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Abstract

Financial markets exhibit complex dynamics001
where localized events trigger ripple effects002
across entities. Previous event studies, con-003
strained by static single-company analyses and004
simplistic assumptions, fail to capture these005
ripple effects. While large language models006
(LLMs) offer emergent reasoning capabilities,007
their direct application falters due to structural008
market unawareness and limited capacity to an-009
alyze ripple effects. We propose FinRipple, an010
elegant framework that empowers LLMs with011
the ability to analyze ripple effects through012
financial theory-guided large-scale reinforce-013
ment learning. We begin by relaxing the as-014
sumptions of previous methods, incorporating015
a time-varying knowledge graph to accurately016
represent market structure. By seamlessly inte-017
grating classical asset pricing theory, we align018
the LLM with the market, enabling it to predict019
ripple effects. To the best of our knowledge,020
we are the first to provide a standardized defi-021
nition of ripple effect prediction, a task that is022
extremely important yet unexplored in the fi-023
nancial domain. Extensive experiments demon-024
strate that FinRipple provides a promising so-025
lution to this task.026

1 Introduction027

Financial markets are naturally complex, and sud-028

den events can often impact the value of compa-029

nies. (Sorescu et al., 2017). A recent example un-030

derscores the impact of market reactions: On Au-031

gust 13, 2024, Starbucks announced Chipotle CEO032

Brian Niccol as its new CEO, triggering a 24.5%033

surge in Starbucks’ stock—the largest single-day034

gain in its history—while Chipotle’s stock dropped035

over 10%. The ripple effect extended to Starbucks’036

supply chain, with Jones Soda Co. rising 9.52%,037

BRC Inc. gaining 6.25%, and Celsius Holdings038

Inc. up 3.81%. This example demonstrates the039

ripple effect that a single market event can have,040

not just on the company involved, but on other rel-041

evant companies (Ma et al., 2023). Understanding 042

and predicting these market ripple effects is crucial 043

for informed financial decision-making, risk man- 044

agement, and strategic portfolio optimization. In- 045

vestors and risk managers rely on such insights into 046

how company announcements (Boyd et al., 2010; 047

Wu et al., 2015), external news (Xiong and Bharad- 048

waj, 2013; Gao et al., 2015), or macroeconomic 049

shocks (Chen et al., 2012) may cascade through 050

the market to anticipate broader impacts, enabling 051

proactive strategies in volatile conditions (Ding 052

et al., 2015, 2014). However, capturing these ripple 053

effects remains a complex and underexplored chal- 054

lenge due to intricate, evolving, and interconnected 055

factors at play. 056

Event studies have followed two main directions: 057

case-by-case analysis and unified modeling based 058

on learning theory. The former focuses on how 059

specific market events affect the stock performance 060

of a company or industry, which is a rather sim- 061

plified assumption. For example, Austin (1993) 062

analyzed patent innovations in biotechnology, Lep- 063

etit et al. (2004) studied M&As in banking, and 064

Ramiah et al. (2013) assessed stock reactions to 065

green policies. While useful for direct impact as- 066

sessment, these studies struggle to capture ripple 067

effects across industries or the broader market. On 068

the other hand, learning-based approaches primar- 069

ily use news sentiment to predict stock movements, 070

acknowledging that a company’s stock price is in- 071

fluenced by its related entities (Ashtiani and Raa- 072

hemi, 2023). Recent innovations integrate multi- 073

source information (Ma et al., 2023) to enhance 074

the prediction of emotions. Mishev et al. (2020) 075

demonstrated that transformer-based models out- 076

perform lexicon-based and statistical approaches 077

in event-driven word representation. However, re- 078

lying solely on text sentiment can overlook critical 079

dynamics—for instance, positive news for one com- 080

pany may negatively impact its associates. Thus, a 081

more comprehensive framework is needed to model 082
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Figure 1: An example of market ripple effects. The announcement of Starbucks’s CEO change not only boosted its
stock but also positively impacted other related companies in the beverage sector.

ever-changing market dynamics and explain com-083

plex intercompany relationships.084

Recently, large language models (LLMs) have085

been widely used across various domains due086

to their advanced reasoning abilities (Huang and087

Chang, 2023). They excel in structured informa-088

tion extraction (Hao et al., 2024), analogical rea-089

soning (Creswell et al., 2023; Wei et al., 2022b),090

and question answering, making them promising091

candidates for analyzing event-driven ripple ef-092

fects. Given their ability to model complex in-093

teractions, leveraging LLMs for financial market094

predictions is a natural step. However, financial095

markets, characterized by interconnected compa-096

nies and dynamic relationships, evolve in response097

to various events, making the direct application of098

LLMs insufficient and potentially misleading (Tang099

et al., 2022; Cheng and Li, 2021). To accurately100

model ripple effects, LLMs must be complemented101

with the latest market state.102

A viable solution to address this challenge lies103

in integrating a time-varying financial knowledge104

graph (KG), which provides a structured view of105

the market by capturing up-to-date company rela-106

tionships. Continuously updating the KG ensures107

a reliable snapshot of the evolving market (Yang108

et al., 2023b), enabling the modeling of dynamic109

corporate interactions (Cheng et al., 2020). To ef-110

fectively incorporate this knowledge into the LLM,111

we employ an adapter-based approach, injecting112

structured information without retraining the model113

from scratch. This method avoids potential infor-114

mation loss from retrieval-based methods and of-115

fers an extendable framework. By aligning LLMs116

with the financial market’s unique characteristics,117

our approach significantly enhances their ability118

to analyze event-driven ripple effects. We vali-119

date its effectiveness in asset pricing and portfolio120

management through extensive experiments. The121

contributions of this work can be summarized as 122

follows: 123

• FinRipple integrates classic asset pricing 124

theory with advanced LLMs demonstrating 125

strong performance in predicting excess re- 126

turns while maintaining high interpretability. 127

• We rigorously validate our training framework 128

and showcase its strong potential for real- 129

world applications, such as asset pricing and 130

portfolio management. Furthermore, detailed 131

analyses illustrate the model’s reasoning path- 132

ways, confirming its ability to provide reliable 133

insights into the causal relationships driving 134

ripple effects. 135

• We first formulate the under-explored “ripple 136

effect prediction” task and provide an open- 137

source benchmark, offering a unified evalua- 138

tion standard for academia and industry. 139

2 Methodology 140

In this section, we commence by formalizing the 141

mathematical framework for the ripple prediction 142

task. We initially delineate the necessary inputs 143

and outputs for the task, as well as the evaluation 144

metrics. Subsequently, in Section 2.2, we present 145

the overall architecture of FinRipple. This architec- 146

ture primarily comprises two pivotal components: 147

knowledge injection and market alignment. The 148

theoretical underpinnings of the optimization ob- 149

jectives can be found in Appendix A. 150

2.1 Problem Formulation 151

The financial ecosystem evolves through the struc- 152

tured triad Mt = (Ct, Et, µt), where Ct captures 153

the universe of public firms, Et the event space, 154

and µt the signed interaction measure. This mea- 155

sure’s duality – magnitude |µt(ci, cj)| for connec- 156

tion strength and polarity sign(µt(ci, cj)) for co- 157

operation/competition – synthesizes cross-channel 158
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Figure 2: Overview of FinRipple. The framework comprises three stages: (1) KG Construction: transforming
unstructured data, such as announcements, patents, and transactions, into time-varying KGs that capture company
relationships; (2) KG Injection: creating instruction datasets based on these KGs and using them to inject structured
knowledge into adapters of an LLM without retraining the original layers; (3) Market Alignment: aligning predictions
with real market reaction by using the correlation between the predicted event impact and CAPM residuals as the
reward for PPO to optimize model performance. The adapter is frozen, and the analysis ability is parameterized into
the original layers of the LLM.

dependencies spanning operational, financial, and159

strategic linkages.160

Central to our framework is the propagator Φet,θ,161

a parametric operator that maps event-context pairs162

to forward shock distributions:163

Φet,θ : Et ×Mt︸ ︷︷ ︸
Event-Context

→ RCt+∆t︸ ︷︷ ︸
Shock Magnitudes

,164

where θ parameterizes network diffusion dynam-165

ics. Its validation requires grounding in asset pric-166

ing fundamentals: given stochastic discount factor167

Dt+∆t, the pricing error ϵj = Et[Dt+∆tR
ex
j ] quan-168

tifies deviations from no-arbitrage equilibrium for169

firm j.170

The core specification standardizes pricing er-171

rors by their cross-sectional volatility σϵ =172 √
Var(ϵj) to ensure scale invariance, yielding the173

propagator-constrained regression:174

ϵj
σϵ

= γ0 + γ1Φ
j
et,θ

+

K∑
k=1

ΓkXk,j + νj ,175

Here γ0 captures baseline pricing anomalies, γ1176

quantifies the risk premium attributed to network-177

propagated shocks via the propagator component178

Φj
et,θ

, and Γk controls for K standard risk factors179

Xk,j . The residual νj represents unexplained pric-180

ing noise with variance σ2ν .181

Explanatory power is measured through normal-182

ized variance absorption:183

R2
Φ = 1−

E
[
(ϵj/σϵ − γ̂1Φj)2

]
Var(ϵj/σϵ)

,184

where the expectation operator E[·] averages over185

the cross-section of firms Ct+∆t. Values R2
Φ >186

0.15 indicate economically meaningful improve- 187

ments over benchmark factor models. 188

Network risk compensation γ1 is estimated via 189

generalized method of moments with Newey-West 190

heteroskedasticity-autocorrelation robust weight- 191

ing: 192

γ̂HAC
1 = (Φ⊤Ω−1Φ)−1Φ⊤Ω−1ϵ, 193

where Ω is the HAC covariance matrix. Statis- 194

tical significance is evaluated through the robust 195

t-statistic: 196

tγ1 =
γ̂1√

diag
[
(Φ⊤Φ)−1 ⊗ Ω̂

] , 197

with Kronecker product ⊗ ensuring proper covari- 198

ance scaling. A threshold |tγ1 | > 2.58 (p < 0.01) 199

establishes inference reliability. 200

2.2 The pipeline of FinRipple 201

As shown in Figure 2, FinRipple starts with the 202

construction of time-varying KGs that incorporate 203

four relationships supported by prior research: lead- 204

ership networks, mutual fund holdings, patent re- 205

lationships, and supply chains. The specific data 206

sources and construction process for the KG can 207

be found in Appendix C.2. The next two key steps 208

are KG injection and market alignment, which we 209

will introduce in the following subsections. 210

2.2.1 Knowledge Graph Injection 211

FinRipple implements time varying KG integra- 212

tion through structured instruction generation and 213

parameter-efficient adaptation. Each dynamic KG 214
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snapshot Gt = (Ct,Rt) contains the set of pub-215

lic firms Ct and time-sensitive relations Rt, en-216

coding four validated interaction types: leadership217

overlaps (CEO/board linkages), mutual fund cross-218

holdings, patent co-development relationships, and219

supply chain dependencies. These relations are220

projected into instructional text via templated trans-221

formations.222

For each relational triple (ci, rk, cj) ∈ Gt, the223

mapping operator Tk generates question-answer224

pairs that capture both qualitative and quantitative225

aspects of the relationship. A supply chain example226

produces:227

Instruction: “Identify primary suppliers for
ci in 2023Q2”
Response: “cj provided $2.3M semiconduc-
tor components with 98% on-time delivery”

The instruction set Dt = {(xti, yti)} integrates228

three query modalities: entity retrieval probes (e.g.,229

“List firms sharing board members with cj”), factual230

verification tasks (“Did ci acquire ck in 2021?”),231

and quantitative inference questions (“What per-232

centage of cj’s R&D budget funds joint patents233

with ci?”). Ablation studies confirm the necessity234

of this multimodal design (Table 8 in Appendix F).235

We use lightweight adapter modules to parame-236

terize time-varying KGs in which ϕt as additional237

parameters – distinct from and operating in paral-238

lel to the frozen base LLM parameters ψ. These239

adapters constitute only 3.2% of the total parame-240

ter count while enabling temporal adaptation. To241

maintain temporal coherence, high-impact instruc-242

tional pairs from prior periods are retained in a243

rotating buffer, ensuring persistent interdependen-244

cies remain accessible. The complete implementa-245

tion – including temporal alignment protocols and246

adapter initialization – is detailed in Appendix D.247

2.2.2 Market Alignment248

Before the training process, for each news item, we249

retrieve the corresponding KG for the relevant time250

and inject it into the adapter, enabling the model to251

adapt to the time-varying market structure. Impor-252

tantly, each time we fine-tune the backbone of the253

LLM, the adapter, which stores the information of254

the KG, is reinitialized and then kept frozen, ensur-255

ing compatibility between the updated backbone256

parameters and the dynamically injected knowl-257

edge. The adapter, once frozen, functions as a static258

feature extractor that represents market features at259

specific times. Meanwhile, the LLM backbone260

learns to make predictions consistent with the cur- 261

rent market context. During the market alignment 262

phase, FinRipple is primarily based on large-scale 263

reinforcement learning. By carefully designing 264

the feedback mechanism, we integrate the classic 265

CAPM theory with alignment technologies, endow- 266

ing the LLMs with the ability to analyze the rip- 267

ple effect. The propagator Φet,θ’s predictions are 268

validated through CAPM residual analysis. For 269

company cj ∈ Ct+∆t, define: 270{
E[Rt+∆t

j ] = Rf + βj(R
t+∆t
m −Rf )

ϵt+∆t
j = Rt+∆t

j − E[Rt+∆t
j ]

271

where βj =
Cov(Rj ,Rm)

Var(Rm) is estimated via OLS over 272

rolling windows. The propagator’s output Y t+∆t ∈ 273

R|Ct|×d is aggregated to shock magnitudes: 274

Zt+∆t
j =

|Ct|∑
i=1

µt(ci, cj) · Y t+∆t
ij 275

The alignment between predicted shocks Zt+∆t 276

and observed residuals ϵt+∆t is quantified through: 277

R(Z, ϵ) = Z · ϵ
∥Z∥∥ϵ∥︸ ︷︷ ︸

direction match

+λ

∑|Ct+∆t|
j=1 min(|Zj |, |ϵj |)

∥ϵ∥1︸ ︷︷ ︸
magnitude coverage

278

The first term of the above reward function mea- 279

sures how precisely the predicted impacts can ex- 280

plain the CAPM residuals, ensuring the model ac- 281

curately learns the influence magnitude of specific 282

events. At the same time, the regularization con- 283

trolled by the hyperparameter λ maximizes the 284

recall rate to cover as many relevant impacts as 285

possible. The role of the regularization term is to 286

evaluate the extent to which Zt+∆t covers ϵt+∆t by 287

comparing their values element by element (during 288

training, ∆t is set to 1). More training details can 289

be found in Appendix D. 290

2.2.3 FinRipple 291

We collect the reward Rt to fine-tune the LLM 292

backbone using Proximal Policy Optimization 293

(PPO), while keeping the adapter layers frozen. 294

The fine-tuning process follows the pipeline de- 295

scribed below. First, we iterate through all avail- 296

able news articles. For each news item, we inject 297

the KG corresponding to the specific month into the 298

adapter. This allows the model to adapt to the time- 299

varying market structure encoded within the KG. 300

Importantly, every time we fine-tune the model, we 301
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utilize a newly initialized adapter to ensure that the302

updated LLM backbone parameters are compatible303

with the dynamic knowledge injected from the KG.304

Once the KG is injected, we proceed with PPO305

fine-tuning for the LLM backbone. The frozen306

adapter serves as a static market feature at certain307

time, while the LLM backbone learns to make pre-308

dictions that align with the current market context309

reflected in the news and KG data.310

3 Experiment311

3.1 Baselines and Evaluation Metrics312

In this subsection, we provide a brief introduction313

to the benchmarks and metrics for the asset pricing314

task only. For further details and information on315

downstream tasks related to portfolio management,316

please refer to Appendix G.317

Datasets We selected 10,000 news articles about318

S&P 500 companies from January 1, 2020, to319

June 30, 2022, as the test set, while approximately320

110,000 articles from other years were used for321

training. Detailed statistics on the dataset about322

news and KGs can be found in Appendix C.323

Baselines We adopt several mainstream meth-324

ods to demonstrate that FinRipple offers a pow-325

erful solution for this task. The baselines are326

primarily divided into two categories. The first327

category tests the analogical reasoning capabili-328

ties of foundational LLMs, showing that untrained329

LLMs lack the ability to analyze event impact effec-330

tively. The basic Retrieval-Augmented Generation331

(RAG) (Lewis et al., 2020) approach utilizes an332

embedding model to retrieve relevant subgraph in-333

formation from the KG, enabling LLMs to assess334

impacts based on this data. Zero-Shot Inference335

provides instructions to the model along with news336

and concatenated graph information. However, due337

to the limited window size of LLMs, some graph338

data may be incomplete. For companies specifi-339

cally mentioned in the news, a two-hop subgraph340

is concatenated; otherwise, random graph infor-341

mation fills the LLM’s input window. In-Context342

Learning (ICL) (Brown et al., 2020) builds upon343

the Zero-Shot approach by adding an example to344

aid the LLM in reasoning. The second category345

primarily includes fine-tuned variations of FinRip-346

ple, both with and without market alignment. It347

emphasizes that even if the LLM effectively ab-348

sorbs the graph information, without aligning with349

market dynamics, the model still lacks the ability 350

to effectively analyze the impact of events. 351

Evaluation metrics To evaluate the effectiveness 352

of FinRipple in analyzing financial market shocks, 353

we designed an evaluation framework focusing on 354

three metrics: (1) explanatory power on the mean 355

of the residuals, (2) explanatory power on the vari- 356

ance of the residuals, and (3) the refusal-to-answer 357

rate. The residuals, derived from a CAPM regres- 358

sion of stock returns against market returns, repre- 359

sent the portion of returns unexplained by market 360

factors. We use these residuals to assess whether 361

predicted event impacts significantly explain return 362

variance through regression analysis and ANOVA, 363

with p-values indicating statistical significance. Ad- 364

ditionally, the refusal-to-answer rate evaluates the 365

robustness of LLMs in generating meaningful re- 366

sponses in complex, event-driven contexts. 367

3.2 Main Results Analysis 368

As shown in Table 1, both open-source and closed- 369

source LLMs face significant challenges in ana- 370

lyzing the impact of financial market events with- 371

out domain-specific training. The results establish 372

three critical insights into LLMs’ capabilities for 373

financial ripple effect prediction. General-purpose 374

architectures demonstrate systematic limitations in 375

event-driven scenarios, with RAG methods show- 376

ing performance instability due to deficient event- 377

context extraction and ICL providing negligible 378

improvements over zero-shot baselines. The ob- 379

served R2 values below 0.25 across multiple model 380

families confirm these fundamental constraints. 381

A hierarchical pattern emerges in knowledge- 382

enhanced approaches. Basic market information 383

infusion yields marginal gains, while domain- 384

adapted implementations exhibit transformative im- 385

provements. The performance differential between 386

baseline and fine-tuned configurations reveals that 387

market dynamics internalization, not mere data in- 388

jection, drives meaningful capability enhancement. 389

Notably, model scale proves secondary to domain 390

alignment, as evidenced by smaller architectures 391

outperforming larger counterparts post-adaptation. 392

The demonstrated success of targeted domain 393

adaptation over architectural size or general capa- 394

bilities suggests that isomorphic mapping between 395

knowledge systems and market mechanisms en- 396

ables causal reasoning beyond native model capac- 397

ities. This repositions domain-specific alignment 398

as the critical pathway for developing professional- 399
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Model RAG Zero-Shot ICL FinRipple/w-o alignment FinRipple

Coef. p-value R2 Coef. p-value R2 Coef. p-value R2 Coef. p-value R2 Coef. p-value R2

llama2-7b-chat 0.012 0.452 0.009 0.031 0.601 0.012 0.042 0.503 0.018 0.047 0.510 0.019 0.150* 0.030 0.083
llama2-13b-chat 0.103 0.305 0.054 0.079 0.349 0.039 0.098 0.281 0.061 0.102 0.287 0.058 0.242** 0.009 0.193
llama3-8b-instruct 0.091 0.318 0.047 0.072 0.402 0.037 0.107 0.254 0.058 0.110 0.249 0.060 0.278** 0.004 0.251
vicuna-7b-chat 0.118 0.247 0.063 0.102 0.298 0.052 0.129 0.198 0.081 0.125 0.205 0.074 0.330*** 0.001 0.310
vicuna-13b-chat 0.248* 0.032 0.248 0.148 0.149 0.082 0.176 0.098 0.102 0.171* 0.040 0.108 0.395*** 0.000 0.340
Phi-3.5-mini-instruct 0.082 0.395 0.032 0.065 0.498 0.019 0.094 0.347 0.052 0.096 0.340 0.045 0.245** 0.006 0.155
gemma-2-9b-it 0.097 0.298 0.048 0.083 0.354 0.038 0.112 0.245 0.063 0.109 0.252 0.061 0.290*** 0.001 0.215

GPT 3.5 0.083 0.398 0.028 0.062 0.051 0.075 0.056** 0.004 0.112 / / / / / /
GPT o1-preview 0.152 0.342 0.047 0.119 0.392 0.056 0.192 0.229 0.082 / / / / / /
GPT 4o-mini 0.124 0.312 0.042 0.312* 0.013 0.035 0.104 0.879 0.103 / / / / / /

Table 1: Comparison of baselines and FinRipple on LLMs. This table focuses on the explanatory power on the value
of the CAPM residuals. The significance levels are indicated as follows: * p < 0.05, ** p < 0.01, *** p < 0.001.
Note that cells containing a slash (/) indicate that the model does not have open-sourced weights available.

Model RAG Zero-Shot ICL FinRipple/w-o alignment FinRipple

ANOVA-F ANOVA-p ES ANOVA-F ANOVA-p ES ANOVA-F ANOVA-p ES ANOVA-F ANOVA-p ES ANOVA-F ANOVA-p ES

llama2-7b-chat 1.624 0.231 0.089 1.304 0.274 0.068 2.392 0.097 0.108 2.565 0.082 0.092 3.123* 0.033 0.142
llama2-13b-chat 2.175 0.139 0.102 1.782 0.188 0.082 2.634 0.075 0.117 3.052* 0.051 0.105 4.103** 0.012 0.198
llama3-8b-instruct 1.210 0.324 0.085 2.221 0.141 0.099 2.452 0.088 0.112 2.835 0.069 0.101 4.110** 0.010 0.203
vicuna-7b-chat 0.910 0.452 0.071 1.512 0.248 0.074 2.731 0.060 0.115 2.672 0.074 0.097 3.832* 0.019 0.341
vicuna-13b-chat 2.703 0.112 0.115 2.910* 0.058 0.110 3.001* 0.052 0.125 3.932** 0.031 0.119 5.231*** 0.003 0.287
Phi-3.5-mini-instruct 1.563 0.257 0.097 2.334 0.126 0.104 2.815 0.062 0.118 3.014* 0.048 0.110 4.315** 0.009 0.215
gemma-2-9b-it 2.443 0.128 0.109 1.905 0.172 0.091 2.447 0.089 0.095 3.122* 0.039 0.108 4.012** 0.014 0.159

GPT 3.5 1.375 0.301 0.090 1.645 0.223 0.088 2.087 0.129 0.105 / / / / / /
GPT 4.0-preview 0.812 0.443 0.067 2.112 0.145 0.100 2.372 0.098 0.117 / / / / / /
GPT 4o-mini 2.153 0.144 0.099 2.875* 0.059 0.108 3.245 0.061 0.145 / / / / / /

Table 2: Comparison of baselines and FinRipple on various models using ANOVA analysis. ANOVA-F represents
the F-value from the ANOVA test, indicating the ratio of systematic to error variance. ANOVA-p represents the
p-value for statistical significance, with * for p < 0.05, ** for p < 0.01, and *** for p < 0.001. Eta Squared (ES)
represents the correlation ratio, which indicates the proportion of variance explained by the model. Cells with a
slash (/) indicate that the model cannot be fine-tuned using FinRipple due to unavailable open-source weights.

grade financial analytics systems.400

3.3 Portofolio Management401

To further demonstrate the effectiveness of Fin-402

Ripple, we implement a simple intraday trading403

strategy based on the event impact prediction. The404

strategy selects stocks that exhibit the highest pos-405

itive predicted event-driven impacts and creates a406

daily portfolio that rebalances at the end of each407

trading day. Specifically, the steps are as follows:408

1. Each morning, based on the predicted impact409

results, we rank all stocks in our universe by410

the magnitude of their predicted impact.411

2. The top 10% of stocks with the highest pre-412

dicted positive impact are selected for a long413

position, while the bottom 10% with the high-414

est predicted negative impact are shorted.415

3. At the end of the day, the portfolio is rebal-416

anced, and the next day’s selection is based417

on new predictions.418

In accordance with previous portfolio management419

studies (Xu et al., 2024), we selected benchmarks420

including Equal Weighting, Volatility Weighting,421

the Markowitz Model, and Min-Variance Weight-422

ing. Furthermore, we employed multiple evaluation423

metrics, such as daily return (Rd), sharpe ratio (Sa), 424

and maximum drawdown (MDD), as presented in 425

Table 3. To prevent data contamination, the back- 426

test period was set from January 2020 to June 2022, 427

ensuring the result reliability. A detailed introduc- 428

tion to portfolio strategies and their evaluation can 429

be obtained in Appendix G. 430

The results show that accurately predicting the 431

range of impacts from financial market events can 432

significantly mitigate portfolio risks. The strat- 433

egy based on FinRipple outperforms benchmarks 434

in key metrics, including daily return, Sharpe ra- 435

tio, and maximum drawdown, achieving a daily 436

return of 0.052, a Sharpe ratio of 1.153, and a max- 437

imum drawdown of −0.283. In contrast, strategies 438

like Equal Weighting and Min-Variance Weighting 439

exhibit higher maximum drawdowns, indicating 440

greater vulnerability to market shocks without pre- 441

cise impact predictions. Overall, accurate event 442

impact forecasting is crucial for enhancing risk 443

control and improving investment outcomes. 444

3.4 Other Analysis 445

Knowledge Inject Analysis When effectively in- 446

jecting KGs into LLMs, optimizing the model’s 447

understanding of market structures is paramount. 448

One strategy involves using a preprocessing mod- 449
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Benchmark Daily Return (Rd × 10−1) Sharpe Ratio (Sa) Maximum Drawdown (MDD) Win Rate

Equal Weighting 0.034 0.882 -0.351 0.582
Volatility Weighting 0.041 1.021 -0.312 0.643
Markowitz Model 0.029 0.954 -0.292 0.613
Min-Variance Weighting 0.028 0.821 -0.401 0.552
FinRipple 0.052 1.153 -0.283 0.685

Table 3: Summary of backtest results for different portfolio management strategies on S&P 500 constituent stocks
(January 2020 to June 2022). Note that the daily return is presented with a factor of 10−1 for better readability.

         In August 2021, the Biden administration announced a plan to invest $7.3 billion in the construction of 
electric vehicle (EV) charging infrastructure. This initiative aims to establish 50,000 public charging stations 
across the United States by 2030, supporting the widespread adoption of electric vehicles. This effort is part of a 
broader strategy to promote clean energy and reduce carbon emissions, ultimately creating a more environmentally 
friendly transportation system. 

Example of a news event not targeting a specific company:

Figure 3: An example where subgraph search is not applicable. As shown in the figure, this news event impacts the
entire electric vehicle charging infrastructure industry rather than targeting a specific company.

ule to filter potential subgraphs as inputs. The sim-450

plest approach is to traverse one-hop and two-hop451

subgraphs related to a target company. While this452

method may be applicable in some contexts, it fails453

to capture the market’s dynamic complexity, partic-454

ularly in scenarios where events do not specifically455

target individual companies, such as those affecting456

entire supply chains.457

Another strategy is to leverage RAG, which heav-458

ily relies on the performance of embedding models459

designed to recall companies that are “semantically460

similar” to specific queries. However, these em-461

bedding models often overlook the deeper market462

relationships associated with specific events when463

filtering for potentially impacted companies. This464

dependency can lead to significant misjudgments465

or biases in the model’s event impact predictions.466

In contrast, the parameterization approach,467

which transforms KGs into adjustable parameters,468

provides a more comprehensive reflection of mar-469

ket trends and their complex interrelationships.470

This method enables dynamic adjustment and op-471

timization of parameters during training, allowing472

the model to better capture the nonlinear dynamics473

of the market. By employing time-varying adapters,474

the model’s adaptability to changes in market struc-475

ture is enhanced, improving its responsiveness and476

predictive accuracy regarding market dynamic. For477

news events that focus on a specific central com-478

pany, as Figure 4 shows, RAG primarily retrieves479

based on semantic similarity, which often leads to480

a low recall rate when dealing with larger graphs.481

Figure 4: This diagram compares candidate companies
identified by FinRipple and other methods. Due to the
network’s complexity, only selected nodes in the exam-
ples are shown for illustration purposes.

This limitation also affects first- and second-degree 482

nodes, reducing the effectiveness of the retrieval 483

process. Subgraph retrieval without alignment may 484

select a larger number of relevant companies, but it 485

often lacks the necessary logical structure to make 486

meaningful predictions. FinRipple, by contrast, ef- 487

fectively captures not only the relationships among 488

entities but also the logical pathways of impact 489

from the central company, offering a more coherent 490

and precise prediction of event impact. The clear 491

propagation routes observed in FinRipple highlight 492

its ability to model the cascading effects of an event 493

through the network, accurately representing both 494

direct and indirect influences. 495
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Recollection

Analysis

In January 2020, MGM Resorts International sold the MGM Grand and Mandalay Bay to a joint venture including Blackstone 
Group Inc. as part of MGM’s "asset-light" strategy to divest real estate and focus on sports betting and entertainment.

In 2017, Hilton Worldwide (HLT) spun off its real estate assets into Park Hotels & Resorts (PK) REIT to focus on hotel 
management and brand services, simplifying its structure and reducing heavy assets.

Vanguard Group holds shares in MGM. If MGM divests its real estate 
assets, Vanguard may adjust investments in similar sectors, potentially 
affecting Simon Property Group holding comparable real estate assets.

Inference

MGM

Vanguard Group

Vanguard Group

Vanguard Group

Simon Property Group

Cisco Systems

United Technologies

Vanguard Group holds shares in United Technologies. MGM's asset 
divestiture may affect United Technologies’ performance and 
Vanguard's investment returns.

Vanguard Group holds shares in both MGM and Cisco Systems. MGM's 
asset divestiture may reduce demand for network equipment, impacting 
Cisco Systems' revenue and Vanguard's returns on its Cisco holdings.

...

...

...

Figure 5: Using CoT to analyze the reasoning process of vicuna-13b-chat. The model is aligned by FinRipple.

Model Zero-Shot ICL FinRipple

llama2-7b-chat 0.41 ± 0.16 0.25 ± 0.09 0.21 ± 0.11
llama2-13b-chat 0.36 ± 0.18 0.13 ± 0.08 0.15 ± 0.09
llama3-8b-instruct 0.45 ± 0.19 0.11 ± 0.07 0.14 ± 0.08
vicuna-7b-chat 0.39 ± 0.14 0.22 ± 0.10 0.23 ± 0.05
vicuna-13b-chat 0.34 ± 0.15 0.13 ± 0.02 0.10 ± 0.04
Phi-3.5-mini-instruct 0.48 ± 0.21 0.31 ± 0.12 0.26 ± 0.09
gemma-2-9b-it 0.38 ± 0.17 0.23 ± 0.08 0.18 ± 0.06

GPT 3.5 0.32 0.18 /
GPT 4.0-preview 0.14 0.10 /
GPT 4o-mini 0.12 0.09 /

Table 4: Refusal-to-Answer Rate Comparison. The
fluctuating values indicate variation under different tem-
perature settings. This experiment is conducted on our
benchmark, where refusal-to-answer samples are those
that could not be post-processed into valid outputs.

Refusal-to-Answer Rate Analysis: In line with496

our experience, the refusal-to-answer rate largely497

depends on the model’s instruction-following capa-498

bility. As shown in Table 4, zero-shot approaches499

exhibit systematically higher refusal rates with500

greater volatility across model architectures, reflect-501

ing fundamental limitations in interpreting complex502

domain-specific instructions. This pattern holds503

particularly for smaller open-source models, where504

instruction misinterpretation manifests as high vari-505

ance in refusal behavior.506

Closed-source architectures demonstrate supe-507

rior instruction grounding, achieving sub-0.15 re-508

fusal rates through advanced comprehension capa-509

bilities. The FinRipple framework bridges this ca-510

pability gap by transforming instruction semantics511

into market-dynamics-aware representations. Its ef-512

fectiveness correlates with base model competency513

- stronger initial instruction following enables more514

precise financial alignment, as evidenced by order-515

of-magnitude improvements in compliant models.516

Case study We believe that the logical reasoning 517

capability of LLMs lies in their ability to establish 518

connections with previously acquired knowledge 519

or patterns. Therefore, in the inference process, 520

we employ a straightforward Chain-of-Thought 521

(CoT) (Wei et al., 2022a) approach to capture the 522

intricate reasoning pathways, leading to the refined 523

outcomes of FinRipple, as shown in Figure 5. We 524

can clearly observe that the inference process of the 525

LLM, after being aligned with the financial market, 526

is divided into three distinct steps: the first step 527

involves establishing connections with past news, 528

the second step focuses on analysis, and the third 529

step derives the impact pathways. It is worth not- 530

ing that not all news articles can directly establish 531

connections with past knowledge. News that has 532

undergone pre-training or supervised fine-tuning 533

(SFT) is often more likely to be fully recalled and 534

integrated into reasoning processes. 535

4 Conclusion and Limitations 536

In conclusion, we present FinRipple, a novel train- 537

ing framework that empowers LLMs to analyze 538

and predict the ripple effects of sudden events in 539

financial markets. By constructing a time-varying 540

financial KG and integrating it into the LLM using 541

adapters, we align the model with the dynamic mar- 542

ket structure without retraining from scratch. Our 543

rigorous validation showcases FinRipple’s strong 544

potential in real-world applications like asset pric- 545

ing and portfolio construction. 546

However, this approach also has limitations. 547

While the reliance on high-quality, explicit KGs 548

is essential for FinRipple’s effectiveness, it also 549

introduces some costs associated with data acquisi- 550

tion, curation, and maintenance. 551
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A Theoretical Analysis839

A.1 Problem Setting840

Let C = {c1, . . . , cn} be a set of companies and841

Et = {et1, . . . , etm} a set of events at time t. Given:842

True impact function: f(ci, e
t
j) for company ci843

and event etj . Learnable model: fθ(ci, etj) with844

parameters θ. We aim to minimize the empirical845

risk:846

R̂(θ) =
1

n

n∑
i=1

( m∑
j=1

[
f(ci, e

t
j)− fθ(ci, etj)

])2
,847

and bound the expected risk:848

R(θ) = Ee∼D

[
1

n

n∑
i=1

(
f(ci, e)− fθ(ci, e)

)2]
.849

Assumption 1 (Sparsity). For all j ∈ [m] and850

i ∈ [n]:851

(Event Sparsity)
∣∣{i | f(ci, etj) ̸= 0}

∣∣ ≤ k,852

(Company Sparsity)
∣∣{j | f(ci, etj) ̸= 0}

∣∣ ≤ l.853

Assumption 2 (IID Sampling). The events854

{etj}mj=1 are i.i.d. samples from the distribution855

D.856

Assumption 3 (Non Dominant Error). For all i =857

1, . . . , n and j = 1, . . . ,m, we have858

aij ≤ H

 m∑
j=1

aij

 ,859

where H > 0 is a given constant.860

A.2 Generalization Bound861

Theorem 1 (Generalization Bound). Under As-862

sumptions 1-3, if R̂(θ) ≤ B
n for some B > 0, then863

R(θ) ≤ B

n
+ C

kl√
m
,864

where C > 0 is a universal constant independent865

of n,m, k, l.866

Proof. Define the per-instance error aij :=867

f(ci, e
t
j)− fθ(ci, etj). The empirical risk becomes:868

R̂(θ) =
1

n

n∑
i=1

( m∑
j=1

aij

)2
≤ B

n
.869

Combining Assumption 3 and the above inequality, 870

we have: 871

n∑
i=1

m∑
j=1

a2ij ≤ H
n∑

i=1

m∑
j=1

(
aij

m∑
k=1

aik

)

= H
n∑

i=1

 m∑
j=1

aij

2

≤ HB.

872

Define the loss class L = {(e, ci) 7→ a2ij | θ ∈ 873

Θ}. By the Rademacher complexity bound (Mohri 874

and Rostamizadeh, 2008; Yin et al., 2019): 875

Rm(L) ≤
√
kl log n

m
. 876

Applying standard generalization bounds with 877

probability 1− δ, we obtain: 878

R(θ) ≤ R̂(θ) + 2Rm(L) +
√

log(1/δ)

2m
879

≤ B

n
+ 2

√
kl log n

m
+

√
log(1/δ)

2m
880

≤ B

n
+ C

kl√
m
, 881

where constant C absorbs all logarithmic factors 882

and numerical constants. 883

B Related Work 884

B.1 Event studies in finance 885

Event studies have been extensively employed to 886

assess the impact of significant events on asset 887

prices (Sorescu et al., 2017). An event can be a 888

firm announcement (e.g., the appointment of a new 889

CMO) or an announcement made by competitors or 890

regulatory bodies (Acquisti et al., 2006). For exam- 891

ple, Austin (1993) measured the innovative output 892

of patents within the biotechnology industry; Lep- 893

etit et al. (2004) discussed the effects of M&As 894

in the banking industry; and Ramiah et al. (2013) 895

analyzed the stock market reaction to green pol- 896

icy announcements. Due to simplistic assumptions, 897

these methods often fail to capture the complexity 898

and dynamics of modern financial markets. 899

Recognizing these limitations, researchers have 900

explored unified modeling approaches based on 901

learning theory, typically utilizing news sentiment 902

analysis to predict stock price movements (Zhang 903

and Skiena, 2010; Pagolu et al., 2016). Recent ad- 904

vancements include the integration of multi-source 905

information (Ma et al., 2023), the employment of 906
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more advanced embedding models (Kilimci and907

Akyokuş, 2019; Mishev et al., 2020), and the us-908

age of large language models (LLMs) (Wu et al.,909

2023; Yang et al., 2023a). Despite these promising910

developments, existing learning-based approaches911

struggle to fully capture the dynamic, time-varying912

relationships between companies and the evolving913

financial market. Recent efforts on LLMs for finan-914

cial tasks have aimed to overcome these challenges915

through multi-agent systems (Yu et al., 2024b,a;916

Zhang et al., 2024a) and by infusing financial trad-917

ing knowledge(Zhang et al., 2024b). Considering918

the structured, dynamic representations provided919

by knowledge graphs (KGs) (Zhang et al., 2023),920

FinRipple takes an alternative approach by com-921

bining LLMs with financial KGs to capture ever-922

changing market dynamics and explain complex923

intercompany relationships.924

B.2 KG Augmented LLM925

Through the augmentation of knowledge graphs926

(KGs), existing methodologies strive to mitigate927

hallucinations, enhance reasoning capabilities, and928

facilitate the recall of specific facts (Chen et al.,929

2024; Agrawal et al., 2024). Research on leverag-930

ing KGs to enhance LLMs can be broadly catego-931

rized into two main directions (Wen et al., 2024;932

Agrawal et al., 2024): 1) integrating KGs during the933

pre-training phase, and 2) injecting KGs during the934

inference stage. For methods that integrate KGs935

into LLM pre-training, the common practice in-936

volves designing knowledge-aware training objec-937

tives by either incorporating KG entities and rela-938

tions into the training data (Zhang et al., 2019; Sun939

et al., 2021) or applying KG prediction tasks, such940

as link prediction, as additional supervision (Ya-941

sunaga et al., 2022). These methods directly com-942

press KG knowledge into the parameters of LLMs943

through supervision. However, constructing KGs944

containing trillions of words is challenging, and945

these approaches do not address the fundamental946

limitations of LLMs in terms of flexibility, reliabil-947

ity, and transparency.948

Injecting structured symbolic knowledge from949

KGs into LLM inference aims to enhance contex-950

tual understanding, primarily by integrating knowl-951

edge at the input level. Early efforts focused on952

fusing KG triples into the inputs of LLMs through953

attention mechanisms (Liu et al., 2020; Sun et al.,954

2020) or by attaching graph encoders to LLM en-955

coders to process KG information (Wang et al.,956

2019). Subsequent work further adopted graph957

neural networks (GNNs) in parallel with LLMs 958

for joint reasoning (Yasunaga et al., 2021), as 959

well as introducing interactions between text to- 960

kens and KG entities in the intermediate layers of 961

LLMs (Zhang et al., 2022; Yao et al., 2023). 962

C Datasets Details 963

Data preparation is critical in ensuring the qual- 964

ity and relevance of the input information for our 965

model. This phase is bifurcated into two primary 966

components: the collection of news events and the 967

construction of the time-varying financial KG. 968

C.1 News Collection and Processing: 969

The origin 792,684 news articles are sourced 970

from Dow Jones News Services and the Wall 971

Street Journal, and stored as structured XML 972

files. The structured dataset comprises eight 973

variables, including {Publication_datetime, Pub- 974

lisher_name, Region_code, Company_code, Title, 975

Body, Word_count, Action}. Detailed descriptions 976

of these variables are provided in Table 5. Us- 977

ing the ‘Company_code’ variable, we filtered out 978

129,753 news articles about individual S&P 500 979

firms, covering the period from March 8, 2001, 980

to October 30, 2023. After removing the irrele- 981

vant variables, the remaining eight variables and 982

their descriptions are detailed in Table 5. Figure 6 983

(A) illustrates the distribution of news articles over 984

time. Notably, only 2 articles were recorded in 985

2001, while the highest number of articles, 16,103, 986

was collected in 2012. The analysis of word counts 987

reveals that the average number of words per news 988

article is 5,443.85, with the maximum word count 989

reaching 77,086 and the minimum at 23 words. 990

This variation indicates a wide range of article 991

lengths, from brief news briefs to extensive, in- 992

depth reports. Figure 6 (B) presents the top ten 993

companies with the highest number of news ar- 994

ticles in the dataset. This ranking highlights the 995

companies that receive the most media attention, 996

which may be attributed to their market influence, 997

recent activities, or significant corporate actions. 998

We further analyzed the properties of daily news 999

based on the ‘Action’ variable, as shown in Figure 1000

6 (C). 63.94% of the news articles pertain to orga- 1001

nizational adjustments, which include changes in 1002

the company’s business strategy, personnel, or de- 1003

partmental structures. 36.06% of the news articles 1004

involve new initiatives, such as the establishment 1005

of new companies, launching new projects or ser- 1006
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vices, hiring new executives, and introducing new1007

product lines, etc.1008

C.2 Knowledge Graph Construction:1009

We constructed comprehensive financial KGs1010

aimed at capturing the multifaceted interrelation-1011

ships between companies and their potential im-1012

pacts on profitability. Each company is represented1013

as a node, while the interrelationships between1014

companies constitute the edges of the KGs. To1015

achieve this, we integrate various types of relation-1016

ships derived from multiple data sources, ensuring1017

a rich and nuanced representation of corporate in-1018

teractions.1019

• Technical Relevance Relationships. We col-1020

lect detailed and comprehensive information1021

on firms’ patents, including their correspond-1022

ing Cooperative Patent Classification (CPC)1023

codes, from the USPTO (United States Patent1024

and Trademark Office) database to ensure a1025

robust foundation for analyzing technical rel-1026

evance and relationships between companies.1027

Following the methodology outlined in (Lee1028

et al., 2019), we calculate pairwise technical1029

closeness between two firms by measuring the1030

correlation of CPC code distribution across1031

their portfolios. An edge between two compa-1032

nies reflects their patent-based technical simi-1033

larity. The strength of the edge is proportional1034

to the degree of technical similarity, capturing1035

the depth of their technological connections.1036

• Supply Chain Relationships. Information1037

on firms’ supply chains is extracted from the1038

Compustat-Capital IQ database. Nodes rep-1039

resent companies, and edges indicate input-1040

output relationships between companies. The1041

strength of an edge is determined by the finan-1042

cial value of transactions between companies,1043

providing a weighted representation of the in-1044

tensity of their supply chain interactions.1045

• Shared Leadership Relationships. We ob-1046

tain detailed information on firms’ top leaders1047

from the Boardex database. This data high-1048

lights interconnections between companies1049

through shared executive affiliations. Edges1050

denote the number of directors who simulta-1051

neously serve on the boards of two companies.1052

This construction approach quantifies the de-1053

gree of overlap in leadership structures, cap-1054

turing the corporate governance ties between1055

firms. 1056

• Mutual Fund Holding Relationships. Data 1057

on mutual fund holdings of the listed U.S. 1058

firms is sourced from the Thomson/Refintiv 1059

database. Utilizing this information, we con- 1060

struct the holding-based relationships where 1061

an edge between two companies signifies that 1062

they are held by the same mutual fund. This re- 1063

lationship reflects the shared ownership struc- 1064

tures and potential investment linkages among 1065

firms. 1066

By extracting different types of relationships from 1067

these diverse data sources, we are able to construct 1068

a KG reflecting various dimensions of corporate 1069

interactions. In the KG, each company and event is 1070

represented as a node, while the interrelationships 1071

between companies (such as collaborations or com- 1072

petitions) and the impact of events on companies 1073

constitute the edges of the graph. 1074

In the process of constructing the KG, we pay 1075

special attention to associations supported by em- 1076

pirical financial research, such as future technology 1077

linkages evidenced by patent data and upstream- 1078

downstream enterprise relationships. This focus 1079

ensures that the KG not only documents the static 1080

relationships but also delves deeply into how these 1081

relationships influence company performance un- 1082

der varying market conditions and in response to 1083

specific events. The resulting KG provides a com- 1084

prehensive understanding of the interactions among 1085

S&P 500 companies and offers the framework a ro- 1086

bust and comprehensive understanding foundation. 1087

Our KG dataset is divided into training and test- 1088

ing sets. The training set covers the period from 1089

March 2001 to December 2019 (226 months), and 1090

the testing set encompasses the period from January 1091

2020 to June 2022 (30 months). Table 6 presents 1092

detailed statistics for both the training and testing 1093

KGs. It includes the number of contained graphs, 1094

the average number of nodes per graph, the average 1095

number of edges per graph, and the distribution of 1096

relationship multiplicities between nodes. 1097

D FinRipple Details 1098

D.1 The detailed pipeline of FinRipple 1099

The training pipeline of FinRipple is detailed in 1100

Algorithm 1. 1101
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Variable Description

Publication_datetime Date and time of news article publication. It records the exact date
and time when the news article was officially published.

Publisher_name Name of the news publisher. It indicates the media outlet or
organization that published the news article.

Region_code Geographical region code. It specifies the geographic location
relevant to the company’s operational area.

Company_code Unique identifier or code for the relevant company. A unique code
that identifies the company mentioned in the news.

Title Title of news article. A brief headline that summarizes the main
topic or event described in the news article.

Body The detailed news content.
Word_count Number of total word count in the body of the news article.

Action Type of corporate action mentioned in the news. Its value can be
‘rep’ or ‘add’.

Table 5: The variables in the collected news articles dataset.

2012: 16,103

2003: 16

(A) Number of news articles per year (C) Proportions ‘Action’ types(B) Companies with top 10 news count
2023

7020
6355

6188
6004

5052

5027
4434

3632

0 70003000
Goldman Sachs Group Inc.
JPMorgan Chase & Co.
Walmart Inc.
Morgan Stanley
Wells Fargo&Co.
Textron Inc.
Citigroup Inc.
Southern California Edison
Bank of America Corporation

2001 2006 20182012

Addition

36.06%

Replacement

63.94%

Merrill Lynch

Test Set

Figure 6: The statistics results of our collected news articles. (A) demonstrates the temporal distribution of news
articles, (B) displays the company rankings with the top ten news counts, and (C) shows the properties of different
corporate actions.

D.2 The prompts used in FinRipple1102

The following is a detailed prompt designed in Fin-1103

Ripple to guide the LLM for financial event analy-1104

sis. The LLM is instructed to evaluate the impact of1105

news on companies and provide a structured output.1106

The news report will be placed in the “[INSERT1107

MARKET NEWS REPORT]” section. The LLM1108

is expected to determine the affected companies,1109

classify the impact type, and assign an impact score1110

from -10 to +10. A high positive or negative score1111

indicates the strength of the potential market effect.1112

The output should include specific company names,1113

and detailed descriptions, and adhere strictly to the1114

given format for consistency and clarity. An exam-1115

ple is provided within the prompt to illustrate the1116

expected response.1117

Instruction:1118

You are a financial event analyst focused on1119
analyzing the potential impacts of news reports1120

on the market. Based on the given news content 1121
and current market structure, evaluate and 1122
output the affected companies, the type of 1123
impact (positive, negative, or neutral), and a 1124
score representing the strength of the impact ( 1125
ranging from -10 to +10, where -10 indicates a 1126
very negative impact, and +10 indicates a very 1127
positive impact). Provide specific company names 1128
and event descriptions for clarity and utility. 1129
Here is an example. 1130

Input Example: 1131

"Company A announces a partnership with Company 1132
B to jointly develop new technology, expected to 1133
significantly enhance production efficiency and 1134
increase market share." 1135

Output Format Example: 1136

{ 1137
"impact_analysis": { 1138
"affected_companies": [ 1139
{ 1140
"name": "Company A", 1141
"impact_type": "positive", 1142
"impact_score": 8 1143
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Graphs
Avg. Nodes
per Graph

Avg. Edges
per Graph

Single
Relationship (%)

Dual
Relationships (%)

Triple
Relationships (%)

Training set 226 6621.6018 13,844,186 92.7923 7.1956 0.0104
Testing set 30 6452.1667 14,228,088 95.0923 4.9007 0.0053

Table 6: KG Data Statistics

},1144
{1145
"name": "Company B",1146
"impact_type": "positive",1147
"impact_score": 61148

}1149
],1150
"analysis": "The partnership between Company1151
A and Company B is expected to enhance their1152
technological capabilities and market1153
competitiveness, likely increasing their1154
revenues and stock prices.1155

}1156
}1157

Input (you need to analyze):1158

[INSERT MARKET NEWS REPORT]1159

Provide your result, strictly following the output1160

format in the Example, without any additional1161

output.1162

E Asset Pricing Models1163

Asset pricing models are essential tools in finance1164

for understanding the relationship between risk and1165

expected return. This appendix briefly introduces1166

three prominent models: CAPM, Fama-French1167

Three-Factor Model (Fama3), and Fama-French1168

Five-Factor Model (Fama5).1169

E.1 Capital Asset Pricing Model1170

The CAPM describes the relationship between sys-1171

tematic risk and expected return. The expected1172

return of an asset is proportional to its beta, which1173

measures the sensitivity of the asset’s returns to1174

market returns. The formula for CAPM is:1175

E(Ri) = Rf + βi (E(Rm)−Rf ) ,1176

where E(Ri) represents the asset’s expected return,1177

Rf is the risk-free rate, βi is the asset’s beta that1178

measures its sensitivity to market movements, and1179

E(Rm) is the expected return of the market.1180

E.2 Fama-French Three-Factor Model1181

The Fama3 expands upon CAPM by including two1182

additional factors: size and value. The size pre-1183

mium, denoted as Small Minus Big (SMB), cap-1184

tures the excess return of small-cap stocks over1185

large-cap stocks, while the value premium, denoted 1186

as High Minus Low (HML), captures the excess re- 1187

turn of high book-to-market stocks over low book- 1188

to-market stocks. The model is represented as: 1189

E(Ri) = Rf + βi (E(Rm)−Rf )

+ s× SMB + h× HML,
1190

where s and h represent the sensitivities of the 1191

asset’s returns to the SMB and HML factors, re- 1192

spectively. 1193

E.3 Fama-French Five-Factor Model 1194

The Fama5 extends Fama3 by adding two more 1195

factors: profitability and investment. The prof- 1196

itability premium, denoted as Robust Minus Weak 1197

(RMW), captures the excess return of firms with 1198

high profitability over those with low profitability. 1199

The investment premium, denoted as Conservative 1200

Minus Aggressive (CMA), captures the excess re- 1201

turn of firms with conservative investment policies 1202

over those with aggressive policies. The updated 1203

model is: 1204

E(Ri) = Rf + βi (E(Rm)−Rf )

+ s× SMB + h× HML

+ r × RMW + c× CMA,

1205

where r and c represent the sensitivities to the 1206

RMW and CMA factors, respectively. 1207

E.4 Residuals and Market Anomalies 1208

Residuals of these models represent the portion 1209

of an asset’s return not captured by the included 1210

risk factors. By analyzing residuals, investors can 1211

identify abnormal returns that the models fail to 1212

explain. These anomalies often arise due to market 1213

inefficiencies, information asymmetries, or other 1214

idiosyncratic risks not accounted for by the system- 1215

atic factors in the models. Understanding residuals 1216

helps investors gain insights into potential mispric- 1217

ing and hidden variables in the market, revealing 1218

opportunities or risks that standard models over- 1219

look. 1220
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F Other Experimental Results1221

F.1 The accuracy of KG injection1222

We used a random subgraph of 100 nodes for train-1223

ing, with an 8:2 split between the training and test-1224

ing datasets. The results indicate that all three types1225

of questions are beneficial. Note that some ques-1226

tions may not be answered correctly if the informa-1227

tion needed is not fully covered by the training set.1228

If all information is covered, our tests show that the1229

adapter’s memory accuracy reaches approximately1230

90%. We constructed three types of questions by1231

traversing the KG, as shown in Table 7. The first1232

category, Retrieval Questions, focuses on identify-1233

ing specific relationships between companies, such1234

as shared CEOs or upstream-downstream connec-1235

tions. The second category, Factual Judgments,1236

is used to determine whether certain relationships1237

exist, such as common fund holdings or supply1238

chain transactions. Finally, the third category, Fac-1239

tual Questions, aims to explore the details of re-1240

lationships between entities, such as the nature of1241

technical similarities or similarity scores.1242

F.2 Evalidation on Other Asset Pricing1243

Models1244

In this subsection, we also evaluate FinRipple’s1245

ability to explain the residuals of other models in-1246

cluding Fama3 and Fama5. Based on our experi-1247

mental findings, as shown in Table 9 and Table 10,1248

we observe that the explanatory difficulty of Fama31249

and Fama5 residuals gradually decreases. This re-1250

duction is primarily due to the stepwise exclusion1251

of interfering factors from the residuals. The contri-1252

butions of different variables were compared using1253

standardized regression coefficients, as shown in1254

Figure 7. The results reveal that these factors ex-1255

hibit distinct cyclical patterns. To account for these1256

dynamics, we constructed training objectives based1257

on the more challenging CAPM model. Although1258

this approach increases the optimization difficulty,1259

it ensures stable performance even when certain1260

factors become less effective.1261

G Baselines Details 1262

G.1 Asset Pricing 1263

G.1.1 Zero Shot 1264

Zero-shot inference enables the model to analyze 1265

a wider range of market scenarios without relying 1266

on specific examples. The prompt used is shown 1267

as following: 1268

Instruction: 1269

You are a financial event analyst focused on 1270
analyzing the potential impacts of news reports 1271
on the market. Based on the given news content 1272
and current market structure, evaluate and 1273
output the affected companies (TICKER in SP500), 1274
the type of impact (positive, negative, or 1275
neutral), and a score representing the strength 1276
of the impact (ranging from -10 to +10, where 1277
-10 indicates a very negative impact and +10 1278
indicates a very positive impact). Provide 1279
specific company names and event descriptions 1280
for clarity and utility. A market news report, 1281
company's knowledge graph information, specific 1282
requirements and output format will be provided 1283
below. 1284

Market news report: 1285

[INSERT MARKET NEWS REPORT] 1286

Knowledge Graph (current market structure 1287

you can refer to): 1288

[INSERT KNOWLEDGE GRAPH] 1289

Requirement: 1290

"Provide your result, strictly following the 1291
output format below, without any additional 1292
output." 1293

Output Format: 1294

"Please provide your response in a structured 1295
JSON format. The JSON should have a top-level 1296
object with a single key 'impact_analysis'. The 1297
value of 'impact_analysis' should be an object 1298
containing two keys: 'affected_companies': An 1299
array of objects: 'name': The company's name ( 1300
string) 'impact_type': The type of impact, e.g. 1301
'positive' or 'negative' (string) 'impact_score': 1302
A numerical score representing the impact ( 1303
integer) 'analysis': A string containing a brief 1304
analysis of the overall impact. Please ensure 1305
that the JSON is properly formatted and uses 1306
double quotes for strings. 1307

1308
Here's an example of how the structure should 1309
look: 1310
{ 1311

'impact_analysis': { 1312
'affected_companies': [ 1313

{ 1314
'name': 'Company Name', 1315
'impact_type': 'impact type', 1316
'impact_score': score 1317
}, 1318
... 1319

], 1320
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Problem Classification Typical Questions

Retrieval
Questions

“Which companies have a common CEO relationship with {}?”
“Which companies have an upstream-downstream relationship
with {}?”
“Which companies have multiple relationships with {}?”
“Which companies have one relationship with {}?”
“Which companies have one relationship with {}?”

Factual
Judgments

“Are there supply chain upstream and downstream transactions
between {} and {}?”
“Are the companies {} and {} held by the same fund?”
“Are the companies {} and {} held by the same fund?”

Factual
Questions

“What is the relationship between {} and {}?”
“What is the technical similarity between {} and {}?”
“What is the technical similarity score between {} and {}?”

Table 7: The three classes of instruction questions generated from KGs.

Model All w/o RQ w/o FJ w/o FQ

Gemma-2b-it 84.6% 38.5% 15.4% 30.8%
Gemma-7b-it 69.2% 30.8% 46.2% 46.2%
Llama-13b-chat 61.5% 7.7% 15.4% 23.1%

Table 8: Ablation study results for the three classes of
questions: Retrieval Questions (RQ), Factual Judgments
(FJ) and Factual Questions (FQ). The above results are
averaged over five shuffles of the subgraph.

'analysis': 'Your analysis text here.'1321
}1322

}"1323

G.1.2 RAG and ICL1324

To effectively analyze financial events and their1325

market impact, we employ an ICL baseline. This1326

method provides the model with a concrete exam-1327

ple, demonstrating the expected input format, anal-1328

ysis process, and output structure. By presenting a1329

sample scenario and its corresponding analysis, we1330

establish a clear framework for the model to follow.1331

For the RAG method, we use text-embedding-ada-1332

002 as our embedding model, with the same prompt1333

template as used in ICL. The following prompt il-1334

lustrates this few-shot learning technique:1335

Instruction:1336

You are a financial event analyst focused on1337
analyzing the potential impacts of news reports1338
on the market. Based on the given news content1339
and current market structure, evaluate and1340
output the affected companies (TICKER in SP500),1341
the type of impact (positive, negative, or1342
neutral), and a score representing the strength1343
of the impact (ranging from -10 to +10, where1344

-10 indicates a very negative impact, and +10 1345
indicates a very positive impact). Provide 1346
specific company names and event descriptions 1347
for clarity and utility. Here is an example. 1348

Input Example: 1349

"Company A announces a partnership with Company 1350
B to jointly develop new technology, expected to 1351
significantly enhance production efficiency and 1352
increase market share." 1353

Output Format Example: 1354

{ 1355
"impact_analysis": { 1356
"affected_companies": [ 1357
{ 1358
"name": "Company A", 1359
"impact_type": "positive", 1360
"impact_score": 8 1361

}, 1362
{ 1363
"name": "Company B", 1364
"impact_type": "positive", 1365
"impact_score": 6 1366

} 1367
], 1368
"analysis": "The partnership between Company 1369
A and Company B is 1370
expected to enhance their technological 1371
capabilities and market 1372
competitiveness, likely increasing their 1373
revenues and stock prices. 1374

} 1375
} 1376

Input (you need to analyze): 1377

"Company A announces a partnership with Company 1378
B to jointly develop new technology, expected to 1379
significantly enhance production efficiency and 1380
increase market share." 1381

Knowledge Graph (current market structure 1382

you can refer to): 1383
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Model RAG Zero-Shot ICL FinRipple/w-o alignment FinRipple

Coef. p-value R2 Coef. p-value R2 Coef. p-value R2 Coef. p-value R2 Coef. p-value R2

llama2-7b-chat 0.021 0.482 0.013 0.040 0.657 0.021 0.058 0.287 0.145 0.090 0.520 0.152 0.310* 0.021 0.275
llama2-13b-chat 0.132 0.405 0.074 0.095 0.445 0.065 0.158 0.245 0.138 0.182 0.314 0.195 0.445* 0.013 0.390
llama3-8b-instruct 0.102 0.365 0.051 0.067 0.380 0.030 0.088 0.370 0.099 0.211 0.402 0.178 0.370 0.007 0.400
vicuna-7b-chat 0.158 0.235 0.095 0.112 0.400 0.078 0.215 0.142 0.134 0.250 0.188 0.256 0.515*** 0.001 0.485
vicuna-13b-chat 0.505** 0.028* 0.145 0.172 0.210 0.123 0.290* 0.031 0.255 0.365 0.175 0.342 0.610*** 0.001 0.550
Phi-3.5-mini-instruct 0.097 0.512 0.032 0.056 0.670 0.026 0.075 0.470 0.086 0.153 0.395 0.202 0.285** 0.005 0.335
gemma-2-9b-it 0.112 0.298 0.061 0.089 0.423 0.047 0.178 0.285 0.144 0.265 0.305 0.330 0.395*** 0.001 0.445

GPT 3.5 0.060 0.455 0.018 0.045 0.550 0.039 0.069* 0.018 0.106 / / / / / /
GPT 4.0-preview 0.165 0.328 0.045 0.119 0.389 0.063 0.195 0.512 0.138 / / / / / /
GPT 4o-mini 0.198 0.215 0.051 0.145 0.312 0.055 0.155 0.209 0.121 / / / / / /

Table 9: Differences in the explanatory power of Fama3 residuals by baselines and FinRipple applied to LLMs.
Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001. Cells with ‘/‘ indicate unavailable model parameters.

Model RAG Zero-Shot ICL FinRipple/w-o alignment FinRipple

Coef. p-value R2 Coef. p-value R2 Coef. p-value R2 Coef. p-value R2 Coef. p-value R2

llama2-7b-chat 0.018 0.489 0.014 0.042 0.670 0.025 0.078 0.260 0.152 0.127 0.445 0.185 0.345** 0.007 0.300
llama2-13b-chat 0.155* 0.039 0.082 0.091 0.435 0.068 0.180 0.428 0.150 0.225 0.309 0.220 0.500*** 0.001 0.420
llama3-8b-instruct 0.112 0.368 0.059 0.075 0.385 0.034 0.103 0.330 0.109 0.265 0.306 0.205 0.405*** 0.001 0.440
vicuna-7b-chat 0.170* 0.021 0.101 0.125 0.370 0.087 0.250 0.303 0.145 0.288 0.107 0.280 0.565*** 0.001 0.525
vicuna-13b-chat 0.540** 0.010 0.160 0.190* 0.042 0.148 0.320 0.315 0.260 0.420 0.111 0.375 0.655*** 0.000 0.590
Phi-3.5-mini-instruct 0.105 0.495 0.038 0.050 0.690 0.032 0.090 0.460 0.095 0.185 0.422 0.230 0.330** 0.004 0.360
gemma-2-9b-it 0.140* 0.028 0.068 0.087 0.425 0.048 0.205 0.727 0.155 0.305 0.267 0.360 0.430*** 0.001 0.485

GPT 3.5 0.070 0.435 0.023 0.038 0.585 0.039 0.085 0.322 0.120 / / / / / /
GPT 4.0-preview 0.180* 0.031 0.050 0.125 0.390 0.062 0.220 0.606 0.150 / / / / / /
GPT 4o-mini 0.205 0.629 0.058 0.145 0.315 0.061 0.175 0.703 0.135 / / / / / /

Table 10: Differences in the explanatory power of Fama5 residuals by baselines and FinRipple applied to LLMs.
Significance levels: * p < 0.05, ** p < 0.01, *** p < 0.001. Cells with ‘/‘ indicate unavailable model parameters.

(Company A, Company B, supplier)1384
(Company C, Company D, subsidiary)1385
(Company E, Company F, competitor)1386
(Company G, Company H, partner)1387
(Company I, Company J, investor)1388
(Company Q, Company R, technology provider) ...1389

Provide your result, strictly following the output1390

format in the example, without any additional1391

output.1392

G.2 Statistical Metrics1393

This subsection introduces key statistical metrics1394

used to evaluate the explanatory power of indepen-1395

dent variables on the dependent variable, including1396

Coefficient (Coef.), p-value, Coefficient of Deter-1397

mination (R2), ANOVA F-statistic (ANOVA-F),1398

ANOVA p-value (ANOVA-p), and Effect Size (η2).1399

Coefficient (Coef.) The coefficient (βi) repre-1400

sents the estimated effect of an independent vari-1401

able Xi on the dependent variable Y , holding all1402

other variables constant. The regression equation is1403

given by Y = β0+β1X1+β2X2+· · ·+βnXn+ϵ,1404

where ϵ is the error term.1405

p-value The p-value indicates the statistical sig-1406

nificance of each coefficient, measuring the prob-1407

ability of observing the estimated effect under the1408

null hypothesis that the coefficient is zero. A1409

smaller p-value suggests stronger evidence against 1410

the null hypothesis. 1411

Coefficient of Determination (R2) The Coeffi- 1412

cient of Determination (R2) measures the propor- 1413

tion of variance in the dependent variable that is 1414

explained by the independent variables. It is cal- 1415

culated as R2 = 1−
∑n

i=1(yi−ŷi)
2∑n

i=1(yi−ȳ)2
, where yi is the 1416

observed value, ŷi is the predicted value, and ȳ is 1417

the mean of the observed values. 1418

ANOVA F-statistic (ANOVA-F) The ANOVA 1419

F-statistic tests whether the regression model ex- 1420

plains a significant proportion of variance in the 1421

dependent variable compared to a model with no 1422

predictors. It is calculated as F =
MSregression
MSresidual

, where 1423

MSregression is the mean square due to regression, 1424

and MSresidual is the mean square due to residual 1425

error. Higher values of F suggest a better fit of the 1426

model. 1427

ANOVA p-value (ANOVA-p) The ANOVA p- 1428

value indicates the statistical significance of the 1429

F-statistic, reflecting the probability of obtaining 1430

the computed F-statistic under the null hypothesis 1431

that the regression model has no explanatory power. 1432

Effect Size (η2) Effect Size (η2) represents the 1433

proportion of the total variance in the dependent 1434
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Figure 7: Variable importance of Fama-French 5 factors on 2018 returns.

variable that is attributable to an independent vari-1435

able or a set of independent variables. It is calcu-1436

lated as η2 = SSbetween
SStotal

, where SSbetween is the sum1437

of squares between groups, and SStotal is the total1438

sum of squares. This metric helps determine the1439

magnitude of the effect of the independent vari-1440

ables.1441

G.3 Portfolio Management1442

Portfolio management involves the selection and1443

optimization of asset allocation to maximize the1444

return within a given investment process (Hu and1445

Lin, 2019). In this section, we describe the im-1446

plementation details of five benchmark portfolio1447

strategies: Equal Weighting, Volatility Weighting,1448

Markowitz Model, Min-Variance Weighting, and1449

FinRipple. These benchmarks are evaluated using1450

metrics such as Daily Return (Rd), Sharpe Ratio1451

(Sa), Maximum Drawdown (MDD), and Win Rate.1452

In our experiments, we use historical data from the1453

past 30 days as input. To simplify the comparison1454

and ensure fairness, tax rates are set to zero across1455

all scenarios.1456

G.3.1 Equal Weighting 1457

The Equal Weighting strategy assigns an equal 1458

weight to each asset in the portfolio: 1459

wi =
1

N
, i = 1, 2, . . . , N 1460

where wi represents the weight of asset i, and N is 1461

the total number of assets. 1462

G.3.2 Volatility Weighting 1463

The Volatility Weighting strategy allocates weights 1464

inversely proportional to the historical volatility of 1465

each asset: 1466

wi =
1
σi∑N

j=1
1
σj

, i = 1, 2, . . . , N (1) 1467

where σi is the historical volatility (standard de- 1468

viation) of asset i. 1469

G.3.3 Markowitz Model 1470

The Markowitz Model, also known as the Mean- 1471

Variance Optimization Model, aims to maximize 1472

expected return for a given level of risk or minimize 1473

risk for a given expected return: 1474

max
w

wTµ− λ

2
wTΣw

s.t. 1Tw = 1, w ≥ 0
1475
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where w is the vector of portfolio weights, µ is the1476

expected return vector, Σ is the covariance matrix1477

of asset returns, and λ = 1 is the risk aversion pa-1478

rameter, representing a moderate balance between1479

risk and return.1480

G.3.4 Min-Variance Weighting1481

The Min-Variance Weighting strategy seeks to con-1482

struct a portfolio with the lowest overall risk:1483

min
w

wTΣw1484

s.t. 1Tw = 1, w ≥ 01485

where Σ is the covariance matrix of asset returns.1486

G.4 Metrics of Portofolio Management1487

The benchmarks are evaluated using the following1488

metrics:1489

Daily Return (Rd) The daily return measures1490

the return of an asset over one day, calculated as1491

Rd = Pt−Pt−1

Pt−1
, where Pt is the asset price at time1492

t, and Pt−1 is the price on the previous trading day.1493

Sharpe Ratio (Sa) The Sharpe ratio measures1494

investment performance compared to a risk-free1495

asset, adjusted for risk, using the formula Sa =1496
R̄a−Rf

σa
, where R̄a is the average annual return, Rf1497

is the risk-free rate, and σa is the standard deviation1498

of the return.1499

Maximum Drawdown (MDD) Maximum Draw-1500

down represents the maximum observed loss from1501

a peak to a trough of an asset’s price, given by1502

MDD = maxt∈[1,T ]

(
maxj∈[1,t] Pj−Pt

maxj∈[1,t] Pj

)
, where Pt1503

is the price at time t, and T is the total time period1504

considered.1505

Win Rate (Wr) Win Rate represents the percent-1506

age of time periods in which the portfolio achieves1507

a positive return, defined as Wr =
∑T

t=1 I(Rt>0)
T ×1508

100%, whereRt is the return at time t, T is the total1509

number of time periods considered, and I(Rt > 0)1510

is an indicator function that equals 1 if Rt > 0, and1511

0 otherwise.1512

H Reproducibility Statement 1513

H.1 Hyperparameter Selection 1514

We conducted hyperparameter tuning on a small- 1515

scale dataset to determine the optimal settings for 1516

minimizing the refusal-to-answer rate. The re- 1517

sulting hyperparameter settings are shown in Ta- 1518

ble 11, aiming to reduce the likelihood of model 1519

refusal while maintaining high response quality. 1520

In the reward function, λ is set to 0.1. We used 1521

LoRA (Low-Rank Adaptation) (Hu et al., 2021) 1522

to fine-tune the model, with key settings including 1523

lora_alpha = 16, lora_dropout = 0.1, and rank 1524

r = 64. 1525

Model Temperature Top-k Top-p

llama2-7b-chat 0.8 40 0.85
llama2-13b-chat 0.7 50 0.90
llama3-8b-instruct 0.7 30 0.80
vicuna-7b-chat 0.8 45 0.88
vicuna-13b-chat 0.7 50 0.92
Phi-3.5-mini-instruct 0.9 35 0.86
gemma-2-9b-it 0.9 25 0.83
GPT 3.5 0.8 - 0.80
GPT 4.0-preview 0.8 - 0.85
GPT 4o-mini 0.7 - 0.87

Table 11: Hyperparameter settings.

H.2 Computational Resources and Code 1526

Availability 1527

The training and inference results required a total of 1528

over 9000 GPU hours using 25 A800 (80G) GPUs. 1529

We will release a user-friendly training framework 1530

along with the complete benchmark dataset in the 1531

future. 1532
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Algorithm 1 Training Pipeline of FinRipple

Training Process:
Input: KG s Gt = {G1, . . . , Gn}, News data N t = {N1, . . . , Nm}, Pretrained LLM backbone fθ,

Adapters gϕ
Output: Updated LLM backbone parameters θ∗

1: for each time step t do
2: Initialize an empty set I = {}, collect the KG Gt = {Ct, Rt} and news data N t = {nt1, . . . , ntm}.
3: for each article ntj ∈ N t do
4: Inject the corresponding KG Gt into the adapter gϕ:

gtϕ ← gϕ(G
t), fϕθ = gtϕ + fθ

5: Inference the impact Y t+∆t
ij based on ntj :

Y t+∆t
ij ← fϕθ (n

t
j), I ← I ∪ Y t

ij

6: Compute the CAPM residuals:

ϵt+∆t
i = Rt+∆t

i − E(Rt+∆t
i ), E(Rt+∆t

i ) = Rf + βi(R
t+∆t
m −Rf )

7: Calculate the reward at time t:

R(Zt+∆t, ϵt+∆t) =
Zt+∆t · ϵt+∆t

∥Zt+∆t∥∥ϵt+∆t∥
+ λ

∑
imin(Zt+∆t

i , ϵt+∆t
i )

∥ϵt+∆t∥1
where Zt+∆t

j =
n∑

i=1

Y t+∆t
ij

8: end for
9: Update θ based on accumulated rewards.

θ ← θ + αEt

[
∇θ log f

ϕ
θ (at|n

t
j)
fϕθ (at|n

t
j)

fϕθold
(at|ntj)

Ât

]
where Ât = Rt − V (ntj)

10: end for
Inference Process:
Input: new event enew and the corresponding KG Gtnew .

1: Inject Gtnew into the frozen adapter gϕ:

gϕ ← gϕ(G
tnew)

2: Use the fine-tuned LLM backbone fθ∗ to predict the impact of the new event:
Y t = fθ∗(G

tnew , enew) where Y t represents the predicted impact of enew on the companies Ct.
3: Output the predicted impact matrix Y t.
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