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Abstract
Recent large language models have shown promis-
ing capabilities in long-form reasoning, following
structured chains of thought before arriving at
a final answer. However, we observe that these
reasoning paths tend to include substantial redun-
dancy; analyzing attention patterns reveals that
attention scores are widely scattered, particularly
incorrect answers exhibit greater attention spar-
sity. In this paper, we demonstrate that delib-
erately removing this redundancy in the reason-
ing process significantly improves performance
through clear thinking, i.e., removing distraction.
Specifically, we systematically identify reason-
ing redundancy by measuring token-level atten-
tion scores to a special end-of-thinking token,
which is appended to an explicit instruction in-
serted to conclude each intermediate reasoning
step. Furthermore, we propose structure-aware
pruning that prioritizes removing tokens in low-
contributing reasoning chunks over individual to-
kens. After evicting redundant tokens, we remove
the injected end-of-thinking instruction, then re-
sume the reasoning generation. We demonstrate
that our method significantly improves overall
accuracy across reasoning-intensive benchmarks
without any training involved. In particular, our
method shows strong performance on challeng-
ing mathematical competition benchmarks such
as AIME and AMC, where reasoning redundancy
is more prevalent.

1. Introduction
Large language models (LLMs) have demonstrated remark-
able progress in complex reasoning tasks (Wei et al., 2022;
Zelikman et al., 2022), including mathematical problem
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solving (Shao et al., 2024), multi-hop question answering
(Chen et al., 2019), and long-form instruction following (Bai
et al., 2024). This success is often attributed to the emer-
gence of structured reasoning chains, generating sequences
of intermediate thoughts that gradually lead to a final answer
(Kojima et al., 2022; Hao et al., 2024). These reasoning
chains allow models to break down complex problems into
smaller, more manageable subproblems, mimicking the step-
by-step cognitive strategies humans employ when reasoning
under uncertainty (Prystawski et al., 2023).

In particular, recent reasoning models are trained to ver-
balize their internal thoughts, effectively leveraging the lan-
guage abilities of pre-trained models (Guo et al., 2025; Jaech
et al., 2024). This verbalization offers a key advantage: it
allows users to monitor and analyze—or even intervene
in—the model’s thought process during generation (Baker
et al., 2025; Wu et al., 2025).

In this paper, we found a somewhat interesting observation
by monitoring this internal thought process of reasoning
LLMs: reasoning chains often consist of significant redun-
dancy. Specifically, the model generates intermediate rea-
soning steps that tend to be repetitive, verbose, or include
speculative detours that do not ultimately contribute to the
final answer. Such redundancies are also observed by ana-
lyzing the attention patterns, where attention distributions
during reasoning typically consist of sparse patterns. This is
especially problematic as LLM can be easily distracted by
irrelevant or redundant context (Shi et al., 2023), and this
tendency is particularly evident when incorrect answers are
generated (see Fig. 1). More intriguingly, we observe rea-
soning chunks that receive consistently low attention from
subsequent tokens, suggesting that the model briefly ex-
plores these misleading paths but eventually abandons them,
leaving behind redundant traces in the generated sequence.
This raises a key question:

Can we improve the performance by identifying and
removing redundant tokens on-the-fly during the reasoning

process?

To this end, we propose a simple yet effective test-time token
pruning method that removes redundant reasoning tokens.
The core idea is to dynamically eliminate redundant tokens
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(b) Attention score on important chunks

Figure 1. Not all tokens are created equal for reasoning. We visualize and analyze the attention map of the output sequence. (a)
Attention maps when the model fails to produce the correct answer (i.e., poor reasoning) and when it succeeds (i.e., good reasoning).
Poor reasoning leads to highly redundant attention patterns. (b) Attention scores associated with the end-of-thinking token </think>. The
histogram shows that </think> attends to key reasoning chunks that contain crucial information for deriving the final answer. For all
measurements, we use DeepSeek-R1-Distill-Qwen-7B on a subset of the MATH-500 dataset.

during generation, thereby enabling the model to preserve
only the most critical reasoning steps necessary for reaching
the correct answer. Specifically, we propose two compo-
nents: (i) identifying redundant tokens by measuring their
contribution to a summarization-inducing end-of-thinking
token, and (ii) structure-aware pruning that prioritizes re-
moving low-contributing reasoning chunks rather than indi-
vidual tokens. Motivated by the observation that redundant
tokens tend to receive low attention from the token that
concludes the reasoning step, we inject an explicit instruc-
tion that prompts the model to summarize and terminate the
current thought process, enabling redundancy measurement
at intermediate stages. 1 Rather than removing tokens in
isolation, we first detect reasoning chunks that are unlikely
to contribute to the final answer (i.e., misleading paths), and
prune tokens within those chunks. Once pruning is com-
pleted, we resume the generation by removing the injected
end-of-thinking instruction.

We conduct a comprehensive set of experiments to evaluate
our token pruning scheme, focusing on reasoning-heavy
scenarios across a wide range of tasks and models. Our re-
sults demonstrate that this simple and lightweight inference-
time approach can significantly improve reasoning perfor-
mance. In particular, our method yields significant gains on
challenging mathematics competition benchmarks such as

1We perform the additional (summarization) prompting every
100 or 200 token-generation and observe that it introduces marginal
overhead in inference speed.

AIME and AMC, where the model tends to generate more
redundant reasoning steps, making our pruning approach
especially effective. For instance, our method improves
the original model’s accuracy from 75.0% to 82.5% on
AMC2023 (AI-MO, 2023), while reducing KV cache mem-
ory usage by 10.3% on DeepSeek-R1-Distill-Qwen-7B.

2. Not All Tokens Matter for Reasoning
In this section, we investigate whether reasoning models
truly require all previously generated tokens to reach a cor-
rect final answer. To this end, we focus on recent reasoning
LLMs output Toutput, which consists of multi-step intermedi-
ate reasoning traces Treason followed by final answer Tanswer
with special delimiters <think>... </think>.

Existence of redundant reasoning tokens. To identify
which reasoning tokens are important for reaching the an-
swer, we visualize the attention maps of two samples: (i)
a sample that fails to answer the given question, and (ii) a
sample that successfully reaches the end-of-thinking token
to produce the correct answer. As shown in Fig. 1a, the
first case includes redundant text (e.g., repeated attempts
to rethink the process using phrases like “Alternatively”),
whereas the second case exhibits a clear reasoning trajec-
tory. Interestingly, the attention maps reflect this behavior;
in the first case, the attention is highly sparse due to reason-
ing redundancy, while in the second case, the model attends
more frequently to previous tokens and demonstrates a more
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global structure. These results highlight the potential of us-
ing attention scores to identify redundant reasoning steps.

Attention score to </think>. To quantify token impor-
tance more systematically, we analyze the attention scores
directed to the special token </think>, which marks the end
of the reasoning process. As shown in Fig. 1b, reasoning
tokens that contribute to the final answer tend to have high
attention scores to </think>. For example, the </think> to-
ken frequently attends to sentences or chunks that initiate
the reasoning process or summarize key conclusions. In-
terestingly, redundant tokens often appear in contiguous
chunks rather than in isolation, suggesting that the </think>
token selectively attends to informative reasoning segments
while ignoring irrelevant parts.

Based on this observation, we design a systematic token
pruning strategy that leverages the end-of-thinking token
</think> and the chunked structure of the reasoning process
to identify and remove redundant reasoning tokens.

3. Improving Reasoning with Redundant
Token Pruning

In this section, we propose a novel KV cache eviction policy
that can improve reasoning models’ effectiveness and effi-
ciency by removing redundant tokens. Specifically, we sug-
gest a novel scoring function driven by self-summarization
to identify redundant tokens (in Section 3.1), and introduce
a stepwise eviction policy that aggressively removes KV
cache in the redundant reasoning step (in Section 3.2). The
overall procedure is illustrated in Algorithm 1.

3.1. Identifying redundant tokens via
self-summarization

As shown in Fig. 1, the end-of-thinking token </think>
serves as a crucial cue for identifying important reasoning
tokens. Based on this, we propose a novel scoring func-
tion for identifying redundant tokens in the reasoning trace
during the intermediate decoding so that one can only pre-
serve important tokens. Specifically, we leverage a short
summarization prompt ending with </think>, prompting the
model to briefly summarize its own reasoning. This forces
the LLM to end the thinking process, thereby effectively
localizing the essential part inside the reasoning trace.

Use of summarization prompts. During the intermediate
step of the decoding, we periodically trigger the model to
summarize and answer the question at every fixed interval.
To evaluate the redundancy of tokens during reasoning, our
key idea is to forward the reasoning model with a short sum-
marization prompt Tsumm. which is constructed as follows:

“Time is up. Given the time I’ve

spent and the approaches I’ve
tried, I should stop thinking and
now write summarization in one
sentence.</think>”

Especially, the prompt is designed to explicitly shift
the model from reasoning to summarization, making the
</think> token to capture informative tokens in the reason-
ing trace without generating explicit summarization.

Token importance score. To quantify the importance of
each token, we accumulate attention weights assigned to
previous tokens given the summarization prompt Tsumm..
Specifically, for each token t in the current reasoning trace,
we define its importance score s(ℓ,h)t at layer ℓ and head h by
aggregating attention values by injecting the summarization
prompt with </think>:

s
(ℓ,h)
t = α

(ℓ,h)
</think>→t, (1)

where α
(ℓ,h)
</think>→t denotes the attention weight from the

</think> in summarization tokens Tsumm. at layer ℓ and head
h. This score reflects how much each token contributes for
the summarization, as perceived by the model. Since the
scores are computed separately for each layer and attention
head, pruning decisions are made independently at each
level, enabling fine-grained control over which tokens are
retained.

3.2. Step-aware eviction with hierarchical budget
allocation

We now present our eviction policy under a fixed token evic-
tion budget k. Motivated by our observation that reasoning
traces often contain redundant steps, we aim to remove to-
kens from such steps while preserving essential ones. To
this end, we first segment the reasoning trace into semanti-
cally coherent steps and then allocate the eviction budget
hierarchically across these steps based on the importance
score.

Aggregating importance score per reasoning step. Fol-
lowing a previous work (Hammoud et al., 2025b), we first
divide the reasoning trace into intermediate steps, and each
steps consists of a consecutive set of tokens with logical con-
tinuity in reasoning (See Appendix C.3 for detail). Given
importance score s

(ℓ,h)
t , we compute step score c

(ℓ)
r by tak-

ing the mean over all tokens t within the same reasoning
step r across head h:

c(ℓ)r =
1

|H · r|
∑
h∈H

∑
t∈r

s
(ℓ,h)
t , (2)

where |H| is the number of heads and |r| is length of rea-
soning step.
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Table 1. Effectiveness of the redundant token pruning. We compare the proposed method (Ours) with the standard decoding (FullKV)
under six reasoning-intensive mathematical benchmarks, including MATH-500 (MATH), Minerva, GaoKao, AIME2024, AIME2025,
AMC2023. We evaluate our approach on two models, including DeepSeek-R1-Distill-Qwen-7B (Qwen-7B) and DeepSeek-R1-Distill-
Llama-8B (Llama-8B). We report accuracy (%) with the corresponding generation length shown below in parentheses. Average accuracy
and generation length are presented in the final column. The bold indicates the best accuracy within the group.

Dataset

Model Method MATH Minerva GaoKao AIME2024 AIME2025 AMC2023 Average

Qwen-7B
FullKV 87.0 59.9 65.8 36.7 23.3 75.0 57.9

(3397) (3391) (3845) (7060) (7133) (5004) (4971)

87.2 60.5 67.1 46.7 36.7 82.5 63.4Ours (2926) (3471) (4219) (6841) (6905) (4488) (4808)

Llama-8B
FullKV 81.0 45.9 67.1 33.3 13.3 75.0 52.6

(3389) (4060) (4689) (7067) (7088) (4986) (5213)

83.8 48.1 69.8 33.3 23.3 77.5 55.9Ours (3345) (3941) (4532) (7210) (7375) (4700) (5183)

Hierarchical eviction. Given a token eviction budget k,
we aim to evict tokens primarily from redundant reason-
ing steps, while preserving informative ones. To achieve
this, we suggest a hierarchical eviction policy that allocates
the eviction budget k in a step-aware manner, considering
the reasoning structure. Formally, given an importance
score of reasoning step c

(ℓ)
r , we first sort all reasoning steps

r̃
(ℓ)
1 , r̃

(ℓ)
2 , . . . , r̃

(ℓ)
N in ascending order of c(ℓ)r̃i

(i.e., r̃(ℓ)1 is the
most redundant step at layer ℓ). Then, following this order,
we greedily allocate a step-level eviction budget e(ℓ)r̃i

to each

reasoning step r̃
(ℓ)
i as:

e
(ℓ)
r̃i

= min

|r̃(ℓ)i |, k −
i−1∑
j=1

e
r̃
(ℓ)
j

 , (3)

where |r̃(ℓ)i | is the number of tokens in step r̃
(ℓ)
i , and k is

the total token eviction budget. This allocation ensures that
the total number of evicted tokens does not exceed k, while
prioritizing the more redundant steps. After allocation, we
evict tokens with the lowest token-level redundancy scores
s
(ℓ,h)
t within each step r

(ℓ)
i . This strategy naturally favors

highly redundant reasoning steps while avoiding premature
removal from important ones.

4. Experiments
In this section, we demonstrate the effectiveness of our pro-
posed framework, focusing on its ability to improve the rea-
soning accuracy. To this end, we compare our method with
the full KV (FullKV) cache method on reasoning-intensive
mathematical benchmarks. As shown in Table 1, our method
significantly and consistently outperforms FullKV in accu-
racy. For instance, our method improves the average accu-
racy of FullKV from 57.9% to 63.4% for Qwen-7B model.
It is worth noting that our method only involves changing

the inference strategy, showing wide applicability.

Notably, our approach consistently outperforms FullKV de-
coding despite using significantly fewer tokens in the KV
cache. This suggests that our pruning mechanism not only
reduces memory usage but also acts as a form of implicit
regularization that helps the model focus on essential rea-
soning steps by making LLM less distracted by unnecessary
text (Shi et al., 2023). The forced summarization phase
encourages the model to internally consolidate reasoning
before producing an answer, leading to more coherent and
accurate generations.

More interestingly, our method yields greater improvements
on more challenging benchmarks such as AMC2023 or
AIME datasets (i.e., mathematical competition problems).
For example, the performance on the AMC2023 dataset
significantly improves from 75.0%→82.5% on DeepSeek-
R1-Distill-Qwen-7B, and even uses 10.3% less KV cache.
We conjecture that the LLM tends to struggle more and
produce a more redundant reasoning path in challenging se-
tups, thus pruning such redundant tokens is effective. These
results validate our core hypothesis: not all tokens are neces-
sary for reasoning, and selectively pruning unhelpful tokens
can enhance the final outcome. In Section D, we further
demonstrate that our framework can also improve the infer-
ence efficiency, and provide additional ablation and analysis
assessing the contribution of individual components, and
explore its ability to generalize to other domains and tasks.

5. Conclusion
In this paper, we propose a plug-and-play algorithm that
enhances reasoning in large language models by pruning
redundant tokens during reasoning traces. Our method
uses forced summarization at intermediate steps to iden-
tify unnecessary tokens, then removes them through step-
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wise budget allocation. This targeted KV cache pruning
not only compresses the model but also improves reasoning
performance, making it especially valuable for memory-
constrained applications.
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A. Related Works
We provide a comprehensive review of related works on reasoning (focusing on the long chain-of-thought literature) and
token pruning and compression frameworks.

Long chain-of-thought. Recent Large Reasoning Models (LRMs) (Guo et al., 2025; Jaech et al., 2024) have increasingly
adopted explicit chain-of-thought (CoT) reasoning to enhance performance on complex tasks such as math (Shao et al.,
2024), science (Qwen, 2024), and symbolic reasoning (Xu et al., 2024). Instead of producing direct answers, these models
generate multi-step intermediate reasoning traces, allowing them to break down complex problems into smaller, more
manageable steps (Kojima et al., 2022; Prystawski et al., 2023). This long-form reasoning improves both accuracy and
robustness (Wang et al., 2024; Guan et al., 2024), as it provides opportunities for self-correction (Kumar et al., 2025),
verification (Lee et al., 2025), and intermediate supervision during training or inference (Wu et al., 2025). A common pattern
involves separating the reasoning phase from the answer phase, either through special tokens or by internal abstraction,
where the reasoning is hidden and only summarized (Hammoud et al., 2025a). Some models expose the entire reasoning
trace to the user to increase interpretability and transparency (Baker et al., 2025), while others keep it latent to reduce
vulnerability to prompt manipulation or over-reliance (Hao et al., 2024). This shift toward structured, multi-step reasoning
has been central to the recent progress of reasoning-focused LLMs, enabling strong generalization to diverse domains, from
mathematics to program synthesis (Gao et al., 2023). In this paper, we propose an efficient yet effective test-time reasoning
method by pruning redundant tokens, enabling the model to focus on critical points during long thinking.

Token pruning and compression. As the context length and generated sequences of large language models (LLMs)
increase, the memory cost of self-attention becomes a significant bottleneck (Dao et al., 2022). In particular, the key-value
(KV) cache, which stores past activations for each generated token, grows linearly with the sequence length. To address this,
several existing works have explored strategies to identify and evict redundant tokens in KV cache (Li et al., 2024). Xiao et al.
(2024) observe that attention distributions often exhibit strong focus on initial tokens, and show that retaining only the initial
and most recent tokens is sufficient to preserve performance. Other approaches leverage attention-based metrics to guide KV
eviction (Chen et al., 2024). For example, Zhang et al. (2023) proposes accumulating attention scores over decoding steps
and using them as token importance indicators. Oren et al. (2024) evict the token with the lowest attention score at each
decoding step. Yang et al. (2024a) observe that the number of crucial tokens varies across layers, motivating a layer-wise
compression strategy. While these methods primarily aim to improve inference efficiency, our approach focuses on evicting
redundant reasoning tokens to improve performance (compared to the full KV cache). Nevertheless, we demonstrate the
potential of using our method as a reasoning compression scheme, achieving competitive results under memory constraints
and often outperforming recent token eviction and compression baselines.

B. Algorithm
In Algorithm 1, we illustrate the overall procedure of identifying and pruning the redundant tokens.
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Algorithm 1 Redundant Token Eviction via Self-summarization

Require: Reasoning tokens T = {t1, . . . , tL}, eviction budget k, layers ℓ ∈ [1, L], heads h ∈ [1, H]
Ensure: Set of k tokens to evict from KV cache

1: Inject summarization prompt Tsumm into the input
2: Forward the input with the trigger token </think> to the model
3: for each layer ℓ and head h do
4: for each token t ∈ T do
5: s

(ℓ,h)
t ← α

(ℓ,h)
</think>→t

6: end for
7: Segment Treason into steps {r1, . . . , rN}
8: for each step ri do
9: c

(ℓ)
ri ← 1

|H·ri|
∑

h∈H

∑
t∈ri

s
(ℓ,h)
t

10: end for
11: Sort steps r̃(ℓ)1 , . . . , r̃

(ℓ)
N in ascending order of c(ℓ)ri

12: krem ← k

13: for each sorted reasoning step r̃
(ℓ)
i do

14: e
(ℓ)
r̃i
← min

(
|r̃(ℓ)i |, krem

)
15: krem ← krem − e

(ℓ)
r̃i

16: Evict e(ℓ)r̃i
tokens with lowest s(ℓ,h)t in r̃i per head h in layer ℓ

17: if krem = 0 then
18: break
19: end if
20: end for
21: end for
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C. Experimental Details
C.1. Experimental setup

We provide a detailed description of the experimental setup, covering the datasets, models, baselines, and evaluation
protocol.

Datasets. We evaluate our method on a diverse suite of publicly available benchmarks that span a wide range of
mathematical reasoning tasks, difficulty levels, and linguistic diversity. Our core evaluation includes three widely used
English benchmarks: GSM8K (Cobbe et al., 2021), which focuses on grade-school level arithmetic and requires step-by-step
calculations; MATH-500 (Hendrycks et al., 2021), a dataset of competition-level problems across algebra, geometry, and
combinatorics; and Minerva Math (Lewkowycz et al., 2022), which consists of high-school and advanced math questions
sourced from web documents.

To further assess the robustness of our method on real-world and harder problems, we include recent evaluation sets from
mathematical competitions: AIME 2024 (AIME, 2024), AIME 2025 (AIME, 2025) and AMC 2023 (AI-MO, 2023), all of
which contain challenging, high-school level problems that demand precise logical deductions. Additionally, we include
GaoKaoMath (Zhong et al., 2023), to assess the generality of our method on questions originating from the Chinese college
entrance exam. Finally, we further validate the general applicability of our method by evaluating it on a non-mathematical
reasoning dataset, namely the GPQA Diamond (Rein et al., 2024). Note that GPQA Diamond consists of graduate-level
science questions that require intensive reasoning ability to reach the correct answer.

Models. Our experiments are primarily based on the DeepSeek-R1-Distill family of models, which are designed to emulate
the reasoning behavior of DeepSeek-R1 (Guo et al., 2025) using distilled versions of popular backbones. We mainly consider
three backbone models: Qwen2.5-1.5B, Qwen2.5-7B (Yang et al., 2024b), and Llama3.1-8B (Grattafiori et al., 2024), all
trained with visible chain-of-thought reasoning traces. Across all models, we observe consistent benefits of our method,
suggesting that our framework is architecture-agnostic and works well across a wide range of capacities.

Baselines. We mainly compare our method with the standard decoding strategy that uses the full KV cache (FullKV).
Additionally, we compare our method against a range of recent decoding-time KV compression methods that can be applied
without retraining, including StreamingLLM (Xiao et al., 2024), which retains only the first and most recent tokens; H2O
(Zhang et al., 2023), which uses accumulated attention scores to determine token importance; Pyramid-Infer (Yang et al.,
2024a), which performs layer-wise importance-based pruning.

Evaluation protocol. We adopt a standardized evaluation protocol across all methods and datasets to ensure fair com-
parisons. All models are evaluated using standard decoding with a temperature of 0.6 and top-p of 0.95 under fixed seed
to maximize replicability. The maximum generation length is capped at 8192 tokens, sufficient for nearly all long-form
reasoning examples. To extract the final answer from the generated output, we introduce a designated token such as </think>
to mark the end of the reasoning phase. Accuracy is measured as the fraction of correctly answered questions, based on an
exact match with the ground truth. For efficiency, we measure the average number of KV tokens stored during generation,
normalized by the total number of generated tokens, as well as the total memory consumption when storing the KV cache.

C.2. Model details

In our proposed framework, we use the DeepSeek-R1-Distill family of models, namely the Qwen2.5-1.5B2, Qwen2.5-7B3,
and Llama3.1-8B4. All checkpoints are downloaded from Huggingface.

C.3. Implementation

Segment of reasoning steps. At the core of our method is segmenting the initial raw reasoning trace TReason into a
sequence of meaningful intermediate steps. This segmentation aims to capture points where the model might pause, reflect,
change direction, or move to a distinct next step in its reasoning. Following prior work (Hammoud et al., 2025b), we perform

2https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
3https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
4https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
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segmentation based on occurrences of words or phrases from a predefined set W . These markers often signal reflection,
correction, sequencing, or the exploration of alternatives. The set W used in our experiments is:

"Wait" "Alternatively" "Another angle" "Another approach" "But wait" "Hold on" "Hmm" "Maybe" "Looking back"
"Okay" "Let me" "First" "Then" "Alright" "Compute" "Correct" "Good" "Got it" "I don’t see any errors" "I think"
"Let me double-check" "Let’s see" "Now" "Remember" "Seems solid" "Similarly" "So" "Starting" "That’s correct"
"That seems right" "Therefore" "Thus"

Eviction budget. For the effectiveness setting, we consider a token eviction budget k, which denotes the number of tokens
to be removed from the KV cache across all heads and layers at every predefined generation step p. In all experiments, we fix
the token eviction budget at k = 5. The pruning interval is set to p = 200 for Qwen2.5-1.5B and 7B models, and p = 100
for LLaMA3.1-8B. For the GPQA Diamond dataset, we conduct an ablation study using Qwen2.5-7B with p = 300.

KV cache budget. For the efficiency setting, we define a maximum KV cache budget during decoding, computed based
on the average KV length LFull of the FullKV baseline. Specifically, we compute compressed budgets by multiplying LFull
with target compression ratios of 25%, 50%. Following prior works (Zhang et al., 2023; Li et al., 2024), we also preserve
a recent window of KV entries by keeping the most recent tokens, and set this recent size to half of the allocated cache.
For comparison solely focused on reasoning compression, all methods retain the full problem prompt in the KV cache
throughout generation. This portion is excluded when measuring the fixed cache budget.

D. More Experimental Results
In this section, we present a more thorough evaluation of our proposed framework, with the goal of verifying its ability to
improve both reasoning accuracy and inference efficiency. Our evaluation is divided into three parts: (1) effectiveness, which
examines how well our method improves final answer correctness across a range of mathematical reasoning tasks (discussed
in the main text, see Table 1); (2) efficiency, which measures the memory savings achieved by our token pruning strategy
(Table 2); and (3) ablation and analysis, which assesses the contribution of each individual component of our framework,
and explores how well it generalizes to other domains and tasks (Table 3, Table 4, and Table 5).

We empirically demonstrate that our method not only reduces the computational overhead typically associated with long-
form reasoning, but also improves accuracy by filtering out redundant and misleading intermediate steps. Across all tested
datasets and model sizes, our approach outperforms existing KV cache compression baselines, often by a significant margin.
Importantly, the gains are achieved without retraining or additional supervision, indicating that our method is broadly
applicable as a plug-and-play enhancement for any autoregressive reasoning model.

D.1. Redundant token pruning efficiently and effectively reduces KV cache budget

Table 2. KV cache efficiency of the redundant token pruning. We compare the proposed method (Ours) with KV compression
frameworks on MATH-500. We use Qwen2.5-1.5B reasoning LLM distilled from DeepSeek-R1. For reference, we report the standard
decoding without KV compression (FullKV) results with the accuracy (%). We evaluate accuracy under two KV compression ratios (25%
and 50%). The bold indicates the best results within the group.

Compression ratio

Method 25% 50%

FullKV 42.6

Streaming-LLM 35.4 39.4
H2O 34.6 39.2
Pyramid-Infer 30.6 40.0
Ours 36.0 40.2

To evaluate the memory efficiency of our method, we vary the token pruning budget and compare the resulting KV cache
size and model accuracy. Table 2 shows the performance of all methods at various relative cache budgets (e.g., 25% and
50% compared to FullKV cache size). Our method achieves superior compression ratios without compromising accuracy,
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while other methods suffer significant accuracy degradation under aggressive pruning.

Unlike previous approaches that are not specialized to the reasoning process compression, our method dynamically adapts
to the reasoning process by selectively evicting tokens from unimportant steps. This step-aware strategy ensures that each
reasoning step retains its most important context, enabling robust final answers even under tight memory constraints. In
particular, our method maintains over 94% of the FullKV accuracy at just 50% memory usage, making it an attractive
solution for deployment in resource-constrained environments such as mobile devices, embedded systems, or large-batch
inference setups.

D.2. Ablation and analysis

We further analyze the contributions of individual components in our framework and investigate its generalizability across
domains and complementary methods. Throughout this section, unless otherwise specified, we consider the Qwen2.5-7B
reasoning model that is distilled from DeepSeek-R1.

Table 3. Component analysis. We ablate the two main components of our method: self-summarization (Summ) and step-aware token
eviction (Step). We report the accuracy (%) on the AIME2024 and AMC2023 datasets. Here, we use Qwen2.5-7B distilled from
DeepSeek-R1, where all decoding uses a temperature of 0.6. The bold indicates the best results.

Summ Step AIME2024 AMC2023

✗ ✗ 40.0 70.0
✓ ✗ 36.7 77.5
✓ ✓ 46.7 82.5

Component analysis. To understand which parts of our method drive the observed gains, we perform an ablation study
where we remove key components one at a time. As shown in Table 3, both the self-summarization phase and the stepwise
eviction budget contribute meaningfully to performance. Removing the summarization step by just inserting the end-of-
thinking </think> token leads to inaccurate importance scores, resulting in the removal of critical tokens. Conversely,
removing the step-aware token eviction results in over-pruning from important chunks, reducing accuracy. The full model,
with both components, consistently yields the best results. This supports our design intuition that token importance is
context-dependent and that a structured pruning policy is necessary to avoid harming the model’s reasoning ability.

Table 4. Importance of deliberate token pruning. While random or structure-agnostic pruning yields only marginal accuracy gains, our
method improves performance by pruning at semantically meaningful reasoning boundaries. We evaluate on Qwen2.5-7B distilled from
DeepSeek-R1 across mathematical reasoning benchmarks, including AIME2024 and AIME2025. The bold indicates the best results.

Score AIME2024 AIME2025

FullKV 36.7 23.3

Random 36.7 33.3
H2O 40.0 26.7
Ours 46.7 36.7

Does eviction alone improve performance? A natural question is whether token eviction itself—regardless of how
the evicted tokens are selected—can lead to improved performance. To verify this, we compare three strategies under
our framework: (1) Random, which evicts tokens uniformly at random at each step, (2) H2O, which prunes tokens with
the lowest accumulated attention scores, and (3) Ours, which step-aware evicts tokens based on a score triggered by an
end-of-thinking token </think>.

As shown in Table 4, both Random and H2O yield marginal performance improvements, indicating that even naive or
structure-agnostic pruning can occasionally help by reducing redundancy. However, such approaches risk removing
semantically important context, leading to unstable gains. In contrast, our method significantly outperforms others by
aligning token eviction with the semantic structure of the reasoning trace.

Effectiveness on a non-mathematical reasoning benchmark. Finally, we test whether our method generalizes beyond
mathematical reasoning. In Table 5, we report results on GPQA Diamond (Rein et al., 2024), a dataset of expert-written
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Table 5. Effectiveness on non-mathematical reasoning benchmarks. We compare the proposed method (Ours) with the standard
decoding (FullKV) under a non-mathematical reasoning benchmark, GPQA Diamond (science). We use Qwen2.5-7B reasoning LLM
distilled from DeepSeek-R1. We report the accuracy (%) and the corresponding average KV cache length in the parentheses. The bold
indicates the best results.

Method GPQA Diamond

FullKV 32.0 (6418)
Ours 36.4 (6277)

multiple-choice science questions. Despite the distinct nature of these tasks, our method consistently improves the
performance over FullKV, demonstrating its robustness across reasoning styles. We find that the original model iteratively
generates intermediate justifications when tackling GPQA Diamond, which hurts answer quality. Here, our method
effectively suppresses such distractions, thus improving the performance.

D.3. Results on small reasoning model

We also demonstrate the effectiveness of our method on a small reasoning LLM, namely the Qwen2.5-1.5B. As shown in
Table 6, our method significantly improves the overall reasoning accuracy across multiple reasoning-intensive mathematical
benchmarks even on small reasoning LLMs. Here, we also notice that our method is effective on challenging benchmarks
such as AMC2023, indicating the importance of the deliberate token pruning based on redundancy.

Table 6. Effectiveness of the redundant token pruning on a small-sized reasoning LLM. We compare the proposed method (Ours)
with standard decoding (FullKV) under six reasoning-intensive mathematical benchmarks, including MATH-500 (MATH), Minerva,
GaoKao, AIME2024, AIME2025, AMC2023. We use Qwen2.5-1.5B reasoning LLM distilled from DeepSeek-R1. We report accuracy
(%) with the corresponding average KV cache length shown below in parentheses. Average accuracy and KV cache are presented in the
final column. The bold indicates the best accuracy within the group.

Dataset

Method MATH Minerva GaoKao AIME2024 AIME2025 AMC2023 Average

FullKV 42.6 21.7 34.2 0.0 0.0 10.0 18.0
(6120) (5663) (5825) (8192) (8192) (7398) (6898)

41.2 25.8 35.6 3.3 0.0 20.0 21.0Ours (6166) (5690) (6071) (8071) (8192) (7477) (6944)
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