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ABSTRACT

Amazing progress has been made in controllable generative modeling, especially
over the last few years. However, some challenges remain. One of them is precise
and iterative object editing. In many of the current methods, trying to edit the
generated image (for example, changing the color of a particular object in the
scene or changing the background while keeping other elements unchanged) by
changing the conditioning signals often leads to unintended global changes in the
scene. In this work, we take the first steps to address the above challenges.
Taking inspiration from the Universal Scene Descriptor (USD) standard developed
in the computer graphics community, we introduce the “Neural Universal Scene
Descriptor” or Neural USD. In this framework, we represent scenes and objects
in a structured, hierarchical manner. This accommodates diverse signals, mini-
mizes model-specific constraints, and enables per-object control over appearance,
geometry, and pose. We further apply a fine-tuning approach which ensures that
the above control signals are disentangled from one another. We evaluate several
design considerations for our framework, demonstrating how Neural USD enables
iterative and incremental workflows.

(a) Original (b) Pose (c) Appearance (d) Geometry (e) Background

Figure 1: Demo of iterative editing using the finetuned Neural USD model. Given the original image
(a), we specify the desired target pose as a 3D bounding box (b). The model is able to precisely
‘move’ the object to the desired pose while rest of the scene elements remain fairly consistent. Next
in (c), we change the appearance (in this case color) while also being in the new pose. Our model
is able to handle these multiple requests. In (d), we retain the desired pose from (b) and condition
on another office chair’s geometry (or depth) and appearance. Our model is able to perform these
edits while leaving rest of the scene elements (notably the background) consistent with the original
image. Note that using these conditions we can replace an object in the image with another object
in any desired pose. In (e), we edit the pose, geometry and background all at the same time. Our
model is able to handle these requests simultaneously and generates an image that respects all the
given conditions. More details on the conditioning signals and additional examples are in Section
4.2 and appendix E

.

1 INTRODUCTION

The surge in relevance of visual generative models has led to the development of a wide range of
conditioning approaches. These approaches enable control over generated outputs by allowing users
to guide the generation process using textual prompts, reference images, or other forms of input like
a desired depth map, segmentation mask, edge map and others. However, conditioning choices are
often tailor-made for specific model architectures, or limit the user to global scene edits, restricting
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portability across models and limiting users from performing object-level, incremental updates to
their content.

Several approaches have been proposed to address the challenge of conditioning and controlling
visual generative models. One area of study investigates how models can be conditioned on depth
maps, edge maps, segmentation maps, and other conditioning signals (Zhang et al., 2023; Mou
et al., 2023; Avrahami et al., 2022; Li et al., 2023b). These approaches allow the user to control one
aspect of the scene at a time. However, these methods can result in global scene changes as a result
of local conditioning signal edits. This problem compounds as we try to make multiple edits to the
scene. In contrast, our framework enables multiple serial edits to the original image while preserving
other visual elements not part of the edit. Another line of work uses text prompts to guide image
generation and editing (Brooks et al., 2022; Rombach et al., 2022). While these approaches generate
impressive results, they often limit what a user is able to express due to the challenge of describing
complex scene layouts with text. Recent approaches propose object-centric conditioning formats to
guide image generation (Bhat et al., 2023b; Wu et al., 2024; Liu et al., 2023a; Michel et al., 2023).
These methods often struggle with handling multiple objects in a scene, or are limited in supporting
conditioning modalities beyond reference images.

USD

USD

2D/3D 
Poses,
Text, …

: Geometry Cond.: Replace: Translate : Rotate

❄Image Model

Figure 2: Neural USD enables computer graphics-
style control of image models. A Neural USD
represents an image as assets with appearance, ge-
ometry, and pose. Fine-tuning adapts pre-trained
models to these signals while keeping appearance
and geometry pose-invariant.

To address these challenges, we introduce Neu-
ral Universal Scene Descriptors (Neural USD):
an object-centric conditioning standard that en-
ables precise control of geometry, appearance,
and object poses within generative models. The
Neural USD is defined as an XML-style format
consisting of per-object attributes (see Fig. 3
(a)). These include (1) appearance - encoded
as feature vectors from some pre-trained em-
bedding methods like CLIP or Dino (2) position
- encoded as a 2d or 3d bounding box around
the desired object. (3) geometry - includes fea-
tures like depth map, segmentation mask, and
edge map. In the experiments in this paper,
we pre-dominantly used depth-map for gemoet-
ric features. Each of these modalities is tok-
enized into a sequence of conditioning vectors
and passed to downstream generative models
for conditioning. This representation is com-
patible with many architectures including dif-
fusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020), DiTs (Peebles & Xie, 2023), and
transformers (Vaswani et al., 2017; Yu et al.,
2022) - thereby facilitating cross-model porta-
bility. After fine-tuning the image models with
the Neural USD data, we can manually edit
the objects and backgrounds in the image us-
ing a simple recipe: I = Decode(Edit(USD)).
However, naı̈ve training on such a representa-
tion would cause challenges, as the model would have difficulty disentangling pose and appearance
attributes of the conditioning signal, empirically resulting in poor object control. We solve this by
training the model using a pair of images (say source, target) from a video sequence. In this case, the
goal of the model is to generate the target image; the geometric and appearance conditioning comes
from the source image and the pose conditioning from the target image. This results in robust object
pose, geometry, and appearance control signals that are dis-entangled from one another.

In summary, our main contributions are as follows:

1. Neural USD (Fig 2): an object-centric conditioning format for a broad class of generative
models that provides precise control over object position, appearance, and geometry (Fig
3 (a)). We also show how to finetune existing models using pairs of images from videos
to enable learning disentangled control signals across all modalities. Our framework is
generic and applicable to a wide class of generative models.
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2. Our method enables iterative editing workflows where the target object changes in ac-
cordance with the conditioning signal and other scene elements remain fairly unchanged
and/or consistent with the original image (Figs. 1 and 4).

3. We also compare our method against several standard baselines. Our experiments show
that Neural USD allows for more precise object control as measured by the reconstruction
error (Fig. 8).

The rest of the paper is organized as follows. In Section 2, we discuss other related works and how
our approach sits within the broader generative landscape. In Section 3, we describe the Neural USD
framework. This includes details on how the different aspects like pose, appearance and geometry
are encoded and then combined into a single conditioning signal. We also discuss our approach to
fine-tuning and learning from pairs of images. We describe our experimental results in Section 4. In
Section 4.1, we give examples of how Neural USD enables object centric editing. In Section 4.2, we
give more examples of iterative editing. In Section 4.3, we compare our approach to other generative
models. We conclude the paper in Section 5.

2 RELATED WORK

Recent work in object-centric learning decomposes visual scenes into distinct object representations
for structured, interpretable image generation. Slot-based methods such as Slot Attention (Locatello
et al., 2020), SLATE (Singh et al., 2021), and STEVE (Singh et al., 2022b) model scenes as in-
dependent entities, with refinements like LSD (Jiang et al., 2023) and Slot Diffusion (Wu et al.,
2023) improving disentanglement. These representations support tasks including attribute manipu-
lation (Singh et al., 2022a), motion modeling (Seitzer et al., 2023), and 3D pose estimation (Jabri
et al., 2023); OSRT (Sajjadi et al., 2022) further addresses global camera pose. Yet such models
struggle with real-world data. Our approach leverages self-supervised visual encoders with large-
scale pre-trained diffusion models, enabling scalable object-centric learning in realistic settings.

Personalized image generation has progressed from test-time fine-tuning (DreamBooth (Ruiz et al.,
2022), Textual Inversion (Gal et al., 2022)) to zero-shot personalization (InstantBooth (Shi et al.,
2023a), ZeroShotBooth (Jia et al., 2023), BLIP-Diffusion (Li et al., 2023a), ELITE (Wei et al.,
2023), InstantID (Wang et al., 2024b), FastComposer (Xiao et al., 2023)). While effective, most
produce single-subject images without spatial control. Exceptions such as VisualComposer (Parmar
et al., 2025), TokenVerse (Garibi et al., 2025), and Video Alchemist (Chen et al., 2025) allow multi-
entity composition, but with limited control. Subject-Diffusion (Ma et al., 2023) introduces 2D
bounding-box conditioning but lacks 3D pose control. We extend controllability by incorporating
object poses, enabling structured multi-object generation and manipulation.

Spatial control in diffusion models is pursued through bounding boxes or segmentation masks.
Strategies include prompt manipulation (Kawar et al., 2022; Ge et al., 2023; Brooks et al., 2022),
attention adjustments (Xie et al., 2023; Kim et al., 2023; Chen et al., 2023; Chefer et al., 2023;
Feng et al., 2022; Hertz et al., 2022; Cao et al., 2023), and latent editing (Epstein et al., 2023; Shi
et al., 2023c; Luo et al., 2023). Fine-tuned approaches add spatial conditioning (Gafni et al., 2022;
Avrahami et al., 2022; Yang et al., 2022; Hu et al., 2023; Xu et al., 2023; Goel et al., 2023). GLI-
GEN (Li et al., 2023b) introduces attention layers for box conditioning, InstanceDiffusion (Wang
et al., 2024c) supports masks and scribbles, and ControlNet (Zhang et al., 2023) incorporates depth
and normals; Boximator (Wang et al., 2024a) extends these ideas to video.

3D-aware image generation pursues structured scene synthesis. GAN-based methods use explicit 3D
representations such as radiance fields (Chan et al., 2020; Gu et al., 2021; Chan et al., 2021; Schwarz
et al., 2020; Niemeyer & Geiger, 2020; Xu et al., 2022) and meshes (Chen et al., 2019; 2021; Gao
et al., 2022; Pavllo et al., 2020; 2021). Diffusion-based approaches (Shi et al., 2023b; Liu et al.,
2023b; Poole et al., 2022; Wang et al., 2022; Lin et al., 2022; Kant et al., 2024; Melas-Kyriazi et al.,
2023; Watson et al., 2022) transfer 2D knowledge into 3D. 3DiM (Watson et al., 2022) and Zero-1-
to-3 (Liu et al., 2023a) leverage multiview training but remain object-centric. More recent methods
address multi-object real-world scenes (Sargent et al., 2023; Pandey et al., 2023; Yenphraphai et al.,
2024; Alzayer et al., 2024); OBJect-3DIT (Michel et al., 2023) enables language-guided editing but
is synthetic-data limited. LooseControl (Bhat et al., 2023b) uses 3D bounding boxes as depth maps
for pose control, but is not directly applicable to editing.
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We unify these directions by enabling both 2D and 3D spatial conditioning in pre-trained diffu-
sion models, with support for appearance and geometry inputs. Using bounding boxes as control
signals, our approach enables fine-grained object pose manipulation—including rotation and oc-
clusion—while scaling to multiple modalities and offering a general recipe for incorporating new
ones.

3 METHOD

b) Object-centric conditioning

Pre-trained Image Model

c) Object control

Target image

+ 
New
pose

Old Neural USD

+ New asset

Neural USDSource image

Target Pose

❄Image Model

Neural USD:
- Text: …
- Objects:
 - object_1:
  - pose (2D or 3D)
  - segmentation map
  - clip feature
  - depth
  - surface normals
  - text
- object 2:
  - ...

a) Neural USD dataset

Figure 3: Neural USD Overview. a) A Neural USD consists of assets with multiple modalities:
appearance, geometry, and pose. b) Pre-trained image models fine-tune on Neural USD, encoding
appearance and geometry from a source image and pose from a target image to reconstruct the
target. c) At inference, objects’ poses, geometry, and appearance can be modified, including the
background.

We propose Neural USD as an object-centric representation of a scene, composed of appearance,
geometry, and pose representations. Image models are trained to reconstruct target objects defined
in the Neural USD by using paired images extracted from video sequences. We additionally apply
modality dropout. This allows the model to learn disentangled appearance, geometry, and pose
representations. The resulting model allows for fine-grained control of objects in the scene. Such
a conditioning format draws parallels to the intuitive object-centric workflows used in computer
graphics programs such as Blender (Blender Online Community, 2018).

3.1 DATA

In this work, we explore datasets with 2D and 3D annotations readily available. Obtaining tracked
2D bounding boxes for video is a problem with promising solutions (Li et al., 2024). However,
obtaining 3D bounding box annotations at scale is still an open challenge, but may be addressed in
the near future given improvements in SLAM, point tracking, and depth estimation (Zhang et al.,
2024; Bhat et al., 2023a; Yang et al., 2024; Doersch et al., 2023).

We compose the Neural USD dataset by applying separate annotation models to the original datasets.
We acquire depth annotations by applying ZoeDepth (Bhat et al., 2023a) then crop and normalize
per-object depth maps. Object masks are computed by applying SAM (Kirillov et al., 2023) with
bounding box conditioning. Additional conditioning signals such as surface normals and point-
clouds can be extracted with open source models (Yang et al., 2023), though we leave this for future
work.

3.2 ASSETS IN NEURAL USD

We borrow the nomenclature of Neural Assets (Wu et al., 2024) to describe the components of the
Neural USD. A Neural USD is defined as a list of N assets {â1, ..., âN}, where each asset âi is
defined as a tuple of attributes such as 2D or 3D bounding box coordinates P2D

i , P3D
i , appearance

descriptors such as image crops or clip embeddings Ai, geometry signals from depth images, masks,
pointclouds, and surface normals Gi, or even text Ti. The resulting asset can be defined as the tuple
âi = (P2D

i ,P3D
i ,Ai,Gi, Ti, ...).
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3.3 ENCODING ASSETS

To make the Neural USD a compatible conditioning format for arbitrary downstream models, it must
first be encoded into a continuous vector representation such that the encoded appearance and ge-
ometry descriptors can be defined as continuous vectors Aemb

i ,Gemb
i ∈ RK×D, and pose embeddings

as Pemb, 2D
i ,Pemb, 3D

i ∈ RD’. This token representation enables the fine-tuning of arbitrary model
architectures with the Neural USD encoding, as well as separate control of pose, geometry, and
appearance. We now describe how appearance, geometry, and poses are encoded in this format.

3.3.1 APPEARANCE AND GEOMETRY ENCODING

Obtaining RK×D encodings of appearance and geometry can vary depending on the modality being
handled. Often times modalities can have varying dimensions (images vs. pointclouds) or different
semantic meaning (surface normals vs. depth). As such, we utilize separate encoders for each modal-
ity in the Neural USD. In the case of appearance signals in the form of images I ∈ H × W × C we
apply a pre-trained DINOv2 (Caron et al., 2021) model to obtain output features F = Encoder(Ii),
where F ∈ h × w × D. The first two dimensions are then flattened to obtain the resulting embedding
Aemb

i ∈ RK×D. Similarly, geometry features such as surface normals and depth can be processed us-
ing a separate pretrained DINOv2 backbone. We find that normalizing depth features on a per-object
basis leads to improved generalization performance, as raw metric depth signals constrain the object
to certain locations in the scene. Preliminary experiments using a shared backbone for both image
and depth yielded suboptimal results, as the model struggled to accurately represent both geometry
and appearance.

Approaches such as Neural Assets (Wu et al., 2024) first embed an image with a pre-trained back-
bone and slice the resulting feature map using the corresponding 2D bounding box locations for
each object. While this results in fewer forward passes, it leads to challenges when replacing objects
in the scene, or conditioning on modalities such as depth or points, since object features are glob-
ally correlated. Instead, we process each object appearance and depth feature separately, removing
global correlations. This can be done efficiently by pre-computing these features and storing them
in the Neural USD.

3.3.2 2D AND 3D POSE ENCODING

Utilizing a separate encoding for 2D and 3D pose signals provides the user access to two different
interfaces for controlling the position of the object in the scene. The 2D pose allows for simple
dragging of the object around the scene, while the 3D pose allows for more sophisticated control
of properties such as distance from the camera and rotation. The 2D bounding box is defined as
the image-normalized coordinates of the top left corner of the bounding box, as well as the image-
normalized height and width p2D

i = (xi, yi, hi, wi). We represent the 3D bounding box by projecting
four corners that span the bounding box to the image plane, arriving at {p3D,j

i = (hj
i , w

j
i , d

j
i )}4j=1,

with projected image-normalized 2D coordinates (hj
i , w

j
i ) and 3D depth dji . We project the 2D

bounding box and the concatenated corners of the 3D bounding box with a simple multi-layer per-
ceptron to obtain:

Pemb, 2D
i = MLP(p2D

i ), (1)

Pemb, 3D
i = MLP(p3D

i ), (2)

p3D
i = Concat[p3D,1

i , p3D,2
i , p3D,3

i , p3D,4
i ]. (3)

3.4 COMBINING ENCODINGS

In this section, we describe how we combine the defined encodings so that they can be used to
condition downstream models via cross-attention (Vaswani et al., 2017), FiLM layers (Perez et al.,
2017), or in place of text embeddings. To do so, we simply concatenate the appearance, geometry,
and pose tokens channel-wise.

ãi = Concat[Aemb
i ,Gemb

i ,Pemb, 3D
i ,Pemb, 2D

i ], (4)

ãi ∈ RK×M. (5)
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Figure 4: Neural USD allows users to perform a variety of pose, appearance, and geometry modifi-
cations to both the foreground and the background objects.

where the Neural USD asset encoding ãi is projected via an MLP to obtain:

ai = MLP(ãi), ai ∈ RK×D. (6)
Finally all Neural USD asset encodings are concatenated along the token dimension to obtain the
final Neural USD encoding:

N = Concat[ãi, ..., ãN ],N ∈ R(N×K)×D. (7)
Although approaches such as Neural Assets (Wu et al., 2024) require the background to be encoded
separately, the flexible structure of the Neural USD allows the background to simply be defined
as another asset, with its corresponding appearance and geometry signals. Masking foreground
objects in the provided background signals led to improved results. We provide an additional pose
embedding during training to represent the source-to-target transform. This helps the model learn
not only the movement of the objects, but also that of the background scene (i.e. camera movement).

3.5 FINE-TUNING MODELS WITH NEURAL USD

Neural USD makes few assumptions about the downstream image model to be fine-tuned with the
Neural USD. Given that a Neural USD is simply a sequence of tokens, it is amenable to conditioning
via cross-attention or FiLM layers; techniques supported by nearly all architectures currently used
in generative modeling. In this work, we use Stable Diffusion v2.1 (Rombach et al., 2022), an exem-
plary open source generative model which is widely used. Given the relatively poor performance of
Stable Diffusion v2.1 compared to SOTA models, we do not expect SOTA-level prediction quality
and instead demonstrate new conditioning capabilities that can be applied to image models. Both the
encoders and the image model are fine-tuned end to end using the training objective defined in the
following section. During training, we randomly zero out tokens for the entire asset, for modalities
of an asset, or for 2D and 3D pose signals. This helps individual modality features to be invariant
of other modality features, allowing for precise control. Modality dropout also allows the use of
Classifier Free Guidance (Ho & Salimans, 2022) during evaluation.

3.6 LEARNING FROM PAIRS OF IMAGES

The naı̈ve approach of using individual images with Neural USD annotations leads to the entangle-
ment of conditioning signals, whereby the model only uses the appearance and geometry encodings
and entirely disregards the pose encodings, thereby limiting pose control of objects in the scene.
The use of video sequences yields a promising solution to this challenge. Video sequences offer
multiple views of objects in the scene, granting us access to a variety of sources information when
constructing our Neural USD encoding. Specifically, we extract appearance, geometry, and other
spatial conditioning signals from a source image Isrc by cropping out these elements with the corre-
sponding 2D bounding-box annotations. The 2D and 3D target poses are referenced from a target
image Itgt. The Neural USD encoding is composed using the source spatial modalities and target
poses and provided to the image model. The training objective is to reconstruct Itgt using the denois-
ing diffusion loss of Stable Diffusion v2.1 (Rombach et al., 2022). This training recipe encourages
the model to learn appearance and geometry encodings that are not correlated with pose encodings.
The resulting model can be controlled via multiple independent control signals.

4 EXPERIMENTS

Through our experiments, we try to answer the following questions: 1) Does Neural USD allow for
precise object pose, appearance and geometry control? 2) Does Neural USD allow multiple edits to
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Figure 5: Object replacement examples with appearance and geometry conditioning (top) and ge-
ometry conditioning (bottom).

be made to an object while keeping other elements unchanged? 3) How does Neural USD compare
to other generative model conditioning approaches?

For all our experiments, we used the following datasets.

• MOVi-E (Greff et al., 2022) is a synthetic generated using Blender scenes with up to 23
objects and consists of object and camera movement.

• Objectron (Ahmadyan et al., 2020) increases visual complexity by capturing single- and
multi-object real world scenes. It consists of 15k videos of nine categories of objects.

• Waymo Open (Sun et al., 2020) is a dataset of real-world self-driving cars captured by a
car-mounted camera from multiple angles.

• EgoTracks (Tang et al., 2023) is an annotated version of Ego4D (Grauman et al., 2022)
consisting of 22.5k object tracks derived from 5.9k videos. The dataset contains a vast
number of objects, many of which are only seen once, and challenging egocentric move-
ment. Unlike the other datasets, EgoTracks only contains 2D bounding boxes.

Each of these datasets consists of video sequences of scenes containing various objects with 2D and
3D bounding box annotations. We filter out objects with small bounding boxes and randomly flip
images. We list additional dataset information in section A.

4.1 POSE, APPEARANCE AND GEOMETRIC CONTROL

Neural USD exposes various ways for the user to interact with the image model that were previously
unavailable. In Fig. 4, we demonstrate how Neural USD can let the user translate, rotate, and scale
objects as desired. Additionally, users can choose to condition solely on geometry, which leads to
novel appearances that satisfy the 3D structure of the original object. Neural USD also exposes the
ability to replace objects with other desired objects, or to replace the background in an image. In
Fig. 5, we show how Neural USD can be used to replace objects in a scene through geometric and
appearance conditioning. In all of these examples, we see that other elements in the scene do not
change. Additional editing examples can be found in section F.

4.2 ITERATIVE EDITING

Neural USD allows users to make multiple edits to a given image. Throughout the sequence of
edits, other scene elements either do not change or change in ways that are ‘continuation’ of the
original image. For example, new features of the background might be visible but the new features is
consistent with the original background. Thus, our method does not make does not make unintended
global changes. In Fig. 1, we showed how we can first change the pose of the object, then change the
pose as well as the appearance and eventually all three elements (pose, appearance and geometry)
at the same time. In Fig. 6, we show another example. In this case, we also give more details
on the conditioning images. Even more examples are available in Section E. To the best of our
knowledge, this is the first model/framework to allow for such precise object control and enable
iterative workflows.

7
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(a) Original (b) Pose (c) Appearance (d) Geometry (e) Background

Control signals -

Figure 6: Given the original image (a), we specify the desired target pose as a 3d bounding box
(b). Next in (c), we condition the image to look like ‘yellow cup’. In (d), we condition the original
image to have the desired pose as in (b) and geometry and appearance like the bottle. Note that this
corresponds to replacing the original glass with this new bottle; whereas in (c), the glass changed its
appearance. In (e), we again edit the pose (as in b), appearance (as in c) and background (make the
background same as the bottom image) all at the same time.
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Figure 7: Object control performance on MOVi-E, Objectron, and Waymo. Values measure quality
of target reconstruction for single and multi-object scenes.

4.3 COMPARISON AGAINST OTHER MODELS

We evaluated neural USD and baselines using two different criteria. The first simply measures the
model’s ability to correctly reconstruct the target image from the provided source encodings and
target pose. We use SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018), and PSNR. We use these
criteria to compare the model to other 3D-aware image editing approaches. These include Neural
Assets (Wu et al., 2024), Object 3DIT (Michel et al., 2023), and Chained (Wu et al., 2024). Object
3DIT is limited in its ability to render large viewpoint changes as it does not encode camera poses,
while Neural Assets only supports 3D bounding box and RGB appearance conditioning.

Fig. 7 shows that Neural USD outperforms Object 3DIT, Chained and improves over Neural Assets
while introducing a more flexible conditioning format with additional control inputs. For these ex-
periments, we extract source and target frames from the dataset which contain multi-object changes
and compare the model’s ability to accurately reconstruct the target image.

Next, we compare our approach to non 3D-aware baselines that allow for modification to im-
ages using other conditioning signals such as text, geometry, or appearance. We include Instruct-
Pix2Pix (Brooks et al., 2022), which uses text descriptions to modify a source image, Control-
Net (Zhang et al., 2023), which supports various control signals during image generation, T2I-
Adapter (Mou et al., 2023), which learns various adapters to support additional spatial control sig-
nals, and Stable Diffusion v2.1 (Rombach et al., 2022), a large pre-trained text-to-image model.
Additionally, we include a VqVAE baseline, consisting of a convolutional encoder, finite scalar
quantization (Mentzer et al., 2023), and a UViT (Hoogeboom et al., 2023) decoder, and trained with
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a multi-scale denoising diffusion loss (Hoogeboom et al., 2023). A more comprehensive discussion
of baselines is included in section B.

We measure the performance of these methods along two axes: reconstruction and controllability.
To determine the model’s reconstruction performance, we supply it with all available conditioning
signals extracted from a source image and measure the similarity between the source image and
the model prediction. Controllability is measured by providing a control input that describes the
difference between the source scene and the target scene, and measuring the similarity between the
model prediction and the target image.
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Figure 8: Reconstruction vs. Controlla-
bility performance on MOVi-E, Objec-
tron, and Waymo. Axes are log-scale
and values are reported as 1/RMSE.

Fig. 8 shows that the Neural USD out-performs all the
above models along these two axes. ControlNet, Stable
Diffusion, T2I adapters, and VqVAE only expose recon-
struction interfaces, and don’t allow for object-centric or
global edits of an input image. As such, measuring their
controllability is challenging, since proposing modifica-
tions to input conditioning signals like depth, edge maps,
or masks is non-trivial. Alternatively, InstructPix2Pix
does provide an interface for image-level edits via text,
but does not allow for reconstruction of an image from in-
put conditioning signals. Approaches that allow for both
include Object 3DIT, Neural Assets, and Neural USD.

5 CONCLUSION

Neural USD introduces an object-centric conditioning
framework for generative models, enabling precise con-
trol over appearance, geometry, and pose. Inspired by the
Universal Scene Descriptor (USD), it encodes structured
per-object attributes into conditioning vectors, ensuring
cross-model compatibility. Using a fine-tuning approach
with paired video frames, Neural USD disentangles con-
trol signals for independent object manipulation. Our framework enables a user to make multiple
edits iteratively to the generated image such that other elements in the scene are consistent and do
not change. Our experiments show superior performance in structured scene synthesis and object
control; showcasing the potential of Neural USD as a flexible and portable standard for generative
modeling.

In future, we would like to scale our approach across various axes. Some of these include, training
with a larger and more “modern” base model. Currently, we use StableDiffusion. Going forward,
we would like to replace this with flux as this enables better visual quality. Our current results show
the effectiveness of our approach on multiple datasets like Objectron, Waymo etc. Another possible
direction is to scale our approach to ImageNet-size datasets and beyond.
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A DATASETS

A.1 EGOTRACKS

EgoTracks (Tang et al., 2023) is a tracked bounding box dataset consisiting of manually labeled
22.5k object tracks spanning 5.9k videos. Being a derivative dataset of Ego4D (Grauman et al.,
2022), EgoTracks is ego-centric and features an extreme amount of foreground and background
movement. Additionally, Ego4D object tracks often feature very small bounding boxes (e.g. for
utensils). We filter the data in two ways: first, we filter out bounding boxes with small height or
width, the threshold being 1/10th the normalized height and width of the screen. To prevent object
tracks from leaving the field of view, we sample source and target frames from within 15 frames of
each other, and discard samples for which no object is present. Finally, during evaluation, we filter
out results with motion blur or extreme background shift.

A.2 OBJECTRON

Objectron (Ahmadyan et al., 2020) consists of 15,000 object-centric video clips featuring everyday
objects across nine categories. Each video includes object pose tracking, allowing us to extract
3D bounding boxes. Since the dataset lacks 2D bounding box annotations, we generate them by
projecting the eight corners of the 3D boxes onto the image and computing the tightest bounding
box around the projected points.

A.3 WAYMO OPEN

Waymo Open (Sun et al., 2020) comprises 1,000 video clips of self-driving scenes captured by car-
mounted cameras. Following previous studies (Wu et al., 2024), we use the front-view camera and
car bounding box annotations. The 3D bounding boxes include only the heading angle (yaw-axis
rotation), so we set the other two rotation angles to zero. Additionally, the provided 2D and 3D
boxes are misaligned, making paired frame training unfeasible. To address this, we project the 3D
boxes to obtain corresponding 2D boxes, similar to the approach used for Objectron.

A.4 MOVI-E

MOVi-E (Greff et al., 2022) includes 10,000 videos simulated using Kubric (Greff et al., 2022), with
each scene featuring 11 to 23 real-world objects from the Google Scanned Objects (GSO) reposi-
tory (Downs et al., 2022). At the beginning of each video, multiple objects are dropped onto the
ground, causing them to collide. The scene’s lighting comes from a randomly sampled environment
map. The camera follows a simple linear motion.

B BASELINES

B.1 OBJECT 3DIT

Object 3DIT (Michel et al., 2023) fine-tunes Zero-1-to-3 (Liu et al., 2023a) for scene-level 3D object
editing. We derive editing instructions from the target object pose, including translation and rotation.
However, this lacks support for significant viewpoint changes as it does not encode camera poses.
We use the official code and pre-trained weights of the Multitask variant.

B.2 INSTRUCTPIX2PIX

InstructPix2Pix enables text-guided image editing by fine-tuning a diffusion model to follow editing
instructions. It conditions on both an input image and a text prompt, learning to predict pixel changes
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based on the instruction. However, it lacks explicit 3D control and struggles with complex multi-
object edits. We construct a dataset of 100 source target pairs and their differences describes as text
prompts. InstructPix2Pix is then conditioned on the source image and text prompt, and we evaluate
how accurate it is at reconstructing the target image. We find that the model struggles to elicit the
fine changes in object pose described in the text.

B.3 T2I ADAPTERS

T2I-Adapters (Mou et al., 2023) enable additional conditioning mechanisms for pre-trained diffu-
sion models, allowing control beyond text prompts. They integrate spatial signals like depth maps
or segmentation masks to guide image generation while preserving the original model’s structure.
These adapters typically introduce lightweight modules, such as attention layers or zero-initialized
convolutions, that fuse external control signals with the model’s latent space. We condition the
T2I-adapters model on the spatial modalities corresponding to the source image, such as masks and
depth, and evaluate its performance in reconstructing the source image.

B.4 NEURAL ASSETS

Neural Assets (Wu et al., 2024) introduces a per-object representation for 3D-aware multi-object
control in image diffusion models. It encodes appearance and pose separately, allowing object ma-
nipulation, including translation, rotation, and rescaling. We evaluate Neural Assets using the same
criteria used for Neural USD: we extract source modalities from a source image and condition on
the target poses derived from the target image. We then measure the reconstruction loss with the
target image.

B.5 CONTROLNET

ControlNet (Zhang et al., 2023) enables spatial conditioning in diffusion models by introducing
trainable layers that process external control signals, such as edge maps, depth maps, or pose key-
points. It retains the original model’s weights while adding zero-initialized convolution layers. This
allows for control over image generation. However, it does not allow for object-centric image edit-
ing, as changes to the conditioning signals can lead to global changes in the image. We condition
the Control model on the spatial modalities corresponding to the source image, such as masks and
depth, and evaluate its performance in reconstructing the source image.
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C HYPERPARAMETERS

Here we outline the hyperparameters used to implement and train Neural USD.

Table 1: Hyperparameters for Neural USD.

PARAMETER VALUE

STABLE DIFFUSION VARIANT V2.1
DINO VARIANT VIT-B/8
DINO FEATURE MAP SIZE 28× 28
INPUT IMAGE SIZE 256× 256
TOKEN DIMENSION 1024
BATCH SIZE 512
OPTIMIZER ADAM
STABLE DIFFUSION LR 1× 10−4

IMAGE ENCODER (DINO) LR 5× 10−4

WARMUP STEPS 2000
DECAY SCHEDULE LINEAR
FINE-TUNING STEPS 50000
GRADIENT CLIP VALUE 1.0
MODALITY DROPOUT PROBABILITY 0.25
POSE DROPOUT PROBABILITY 0.25
ALL CONDITIONING DROPOUT PROBABILITY 0.1
CFG WEIGHT 3.0
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D QUALITATIVE BASELINES
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Figure 9: Object pose conditioning performance on MOVi-E, Objectron, Waymo Open, and Ego-
Tracks. Models generate the target image provided a source image and the 3D bounding box targets
(Neural USD, 3DIT) or textual prompts (InstructPix2Pix). Our method satisfies the desired pose
while preserving the foreground and background appearance. InstructPix2Pix fails to elicit object
movement.
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E ITERATIVE WORKFLOW EXAMPLES

(a) Original (b) Pose (c) Appearance (d) Geometry (e) Background

Control signals -

Figure 10: Given the original image (a), we first change the pose of the chair as desired in (b). Next
in (c), we condition the original image to look like the cup while also being in the new pose (as
in b). In (d), we condition the original image to have the desired pose (as in b) and geometry and
appearance like the black chair. In (e), we further ask the model to change the background to be as
the bottom image. Note that in this example, we use different aspects of the same image for both
geometric and background conditioning.

(a) Original (b) Pose (c) Appearance (d) Geometry (e) Background

Control signals -

Figure 11: We first change the pose (b). Next in (c), we condition the original image to look as
specified. In (d), we replace the laptop with another object. In (e), we edit the pose (as in b) and
background (make the background same as the bottom image).
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F ADDITIONAL EXPERIMENTAL RESULTS

TranslateRotate ScaleOriginal

Figure 12: Additional Objectron 3D pose control examples.

Translate ScaleOriginal Geometry

Figure 13: Additional MOVi-E 3D pose control examples.
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Translate ScaleOriginal

Figure 14: Additional Egotracks 2D bounding box control examples.
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Figure 15: When trained on limited data - a handful of labeled datasets constituting ¡50,000 se-
quences - Neural USD fails to generalize to new object categories. This lack of generalization can
likely be remedied by co-training on more readily-available 2D bounding box datasets.
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Figure 16: Foreground background replacement. Neural USD allows for easy swapping of assets in
the scene. The background, simply being another asset, can be replaced with reference modalities.
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