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Abstract: Reinforcement learning (RL) is a promising approach for solving
robotic manipulation tasks. However, it is challenging to apply the RL algorithms
directly in the real world. For one thing, RL is data-intensive and typically requires
millions of interactions with environments, which are impractical in real scenar-
ios. For another, it is necessary to make heavy engineering efforts to design reward
functions manually. To address these issues, we leverage foundation models in this
paper. We propose Reinforcement Learning with Foundation Priors (RLFP) to
utilize guidance and feedback from policy, value, and success-reward foundation
models. Within this framework, we introduce the Foundation-guided Actor-Critic
(FAC) algorithm, which enables embodied agents to explore more efficiently with
automatic reward functions. The benefits of our framework are threefold: (1) sam-
ple efficient; (2) minimal and effective reward engineering; (3) agnostic to foun-
dation model forms and robust to noisy priors. Our method achieves remarkable
performances in various manipulation tasks on both real robots and in simulation.
Across 5 dexterous tasks with real robots, FAC achieves an average success rate
of 86% after one hour of real-time learning. Across 8 tasks in the simulated Meta-
world, FAC achieves 100% success rates in 7/8 tasks under less than 100k frames
(about 1-hour training), outperforming baseline methods with manual-designed
rewards in 1M frames. We believe the RLFP framework can enable future robots
to explore and learn autonomously in the physical world for more tasks. Visual-
izations and code are available at https://yewr.github.io/rlfp.
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1 Introduction

Reinforcement Learning (RL) has achieved remarkable success in various domains, including video
games [1, 2, 3], simulated robotics [4], and embodied agents for decades, such as real robots [5, 6,
7, 8, 9]. However, current RL algorithms encounter two primary challenges: sample efficiency and
heavy reward engineering, which hinder deployment in the real world. For example, researchers
[1, 10] require millions of data to master games or solve simulated robotics tasks [11, 12, 13]. Such
amounts of data are unaffordable in real. And they also depend on manually designed rewards,
which is overly burdensome. Therefore, it is essential to address these two issues.

Humans acquire skills through minimal interactions with the environment by leveraging the innate
abilities and abundant commonsense accumulated in daily life. They start from reasonable behaviors
with fewer aimless explorations, make adjustments and corrections, and reinforce successful behav-
iors. We take the baby pressing bottom as an example to illustrate this learning paradigm, which is
commonly used in psychology [14, 15]. As shown in Fig. 1, a baby named Alice is presented with a
novel toy box with a button. The baby observes an adult pressing the button, causing the box to light
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Figure 1: An example of how human solves tasks under the policy, value, and success-reward prior knowl-
edge. The proposed Reinforcement Learning from Foundation Priors framework utilizes the corresponding
foundation models to acquire prior knowledge.

and make sounds. Alice knows the behavior to solve the task, e.g., pressing the button to activate
the toy. She realizes that she can make it easier by positioning the hand closer to the button. Once
she sees the toy box light up and hears the sound, she will reinforce the successful trial and repeat it.

Inspired by such a learning paradigm, we explore various foundation models to provide learning
signals and enhance learning efficiency. Then two fundamental challenges arise: (1) what is the con-
crete form to present prior knowledge for RL; (2) how to leverage the corresponding prior knowledge
effectively for downstream tasks. Based on the example shown in Fig. 1, three kinds of prior knowl-
edge answer the question: what should I do now? am I closer to the goal? did I succeed? These
prior knowledge are aligned with the core concepts well in the Markov Decision Process (MDP),
namely the policy function, the value function, and the success-reward function. Fortunately, the
great success of the foundation models in natural language processing [16, 17, 18, 19] and computer
vision [20, 21, 22, 23] makes it possible to acquire considerable and informative prior knowledge.

Consequently, for systematically utilizing the abundant prior knowledge to facilitate the embodied
agent efficiently learning on its own, we introduce the Reinforcement Learning from Foundation
Priors (RLFP) to leverage policy, value, and success-reward prior knowledge. The policy prior
gives a warm start behavior of the agent; the value prior informs to reach better states, and the
success-reward prior gives the final success feedback.

To verify the efficacy of RLFP, we instantiate an actor-critic algorithm, named Foundation-guided
Actor-Critic (FAC), inspired by some works about building foundation models [24, 25, 26]. We
conduct experiments on real robots and in simulation, and extensive ablations are made in simula-
tion. RLFP demonstrates three key benefits: (1) Sample efficient learning. Across the 5 tasks on real
robots, FAC can achieve 86% success rates after 1 hour of real-time learning. Across the 8 tasks in
the simulated Meta-world, FAC can achieve 100% success rates in 7/8 tasks under less than 100k
frames (about 1 hour of training). It surpasses baseline methods that rely on manually designed
rewards over 1M frames. (2) Minimal and effective reward engineering. The reward function is de-
rived from the value and success-reward prior knowledge, eliminating the need for human-specified
dense rewards or teleoperated demonstrations. (3) Agnostic to prior foundation model forms and
robust against noisy priors. FAC demonstrates resilience under quantization errors in simulations.
To ensure high efficiency and performance, we utilize several well-trained foundation models or
fine-tuning foundation models. The contributions are:

• We propose the Reinforcement Learning with Foundation Priors (RLFP) framework. It
systematically introduces three priors that are essential to embodied agents, and suggests
how to leverage the existing foundation models as the priors.

• We propose the Foundation-guided Actor-Critic (FAC), an RL algorithm under the RLFP
framework that utilizes the policy, value, and success-reward prior knowledge.

• Empirical results demonstrate the remarkable performances of FAC. The ablations under-
score the importance of each priors and validate the robustness against prior qualities.

2 Related Work

Foundation Models for Policy Learning. The ability to leverage generalized knowledge from large
and varied datasets has been proved in the fields of CV and NLP. In embodied AI, researchers at-
tempt to learn universal policies based on large language models (LLMs) or vision-language models
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(VLMs). Approaches include training large transformers through imitation learning [27, 28, 29, 30],
offline RL [31], or fine-tuning pre-trained VLMs for downstream tasks [8]. Others use LLMs or
VLMs for reasoning and control based on language descriptions [32, 33, 34, 35, 36, 37, 38, 39].
These methods rely on human teleoperation for data collection, but scaling this is difficult. Some
works generate code policies [40, 41] or predict future videos for action generation [25, 42], though
they struggle with robustness due to limited interaction with environments.

Foundation Models for Representation Learning. In addition to learning policies from founda-
tion models, some researchers focus on extracting universal representations for downstream tasks.
Several works leverage pre-trained visual representations to initialize perception encoders or extract
latent image states [43, 44, 45, 46], while others use pre-trained LLMs or VLMs for linguistic in-
struction encoding [47, 48, 49]. Researchers have also explored applying LLMs/VLMs for universal
reward or value representation in RL, such as language-conditioned reward models [50, 51, 52] and
universal goal-conditioned value functions trained on large-scale videos [24]. Some approaches ac-
quire value and success signals from human demonstrations [53, 54], while others generate rewards
based on value differences to avoid manual reward design [55, 8]. However, these methods face
limitations, including inefficient exploration due to a lack of policy-side guidance and unstable opti-
mization from continuous reward signals with high error. Our framework addresses these issues by
foundation priors, orthogonal to existing data-efficient RL algorithms [56, 11, 2, 57, 58, 59].

3 Method

This paper aims to enable embodied agents to efficiently learn various tasks autonomously. In Sec.
3.1, we formulate the proposed Reinforcement Learning with Foundation Priors (RLFP) framework.
Next, in Sec. 3.2, we present the Foundation-guided Actor-Critic (FAC) algorithm based on RLFP
framework. Finally, Sec. 3.3 explains how to obtain the foundation models used in FAC.

3.1 Reinforcement Learning with Foundation Priors

We model the tasks for embodied agents as the Goal-Conditioned Markov Decision Processes
(GCMDP) G: G = (S,A,P,R, T , γ). S ∈ Rm denotes the state. A is the action space, which
is the continuous delta movement of the end effector in this work. P is the transition probability
function. T is the task identifier. R denotes the rewards. γ is the discounting factor, equal to 0.99
in the work. To learn efficiently and automatically, we propose the Reinforcement Learning from
Foundation Priors (RLFP) framework by leveraging the policy, value, and success-reward priors.

Here we demonstrate how we formulate the priors in RLFP. Back to the case of Alice in Fig. 1, the
commonsense of behavior can be formulated as a goal-conditioned policy function, Mπ(s, T ) : S ×
T → A. The prior knowledge that the state closer to the button is closer to success can be formulated
as the value function MV(s, T ) : S × T → R1. The ability to recognize the success state can be
formulated as the 0-1 success-reward function MR(s, T ) : S × T → {0, 1}, which equals 1 only if
the task succeeds. We assume the success-reward prior is relatively precise, given the simplicity of
binary classification in determining success. The value and policy prior knowledge are noisier. The
RLFP framework is to solve an expansion of G, termed G′

= (G,M), where M is the foundation
model set that represents various foundation prior knowledge. Here, Mπ,MV ,MR ∈ M.

Compared to vanilla RL, all the signals for the RLFP come from the foundation models. The vanilla
RL relies on uninformative trial and error explorations and manually designed reward functions. It
is not only of poor sample efficiency but also requires much human reward engineering. Instead, in
RLFP, prior knowledge from the foundation model set M provides guidance or feedback on policy,
value, and success-reward, enabling more automatic and effective task resolution.

3.2 Foudation-guided Actor-Critic

Under the proposed RLFP framework, we instantiate an actor-critic algorithm named Foundation-
guided Actor-Critic (FAC), demonstrating how to inject the three priors into RL algorithms.

3



Guided by Success-reward Signals. We consider the task as MDP G1 with 0-1 success rewards,
where RG1 = MR(s, T ) ∈ {0, 1}. Inspired by how humans learn from successful trials, we propose
a success buffer to store the “successful” trajectories identified by MR. Each time the actor πϕ

updates via policy gradient, it also imitates samples from the success buffer Dsucc (if available). The
objective is Lsucc(ϕ) = KL(πϕ(st),N (at, σ̂

2)), st, at ∼ Dsucc, where σ̂ is the standard deviation.

Guided by Policy Regularization. To encourage efficient explorations, we regularize the actor
πϕ by the policy prior from Mπ(s, T ). Assuming the prior follows Gaussian distributions, the
regularization term is Lreg(ϕ) = KL(πϕ,N (Mπ(st, T ), σ̂2)), which is commonly used in other
algorithms [60, 61]. The bias introduced by the policy prior is bounded, shown in Theorem 2.

Policy Prior

Actor 𝝅𝝓

critic 𝑸𝜽

Value Prior

Success Prior
Success reward:

𝑴𝑹

Shaping reward: 
𝑭 = 𝜸𝑴𝑽 𝒔𝒕&𝟏 −𝑴𝑽(𝒔𝒕)

Policy regularization:
−𝛁𝐋𝒓𝒆𝒈(𝝓)

Reward function:
 𝝀𝑴𝑹 + 𝑭

Success trajectory imitation:
−𝛁𝐋𝒔𝒖𝒄𝒄(𝝓)

Policy gradient: 
𝛁𝐄[𝐐𝜽(𝒔, 𝒂)]

Figure 2: The overview of Foundation-guided Actor-Critic. In
FAC, rewards are derived from foundation success rewards and
value shaping. Besides policy gradient updates, the actor is trained
using prior policy regularization and success trajectory imitation.

Guided by Reward-shaping from
Value Prior. Noisy policy prior
can mislead agents to undesirable
states, so we propose using the
value model MV to guide ex-
ploration and avoid unpromising
states. While initializing and fine-
tuning with MV(s, T ) is a natu-
ral approach, it suffers from catas-
trophic forgetting. Instead, we em-
ploy the reward-shaping technique
[62] using the potential-based func-
tion F (s, s′, T ) = γMV(s

′, T ) −
MV(s, T ), where γ is the discount
factor. Since MV estimates state val-
ues, F measures the value increase
from s to s′. This shaping reward is positive when s′ is better than s and shares the same opti-
mal solution as the 0-1 success-reward MDP G1. Proof and details are in App. A.1.

Foundation-guided Actor-Critic. In summary, we deal with a new MDP G2, where RG2 = λMR+
F , with λ (set to 100) emphasizing success feedback. We train the agent using DrQ-v2 [11], a variant
of Actor-Critic, and call the proposed method Foundation-guided Actor-Critic (FAC). As shown in
Fig. 2, FAC leverages foundation policy guidance and an automatic reward function, enabling the
agent to efficiently learn from abundant prior knowledge. The objectives of FAC are detailed in Eq.
(1), where tradeoff parameters α and β are both set to 1, y is the n-step TD target, and Qθ̄ is the
target network. We use clipped double Q-learning [63] to reduce overestimation.

Lactor(ϕ) = −Est∼D

[
min
k=1,2

Qθk(st, at)

]
+ αLsucc + βLreg; at ∼ πϕ(st)

Lcritic(θ) = Est∼D
[
(Qθk(st, at)− y)2

]
; y =

n−1∑
i=0

γirt+i + γn min
k=1,2

Qθ̄k(st+n, at+n)

(1)

3.3 Acquiring Foundation Prior in FAC.

We focus on leveraging Foundation Priors in RL, not building large-scale foundation models, though
we consider it an exciting future direction. For strong performance, we recommend using well-
trained or pre-trained models. In this work, we use existing models as proxy foundation models.
GPT-4V serves as the success-reward model MR for real tasks, but due to its poor performance
in simulations, we use ground-truth 0-1 success rewards in sim and distill a noisy success reward
function for ablations. For value prior, we use the VIP model [24], which predicts value based on
current and goal image observations. The policy prior Mπ is built using code generation [40, 41] or
video diffusion models [25]. Details are in the next section and in App. A.3.1 and App. A.3.2.
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Figure 3: Five tasks on real robots, demonstrating the efficiency and accuracy of FAC in real.

4 Experiments

In this section, we provide detailed evaluations of the Foundation-guided Actor-Critic (FAC) on
robotics manipulation tasks in both real-world and simulated environments. We also examine the
impact of foundation prior knowledge through ablations in simulation, focusing on sample efficiency
and robustness. Our experiments aim to answer the following questions: (a) How sample-efficient
is FAC (Sec. 4.1 and Sec. 4.2); (b) What is the significance of each foundation prior (Sec. 4.3);
(c) How does the quality of the foundation model affect FAC’s performance (Sec. 4.3). Additional
ablations and running time analysis are in App. A.5. Demo videos are included in the supplementary.

4.1 Manipulation tasks on Real Robots

Experimental Setup. We set up a real-world tabletop environment using a Franka Emika Panda
robot with a 7-DoF arm and a 1-DoF parallel jaw gripper. Observations are collected from RGB
images captured by a fixed external camera and a wrist-mounted camera. We designed five dexterous
manipulation tasks to evaluate FAC, shown in Fig. 3. The agent learns for one hour per task, except
for "Pick Place," which trains for 30 minutes. The number of real-world trajectories collected for
Pick Place, Open Door, Watering Plants, Unscrew Bottle Cap, and Play Golf are 40, 75, 60, 50,
and 115, respectively. These tasks highlight the need for leveraging prior knowledge for accurate
manipulation, which can be challenging for standard RL. The Franka Arm’s starting position is fixed
for each task, but object positions vary within a predefined range. We evaluate each task across 10
trajectories with slight environment variations. Additional training details are in App. A.2.

Acquring Foundation Prior. (1) Prior Success-Reward: We use GPT-4V to determine success-
rewards, evaluating only the final observation of each task. In a test of 20 trajectories per task,
GPT-4V demonstrated high accuracy, with no false negatives or positives, except in the Watering
Plants task, which had a 25% false-positive rate due to the challenge of correctly orienting the spout.
Overall, GPT-4V is an effective proxy for success-reward prior knowledge. (2) Prior Policy: We
use GPT-4V to generate code for initial states, building on previous work [40, 41, 34] by providing
primitive low-level skills like move_to, grasp, release, and rotate_anticlockwise. The generated
code, based on the robot’s state, outputs prior actions, allowing us to apply KL loss between the
policy and prior actions in non-initial states. (3) Prior Value: We use the VIP model [24], a universal
value model trained on large-scale datasets. By inputting goal and current observations, we infer the
value of states. Detailed prompts, generated policies, and prior settings are in App. A.3.1.

Figure 4: During training, the agent progres-
sively favors actions from the actor, reducing
reliance on the prior policy.

Efficient and Safe Exploration on Real Robots. To
achieve higher sample efficiency on real robots, we
choose high update-to-data (UTD) ratios with layer nor-
malization in all MLP layers [64]. To achieve safer explo-
ration, we introduce two key modifications. Firstly, we
warm up the learning by taking the prior action to gather
the first 10 trajectories. Secondly, under the guidance of
critics, we selectively choose the superior action a∗ = ai
from either the actor πϕ or the policy prior Mπ , where
i = argmaxi∈1,2 [mink Qθk(s, ai)] , a1 ∼ πϕ, a2 ∼ Mπ .
As training progresses, the agent increasingly opts for the
actor’s actions over the prior, shown in Fig. 4. For the
actor, we maintain a constant standard deviation of 0.1.

Baselines and Performance Analysis in Real. We compared our method to two baselines on real
robots: (1) Vanilla RL using DrQ-v2 [11] with manually designed rewards, and (2) Policy Prior
using the GPT-4V-generated code policy. Results are shown in Tab. 1. Vanilla RL failed in all tasks
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Table 1: Quantitative Results of FAC during One-Hour Learning on the Franka Arm. The reported results
are based on 10 evaluation trials. FAC achieves 86% success rate on average after one hour of training. This
performance notably surpasses the code policy prior, underscoring its efficiency.

Task (Succ.) Pick Place Open Door Watering. Unscrew. Play Golfs Avg.
Vanilla RL 0.00 0.00 0.00 0.00 0.00 0.00
Code Policy 0.30 0.10 0.30 0.20 0.20 0.22
FAC 1.00 0.90 0.80 0.90 0.70 0.86

after one hour of training due to excessive exploration. The code policy prior achieved an average
success rate of 22%, benefiting from VLM’s commonsense knowledge. Notably, FAC, guided by
foundation priors, achieved an impressive average success rate of 86% across all tasks.

Prior 
Policy

FAC

Both fail in grasp
Try to pull back directly, fails!

Change positions to grasp, success!

Figure 5: Prior policy attempts to open the door without a
successful grasp, whereas FAC persistently tries to secure the
handle before pulling back the arm.

The learned policy in FAC adapts and
refines its approach based on the prior
policy to successfully complete tasks, as
shown in Fig. 5. While the prior pol-
icy struggles with grasping the door han-
dle, FAC persistently secures the han-
dle before pulling, significantly improv-
ing performance. FAC’s impressive results
demonstrate the efficiency of our frame-
work and highlight the potential of lever-
aging abundant prior knowledge for em-
bodied agents using the RLFP framework.

4.2 Manipulation tasks in Simulations

Environments. We conduct experiments in 8 tasks from simulated robotics environment Meta-
World [65], widely recognized for their ability to test diverse manipulation skills [60]. We average
the success rates over 10 evaluation episodes across 3 runs with different seeds.

Acquiring Foundation Prior. (1) Prior Success-Reward: Few foundation models can distinguish
success behaviors in embodied AI, and GPT-4V often fails with simulation images. Therefore, we
use the ground-truth 0-1 success reward in simulation and distill a noisy success-reward model for
ablation in Sec. 4.3. (2) Prior Policy: To show that the prior model can be agnostic to form, we use
a diffusion-based policy prior, following the UniPi [25] pipeline, which generates videos using dif-
fusion models and infers actions from an inverse dynamics model. For efficiency, we offline distill
a policy model from videos generated by the open-source Seer [26] model, which predicts videos
conditioned on images and language instructions. While in-domain fine-tuning is ideally unneces-
sary, current models fail in the simulator. Thus, we fine-tuned Seer with 10 example videos per task,
though these videos are much noisier than the 200k used by UniPi, as shown in the supplementary
materials. (3) Prior Value: We use the VIP model [24] with the same setup as in the real robot
experiments. Implementation details of the diffusion policy are in App. A.3.2.

Baselines. We benchmark our method against the following baselines: (1) Vanilla DrQ-v2 [11],
with manually designed rewards from the suite; (2) R3M [46], VIP [24], where we integrate the
DrQ-v2 with either the R3M or VIP visual representation backbones. These baselines also rely on
manually designed rewards from the suite; (3) UniPi [25]; (4) The distilled policy from UniPi.

Performance Analysis in Meta-World. We compared our method to baselines on 8 Meta-World
tasks with 1M frames. FAC achieved 100% success rates in all tasks, with 7/8 requiring fewer than
100k frames (about 1 hour of training), and the harder bin-picking task needing under 400k frames.
In contrast, baseline methods fail to reach 100% success on most tasks. As shown in Fig. 6, FAC
significantly outperforms baselines in both sample efficiency and success rates. While DrQ-v2 can
complete some tasks, it learns much slower than FAC. Additionally, we warm up the actor with 10
success demos from the diffusion-based prior policy before training. Although the improvement in
DrQ-v2 with warmup is noticeable (Fig. 7), it falls behind FAC, which benefits from policy prior.

R3M and VIP backbones provide visual representation prior knowledge for RL, but perform worse
than DrQ-v2, likely due to the loss of plasticity in pre-trained models [66]. As UniPi and the dis-
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Figure 6: Success Rate Curves for the 8 Tasks in Meta-World. Our method consistently achieves 100%
success rates across all tasks, under the constrained performance of the policy prior model. It significantly
outperforms the baselines with manual-designed rewards.
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the prior policy model. FAC achieves better performance across the 8 tasks generally.

tilled foundation prior policy lack environment interaction during training, they are represented as
horizontal lines in Fig. 6. While UniPi outperforms the distilled prior in most environments, since
the latter is learned from UniPi, both are still far inferior to FAC.

4.3 Ablation Study in Simulations

In this section, we answer the following questions: (I) What’s the importance of the three proposed
priors? (II) How does FAC perform with noisier priors?

Ablation of Each Foundation Prior. To assess the importance of each foundation prior, we con-
ducted experiments by removing them individually and comparing the results to the full method,
along with an ablation study on the success buffer (Fig. 8 (a)). We found the reward prior to be
the most crucial. Without it, performance drops significantly or fails, as the reward function reduces
to shaping rewards, making policies indistinguishable. Without the policy prior, the agent struggles
with difficult tasks like bin-picking and door-opening, and convergence slows on most tasks. Re-
moving the value prior or success buffer reduces sample efficiency, especially for bin-picking, as
the value prior helps guide policies under noisy policy priors. Success trajectory imitation further
improves sample efficiency. Overall, using all foundation priors yields the best results.

FAC with Various Quality of Foundation Priors. As previous ablations show, without value prior
knowledge, FAC’s sample efficiency decreases, suggesting that a better value prior can further boost
performance. We now explore FAC’s robustness to the quality of policy and success reward priors.
First, we create noisier policy priors by discretizing each action dimension into −1, 0,+1, providing
only rough directional information, which we call the discretized policy. We also add uniform noise
to the discretized actions at 20% and 50% probabilities. As shown in Fig. 8 (b1), the discretized
policy (blue curve) performs similarly to the original (green curve), except for harder tasks like
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Figure 8: Results of Ablation Study (a) Three Foundation Priors and the Success Buffer. (b) The Quality of
Policy Prior. (c) The Quality of the success-reward Prior.

bin-picking and door-unlocking, which take more frames to reach 100% success. Adding noise
further reduces performance, but even with 50% noise, FAC still achieves 100% success in many
environments. We also tested robustness with systematically wrong policy priors, where actions
have a 20% or 50% chance of being inverted (e.g., -1 to 1) (Fig. 8 (b2)). FAC performs well with
20% wrong direction but struggles at 50%, where misleading information is abundant. This shows
FAC’s robustness to moderate systematic noise.

To assess the impact of success-reward prior quality, we distilled a proxy model using 50k offline
data from the replay buffer across all 8 tasks. The model, conditioned on task embeddings, has a
1.7% false positive and 9.9% false negative error on the evaluation datasets. We replaced the oracle
0-1 success reward with the predicted reward. As shown in Fig. 8 (c), FAC with the 50k-image proxy
model experiences only a limited performance drop compared to the oracle reward and outperforms
FAC without success rewards. This demonstrates that FAC performs well even with a noisy success-
reward prior. In conclusion, our ablation studies show that FAC is resilient to variations in the quality
of foundation priors. The higher the quality, the more sample-efficient FAC becomes.

5 Discussion

In this paper, we introduce a novel framework, termed Reinforcement Learning from Foundation
Priors (RLFP), which leverages policy, value, and success-reward prior knowledge for RL. Addi-
tionally, we also detail the implementation of this concept within actor-critic methods, introducing
the Foundation-guided Actor-Critic (FAC) approach. Extensive experiments on real robots and sim-
ulated environments demonstrate the effectiveness of RLFP in efficient autonomous learning.

Limitation and Future Work This work has limitations, such as relying on human engineering for
designing low-level skills, prompts, and code policy demos. Additionally, we fine-tune diffusion
models with in-domain data for better prior knowledge. However, as foundation models improve,
future methods may only require simple task instructions without fine-tuning. Future exploration can
focus on building more accurate and broadly applicable foundation priors and incorporating richer
priors into the RLFP framework. For example, humans can predict future states, and integrating the
predictive knowledge from dynamic foundation models could enhance policy learning.

8



Acknowledgments

This work is supported by the Ministry of Science and Technology of the People´s Republic of
China, the 2030 Innovation Megaprojects "Program on New Generation Artificial Intelligence"
(Grant No. 2021AAA0150000). This work is also supported by the National Key R&D Program of
China (2022ZD0161700).

References
[1] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-

hart, D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a
learned model. Nature, 588(7839):604–609, 2020.

[2] W. Ye, S. Liu, T. Kurutach, P. Abbeel, and Y. Gao. Mastering atari games with limited data.
Advances in Neural Information Processing Systems, 34:25476–25488, 2021.

[3] K. Arulkumaran, A. Cully, and J. Togelius. Alphastar: An evolutionary computation perspec-
tive. In Proceedings of the genetic and evolutionary computation conference companion, pages
314–315, 2019.

[4] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved
data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

[5] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE transactions on systems, man, and cybernetics, (5):
834–846, 1983.

[6] S. Mahadevan and J. Connell. Automatic programming of behavior-based robots using rein-
forcement learning. Artificial intelligence, 55(2-3):311–365, 1992.

[7] P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg. Daydreamer: World models for
physical robot learning. In Conference on Robot Learning, pages 2226–2240. PMLR, 2023.

[8] J. Yang, M. S. Mark, B. Vu, A. Sharma, J. Bohg, and C. Finn. Robot fine-tuning made easy:
Pre-training rewards and policies for autonomous real-world reinforcement learning. arXiv
preprint arXiv:2310.15145, 2023.

[9] S. Haldar, J. Pari, A. Rai, and L. Pinto. Teach a robot to fish: Versatile imitation from one
minute of demonstrations. arXiv preprint arXiv:2303.01497, 2023.

[10] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

[11] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved
data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

[12] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104, 2023.

[13] N. Hansen, H. Su, and X. Wang. Td-mpc2: Scalable, robust world models for continuous
control. arXiv preprint arXiv:2310.16828, 2023.

[14] A. N. Meltzoff. Infant imitation after a 1-week delay: long-term memory for novel acts and
multiple stimuli. Developmental psychology, 24(4):470, 1988.

[15] A. N. Meltzoff. Understanding the intentions of others: re-enactment of intended acts by
18-month-old children. Developmental psychology, 31(5):838, 1995.

9



[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[18] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances
in neural information processing systems, 33:1877–1901, 2020.

[19] OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi:10.48550/arXiv.2303.
08774. URL https://doi.org/10.48550/arXiv.2303.08774.

[20] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-
hghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[21] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[22] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional image
generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[23] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.

[24] Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, and A. Zhang. Vip: Towards
universal visual reward and representation via value-implicit pre-training. arXiv preprint
arXiv:2210.00030, 2022.

[25] Y. Du, M. Yang, B. Dai, H. Dai, O. Nachum, J. Tenenbaum, D. Schuurmans, and P. Abbeel.
Learning universal policies via text-guided video generation. arXiv preprint arXiv:2302.00111,
2023.

[26] X. Gu, C. Wen, J. Song, and Y. Gao. Seer: Language instructed video prediction with latent
diffusion models. arXiv preprint arXiv:2303.14897, 2023.

[27] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv
preprint arXiv:2212.06817, 2022.

[28] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to
robotic control. arXiv preprint arXiv:2307.15818, 2023.

[29] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,
Y. Sulsky, J. Kay, J. T. Springenberg, et al. A generalist agent. arXiv preprint
arXiv:2205.06175, 2022.

[30] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, J. Peralta,
B. Ichter, et al. Scaling robot learning with semantically imagined experience. arXiv preprint
arXiv:2302.11550, 2023.

[31] Y. Chebotar, K. Hausman, F. Xia, Y. Lu, A. Irpan, A. Kumar, T. Yu, A. Herzog, K. Pertsch,
K. Gopalakrishnan, et al. Q-transformer: Scalable offline reinforcement learning via autore-
gressive q-functions. In 7th Annual Conference on Robot Learning, 2023.

10

http://dx.doi.org/10.48550/arXiv.2303.08774
http://dx.doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774


[32] N. Di Palo, A. Byravan, L. Hasenclever, M. Wulfmeier, N. Heess, and M. Riedmiller. To-
wards a unified agent with foundation models. In Workshop on Reincarnating Reinforcement
Learning at ICLR 2023.

[33] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, et al. Inner monologue: Embodied reasoning through planning with language
models. arXiv preprint arXiv:2207.05608, 2022.

[34] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, K. Gopalakrishnan,
K. Hausman, A. Herzog, et al. Do as i can, not as i say: Grounding language in robotic
affordances. arXiv preprint arXiv:2204.01691, 2022.

[35] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,
Q. Vuong, T. Yu, et al. Palm-e: An embodied multimodal language model. arXiv preprint
arXiv:2303.03378, 2023.

[36] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg, S. Rusinkiewicz, and
T. Funkhouser. Tidybot: Personalized robot assistance with large language models. arXiv
preprint arXiv:2305.05658, 2023.

[37] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason, and
A. Garg. Progprompt: Generating situated robot task plans using large language models.
In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 11523–
11530. IEEE, 2023.

[38] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipu-
lation. In Conference on Robot Learning, pages 894–906. PMLR, 2022.

[39] Y. Hu, F. Lin, T. Zhang, L. Yi, and Y. Gao. Look before you leap: Unveiling the power of
gpt-4v in robotic vision-language planning. arXiv preprint arXiv:2311.17842, 2023.

[40] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and A. Zeng. Code
as policies: Language model programs for embodied control. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 9493–9500. IEEE, 2023.

[41] W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei. Voxposer: Composable 3d value
maps for robotic manipulation with language models. arXiv preprint arXiv:2307.05973, 2023.

[42] J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P. Kingma, B. Poole,
M. Norouzi, D. J. Fleet, and T. Salimans. Imagen video: High definition video generation
with diffusion models, 2022.

[43] S. Karamcheti, S. Nair, A. S. Chen, T. Kollar, C. Finn, D. Sadigh, and P. Liang. Language-
driven representation learning for robotics. arXiv preprint arXiv:2302.12766, 2023.

[44] R. Shah and V. Kumar. Rrl: Resnet as representation for reinforcement learning. arXiv preprint
arXiv:2107.03380, 2021.

[45] A. Majumdar, K. Yadav, S. Arnaud, Y. J. Ma, C. Chen, S. Silwal, A. Jain, V.-P. Berges,
P. Abbeel, J. Malik, et al. Where are we in the search for an artificial visual cortex for embodied
intelligence? arXiv preprint arXiv:2303.18240, 2023.

[46] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual represen-
tation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

[47] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In Conference on Robot Learning, pages 785–799. PMLR, 2023.

11



[48] S. Nair, E. Mitchell, K. Chen, S. Savarese, C. Finn, et al. Learning language-conditioned robot
behavior from offline data and crowd-sourced annotation. In Conference on Robot Learning,
pages 1303–1315. PMLR, 2022.

[49] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anandkumar, Y. Zhu,
and L. Fan. Vima: General robot manipulation with multimodal prompts. arXiv preprint
arXiv:2210.03094, 2022.

[50] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang, D.-A. Huang, Y. Zhu,
and A. Anandkumar. Minedojo: Building open-ended embodied agents with internet-scale
knowledge. arXiv preprint arXiv:2206.08853, 2022.

[51] S. Nair, E. Mitchell, K. Chen, S. Savarese, C. Finn, et al. Learning language-conditioned robot
behavior from offline data and crowd-sourced annotation. In Conference on Robot Learning,
pages 1303–1315. PMLR, 2022.

[52] P. Mahmoudieh, D. Pathak, and T. Darrell. Zero-shot reward specification via grounded natural
language. In International Conference on Machine Learning, pages 14743–14752. PMLR,
2022.

[53] C. Eteke, D. Kebüde, and B. Akgün. Reward learning from very few demonstrations. IEEE
Transactions on Robotics, 37(3):893–904, 2020.

[54] B. Wu, F. Xu, Z. He, A. Gupta, and P. K. Allen. Squirl: Robust and efficient learning from video
demonstration of long-horizon robotic manipulation tasks. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 9720–9727. IEEE, 2020.

[55] H. Xiong, R. Mendonca, K. Shaw, and D. Pathak. Adaptive mobile manipulation for articulated
objects in the open world. arXiv preprint arXiv:2401.14403, 2024.

[56] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Vecerik, T. Lampe, Y. Tassa,
T. Erez, and M. Riedmiller. Data-efficient deep reinforcement learning for dexterous manipu-
lation. arXiv preprint arXiv:1704.03073, 2017.

[57] W. Ye, Y. Zhang, P. Abbeel, and Y. Gao. Become a proficient player with limited data through
watching pure videos. In The Eleventh International Conference on Learning Representations,
2022.

[58] S. Wang, S. Liu, W. Ye, J. You, and Y. Gao. Efficientzero v2: Mastering discrete and continuous
control with limited data. arXiv preprint arXiv:2403.00564, 2024.

[59] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104, 2023.

[60] S. Haldar, V. Mathur, D. Yarats, and L. Pinto. Watch and match: Supercharging imitation with
regularized optimal transport. In Conference on Robot Learning, pages 32–43. PMLR, 2023.

[61] P. Lancaster, N. Hansen, A. Rajeswaran, and V. Kumar. Modem-v2: Visuo-motor world models
for real-world robot manipulation. arXiv preprint arXiv:2309.14236, 2023.

[62] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In Icml, volume 99, pages 278–287. Citeseer, 1999.

[63] S. Fujimoto, H. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pages 1587–1596. PMLR, 2018.

[64] P. J. Ball, L. Smith, I. Kostrikov, and S. Levine. Efficient online reinforcement learning with
offline data. arXiv preprint arXiv:2302.02948, 2023.

12



[65] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
robot learning, pages 1094–1100. PMLR, 2020.

[66] P. D’Oro, M. Schwarzer, E. Nikishin, P.-L. Bacon, M. G. Bellemare, and A. Courville. Sample-
efficient reinforcement learning by breaking the replay ratio barrier. In Deep Reinforcement
Learning Workshop NeurIPS 2022, 2022.

[67] M. Dorigo and M. Colombetti. Robot shaping: an experiment in behavior engineering. MIT
press, 1998.

[68] M. J. Mataric. Reward functions for accelerated learning. In Machine learning proceedings
1994, pages 181–189. Elsevier, 1994.

[69] J. Randløv and P. Alstrøm. Learning to drive a bicycle using reinforcement learning and shap-
ing. In ICML, volume 98, pages 463–471, 1998.

[70] E. Cetin, P. J. Ball, S. Roberts, and O. Celiktutan. Stabilizing off-policy deep reinforcement
learning from pixels. arXiv preprint arXiv:2207.00986, 2022.

[71] R. Zheng, X. Wang, Y. Sun, S. Ma, J. Zhao, H. Xu, H. Daumé III, and F. Huang. Taco:
Temporal latent action-driven contrastive loss for visual reinforcement learning. arXiv preprint
arXiv:2306.13229, 2023.

[72] R. Cheng, A. Verma, G. Orosz, S. Chaudhuri, Y. Yue, and J. Burdick. Control regularization for
reduced variance reinforcement learning. In International Conference on Machine Learning,
pages 1141–1150. PMLR, 2019.

13



A Appendix

Appendix Table of Contents

• Appendix A.1: Reward Shaping in FAC

• Appendix A.2: Experimental Details of FAC

• Appendix A.3: Details of Acquring Foundation Priors

• Appendix A.4: Running Clock Time Analysis

• Appendix A.5: More Ablations Results

• Appendix A.6: Proof of the Optimality under Policy Regularization

A.1 Reward Shaping in FAC

In this work, we apply the value prior knowledge in Actor-Critic algorithms in the format of reward
shaping. Reward shaping guides the RL process of an agent by supplying additional rewards for
the MDP [67, 68, 69]. In practice, it is considered a promising method to speed up the learning
process for complex problems. Ng et al. [62] introduce a formal framework for designing shaping
rewards. Specifically, we define the MDP G = (S,A,P,R), where A denotes the action space,
and P = Pr{st+1|st, at} denotes the transition probabilities. Rather than handling the MDP G,
the agent learns policies on some transformed MDP G′ = (S,A,P,R′), R′ = R + F , where
F is the shaping reward function. When there exists a state-only function Φ : S → R1 such
that F (s, a, s′) = γΦ(s′) − Φ(s) (γ is the discounting factor), the F is called a potential-based
shaping function. Ng et al. [62] prove that the potential-based shaping function F has optimal
policy consistency under some conditions as follows:

Theorem 1 [62] Suppose that F takes the form of F (s, a, s′) = γΦ(s′)−Φ(s), Φ(s0) = 0 if γ = 1,
then for ∀s ∈ S, a ∈ A, the potential-based F preserve optimal policies and we have:

Q∗
G′(s, a) = Q∗

G(s, a)− Φ(s)

V ∗
G′(s) = V ∗

G (s)− Φ(s)
(2)

The theorem indicates that the potential-based shaping rewards treat every policy equally. Thus it
does not prefer π∗

G . Moreover, under the guidance of shaping rewards for the agents, a significant
reduction in learning time can be achieved. In practical settings, the real-valued function Φ can be
determined based on domain knowledge.

A.2 Experimental Details of FAC

Since FAC is built upon DrQ-v2, the hyper-parameters of training the actor-critic model are the same
as DrQ-v2 [11]. The n-step TD target value and the action in Eq. 1 are as follows, where θ̄k are the
moving weights for Q target networks.

y =

n−1∑
i=0

γirt+i + γn min
k=1,2

Qθ̄k(st+n, at+n),

at = πϕ(st) + ϵ, ϵ ∼ clip(N (0, σ2),−c, c)

(3)

Hyper-parameters in FAC Morever, the observation shape is 84× 84 on real robots and in simula-
tion. For better representations of the scene, we use a wrist camera on real robots. In simulation, we
stack 3 frames and repeat actions for 2 steps, while we do not stack frames or repeat actions on real
robots. In Meta-World, we follow the experimental setup of [60]. Specifically, the horizon length
is set to 125 frames for all tasks except for bin-picking and button-press-topdown, which are set to
175. The total frames of the 8 tasks are 100k, except for the task bin-picking, which is set to 1M.
Notably, we set the same camera view of all the tasks for consistency. On real robots, we set the
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Figure 9: Training loss curves of bin-picking and door-open.

horizon of the 5 tasks (Pick Place, Open Door, Water Plants, Unscrew Bottle Cap, Play Golf) to 40,
40, 50, 60, and 25, respectively. We evaluate them every 10 minutes, and the positions of the objects
vary in 5cm in Pick Place, Open Door, Watering Plants, and 3cm in Unscrew Bottle Cap and Play
Golf. We reset the objects manually because the current foundation model cannot deal with reset
problems. The difference in the hyper-parameters between the real robots and the simulation is as
follows:

Table 2: The Main Difference of the Hyper-parameters of FAC on real robots and in simulation.

Parameter On real robots In simulation

Frame Stack 1 3
Action Repeat 1 2
Seed Frames 10 Trajectory 4000
Std of Actor 0.1 1 → 0.1
Feature_dim in DrQ-v2 512 50
UTD ratio 20 1 (N/A)
Choose better action under Q Yes No
Use wrist camera Yes No

The training loss curves of the task bin-picking and door-open for reference, as shown in Fig. 9.

More Experimental Setup Details on real robots

Here we give the task description of the 5 tasks on Franka Arm. For the task Unscrew Bottle Cap,
we will fix the bottle when the arm tries to unscrew the cap.

• Pick Place: Pick up the purple eggplant and place it onto the blue plate.

• Open Door: There is a white cabinet on the table and there is a cucumber in it. The door
can only be opened from the outside. Please open the door by a large margin so that the
cucumber can be seen.

• Watering Plants: There are a blue watering kettle and a potted plant. Please help me
watering the plant and keep watering still.

• Unscrew Bottle Cap: There are a plastic bottle with a green cap and a pink plate on the
table. The bottle will be fixed on the table, so that you cannot lift the bottle. Please help me
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unscrew the bottle cap and place it on the pink plate. You mush know how to unscrew the
bottle cap, anticlockwise or clockwise?

• Play Golf: There is a golf hole and a golf ball on the table. The robotic arm is tied by a
golf club. Please shoot the golf ball into the set.

The ground-truth success reward functions of each task are as follows, which is leveraged in evalu-
ation.

• Pick Place: dist(xy position of the eggplant, xy position of the blue plate center) < radius
& dist(z of the eggplant, z of the blue plate) < ϵ, ϵ = 0.01.

• Open Door: dist(xy position of the handle, xy position of the cabinet center) > ϵ, ϵ = 0.1.

• Watering Plants: dist(z of the sprout, z of the plants) > ϵ1 & dist(xy of the sprout, xy of the
plants) < radius & abs(horizontal orientation of the sprout) < ϵ2 degree, ϵ1 = 0.1, ϵ2 = 15.

• Unscrew Bottle Cap: dist(xyz of the cap, xyz of the bottle center) > ϵ & (cap in the plate),
ϵ = 0.15. (‘cap in the plate’ is the same as the function in pick place).

• Play Golf: (golf in the golf hole). (‘golf in the golf hole’ is the same as the function in pick
place).

Reward functions for vanilla RL Since it is hard to get the object state in real time, we assume the
object state will be attached to the robot state after some actions. For example, we have the initial
position of the eggplant, the position, and the size of the target plate. After the gripper reaches
the pos of the eggplant and takes action "grasp", the pos of the eggplant will be set the same as
the eef pos. The reward function is the normal pick-place reward function. For the door-open, we
get the handle initial position, and once the arm is reaching in the bound of 5cm of the handle and
closes the gripper, the position of the handle will be attached to the eef of the robot. Therefore, the
reward functions are based on the distance between the gripper and some target position sequences,
including the position distance and the orientation distance. We give the reward functions of the
Door Open and Play Golf as examples, which are harder tasks.

Open Door: Rapproach = max (0, 1− tanh(10× pgripper − phandle∥), encourages the robot to
get closer to the handle by diminishing rewards as the distance decreases. Rorient = 1 −
∥qgripper−qhandle∥

2 , incentivizes aligning the robot’s gripper orientation with that of the handle. Rpull =

max (0, θdoor − θprev_door), increases with the door’s opening angle. Ropen = min
(
θdoor
90.0 , 1.0

)
, pri-

oritizes achieving a 90-degree opening. A small time penalty, Rtime = −0.01, is applied per
time step to encourage faster task completion. The total reward is then formulated as: Rtotal =
0.01 ∗Rapproach + 0.05 ∗Rorient + 0.1 ∗Rpull + 0.1 ∗Ropen +Rtime.

Play Golf: We use the golf club’s length and the end-effector’s (eef) position to determine the
clubhead’s state. The ball back position is defined as the back of the ball, which is the optimal
point to strike. Rapproach = max (0, 1− tanh(10× ∥pclubhead − pball_back∥)), encourages the robot
to position the clubhead at the back of the ball. Rorient = 1 − ∥qclubhead−qtarget∥

2 , which incentivizes
proper alignment of the clubhead for an accurate strike. Additionally, the reward for the clubhead’s
velocity at the moment of impact, Rvelocity = max (0, 1− tanh(10× ∥vclubhead − vdesired∥)), ensures
that the clubhead reaches the optimal speed to strike the ball effectively. So the final reward is:
Rtotal = 0.1 ∗Rapproach + 0.5 ∗Rorient + 0.5 ∗Rvelocity +Rtime.
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Figure 10: Example of success identification by GPT-4V in task Watering Plants. Given the question. Does
the robotic arm water the plants? Attention, if the spout orients horizontally over the plant, you should output
1 for yes. Otherwise, you should output 0 for no without any space first. Be sure of your answer and explain
your reason afterward. The foundation model can give the correct success reward as well as the corresponding
explanations.

A.3 Details of Acquring Foundation Priors

A.3.1 Acquring Foundation Priors on Franka

Examples of Success-reward Discrimination Prompts It is significant to feed the success-reward
model by high-resolution images, which we choose 512 × 512. Here we give an example of the
success-reward prompts in FAC towards the task Watering Plants, by leveraging GPT-4V, as follows:
Does the robotic arm water the plants? Attention, if the spout orients over horizontally over the
plant, you should output 1 for yes. Otherwise, you should output 0 for no without any space first.
Be sure of your answer and explain your reason afterward. Then we can receive the corresponding
success-reward as well as the explanations, shown in Fig. 10.

Examples of Code Policy Prompts. Before code generation, we define some primitive skills. We
implement the corresponding interface between primitive skills and control systems, so that they can
be executed directly by the robot. The primitive low-level skills and the corresponding params are
as follows:

• move_to x y z: move the gripper to the position (x, y, z).

• grasp: grasp with the gripper.

• release: release the gripper.

• rotate_clockwise: rotate gripper clockwise by 90 degree.

• rotate_anticlockwise: rotate gripper anticlockwise by 90 degree.

• orient_half_horizontally: change the orientation of the gripper half horizontally to make it
grasp more easily.

• orient_vertically: change the orientation of the gripper vertically to make ti grasp some-
thing vertically.

• strike_front: strike something to the front of the arm.

• strick_back: strike something to the back of the arm.

Firstly, we input prompts that include a task description, the initial scene, and the expected format for
the generated code. Notably, the task used in the example differs from the five tasks we evaluate. For
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the downstream tasks, we rely on the GPT-4V to generate the code policy based on new images and
the corresponding task descriptions, shown in Fig. 11. We also specify the range of object positions
within the scene, enabling the VLM to estimate the position of the target object and generate code
that includes skill plans and position parameters. Limited to the current ability of GPT-4V, it can
build reasonable code policies under small changes in object positions.

Figure 11: Initial observation image of the task Un-
screw Bottle Cap, including the fixed camera view and
the wrist camera view.

Then, we feed in the current image and the task
descriptions: There are a plastic bottle with a
green cap and a pink plate on the table. The
bottle will be fixed on the table, so that you can-
not lift the bottle. Please help me unscrew the
bottle cap and place it on the pink plate. You
mush know how to unscrew the bottle cap, an-
ticlockwise or clockwise? Then we can receive
the generated code policy as shown in the code
text, which can make the correct rotation to un-
screw the cap.

On real robots, the action space is 7-dim, con-
sisting of the delta position (x, y, z) of the grip-
per, the delta orientation (roll yaw pitch) of the
gripper, and the grasp/release of the gripper. We
use the OSC control mode. As for the policy
output of the code policy, it generates plans like
“move_to x1 y1 z1”. Then we use robotics con-
trol toolkits to compute the delta position/ori-
entation for the robot, which is the prior action.
Once the plan “move_to x1 y1 z1” is finished
(close to epsilon in practice), the code policy
will execute the next plan. In this way, we can
acquire the corresponding prior action in each
step. The KL constraint is between the prior
action and the RL policy. Consequently, the
GPT-4V generates code plans that consist of the
primitive skills, and then the primitive skill can
generate delta prior actions by robotics control codes.

18



Policy Description Prompts for Unscrew Bottle Cap

# Query: pick up the plastic bottle
# Some info ... (skip here)
# Here are the skills that you can choose:
# 1. move_to x y z: move the gripper to

the position of (x, y, z)
# 2. grasp: grasp with the gripper
# 3. release: release the gripper
# 4. rotate_clockwise: rotate the gripper

clockwise by only 90 degree
# 5. rotate_anticlockwise: rotate the

gripper anticlockwise by 90 degree
# 6. reset: move back to the initial

position
# Attention: For safety , you cannot rotate

clockwise or rotate
# anticlockwise twice continuously. Think

carefully about how to
# finish the task.

def code_policy ():
# Obtain the position of plastic

bottle. Estimate the position.
object_pos = [0.5, 0., 0.12]
x1, y1, z1 = object_pos
# Pick up
plans = [

# move above the bottle
f'move_to {x1:.2f} {y1:.2f} {z1 +

0.05:.2f}',
# move to the bottle
f'move_to {x1:.2f} {y1:.2f} {z1:.2

f}',
# grasp the bottle
'grasp ',
# lift the cucumber
f'move_to {x1:.2f} {y1:.2f} {z1 +

0.2:.2f}',
]
return plans

Generated Code Policy for Unscrew Bottle Cap

def code_policy ():
# Bottle cap position (estimated near

the top of the bottle: height of
the bottle + table z-axis)

cap_pos = [0.5, 0., 0.26]
x1, y1, z1 = cap_pos

# Plate position (estimated to be at
the provided position)

plate_pos = [0.75, 0., 0.06]
x2, y2, z2 = plate_pos

# Plans to unscrew the bottle cap and
place it on the plate

plans = [
# Move above the bottle cap
f'move_to {x1:.2f} {y1:.2f} {z1 +

0.05:.2f}',
# Move to the bottle cap
f'move_to {x1:.2f} {y1:.2f} {z1:.2

f}',
# Grasp the bottle cap
f'grasp ',
# Rotate anticlockwise to unscrew
f'rotate_anticlockwise ',
# Lift the cap
f'move_to {x1:.2f} {y1:.2f} {z1 +

0.05:.2f}',
# Move above the plate
f'move_to {x2:.2f} {y2:.2f} {z1 +

0.05:.2f}',
# Move down to the plate
f'move_to {x2:.2f} {y2:.2f} {z2:.2

f}',
# Release the cap onto the plate
f'release ',
# Move away
f'move_to {x2:.2f} {y2:.2f} {z2 +

0.2:.2f}'
]
return plans

# done

A.3.2 Acuqring Foundation Priors on Meta-world

Training Inverse Dynamics Model We build the inverse dynamics model ρ(st, st+1) as follows:

• Takes inputs as st, st+1, with the shape of 3× 84× 84.

• A Downsample Model, which outputs the representation with the shape of 128× 2× 2.

• Flatten the planes into 512-dimension vectors.

• 1 Linear layer with ReLU, which outputs the 64-dimension vectors.

• 1 Linear layer with ReLU, which outputs the 64-dimension vectors.

• 1 Linear layer with ReLU, which outputs the action dimension vectors (equal to 4).

The Downsample model is designed as follows:

• 1 convolution with stride 2 and 128 output planes, output resolution 42× 42. (ReLU)

• 2 residual block with 128 planes.

• Average pooling with stride 2 (kernel size is 3), output resolution 21× 21. (ReLU)

• 2 residual block with 128 planes.

• Average pooling with stride 3 (kernel size is 5), output resolution 7× 7. (ReLU)

• 2 residual block with 128 planes.

• Average pooling with stride 3 (kernel size is 4, no padding), output resolution 2×2. (ReLU)
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Figure 12: The generated videos from the diffusion model Seer given the initial images as well as task descrip-
tions.

We use the 1M replay buffer trained from vanilla DrQ-v2 for each task and collect them together as
the dataset.

Distilling Diffusion Policy Foundation Models We use the fine-tuned VLM Seer to collect
100 videos for each task (1000 in bin-picking-v2), and use the trained inverse dynamics model
ρ(st, st+1) to labal pseudo actions for the videos. The example of generated videos is illustrated
in Fig. 12. Then, we do supervised learning to train the policy foundation prior model under the
dataset, which is conditioned on the task. For convenience, we encode the task embedding as a one-
hot vector, which labels the corresponding task. Thus, the size of the task embedding is 8. Here, the
architecture of the distilled policy model is as follows, where the downsample model is the same as
that in the inverse dynamics model.

• Takes inputs as st, et, with the shape of 3× 84× 84 and 1× 8.

• A Downsample Model, which outputs the representation with the shape of 128× 2× 2.

• Flatten the planes into 512-dimension vectors.

• Concat the 512 vector and the task embedding into 520-dimension vectors.

• 1 Linear layer with ReLU, which outputs the 64-dimension vectors.

• 1 Linear layer with ReLU, which outputs the 64-dimension vectors.

• 1 Linear layer with ReLU, which outputs the action dimension vectors (equal to 4).

The training hyper-parameters of the inverse dynamics model ρ(st, st+1) and the distilled policy
model Mπ(st, T ) are in Table 3. The hyper-parameters of training FAC agents are the same as
DrQ-v2 [11].
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Table 3: Hyper-parameters for Building the Policy Foundation Models in Meta-World.

Parameter Training ρ Training Mπ

Minibatch size 256 256
Optimizer AdamW AdamW
Optimizer: learning rate 1e-4 5e-4
Optimizer: weight decay 1e-4 1e-4
Learning rate schedule Cosine Cosine
Max gradient norm 1 1
Training Epochs 50 300

A.4 Running Clock Time Analysis

A.4.1 Analysis of Extra Running Clock Time in FAC

Since it brings great performance and efficiency increases for RL by leveraging the foundation prior
knowledge, it is interesting and significant to investigate the clock time of running the foundation
models in practice. Here we discuss the time consumed by each part from the foundation models in
real and simulation. In practice, some foundation models are accessed only at the beginning or at the
final step, which results in a much smaller amortization time over the trajectory. For example, GPT-
4V detects success only in the final step. To make fair comparisons, we record the running clock
time per trajectory and get the amortized time per step. We set the trajectory length to 50 steps for
convenience. To make clear comparisons, we conclude the operations without access to foundation
models into Normal Operation part, and those operations with access to foundation models into
Foundation Model Operation part. All the results are evaluated in a single 3090 GPU, and we
calculate the average clock time during training among 50 trajectories on average from all the tasks.

Tab. 4 and 5 are the results of real robots and simulations concerning clock time during training.
Here, Action Move means the process of taking actions by the robotic arm. The Action Inference
means the inference time of the learned policy model. Notably, in the simulation, we offline distill
a prior policy from the diffusion model due to the heavy time-cost of video generation (in Sec. 3.3).
Thus, the clock time of the Diffusion Policy Prior for video generation is not included in the training
time, although it is much more time-consuming than the other operations in simulation.

Generally, in both environments, the time complexity of running foundation models is about 2 times
more than the vanilla setting in amortization. And the most time-consuming part is the Action

Table 4: Running Time of Each Part in FAC on Real Robots. On real robots, the most time-consuming
part of the foundation model operation is generating policy code from GPT-4V. The total amortized time of
foundation model operations is a little larger to the normal operations.

Clock Time on Real Robots (s) Per Trajectory Amontized Step

Normal Operation

Action Move of the gripper in the real world - 0.320
Action Inference from policy π(a|s) - 0.001
Total - 0.321

Foundation Model Operation

Code Policy Prior: policy code generation from GPT-4V 14.76 0.290
Code Policy Prior: action generation by code policy - 0.001
Success Prior: from GPT-4V 4.48 0.089
Value Prior: value inference from VIP - 0.013
Total - 0.393
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Table 5: Running Time of Each Part in FAC on Meta-World. In the simulation, the most time-consuming
part of the foundation model operation is the value inference from VIP. The total amortized time of foundation
model operations is smaller than the normal operations.

Clock Time in Simulation (s) Per Trajectory Amontized Step

Normal Operation

Action Move of the gripper in simulation - 0.009
Action Inference from policy π(a|s) - 0.001
Total - 0.010

Foundation Model Operation

Diffusion Policy Prior: video generation (done offline) 11.62 0.230
Diffusion Policy Prior: action generation - 0.001
Success Prior: from the success model - 0.001
Value Prior: value inference from VIP - 0.007
Total - 0.008

0.25 0.50 0.75 1.00
Frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s 

ra
te

Bin picking

0.25 0.50 0.75 1.00
Frames 1e6

Button press

0.25 0.50 0.75 1.00
Frames 1e6

Door open

0.25 0.50 0.75 1.00
Frames 1e6

Door unlock

0.25 0.50 0.75 1.00
Frames 1e6

Drawer close

0.25 0.50 0.75 1.00
Frames 1e6

Drawer open

0.25 0.50 0.75 1.00
Frames 1e6

Hammer

0.25 0.50 0.75 1.00
Frames 1e6

Window close

FAC DrQ-v2* ALIX* TACO*

Figure 13: Here ‘*’ in DrQ-v2, ALIX, and TACO means only the 0-1 success reward is provided from the
environment, which is different from the original settings in their works. FAC can work for all the tasks while
the other baselines fail in half of them. It is significant and sample-efficient to utilize prior knowledge for
reinforcement learning.

Move. In foundation model operations, generating the code policy from GPT-4V is the slowest on
real robots, while the value inference is the slowest in simulation.

Moreover, we record the total training time spent by FAC and vanilla DrQ-v2 to make comparisons.
We average the 3 seeds running for each task where we train about 100k steps on a single 3090
GPU. Vanilla DrQ-v2 takes 32m 2s on average; while FAC takes 1h 11min 17s on average, which
is 2 times more than that without foundation priors. As shown in Fig. 6, even at the same clock
time, FAC is better than vanilla DrQ-v2 with ground-truth rewards. FAC can solve 7/8 tasks in 100k
frames, while the vanilla DrQ-v2 can only solve 2/8 in 200k frames. Furthermore, FAC can solve
more tasks than the baselines. Consequently, we conclude that our method significantly outperforms
the baselines concerning training clock time.

A.5 More Ablations Results

Comparison to More Baselines with Success-reward Only Here, we also add some baselines
under the setting, where only the success-reward foundation prior is provided. We choose the recent
SOTA model-free RL algorithms on Meta-World ALIX [70] and TACO [71], as well as the baseline
DrQ-v2 [11] with the success-reward only. Notably, ALIX and TACO are both built on DrQ-v2.
The results are shown in Fig. 13, where ‘*’ means that only a 0-1 success reward is given. Only
FAC can achieve 100% success rates in all the environments. DrQ-v2*, ALIX*, and TACO* can not
work on hard tasks such as bin-picking and door-open. FAC requires fewer environmental steps to
reach 100% success rates, as shown in the Figure. The results on the new baselines can verify the
significance and efficiency of utilizing the abundant prior knowledge for RL in a way.

Comprasion to BC Policies from Policy Prior Another interesting baseline of leveraging founda-
tion policy prior is to collect success demonstrations by the prior policy Mπ and train a behavior
cloning policy. Here we collect 100 successful demonstrations on Meta-World for each task by the

22



Table 6: The performance comparison between the distilled policy prior and the learned bc policy on Meta-
World.

Prior Policy Mπ BC Policy FAC

bin-picking-v2 0 0 1.00
button-press-topdown-v2 0.45 0.15 1.00

door-open-v2 0 0 1.00
door-unlock-v2 0 0 1.00
drawer-close-v2 0.10 0.10 1.00
drawer-open-v2 0.05 0 1.00

hammer-v2 0.15 0.10 1.00
window-close-v2 0.30 0.05 1.00

prior policy Mπ . Noticing that the policy prior achieves 0% success rate on some tasks, we col-
lect 100 trajectories then. The results are in Tab. 6. Generally, we find that the learned BC policy
cannot outperform the prior policy itself in all the tasks. More significantly, in some tasks, such as
windowclosev2, the BC policy achieves much worse results than the prior policy. This is because
the prior policy works only in some certain scenarios, which introduces bias in the collected de-
mos. Although the prior policy fails in some scenarios, it can introduce some informative actions,
which can be much better than random actions. Therefore, it is more reasonable to leverage the prior
actions as guidance for RL.

A.6 Proof of the Optimality under Policy Regularization

Lemma 1 The policy πm = 1
1+β π̂ϕm

+ β
1+βMπ , is the solution to the optimization problem of the

actor shown in Equation 1.

Proof 1 First, π̂ϕm
is the RL policy optimized by standard RL optimization problem in m-th itera-

tion, illustrated in the following equation.

π̂ϕm
= argmax

π̂ϕ

Eτ∼π̂ϕ
[Q(s, a)] as m → ∞ (4)

Note that the following derivation omits the variance of Gaussian distribution for convenience. This
is because the variance is independent of the state in the deterministic Actor-Critic algorithms DrQ-
v2 algorithm.

According to Equation 1, the policy πm can be represented as:

πm = argmin
π

[−Eτ∼πQ(s, a) + βKL(π,Mπ)] (5)

Adding Eτ∼π̂ϕm
Q(s, a) in Equation 5, we can rewrite it as:

πm = argmin
π

[Eτ∼π̂ϕm
Q(s, a)− Eτ∼πQ(s, a) + βKL(π,Mπ)] (6)

Considering Eτ∼π̂ϕm
Q(s, a) is not related to the optimization objective, the above equation holds.

Intuitively, we can observe that there exist two parts in the objective. About the first part, we can
use importance sampling to obtain:

Eτ∼π̂ϕm
Q(s, a)− Eτ∼πQ(s, a) = Eτ∼π̂ϕm

[
π̂ϕm − π

π̂ϕm

Q(s, a)] (7)

Since π̂ϕm can be represented as argmaxπ̂ϕ
Eτ∼π̂ϕ

[Q(s, a)] when m approaching to infinity, the
minimum of Eτ∼π̂ϕm

Q(s, a) − Eτ∼πQ(s, a) can be achieved when the minimum of the following
equation exits.

argmin
π

∥π̂ϕm
− π∥ ⇐⇒ argmin

π
∥ argmax

π̂ϕ

Eτ∼π̂ϕ
[Q(s, a)]− π∥as m → ∞ (8)

Let us see the second part in Equation 6. π and Mπ are Gaussian distributions and the variances of
distributions are constant in our framework. Thus, KL(π,Mπ) ⇐⇒ ∥π −Mπ∥ holds.
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Hereafter, we can reformulate Equation 6 as follows:

πm = argmin
π

[∥ argmax
π̂ϕ

Eτ∼π̂ϕ
[Q(s, a)]− π∥+ β∥π −Mπ∥] (9)

Based on the Lemma 1 in [72], the solution to the above problem is derived as:

πm =
1

1 + β
π̂ϕm

+
β

1 + β
Mπ (10)

To this end, the policy πm is the solution to the proposed optimization problem in this paper.

Theorem 2 Let Dsub = DTV(πopt,Mπ) be the bias between the optimal policy and the prior policy,
the policy bias DTV (πm, πopt) in m-th iteration can be bounded as follows:

DTV(πm, πopt) ≥ Dsub −
1

1 + β
DTV(π̂ϕm ,Mπ)

DTV(πm, πopt) ≤
β

1 + β
Dsub as m → ∞

(11)

Proof 2 Note that the following derivation is most inspired by Theorem 1 in [72]. According to
Lemma 1, the policy πm can be represented as 1

1+β π̂ϕm
+ β

1+βMπ .

Then, let us define the policy bias as DTV (πm, πopt), and Dsub = DTV (πopt,Mπ). Since DTV is
a metric that represents the total variational distance, we can use the triangle inequality to obtain:

DTV (πm, πopt) ≥ DTV (Mπ, πopt)−DTV (Mπ, πm) (12)

According to the mixed policy definition in Equation 10, we can further decompose the term
DTV (Mπ, πm):

DTV (Mπ, πm) = sup
(s,a)∈SxA

∣∣∣∣Mπ − 1

1 + β
π̂ϕm − β

1 + β
Mπ

∣∣∣∣
=

1

1 + β
sup

(s,a)∈SxA

|π̂ϕm −Mπ|

=
1

1 + β
DTV (π̂ϕm ,Mπ)

(13)

This holds for all m ∈ N from Equation 12 and Equation 13, and we can obtain the lower bound as
follows:

DTV (πm, πopt) ≥ Dsub −
1

1 + β
DTV (π̂ϕm

,Mπ) (14)

The RL policy π̂ϕm
can achieve asymptotic convergence to the (locally) optimal policy πopt through

the policy gradient algorithm. In this case, we can derive the bias between the mixed policy πm and
the optimal policy πopt as follows:

DTV (πopt, πm) = sup
(s,a)∈SxA

∣∣∣∣πopt −
1

1 + β
π̂ϕm − β

1 + β
Mπ

∣∣∣∣
=

β

1 + β
sup

(s,a)∈SxA

|πopt −Mπ| as m → ∞

=
β

1 + β
DTV (πopt,Mπ) as m → ∞

=
β

1 + β
Dsub as m → ∞

(15)

Therefore, we obtain the upper bound.
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