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ABSTRACT

Constructing accurate and targeted simulation scenes that are both visually and
physically realistic is a significant practical interest in domains ranging from
robotics to computer vision. However, this process is typically done largely by
hand - a graphic designer and a simulation engineer work together with prede-
fined assets to construct rich scenes with realistic dynamic and kinematic prop-
erties. While this may scale to small numbers of scenes, to achieve the general-
ization properties that are requisite of data-driven machine learning algorithms,
we require a pipeline that is able to synthesize large numbers of realistic scenes,
complete with “natural” kinematic and dynamic structure. To do so, we develop
models for inferring structure and generating simulation scenes from natural im-
ages, allowing for scalable scene generation from web-scale datasets. To train
these image-to-simulation models, we show how effective generative models can
be used in generating training data, the network can be inverted to map from real-
istic images back to complete scene models. We show how this paradigm allows
us to build large datasets of scenes with semantic and physical realism, enabling a
variety of downstream applications in robotics and computer vision. More visual-
izations are available at: https://sites.google.com/view/urdformer/home
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Figure 1: Our method uses generative models in a “Forward” process to produce struc-
turally consistent realistic images from procedurally generated simulation content. We
then use these generated simulation/image pairs to train an “Inverse” process that is able
to estimate the underlying structure of diverse real-world images.

1 INTRODUCTION

Simulation has become a cornerstone of a plethora of applied machine learning problems - from the
natural sciences such as physics, chemistry and biology (Jia et al., 2021; Alber et al., 2019) to prob-
lems in applications such as robotics (Collins et al., 2021; Narang et al., 2022) or computer vision
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(Müller et al., 2018). Simulation offers the dual advantages of scalable and cheap data collection and
an easy way to encode domain-specific prior knowledge into end-to-end machine learning problems.
This is particularly important for data-scarce problems such as robotics, where collecting real data
can lead to costly and unsafe failures or may require expensive human supervision. Critical to each
of these endeavors is a rich and accurate simulation environment, complete with complex scene lay-
outs and kinematic structure. For instance, advances in robotic mobile manipulation in the Habitat
simulator (Szot et al., 2021), are critically dependent on the Matterport dataset for realistic scenes
(Yadav et al., 2023). The creation and curation of these simulation scenes is an often overlooked
part of the process.

The de-facto process for generating simulation content is either manual (Kolve et al., 2017) or
procedural (Deitke et al., 2022). The manual process for creating simulation scenes involves the
algorithm designer working to characterize, identify, and model a particular real-world scene, a
painstaking and impractical process. This leads to content that is not very diverse due to the oner-
ous human effort required. On the other hand, rule-based procedural generation methods (Deitke
et al., 2022; Raistrick et al., 2023) have seen success in particular machine learning applications
such as embodied navigation, but often struggle to capture the natural complexity of the real world.
Moreover, the procedural generation process is not controllable, making it hard to generate simu-
lation content corresponding to a particular real-world environment. The inability of the current
status quo in the generation of simulation content - both procedural generation and manual creation,
makes apparent the necessity of a targeted technique for scalable content creation in simulation that
is able to retain realistic kinematic and semantic structure.

What are the desiderata for such a content creation method? To enable a variety of downstream
use cases, scalable content creation in simulation must be (1) realistic enough such that inferences
made in simulation transfer back to the real world (2) diverse in a way that captures natural statistics
so as to enable learning generalizable models and policies (3) controllable in a way that allows for
targeted generation of particular scenes of interest. While a variety of methods for scene generation
and inverse graphics (Kulkarni et al., 2015; Lunz et al., 2020; Jaques et al., 2020) satisfy one or
more of these criteria, to the best of our knowledge, it has proven challenging to develop content
creation methods that satisfy them all. To generate content of this nature, we develop methods that
map directly from isolated real-world images to corresponding simulation content (expressed as a
Unified Robot Description File (URDF)) that could plausibly represent the semantics, kinematics,
and structure of the scene. This is an inverse mapping problem going from real-world images to
kinematically accurate, interactive simulation. While inverse modeling problems in the literature
have been tackled with data-driven techniques such as supervised learning, in this case, a large-scale
paired dataset of realistic images and their corresponding simulation environments does not readily
exist in the literature.

Our key idea is that we can generate a suitable dataset for inverse modeling from images to plausi-
ble simulations by leveraging controllable text-to-image generative models (Rombach et al., 2022).
From a set of procedurally or manually constructed scenes, we can generate realistic images that
are representative of that particular simulation scene. This paired dataset of simulation scenes and
corresponding realistic images can then be inverted via supervised learning to learn a model that
maps from realistic images directly to plausible simulation environments. This learned model can
generate realistic and diverse content directly from real-world images mined from the web with-
out any additional annotation. The resulting models can be used in several use cases - (1) diverse
generation: generating a large and diverse set of realistic simulation environments that correspond
directly to real-world images, or (2) targeted generation: generating a simulation environment (or
narrow distribution of environments) corresponding to a particular set of desired images.

2 RELATED WORK

This work is related to a large body of work in inverse-graphics, procedural generation, 3-D recon-
struction and data augmentation. We provide some context on these related fields below.

Inverse-Graphics: Inverse graphics is a well-studied and rich field of study looking to infer the
properties of a scene from images (or videos) of the scene of interest. A variety of work focuses
on inferring scene properties such as geometry, lighting, and other geometric properties from single
images (Battaglia et al., 2013). This work has both been optimization-based (Agarwal et al., 2011)
and learning-based(Park et al., 2019). In a similar vein, a rich body of work (Samavati & Soryani,
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2023) focuses on mesh reconstruction and novel view synthesis using a variety of techniques such
as implicit neural fields (Mildenhall et al., 2021; Park et al., 2020; Zhang et al., 2020), Gaussian
splatting (Kerbl et al., 2023; Luiten et al., 2023), differentiable rendering (Nguyen-Phuoc et al.,
2018; Kato et al., 2020; Liu et al., 2018) amongst many other techniques. Importantly, the focus
of many of these works on inverse graphics has been on geometric reconstruction rather than our
focus on scene-level simulation construction complete with kinematic and semantic structure like
object relationships and articulation. There have been a number of efforts in inferring physical
properties such as articulation (Xu et al., 2019; 2022; DeMoss et al., 2023), friction and surface
properties (Wu et al., 2017; Piloto et al., 2022; Kubricht et al., 2017; de Avila Belbute-Peres et al.,
2018), although these typically require either interaction or video access. In contrast, our work
focuses less on exact geometry reconstruction but rather on generating correct scene statistics at
the articulation/kinematics/positioning level for entire scenes or complex objects from single RGB
images. As opposed to these methods, the goal is not just a slow and expensive process for a
single scene, but a fast generation process that can scale to generate hundreds of scenes with natural
statistics. Importantly, this generation process does not require interaction or targeted data collection
per domain.

Generating indoor scenes is a long-standing problem in computer vision and machine learning. This
has been approached by building learned generative models of indoor scenes (Ritchie et al., 2019; Li
et al., 2019; Keshavarzi et al., 2020; Hudson & Zitnick, 2021) and floorplans (Hu et al., 2020; Nauata
et al., 2021; Wang et al., 2021), while others have produced text-to-scene models (Chang et al., 2014;
2015). While generating scenes this way can be promising, these methods either fail to achieve the
targeted generation of complex scenes with articulation and complex kinematic structure intact or
require extremely expensive inference processes to do so. On the other hand, procedural generation
techniques have been popular in generating grid-world environments (Khalifa et al., 2020; Earle
et al., 2021; Dennis et al., 2020; Gisslén et al., 2021) and in generating home environments at scale
(Deitke et al., 2022). These scenes are diverse and often rich, but are not controllable to particular
target scenes or are not able to generate scenes complete with physical properties and articulation.
Other techniques such as (Li et al., 2021; Deitke et al., 2023) are able to generate large datasets
of more interactive scenes but require interactive scanning with either a phone or other hardware
for dataset generation specific to indoor scenes. URDFormer is able to generate realistic, diverse,
and controllable scenes while retaining rich kinematic and semantic structure from internet images
alone.

Data Augmentation with Generative Models Our work is certainly not the first (Eigenschink et al.,
2023) to use synthetic data generated by generative models for training networks that can then be
deployed on real data. These models have been used the context of data augmentation (Chen et al.,
2023; Yu et al., 2023; Trabucco et al., 2023), representation learning via self supervised learning
(Fu et al., 2023; Tian et al., 2023; Jahanian et al., 2022), model selection (Shoshan et al., 2023) and
even applications like healthcare (Choi et al., 2017). In contrast to these works, our work shows
that controllable generative modeling can be used to generate datasets that are suitable for inverse
modeling for creating simulation assets at scale.

3 URDFORMER : GENERATING INTERACTIVE SIMULATION ENVIRONMENTS
BY LEARNING INVERSE MODELS FROM GENERATED DATASETS

Generating simulated scenes with a high degree of visual realism that supports rich kinematic and
dynamic structure is a challenging problem. Downstream applications in robotics and computer
vision typically require data that is both realistic, diverse, and controllable. To accomplish these
requirements, we take an inverse approach to the problem and generate scenes by mapping real
RGB images to scene representations complete with kinematics and semantics. This allows for
scene generation that is realistic since it inherits natural scene and object statistics from real images.
The generated scenes are diverse since large image datasets with diverse content can be used to seed
such a generation process. Lastly, the generation is controllable since curated images of particular
target environments can be used to generate corresponding simulation assets. We first define the
inverse problem of synthetic scene generation from real-world images, then describe how to learn
inverse models to solve this problem with supervised learning on a paired dataset generated using
pre-trained controllable generative models. Finally, we show how the learned inverse model can be
used with real-world image datasets for scalable content creation.
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3.1 PROBLEM FORMULATION

To formalize the problem of simulation scene generation from real-world images, let us consider a
kinematic scene description z drawn from a target scene distribution P (z) in the real world. For
our purposes, the scene can be described as a list of objects z = {o1 . . . on}, where each object oi
contains a class label ci, a 3D bounding box bi ∈ R6, a 3D transform Ti ∈ SE(3), a kinematic
parent that references a previous object pi ∈ [1 . . . i − 1] and a joint type ji that specifies how
that object can move relative to its parent oi = (ci, bi, Ti, pi, ji). The kinematic structure z for a
particular real-world scenario is unknown without extensive human labeling effort, and instead, we
only have access to the result x of an indirect “forward” function f , x = f(z). For example, x could
be a photograph of the real environment, or a point cloud captured with a LIDAR scanner. The goal
in this work is to recover the entire kinematic and semantic structure of the scene, thereby requiring
complete inference of a rich scene representation z.
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Figure 2: An overview of the training and application of URDFormer .
During the forward process, existing simulation assets are first used to
generate a large paired dataset of simulation assets and realistic rendered
images. This paired dataset is used to train the URDFormer inverse
model that can predict URDFs from RGB images. This model can then
be used with real-world images to generate novel simulations.

Unfortunately, since the content
z is unknown for most complex
real-world scenes and difficult
to generate manually, it is chal-
lenging to solve the “inverse”
generation problem to infer the
scene description z from the for-
ward rendered images (or alter-
native sensor readings) x, z =
f−1(x). Had there been a size-
able dataset D = {(zi, xi)}Ni=1
of scene descriptors zi in sim-
ulation and their corresponding
real-world counterparts xi, the
inverse problem could have been
solved using supervised learn-
ing (minimizing a loss L like
the cross entropy loss or a MSE
loss) to learn an f−1

θ that pre-
dicts the scene descriptors ẑ given an input forward-rendered image x.

However, this is challenging due to the scarcity of the dataset. To circumvent this issue, we lever-
age pre-trained generative models that convert procedurally generated scenes in simulation into a
large paired dataset of scene content z and their corresponding realistic images x. This process can
generate a large and diverse dataset of image and scene-description (x, z) pairs that we can use to
train an effective inverse model f−1

θ (x) for generating scene descriptions ẑ from real RGB images
x. Since most scenes that we consider are object-centric, we decompose the inverse problem into
two parts: (1) object-level prediction that focuses on the kinematic structure of individual objects,
and (2) Global-scene Prediction that focuses on the structure of an overall scene. We next discuss
the process of generating a large paired dataset for these two components and then show the training
process for the inverse model in detail.

3.2 CONTROLLED GENERATION OF PAIRED DATASETS WITH GENERATIVE MODELS

Given a simulated scene z (drawn from a dataset such as (Mo et al., 2019), or procedurally gen-
erated), we use the fact that controllable generative models are both diverse and realistic enough to
take an unrealistic rendering of a scene in simulation and generate a distribution of corresponding
realistic images. This allows the scene in simulation with unrealistic appearance and texture to be
translated into a diverse set of visually realistic images that plausibly match the same underlying
environment. To ensure piecewise consistency and realism of the generated images, we use two dif-
ferent dataset generation techniques for the scene structure and object structure respectively. These
share the same conceptual ideas but differ to account for consistency properties in each case.

Scene-Level Dataset Generation: To generate training data for the scene model, we feed the ren-
dered image from simulation along with a templated text prompt to an image-and-text guided diffu-
sion model (Rombach et al., 2022). This model generates a new image that attempts to simultane-
ously match the content described in the text prompt while retaining the global scene layout from the
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provided image. We found that this model is able to reliably maintain the scene layout, but it may
change some individual components of the scene, for example replacing objects with a different but
plausible category, or changing the number of components under an object such as the drawers or
handles. Despite these failures, the large-scale structural consistency still provides a useful source of
training data. After running our simulated image through the generated model, we have realistic im-
ages that contain known high-level object positions and spatial relationships, but unknown category
and low-level part structures. This means that the scene model dataset contains complete images, but
incomplete labels. Rather than complete (x, z) pairs, we have a dataset Dscene = {(x, z̃)} of (x, z̃)
pairs where z̃ only contains the bounding boxes, transforms and parents of the high-level (non-part)
objects z̃ = {(b1, T1, p1) . . . (bn, Tn, pn)}.

Object-Level Dataset Generation: The process for generating object-level training data is similar,
but requires more care due to the tendency of generative models to modify low-level details. For
objects with complex kinematic structure, such as cabinets, we procedurally generate a large number
of examples of these objects and render them in isolation from different angles. Rather than using
the generative model to construct entirely new images, we use it to produce diverse texture images,
which are overlaid in the appropriate locations on the image using perspective warping. We then
change the background of the image using the generative model with appropriate masking derived
from the original render. For less complex objects that do not have important part-wise structure, we
simply replace the rendered image with a new sample from the image-and-text guided generative
model. Unlike the scene dataset which contains complete images but partial labels, the object dataset
contains partial images in the sense that they contain only a single object, but complete labels for
the object and its kinematic parts. We can say that this dataset Dobject contains (x̃, z) pairs where x̃
is an image of a single object rather than a full scene (hence the partial x), and z is complete for the
single object and its parts. The result of these two data generation processes is a high-level scene
structure dataset Dscene, and a low-level object dataset Dobject.

3.3 URDFORMER : LEARNING INVERSE GENERATIVE MODELS FOR SCENE SYNTHESIS

Given the datasets Dobject = (x̃, z) and Dscene = (x, z̃) constructed as described above, we can use
supervised learning methods to learn an inverse model that maps images of a complex object or
scene to the corresponding simulation asset. In order to take advantage of these partially complete
datasets, we must add some structure to our prediction model. We do this by splitting our learned
inverse model in correspondence with the split in our forward model: we train one network f−1

θ to
predict the high-level scene structure using dataset Dscene and another network g−1

ϕ to predict the
low-level part structure of objects using Dobject.

To model both the scene-level prediction model (f−1
θ ) and the low-level part prediction model (g−1

ϕ ),
we propose a novel network architecture - URDFormer, that takes an RGB image and predicts
URDF primitives as shown in Figure 3. Note that both the scene-level prediction and the low-level
part prediction use the same network architecture, the scene-level simply operates on full images
with object components segmented, while the part-level operates on crops of particular objects with
parts segmented. In the URDFormer architecture, the image is first fed into a ViT visual back-
bone(Dosovitskiy et al., 2020) to extract global features. We then obtain bounding boxes of the
objects in the image using the masks rendered from the original procedurally generated scene in
simulation (these are known at training time, and can be easily extracted using segmentation models
at test time). We then use ROI alignment (He et al., 2017) to extract features for each of these bound-
ing boxes. These feature maps are combined with an embedding of the bounding box coordinates
and then fed through a transformer (Vaswani et al., 2017) to produce a feature for each object in the
scene. An MLP then decodes these features into an optional class label (used only when training the
object-level model), and a discretized 3D position and bounding box. In addition, it also produces a
child embedding and a parent embedding that are used to predict the hierarchical relationships in the
scene (object to its parent and so on). To construct these relationships, the network uses a technique
from scene graph generation (Yang et al., 2023) that produces an n×n relationship score matrix by
computing the dot product of every possible parent with every possible child. The scene model also
has learned embeddings for six different root objects corresponding to the four walls, the floor, and
the ceiling so that large objects like countertops and sinks can be attached to the room.

Due to the unpredictable nature of the generative transforms that are used to make the scene image
realistic, which may change class identities, only the position, bounding box, and relationship in-
formation is used when computing the high-level scene structure. To compute the class labels for
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the top-level objects, we use max-pooling of the dense ViT features along with an MLP in the part-
prediction model g−1

ϕ . To generate a full estimate of the scene description from a natural image at
test time, the image and a list of high-level bounding boxes are first fed to the scene prediction model
f−1
θ , which predicts the location and parent for each object. The image regions corresponding to

these boxes are then extracted and further segmented to produce part-level bounding boxes. Each of
these image regions and the corresponding part boxes are then fed into the part prediction model to
compute the kinematic structure of the low-level parts. This nested prediction structure can be used
to generate entire scenes from web-scraped RGB images drawn from any image dataset to generate
novel simulation content both at the scene level and at the object level.
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Figure 3: Architecture of URDFormer : an inverse model (URDFormer ) that predicts simulation parameters
from RGB images. URDFormer can translate web-scraped real-world RGB images of scenes into complete
simulation assets. The model shown here is used to estimate the part structure of an individual object. When
estimating the scene structure, the Object Crop image would be replaced by an image of the entire scene.

4 EXPERIMENTS

In this section, we perform an empirical evaluation to answer the following questions: (1) Can the
dataset generation method introduced in section 3.2 generate consistent realistic images for simu-
lation content? (2) Is URDFormer able to generate plausible and accurate simulation content from
novel real-world images? (3) Which elements of the structured prediction pipeline are most impor-
tant in ensuring accurate simulation generation?

4.1 PHASE 1: (FORWARD) PAIRED DATASET GENERATION

To synthesize the initial paired dataset, we first procedurally generate a set of URDF representations
of scenes in simulation both for global scenes like kitchens and for single objects like fridges, cabi-
nets, and drawers. These initially generated simulation scenes are shown in Fig5 (Left). We can then
follow the procedure outlined in Section 3.2 for the controlled generation of paired datasets to gen-
erate a large dataset of simulation scenes and paired realistic RGB images as shown in Fig5 (Right)
(More visualizations and videos are available on the website). For objects with diverse parts, we ob-
serve that depth-guided stable diffusion (Rombach et al., 2022) often ignores the semantic details of
local parts, leading to inconsistency issues shown as Fig 7 in Appendix A.1. To overcome this issue,
we use images of texture to guide diffusion models to generate large and diverse texture templates
and randomly choose one template and warp it back to the original part region using perspective
transformation. We apply in-painting models for smoothing the boundary of the parts and generat-
ing content for the background. We visualize this process in Fig 4. In total, we generated 260K
images for global scenes of kitchens and living rooms, and 235K images of 14 types of objects such
as cabinets, ovens, and fridges. Details of the dataset can be found in Appendix B.1.

4.2 PHASE 2: (INVERSE) REAL-WORLD URDF PREDICTION

Given the generated paired dataset shown in Fig 5, we next evaluate how successful a trained inverse
model is at generating simulation scenes representing unseen real-world test images.
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Figure 4: Paired dataset generation using texture and prompt templates to guide Stable Diffusion (Rombach
et al., 2022) and create a diverse texture dataset, which can be then warped on the targeted individual part of
the object, as described in Section 3.2
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Figure 5: Qualitative results on (forward) paired dataset generation. Left: Original simulation images. Right:
Generated realistic images that match the URDF descriptions of the scene on the left.

Real World Dataset: We create two types of datasets for evaluation: (a) Obj300 includes URDFs
of 300 internet images of individual objects from 5 categories including 100 cabinets, 50 ovens, 50
dishwashers, 50 fridges and 50 washing machines. (b) Global scenes include URDFs of 80 internet
images including 54 kitchens and 26 living rooms. For each scene, we manually label the bounding
box for each object and its parts, as well as the URDF primitives including mesh types, parent
bounding box ID, positions, and scales relative to its parent. We use the mesh types such as ”left
door”, and ”right door” to infer link axis and joint types. All the position values and scale values are
discretized into 12 bins.

Evaluation Metrics: Evaluating entire scenes is challenging given the mixed structure and sub-
jective nature of human labelling. We adopt an edit-distance based metric for structural comparison,
and use a small dataset of manually labelled examples for evaluation.

(1) Edit Distance with Bounding Box Offset: We evaluate our predicted scene structure using a tree
edit-distance metric. This method requires access to a predicted and ground-truth kinematic tree.
We start at the root of the kinematic tree and use the Hungarian method to compute the lowest-cost
assignment between the children of the predicted root and the children of the ground truth root where
the cost is based on their spatial coordinates. If there are more predicted children than ground truth,
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Table 1: Comparison with baseline methods: trained with random colors, selected textures, and random tex-
tures, as well as prompt guided BLIP2. URDFormer with generated realistic textures predicts more accurate
simulation content from unseen real-world images.

Obj300 (↓) Global (Obj) (↓) Global (Parts) (↓)

URDFormer (Random Colors) 1.08 10.81 19.62
URDFormer (Selected Textures) 0.63 9.87 19.11
URDFormer (Random Textures) 1.22 11.85 18.67
Guided BLIP2 4.27 14.64 24.58
URDFormer (Generated Textures (ours)) 0.42 9.51 18.21

Table 2: Ablation study on training with different vision backbones and input features, showing training using
both visual/spatial features, with a backbone pretrained on diverse real images achieves higher performance.

ED Box (↓) ED IoU0.25 (↓) ED IoU0.5 (↓) ED IoU0.75 (↓)

Scratch 7.00 6.15 8.37 14.48
Pretrained on ImageNet 6.33 5.48 7.74 13.85
Pretrained MAE 5.70 5.11 7.07 13.41
Pretrained MAE (No bbox) 6.19 5.26 7.63 14.11
only with bbox 7.04 6.52 8.26 14.26

the unassigned predicted children and all of their descendants are marked as False Positive edits.
Conversely, if there are more ground truth children than predicted children, the unmatched ground
truth children and all of their descendants are marked as False Negative edits. We then compare the
spatial parameters of the matched predicted and ground truth children. If they are not close enough
to each other according to a fixed threshold, the predicted child and its descendants are marked as
False Positives, and the ground truth child and its descendants are marked as False Negatives. If
the two are close enough, the class label of the predicted child is compared against the class label of
the ground truth child. If they do not match, we add a Class Incorrect edit. Regardless of whether
the classes match, this process is recursively applied to the matching children. To compute a single
score, we assign weights to these edits based on their position in the hierarchy and sum them. For
the experiments in this paper, we assigned a weight of 1.0 to all edits at the top level corresponding
to objects, a weight of 0.5 to the parts such as cabinet doors, and a weight of 0.1 to all objects further
down the hierarchy such as handles and knobs attached to doors.

(2) Edit Distance with IoU: Similar to bounding box offset, we simply replace the spatial coordinate
cost with IoU between two bounding boxes. We define levels of threshold based on overlapping
areas: ED IoU0.25, ED IoU0.5, ED IoU0.75. We show evaluation using both metrics in ablations,
but in general, we found the two metrics yield the same performance, thus we only use edit distance
with a bounding box for baseline evaluation.

Baselines We compare URDFormer against several other baselines in Table 1. In particular, to show
the importance of pixel realism, we compare with training on (1) Random Colors (2) Selected Re-
alistic Textures (3) Random Textures (Visualizations of their differences are in Appendix A.2). In
addition, we also compare our method against recent Vision-Language Models with guided prompts:
Guided BLIP2. In particular, (1) Random Colors randomly selects RGB values for each part inside
the scene and (2) Selected Realistic Textures manually selects texture images for corresponding ob-
jects. (3) Random Textures selects random images. (4) Guided BLIP2 takes a sequence of question
prompts and guides pretrained BLIP2 models Li et al. (2023) to output the URDF primitives in the
valid format (Please check Appendix C.1 for prompt details). We observe that training with gener-
ated realistic visual features improves the generalization to real-world images. Although trained on
large real-world datasets, BLIP2 fails to reason about the 3D structure of the scene as well as the
kinematics structure of individual objects, showing using a more structured and targeted dataset is
important during training. Here Global (Obj) represents the evaluation of high-level position/parent
reasoning, while Global (Parts) represents the evaluation of the full scene including the high-level
and detailed kinematic structure of each object.

Ablations To study how different components of URDFormer impact the performance, we perform
an ablation study on (1) Do backbones pretrained on real-world images help with generalization?
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(2) What are the important features of learning 3D kinematic structures, as shown in Table 2. In par-
ticular, we train URDFormer with three types of backbones: (1) vit-small-patch16-224 trained from
scratch (2) finetune vit-small-patch16-224 pretrained on ImageNet (3) finetune vit-small-patch16-
224 trained in (Radosavovic et al., 2023) on 197K kitchen scenes and evaluate on 54 real-world
kitchen images. We observe that finetuning the vision backbone that is pretrained on real images
performs better than training from scratch, and pretrained in (Radosavovic et al., 2023) achieves the
best performance, which is likely due to the fact that it was trained on more diverse datasets than
ImageNet. We observe that both training with only image features and training with only bounding
box features decrease the performance, indicating the importance of both spatial and visual features.

Qualitative Results: We show the qualitative results of our URDF predictions in Fig 6. We use
the same color to represent the same mesh type for better visualization. We observe that training
with data generated using the method described in section 3.2 provides diverse visual information
compared to baseline methods such as random colors or random textures. This is important for
distinguishing mesh types such as stove and fridge, and reasoning about structure relations such as
”cabinet on the right” and ”cabinet in the front”.
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Figure 6: Evaluations of generated simulations on unseen real-world images. The left-most column indicates
the real-world image input and each column indicates the performance of an inverse URDF prediction model
trained with different training sets. We evaluate training datasets generated using random colors, selected
textures, random textures, and textures generated with pre-trained generative models (ours), and compare these
with ground truth URDF labels.

5 DISCUSSION

In this work, we presented URDFormer , a general-purpose, scalable technique for generating sim-
ulation content from real-world RGB images. We first generate a large-scale paired dataset of pro-
cedurally generated simulation content and a corresponding realistic RGB image using pre-trained
controllable generative models. We then use our generated paired dataset to train an inverse model
that maps directly from single RGB images to corresponding representations of scenes or complex
objects in simulation. This inverse model can then be used with large image datasets of real-world
RGB images to scalably generate simulation data complete with kinematic and semantic structure,
without requiring any hand-crafting or hand-designing of these simulation assets. We show in our
experimental results the efficacy of this scheme in generating assets at scale from real-world datasets
of RGB images.
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niak, Yunrong Guo, Ádám Moravánszky, Gavriel State, Michelle Lu, Ankur Handa, and Dieter
Fox. Factory: Fast contact for robotic assembly. In Kris Hauser, Dylan A. Shell, and Shoudong
Huang (eds.), Robotics: Science and Systems XVIII, New York City, NY, USA, June 27 - July
1, 2022, 2022. doi: 10.15607/RSS.2022.XVIII.035. URL https://doi.org/10.15607/
RSS.2022.XVIII.035.

12

https://openaccess.thecvf.com/content/CVPR2021/html/Li_OpenRooms_An_Open_Framework_for_Photorealistic_Indoor_Scene_Datasets_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Li_OpenRooms_An_Open_Framework_for_Photorealistic_Indoor_Scene_Datasets_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Li_OpenRooms_An_Open_Framework_for_Photorealistic_Indoor_Scene_Datasets_CVPR_2021_paper.html
https://arxiv.org/abs/2002.12674
http://openaccess.thecvf.com/content_CVPR_2019/html/Mo_PartNet_A_Large-Scale_Benchmark_for_Fine-Grained_and_Hierarchical_Part-Level_3D_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Mo_PartNet_A_Large-Scale_Benchmark_for_Fine-Grained_and_Hierarchical_Part-Level_3D_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Mo_PartNet_A_Large-Scale_Benchmark_for_Fine-Grained_and_Hierarchical_Part-Level_3D_CVPR_2019_paper.html
https://doi.org/10.1007/s11263-018-1073-7
https://doi.org/10.1007/s11263-018-1073-7
https://doi.org/10.15607/RSS.2022.XVIII.035
https://doi.org/10.15607/RSS.2022.XVIII.035


Under review as a conference paper at ICLR 2024

Nelson Nauata, Sepidehsadat Hosseini, Kai-Hung Chang, Hang Chu, Chin-Yi Cheng, and Yasutaka
Furukawa. House-gan++: Generative adversarial layout refinement network towards intelligent
computational agent for professional architects. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13632–13641, 2021.

Thu H Nguyen-Phuoc, Chuan Li, Stephen Balaban, and Yongliang Yang. Rendernet: A deep con-
volutional network for differentiable rendering from 3d shapes. Advances in neural information
processing systems, 31, 2018.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 165–174, 2019.

Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien Bouaziz, Dan Goldman, Steven Seitz,
and Ricardo Martin-Brualla. Deformable neural radiance fields. https://arxiv.org/abs/2011.12948,
2020.

Luis S Piloto, Ari Weinstein, Peter Battaglia, and Matthew Botvinick. Intuitive physics learning in
a deep-learning model inspired by developmental psychology. Nature human behaviour, 6(9):
1257–1267, 2022.

Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell.
Real-world robot learning with masked visual pre-training. In Conference on Robot Learning, pp.
416–426. PMLR, 2023.

Alexander Raistrick, Lahav Lipson, Zeyu Ma, Lingjie Mei, Mingzhe Wang, Yiming Zuo, Karhan
Kayan, Hongyu Wen, Beining Han, Yihan Wang, Alejandro Newell, Hei Law, Ankit Goyal, Kaiyu
Yang, and Jia Deng. Infinite photorealistic worlds using procedural generation. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada,
June 17-24, 2023, pp. 12630–12641. IEEE, 2023. doi: 10.1109/CVPR52729.2023.01215. URL
https://doi.org/10.1109/CVPR52729.2023.01215.

Daniel Ritchie, Kai Wang, and Yu-an Lin. Fast and flexible indoor scene synthesis via deep convo-
lutional generative models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 6182–6190, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Taha Samavati and Mohsen Soryani. Deep learning-based 3d reconstruction: a survey. Artif. Intell.
Rev., 56(9):9175–9219, 2023. doi: 10.1007/s10462-023-10399-2. URL https://doi.org/
10.1007/s10462-023-10399-2.

Alon Shoshan, Nadav Bhonker, Igor Kviatkovsky, Matan Fintz, and Gérard G. Medioni. Synthetic
data for model selection. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engel-
hardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pp. 31633–31656. PMLR, 2023. URL https://proceedings.mlr.
press/v202/shoshan23a.html.

Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner,
Noah Maestre, Mustafa Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets, Aaron
Gokaslan, Vladimir Vondrus, Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel X.
Chang, Zsolt Kira, Vladlen Koltun, Jitendra Malik, Manolis Savva, and Dhruv Batra. Habi-
tat 2.0: Training home assistants to rearrange their habitat. In Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
251–266, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
021bbc7ee20b71134d53e20206bd6feb-Abstract.html.

13

https://doi.org/10.1109/CVPR52729.2023.01215
https://doi.org/10.1007/s10462-023-10399-2
https://doi.org/10.1007/s10462-023-10399-2
https://proceedings.mlr.press/v202/shoshan23a.html
https://proceedings.mlr.press/v202/shoshan23a.html
https://proceedings.neurips.cc/paper/2021/hash/021bbc7ee20b71134d53e20206bd6feb-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/021bbc7ee20b71134d53e20206bd6feb-Abstract.html


Under review as a conference paper at ICLR 2024

Yonglong Tian, Lijie Fan, Phillip Isola, Huiwen Chang, and Dilip Krishnan. Stablerep: Syn-
thetic images from text-to-image models make strong visual representation learners. CoRR,
abs/2306.00984, 2023. doi: 10.48550/arXiv.2306.00984. URL https://doi.org/10.
48550/arXiv.2306.00984.

Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan Salakhutdinov. Effective data augmen-
tation with diffusion models. CoRR, abs/2302.07944, 2023. doi: 10.48550/arXiv.2302.07944.
URL https://doi.org/10.48550/arXiv.2302.07944.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Kai Wang, Xianghao Xu, Leon Lei, Selena Ling, Natalie Lindsay, Angel X. Chang, Manolis Savva,
and Daniel Ritchie. Roominoes: Generating novel 3d floor plans from existing 3d rooms. Comput.
Graph. Forum, 40(5):57–69, 2021. doi: 10.1111/cgf.14357. URL https://doi.org/10.
1111/cgf.14357.

Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, and Josh Tenenbaum. Learning to see physics
via visual de-animation. Advances in Neural Information Processing Systems, 30, 2017.

Zhenjia Xu, Jiajun Wu, Andy Zeng, Joshua B Tenenbaum, and Shuran Song. Densephysnet: Learn-
ing dense physical object representations via multi-step dynamic interactions. arXiv preprint
arXiv:1906.03853, 2019.

Zhenjia Xu, Zhanpeng He, and Shuran Song. Universal manipulation policy network for articulated
objects. IEEE Robotics and Automation Letters, 7(2):2447–2454, 2022.

Karmesh Yadav, Ram Ramrakhya, Santhosh Kumar Ramakrishnan, Théophile Gervet, John Turner,
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APPENDIX

A (FORWARD) DATA GENERATION

A.1 PART-CONSISTENCY

We compare our part-wise generation method with other approaches qualitatively in Fig 7. In par-
ticular, we observe that depth-guided or in-painting stable diffusion models Rombach et al. (2022)
often ignore local consistency, making it difficult to render high-quality images that are paired with
the simulation content.

Depth-guided Inpainting Structure-Aware (ours)Original Sim RGB

Figure 7: Qualitative comparison among different rendering methods: depth-guided diffusion mod-
els, inpainting stable diffusion and part-wise generation

A.2 BASELINE DATA

We visualize the different training data for baseline methods shown in Table 1: URDFormer with
random colors, selected textures, random textures, and generated textures. All baseline inputs are
captured from the same camera angles. As shown in Fig 8, the generated texture shows high pixel
realism that is closer to the distribution of the real world. As shown in Table 1, training on such data
improves performance in predicting URDF structures from real-world images during the test time.

B TRAINING DETAILS OF URDFORMER

B.1 DATASET

Our training dataset includes 267K global scene labels (197K kitchen scenes and 70K living room
scenes) and 235K objects, which include 14 types of objects including cabinet, oven, dishwasher,
washer, fridge, oven fan, shelf, tv, sofa, chair, square table, ottoman, coffee table and stuffed toy.
Among these objects, 5 categories are articulated: cabinet, oven, dishwasher, washer, and fridge.
These articulated objects include part meshes in from 8 types: drawer, left door, right door, oven
door, down door, circle door, handle and knob.

B.2 TRAINING DETAILS

All baseline methods (URDFOrmer with random colors, selected textures and random textures) are
trained on one A40 GPU with batch size of 256. All baselines are trained with an equal number of
epochs and evaluated using the last checkpoint.
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Random Color Synthetic Texture Random Texture Generated

Figure 8: Comparison among baseline methods with different training input: Random Colors, se-
lected textures, random textures and generated textures. Generated textures shows photo-realism
that closer to the real-world distribution.

C EXPERIMENT DETAILS

C.1 PROMPTS FOR BLIP2

In this section, we show examples of how we guide Vision-Language Models such as BLIP2 Li et al.
(2023) to produce anwsers that can be converted into comparison results with ours.

Global Parent Prompt: ”which of the wall is this object most likely on? choose one from ’floor’,
’ceiling’, ’front wall’, ’left wall’ and ’right wall’”

Object Base Prompt: ”what’s the name of the object. choose one word from cabinet, oven, dish-
washer, washer, fridge, oven fan, shelf, tv, sofa, chair, square table, ottoman, coffee table and stuffed
toy. Among these objects, 5 categories are articulated: cabinet, oven”

Object Position Prompt: ”This image has a width of 512 and height of 512, the object box coordi-
nate x is at 215, if the object scale is from 0 to 12, where do you imagine putting this bounding box
relative to the object along the length in the 3D space. Choose from an integer from 0 to 12”

C.2 COMPARE WITH OTHER SCENE GENERATION METHODS

We compare our pipeline with other methods of scene generation 9. In particular, we evaluate on
(1) If the generated content follows the real-world structure (2) If the method works only on RGB
images (3) if the method is fully automatic without human interaction with the scene (4) If it is
scalable (5) if it can be applied to global scenes and (6) if the generated scenes are fully articulated.

Ditto
Ditto in the house
ProThor
Phone2Proc
Ours

Real World Distribution RGB Fully Automatic Scalable Scene Layout Articulated Objects

N/A

Figure 9: Comparison against different approaches in scene generation: Ditto, Ditto in the house,
ProcThor, Phone2Proc.
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