semanticscholar.org/CorpusID:261092262>.
702

702 Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantiza-
703 tion: Vq-vae made simple, 2023. URL <https://arxiv.org/abs/2309.15505>.
704

705 Oscar Michel, Anand Bhattad, Eli VanderBilt, Ranjay Krishna, Aniruddha Kembhavi, and Tanmay
706 Gupta. Object 3dit: Language-guided 3d-aware image editing. *ArXiv*, abs/2307.11073, 2023.
707 URL <https://api.semanticscholar.org/CorpusID:259991631>.

708 Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, Ying Shan, and
709 Xiaohu Qie. T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image
710 diffusion models, 2023. URL <https://arxiv.org/abs/2302.08453>.

711 Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional genera-
712 tive neural feature fields. *2021 IEEE/CVF Conference on Computer Vision and Pattern Recog-
713 nition (CVPR)*, pp. 11448–11459, 2020. URL <https://api.semanticscholar.org/CorpusID:227151657>.
714

715 Karran Pandey, Paul Guerrero, Matheus Gadelha, Yannick Hold-Geoffroy, Karan Singh, and Niloy J.
716 Mitra. Diffusion handles enabling 3d edits for diffusion models by lifting activations to 3d. *2024
717 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 7695–7704,
718 2023. URL <https://api.semanticscholar.org/CorpusID:265659119>.
719

720 Gaurav Parmar, Or Patashnik, Kuan-Chieh Wang, Daniil Ostanhev, Srinivasa Narasimhan, Jun-Yan
721 Zhu, Daniel Cohen-Or, and Kfir Aberman. Object-level visual prompts for compositional image
722 generation. *arXiv preprint arXiv:2501.01424*, 2025.

723

724 Dario Pavllo, Graham Spinks, Thomas Hofmann, Marie-Francine Moens, and Aurélien Lucchi.
725 Convolutional generation of textured 3d meshes. *ArXiv*, abs/2006.07660, 2020. URL <https://api.semanticscholar.org/CorpusID:219687111>.
726

727 Dario Pavllo, Jonas Köhler, Thomas Hofmann, and Aurélien Lucchi. Learning generative models of
728 textured 3d meshes from real-world images. *2021 IEEE/CVF International Conference on Com-
729 puter Vision (ICCV)*, pp. 13859–13869, 2021. URL <https://api.semanticscholar.org/CorpusID:232404704>.
730

731 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
732 the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

733

734 Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
735 reasoning with a general conditioning layer, 2017. URL <https://arxiv.org/abs/1709.07871>.

736

737 Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
738 diffusion. *ArXiv*, abs/2209.14988, 2022. URL <https://api.semanticscholar.org/CorpusID:252596091>.
739

740

741 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
742 resolution image synthesis with latent diffusion models, 2022. URL <https://arxiv.org/abs/2112.10752>.
743

744

745 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
746 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. *2023
747 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 22500–22510,
748 2022. URL <https://api.semanticscholar.org/CorpusID:251800180>.
749

750 Mehdi S. M. Sajjadi, Daniel Duckworth, Aravindh Mahendran, Sjoerd van Steenkiste, Filip Pavetić,
751 Mario Luvcić, Leonidas J. Guibas, Klaus Greff, and Thomas Kipf. Object scene representation
752 transformer. *ArXiv*, abs/2206.06922, 2022. URL <https://api.semanticscholar.org/CorpusID:249642130>.
753

754 Kyle Sargent, Zizhang Li, Tanmay Shah, Charles Herrmann, Hong-Xing Yu, Yunzhi Zhang,
755 Eric Ryan Chan, Dmitry Lagun, Fei-Fei Li, Deqing Sun, and Jiajun Wu. Zerovs: Zero-
shot 360-degree view synthesis from a single real image. *ArXiv*, abs/2310.17994, 2023. URL
<https://api.semanticscholar.org/CorpusID:264555531>.

756 Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Generative radiance
757 fields for 3d-aware image synthesis. *ArXiv*, abs/2007.02442, 2020. URL <https://api.semanticscholar.org/CorpusID:220364071>.
758

759 Maximilian Seitzer, Sjoerd van Steenkiste, Thomas Kipf, Klaus Greff, and Mehdi S. M. Saj-
760 jadi. Dyst: Towards dynamic neural scene representations on real-world videos. *ArXiv*,
761 abs/2310.06020, 2023. URL <https://api.semanticscholar.org/CorpusID:263829437>.
762

763 Jing Shi, Wei Xiong, Zhe Lin, and Hyun Joon Jung. Instantbooth: Personalized text-to-image gen-
764 eration without test-time finetuning. *2024 IEEE/CVF Conference on Computer Vision and Pat-
765 tern Recognition (CVPR)*, pp. 8543–8552, 2023a. URL <https://api.semanticscholar.org/CorpusID:258041269>.
766

767 Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and X. Yang. Mvdream: Multi-
768 view diffusion for 3d generation. *ArXiv*, abs/2308.16512, 2023b. URL <https://api.semanticscholar.org/CorpusID:261395233>.
769

770 Yujun Shi, Chuhui Xue, Jiachun Pan, Wenqing Zhang, Vincent Y. F. Tan, and Song Bai. Dragdif-
771 fusion: Harnessing diffusion models for interactive point-based image editing. *2024 IEEE/CVF
772 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 8839–8849, 2023c. URL
773 <https://api.semanticscholar.org/CorpusID:259252555>.
774

775 Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate dall-e learns to compose. *ArXiv*,
776 abs/2110.11405, 2021. URL <https://api.semanticscholar.org/CorpusID:239616181>.
777

778 Gautam Singh, Yeongbin Kim, and Sungjin Ahn. Neural systematic binder. In *International Confer-
779 ence on Learning Representations*, 2022a. URL <https://api.semanticscholar.org/CorpusID:255749563>.
780

781 Gautam Singh, Yi-Fu Wu, and Sungjin Ahn. Simple unsupervised object-centric learning for
782 complex and naturalistic videos. *ArXiv*, abs/2205.14065, 2022b. URL <https://api.semanticscholar.org/CorpusID:249151816>.
783

784 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
785 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
786 ing*, pp. 2256–2265. PMLR, 2015.
787

788 Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui,
789 James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan
790 Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya
791 Joshi, Sheng Zhao, Shuyang Cheng, Yu Zhang, Jonathon Shlens, Zhifeng Chen, and Dragomir
792 Anguelov. Scalability in perception for autonomous driving: Waymo open dataset, 2020. URL
793 <https://arxiv.org/abs/1912.04838>.
794

795 Hao Tang, Kevin Liang, Matt Feiszli, and Weiyao Wang. Egotracks: A long-term egocentric visual
796 object tracking dataset, 2023. URL <https://arxiv.org/abs/2301.03213>.
797

798 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
799 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
800 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-
801 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
802 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf.
803

804 Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh, and Gregory Shakhnarovich. Score
805 jacobian chaining: Lifting pretrained 2d diffusion models for 3d generation. *2023 IEEE/CVF
806 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 12619–12629, 2022. URL
807 <https://api.semanticscholar.org/CorpusID:254125253>.
808

809 Jiawei Wang, Yuchen Zhang, Jiaxin Zou, Yan Zeng, Guoqiang Wei, Liping Yuan, and Hang Li.
Boximator: Generating rich and controllable motions for video synthesis. *ArXiv*, abs/2402.01566,
2024a. URL <https://api.semanticscholar.org/CorpusID:267406297>.

810 Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, and Anthony Chen. Instantid: Zero-shot identity-
811 preserving generation in seconds. *ArXiv*, abs/2401.07519, 2024b. URL <https://api.semanticscholar.org/CorpusID:266999462>.

812

813 Xudong Wang, Trevor Darrell, Sai Saketh Rambhatla, Rohit Girdhar, and Ishan Misra. Instanced-
814 iffusion: Instance-level control for image generation. *2024 IEEE/CVF Conference on Com-
815 puter Vision and Pattern Recognition (CVPR)*, pp. 6232–6242, 2024c. URL <https://api.semanticscholar.org/CorpusID:267412534>.

816

817 Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error
818 visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–612, 2004.
819 doi: 10.1109/TIP.2003.819861.

820

821 Daniel Watson, William Chan, Ricardo Martin-Brualla, Jonathan Ho, Andrea Tagliasacchi, and Mo-
822 hammad Norouzi. Novel view synthesis with diffusion models. *ArXiv*, abs/2210.04628, 2022.
823 URL <https://api.semanticscholar.org/CorpusID:252780361>.

824

825 Yuxiang Wei, Yabo Zhang, Zhilong Ji, Jinfeng Bai, Lei Zhang, and Wangmeng Zuo. Elite: En-
826 coding visual concepts into textual embeddings for customized text-to-image generation. *2023
827 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 15897–15907, 2023. URL
828 <https://api.semanticscholar.org/CorpusID:257219968>.

829

830 Ziyi Wu, Jingyu Hu, Wuyue Lu, Igor Gilitschenski, and Animesh Garg. Slotdiffusion: Object-
831 centric generative modeling with diffusion models. *ArXiv*, abs/2305.11281, 2023. URL <https://api.semanticscholar.org/CorpusID:258822805>.

832

833 Ziyi Wu, Yulia Rubanova, Rishabh Kabra, Drew A. Hudson, Igor Gilitschenski, Yusuf Aytar, Sjoerd
834 van Steenkiste, Kelsey R. Allen, and Thomas Kipf. Neural assets: 3d-aware multi-object scene
835 synthesis with image diffusion models, 2024. URL <https://arxiv.org/abs/2406.09292>.

836

837 Guangxuan Xiao, Tianwei Yin, William T. Freeman, Frédo Durand, and Song Han. Fastcomposer:
838 Tuning-free multi-subject image generation with localized attention. *ArXiv*, abs/2305.10431,
839 2023. URL <https://api.semanticscholar.org/CorpusID:258740710>.

840

841 Jinheng Xie, Yuexiang Li, Yawen Huang, Haozhe Liu, Wentian Zhang, Yefeng Zheng, and
842 Mike Zheng Shou. Boxdiff: Text-to-image synthesis with training-free box-constrained diffu-
843 sion. *2023 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 7418–7427,
844 2023. URL <https://api.semanticscholar.org/CorpusID:259991581>.

845

846 Yinghao Xu, Menglei Chai, Zifan Shi, Sida Peng, Ivan Skorokhodov, Aliaksandr Siarohin, Ceyuan
847 Yang, Yujun Shen, Hsin-Ying Lee, Bolei Zhou, and S. Tulyakov. Discoscene: Spatially disen-
848 tangled generative radiance fields for controllable 3d-aware scene synthesis. *2023 IEEE/CVF
849 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 4402–4412, 2022. URL
850 <https://api.semanticscholar.org/CorpusID:254974555>.

851

852 Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Hanshu Yan, Jia-Wei Liu, Chenxu Zhang, Jiashi
853 Feng, and Mike Zheng Shou. Magicanimate: Temporally consistent human image animation
854 using diffusion model. *2024 IEEE/CVF Conference on Computer Vision and Pattern Recog-
855 nition (CVPR)*, pp. 1481–1490, 2023. URL <https://api.semanticscholar.org/CorpusID:265466012>.

856

857 Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
858 Zhao. Depth anything v2, 2024. URL <https://arxiv.org/abs/2406.09414>.

859

860 Xuan Yang, Liangzhe Yuan, Kimberly Wilber, Astuti Sharma, Xiuye Gu, Siyuan Qiao, Stephanie
861 Debats, Huisheng Wang, Hartwig Adam, Mikhail Sirotenko, and Liang-Chieh Chen. Polymax:
862 General dense prediction with mask transformer, 2023. URL <https://arxiv.org/abs/2311.05770>.

863

864 Zhengyuan Yang, Jianfeng Wang, Zhe Gan, Linjie Li, Kevin Lin, Chenfei Wu, Nan Duan, Zicheng
865 Liu, Ce Liu, Michael Zeng, and Lijuan Wang. Reco: Region-controlled text-to-image generation.
866 *2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 14246–
867 14255, 2022. URL <https://api.semanticscholar.org/CorpusID:254043880>.

864 Jiraphon Yenphraphai, Xichen Pan, Sainan Liu, Daniele Panozzo, and Saining Xie. Image sculpting: Precise object editing with 3d geometry control. *2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 4241–4251, 2024. URL <https://api.semanticscholar.org/CorpusID:266741835>.

865

866

867

868 Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yinfai Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-rich text-to-image generation. *arXiv preprint arXiv:2206.10789*, 2(3):5, 2022.

869

870

871

872 Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, Deqing Sun, and Ming-Hsuan Yang. Monst3r: A simple approach for estimating geometry in the presence of motion, 2024. URL <https://arxiv.org/abs/2410.03825>.

873

874

875 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. *2023 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 3813–3824, 2023. URL <https://api.semanticscholar.org/CorpusID:256827727>.

876

877

878 Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric, 2018. URL <https://arxiv.org/abs/1801.03924>.

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

A DATASETS

A.1 EGOTRACKS

EgoTracks (Tang et al., 2023) is a tracked bounding box dataset consisting of manually labeled 22.5k object tracks spanning 5.9k videos. Being a derivative dataset of Ego4D (Grauman et al., 2022), EgoTracks is ego-centric and features an extreme amount of foreground and background movement. Additionally, Ego4D object tracks often feature very small bounding boxes (e.g. for utensils). We filter the data in two ways: first, we filter out bounding boxes with small height or width, the threshold being 1/10th the normalized height and width of the screen. To prevent object tracks from leaving the field of view, we sample source and target frames from within 15 frames of each other, and discard samples for which no object is present. Finally, during evaluation, we filter out results with motion blur or extreme background shift.

A.2 OBJECTRON

Objectron (Ahmadyan et al., 2020) consists of 15,000 object-centric video clips featuring everyday objects across nine categories. Each video includes object pose tracking, allowing us to extract 3D bounding boxes. Since the dataset lacks 2D bounding box annotations, we generate them by projecting the eight corners of the 3D boxes onto the image and computing the tightest bounding box around the projected points.

A.3 WAYMO OPEN

Waymo Open (Sun et al., 2020) comprises 1,000 video clips of self-driving scenes captured by car-mounted cameras. Following previous studies (Wu et al., 2024), we use the front-view camera and car bounding box annotations. The 3D bounding boxes include only the heading angle (yaw-axis rotation), so we set the other two rotation angles to zero. Additionally, the provided 2D and 3D boxes are misaligned, making paired frame training unfeasible. To address this, we project the 3D boxes to obtain corresponding 2D boxes, similar to the approach used for Objectron.

A.4 MOVI-E

MOVi-E (Greff et al., 2022) includes 10,000 videos simulated using Kubric (Greff et al., 2022), with each scene featuring 11 to 23 real-world objects from the Google Scanned Objects (GSO) repository (Downs et al., 2022). At the beginning of each video, multiple objects are dropped onto the ground, causing them to collide. The scene’s lighting comes from a randomly sampled environment map. The camera follows a simple linear motion.

918 **B BASELINES**
919

920 **B.1 OBJECT 3DIT**
921

922 Object 3DIT (Michel et al., 2023) fine-tunes Zero-1-to-3 (Liu et al., 2023a) for scene-level 3D object
923 editing. We derive editing instructions from the target object pose, including translation and rotation.
924 However, this lacks support for significant viewpoint changes as it does not encode camera poses.
925 We use the official code and pre-trained weights of the Multitask variant.

926 **B.2 INSTRUCTPIX2PIX**
927

928 InstructPix2Pix enables text-guided image editing by fine-tuning a diffusion model to follow editing
929 instructions. It conditions on both an input image and a text prompt, learning to predict pixel changes
930 based on the instruction. However, it lacks explicit 3D control and struggles with complex multi-
931 object edits. We construct a dataset of 100 source target pairs and their differences describes as text
932 prompts. InstructPix2Pix is then conditioned on the source image and text prompt, and we evaluate
933 how accurate it is at reconstructing the target image. We find that the model struggles to elicit the
934 fine changes in object pose described in the text.

935 **B.3 T2I ADAPTERS**
936

937 T2I-Adapters (Mou et al., 2023) enable additional conditioning mechanisms for pre-trained diffu-
938 sion models, allowing control beyond text prompts. They integrate spatial signals like depth maps
939 or segmentation masks to guide image generation while preserving the original model’s structure.
940 These adapters typically introduce lightweight modules, such as attention layers or zero-initialized
941 convolutions, that fuse external control signals with the model’s latent space. We condition the
942 T2I-adapters model on the spatial modalities corresponding to the source image, such as masks and
943 depth, and evaluate its performance in reconstructing the source image.

944 **B.4 NEURAL ASSETS**
945

946 Neural Assets (Wu et al., 2024) introduces a per-object representation for 3D-aware multi-object
947 control in image diffusion models. It encodes appearance and pose separately, allowing object ma-
948 nipulation, including translation, rotation, and rescaling. We evaluate Neural Assets using the same
949 criteria used for Neural USD: we extract source modalities from a source image and condition on
950 the target poses derived from the target image. We then measure the reconstruction loss with the
951 target image.

952 **B.5 CONTROLNET**
953

954 ControlNet (Zhang et al., 2023) enables spatial conditioning in diffusion models by introducing
955 trainable layers that process external control signals, such as edge maps, depth maps, or pose key-
956 points. It retains the original model’s weights while adding zero-initialized convolution layers. This
957 allows for control over image generation. However, it does not allow for object-centric image edit-
958 ing, as changes to the conditioning signals can lead to global changes in the image. We condition
959 the Control model on the spatial modalities corresponding to the source image, such as masks and
960 depth, and evaluate its performance in reconstructing the source image.

961
962
963
964
965
966
967
968
969
970
971

972 **C HYPERPARAMETERS**
973

974 Here we outline the hyperparameters used to implement and train Neural USD.
975

976 Table 1: Hyperparameters for Neural USD.
977

PARAMETER	VALUE
STABLE DIFFUSION VARIANT	v2.1
DINO VARIANT	ViT-B/8
DINO FEATURE MAP SIZE	28 × 28
INPUT IMAGE SIZE	256 × 256
TOKEN DIMENSION	1024
BATCH SIZE	512
OPTIMIZER	ADAM
STABLE DIFFUSION LR	1×10^{-4}
IMAGE ENCODER (DINO) LR	5×10^{-4}
WARMUP STEPS	2000
DECAY SCHEDULE	LINEAR
FINE-TUNING STEPS	50000
GRADIENT CLIP VALUE	1.0
MODALITY DROPOUT PROBABILITY	0.25
POSE DROPOUT PROBABILITY	0.25
ALL CONDITIONING DROPOUT PROBABILITY	0.1
CFG WEIGHT	3.0

995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

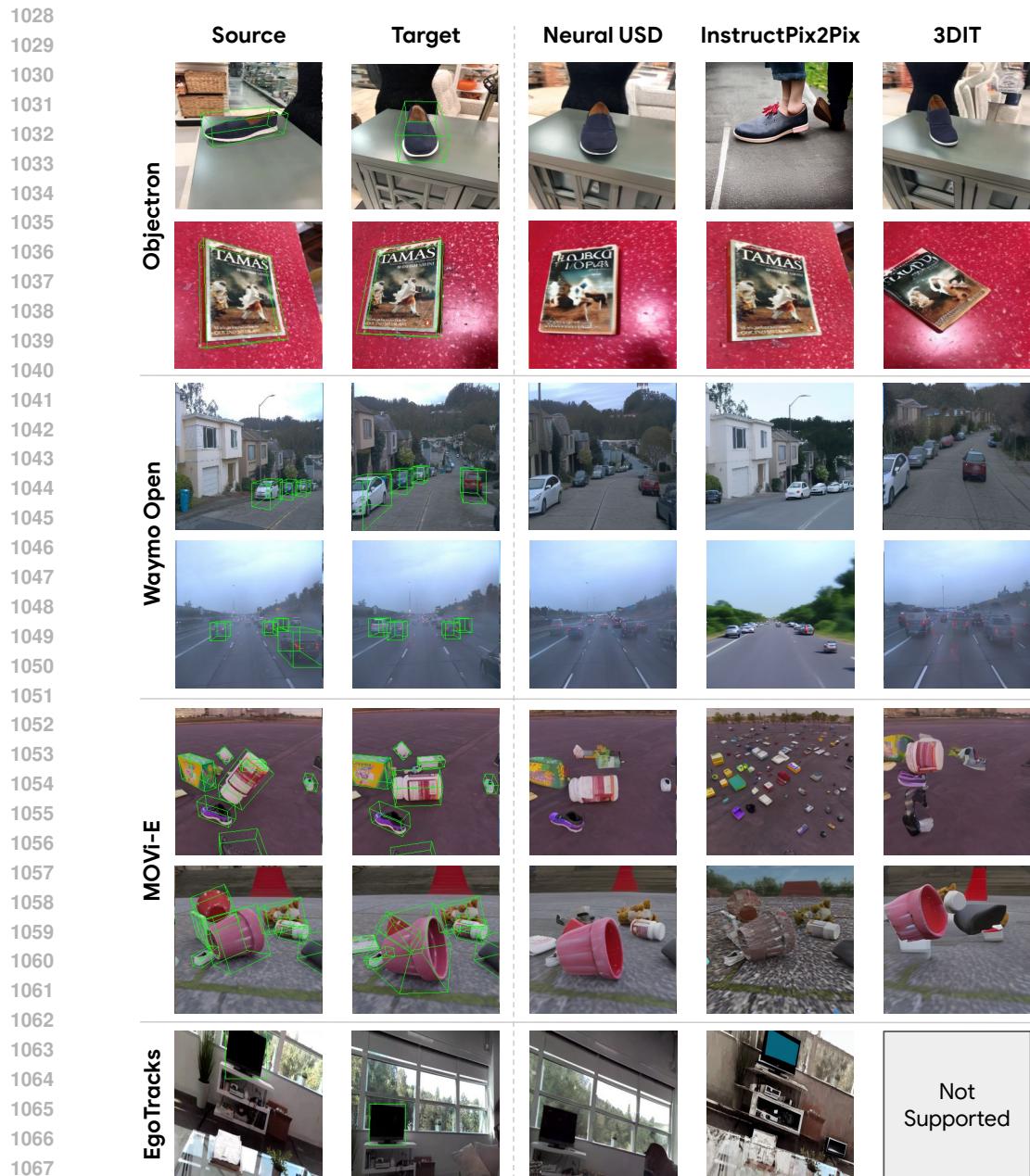
1026 **D QUALITATIVE BASELINES**
1027


Figure 10: Object pose conditioning performance on MOVi-E, Objectron, Waymo Open, and EgoTracks. Models generate the target image provided a source image and the 3D bounding box targets (Neural USD, 3DIT) or textual prompts (InstructPix2Pix). Our method satisfies the desired pose while preserving the foreground and background appearance. InstructPix2Pix fails to elicit object movement.

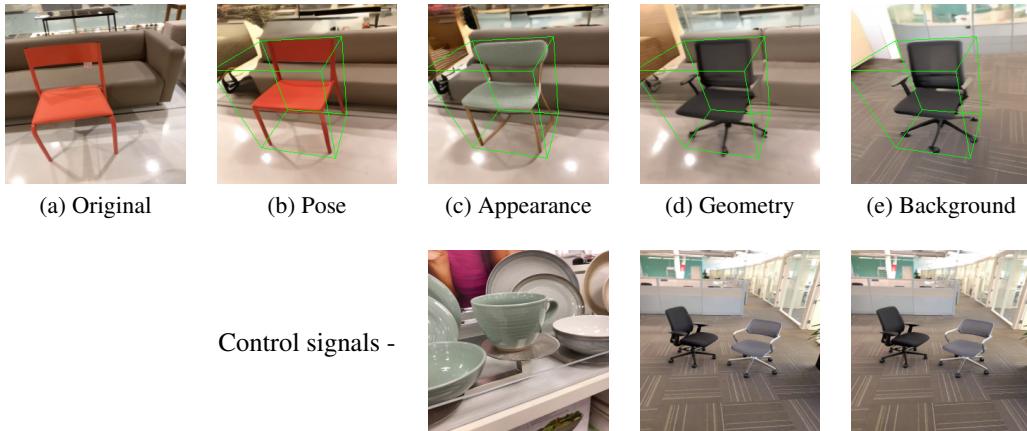
1080 **E ITERATIVE WORKFLOW EXAMPLES**
1081


Figure 11: Given the original image (a), we first change the pose of the chair as desired in (b). Next in (c), we condition the original image to look like the cup while also being in the new pose (as in b). In (d), we condition the original image to have the desired pose (as in b) and geometry and appearance like the black chair. In (e), we further ask the model to change the background to be as the bottom image. Note that in this example, we use different aspects of the same image for both geometric and background conditioning.

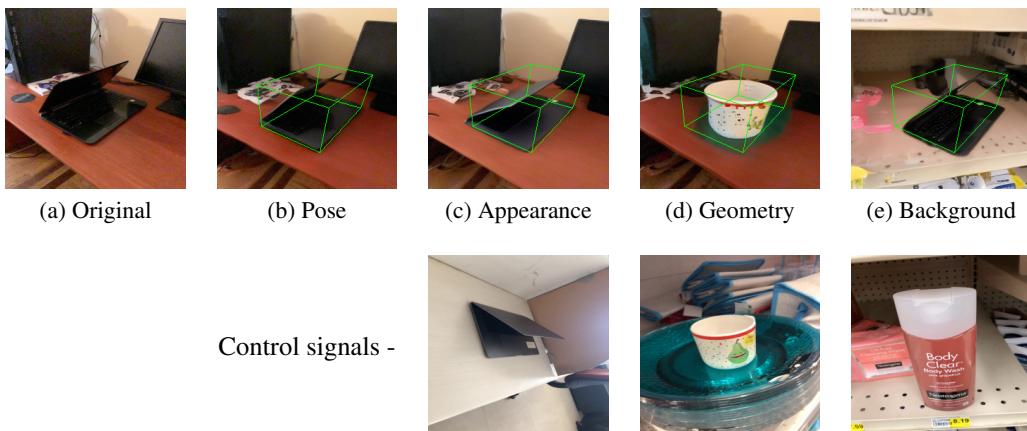


Figure 12: We first change the pose (b). Next in (c), we condition the original image to look as specified. In (d), we replace the laptop with another object. In (e), we edit the pose (as in b) and background (make the background same as the bottom image).

1134 F ADDITIONAL EXPERIMENTAL RESULTS
1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

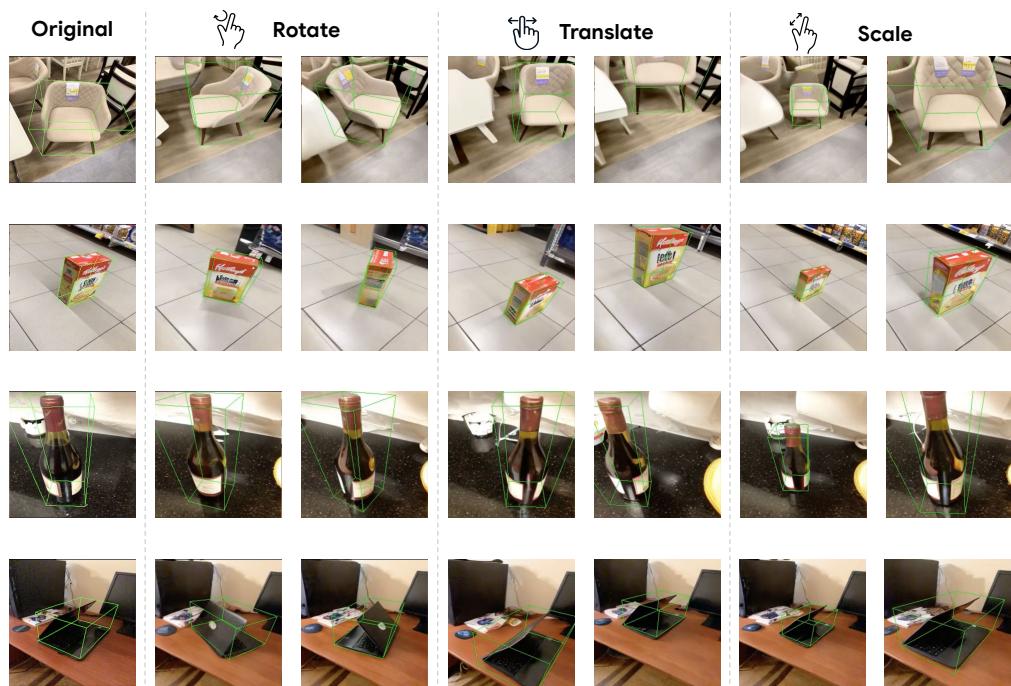
1154

1155

1156

1157

1158



1159 Figure 13: Additional Objectron 3D pose control examples. Camera pose is fixed
1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

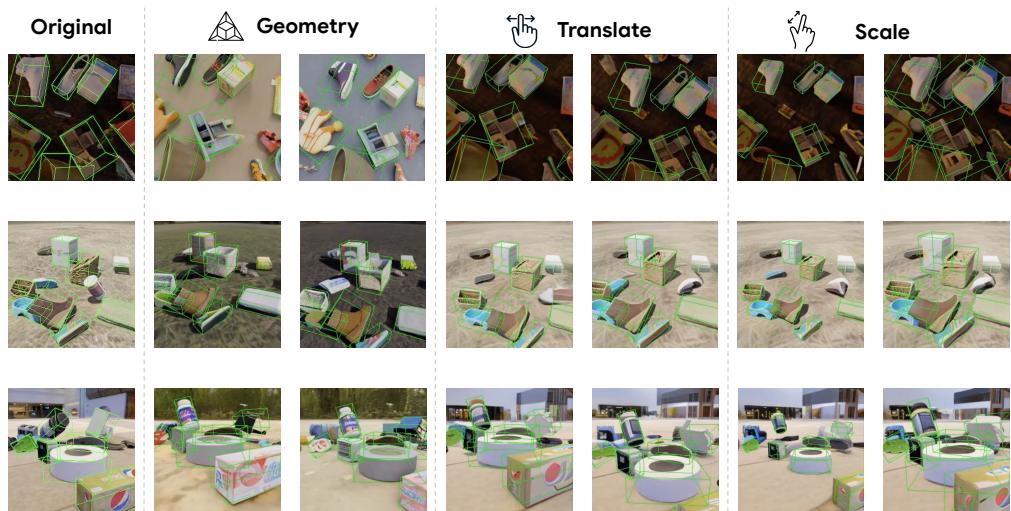
1173

1174

1175

1176

1177



1178 Figure 14: Additional MOVi-E 3D pose control examples. Camera pose is fixed.
1179

1180

1181

1182

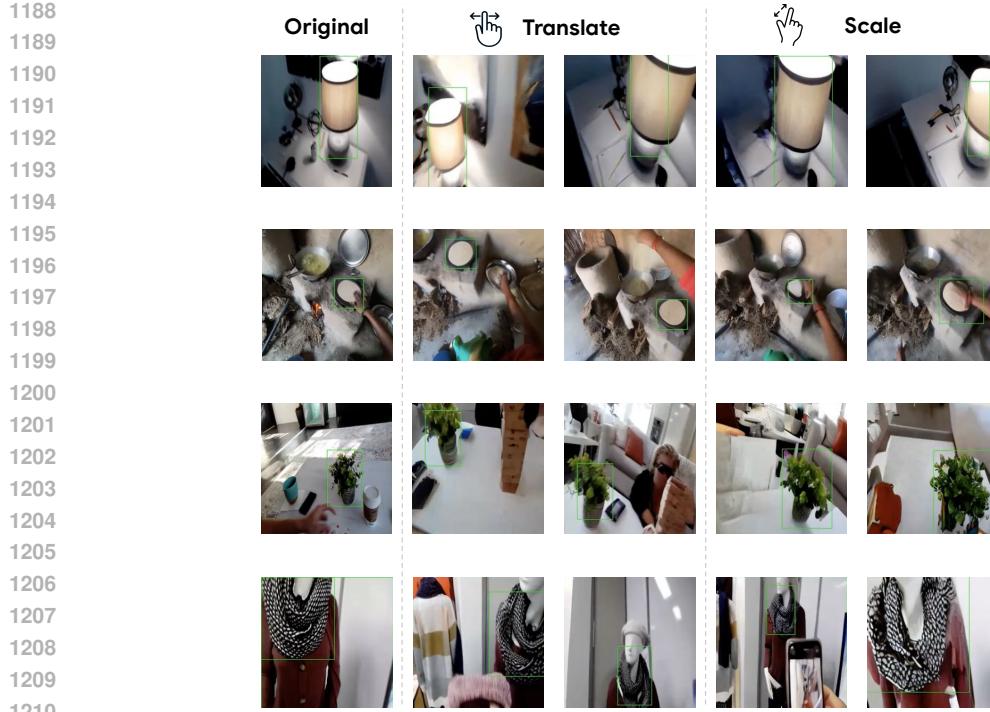
1183

1184

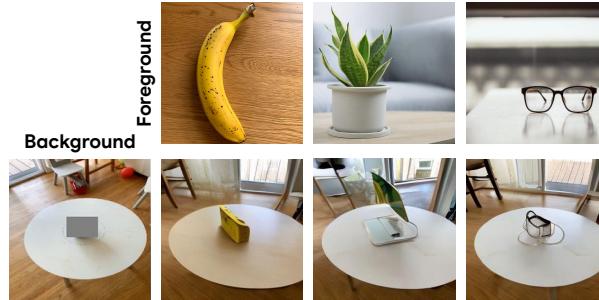
1185

1186

1187

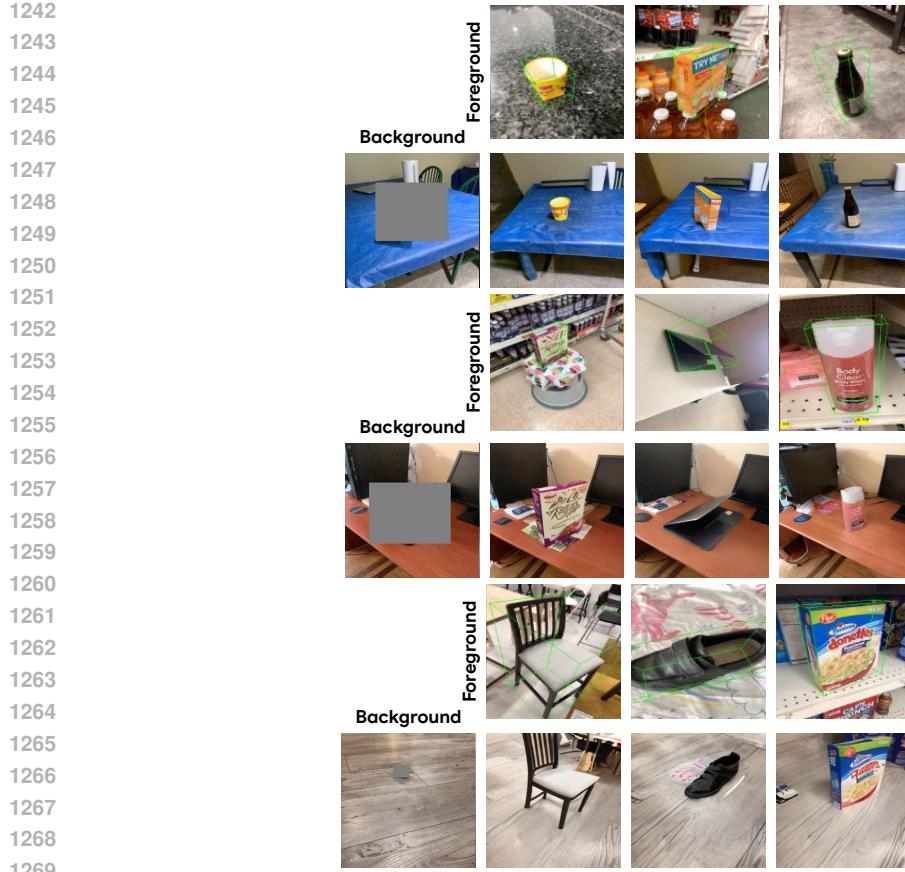


1211 Figure 15: Additional Egotracks 2D bounding box control examples.
1212

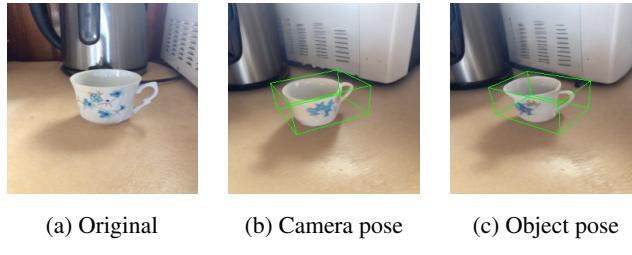


1224 Figure 16: When trained on limited data - a handful of labeled datasets constituting >50,000 se-
1225 quences - Neural USD fails to generalize to new object categories. This lack of generalization can
1226 likely be remedied by co-training on more readily-available 2D bounding box datasets.

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

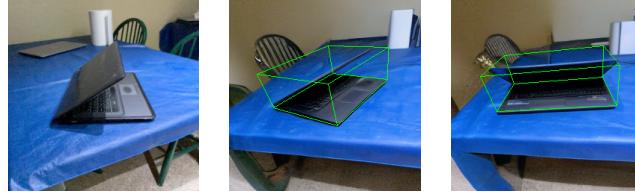


1270 Figure 17: Foreground background replacement. Neural USD allows for easy swapping of assets in
1271 the scene. The background, simply being another asset, can be replaced with reference modalities.
1272



1282 Figure 18: Demo of iterative editing using the finetuned Neural USD model. Given the original
1283 image (a), we specify the camera pose (b). We then specify an additional object pose change (c).
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

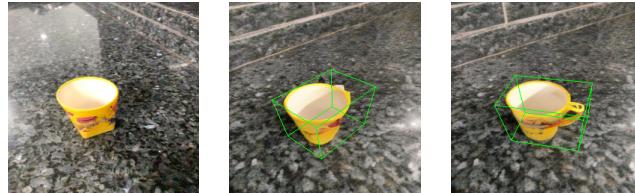
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310



1311 (a) Original (b) Camera pose (c) Object pose
1312

1313 Figure 19: Demo of iterative editing using the finetuned Neural USD model. Given the original
1314 image (a), we specify the camera pose (b). We then specify an additional object pose change (c).

1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337



1338 (a) Original (b) Camera pose (c) Object pose
1339

1340 Figure 20: Demo of iterative editing using the finetuned Neural USD model. Given the original
1341 image (a), we specify the camera pose (b). We then specify an additional object pose change (c).

1342
1343
1344
1345
1346
1347
1348
1349