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ABSTRACT

Transformer has been widely used for modeling sequential data in recent years.
For example the Vision Transformer (ViT), which divides an image into a se-
quence of patches and uses Transformer to discover the underlying correlations
between the patches, has become particularly popular in Computer Vision. Con-
sidering the similarity of data structure between time series data and image
patches, it is reasonable to apply ViT or its variations for modeling time series
data. In this work, we explore this possibility and propose the Swind4TS algo-
rithm. It incorporates the window-based attention and hierarchical representation
techniques from the Swin Transformer, a well-known ViT algorithm, and applies
them to the long-term forecasting of time series data. The window-based attention
enables the algorithm to achieve linear computational complexity, while the hier-
archical architecture allows the representation on various scales. Furthermore,
SwindTS can flexibly adapt to channel-dependence and channel-independence
strategies, in which the former can simultaneously capture correlations in both
the channel and time dimensions, and the latter shows high training efficiency
for large datasets. SwindTS outperforms the latest baselines and achieves state-
of-the-art performance on 8 benchmark datasets. More importantly, our results
demonstrate the potential of transferring the Transformer architecture from other
domains to time series analysis, which enables research on time series to leverage
advancements at the forefront of other domains.

1 INTRODUCTION

Long-term Time Series Forecasting (LTSF) provides crucial support and guidance for various do-
mains such as intelligent transportation (L1 & Zhu, 2021} Rao et al., | 2022)), smart manufacturing (Z1
et al.} 2021;|Wang et al., 2022b)), and healthcare (Wang et al.,|2022aj;|Shokouhifar & Ranjbarimesan),
2022), and it poses significant challenges due to complex long-term dependencies, intricate interplay
of multiple variables, and other domain-related issues. Recently, deep learning methods, particularly
Transformer-based approaches, have received significant attention for LTSF. A succession of algo-
rithms have emerged, such as Informer (Zhou et al.,[2021), Autoformer (Wu et al.}2021)), FEDformer
(Zhou et al., 2022), and PatchTST (Nie et al., 2023). These algorithms have been elaborately de-
signed to either focus on the characteristics of time series or the quadratic computational complexity
of Transformer, and have exhibited gradually improved performance on benchmark datasets.

Transformer is designed originally for modeling word sequences, and now it has become the most
mainstream model in the domain of Natural Language Processing (NLP). Another example of Trans-
former’s successful application is the Vision Transformer (ViT), which has become a hot topic in
the research of Computer Vision (CV). Despite images not being sequential data, ViT divides them
into small image patches (as shown in Fig. [I), which form the image sequences and further enable
the application of Transformer to extract spatial features. From a perspective of data structure, both
the ensemble of words, image patches, or time variables, are shown as sequential data and thus
can be effectively modeled using Transformer. In particular, image- and time-sequences share two
common characteristics. Firstly, their lengths are typically fixed. For example, in the image classi-
fication tasks, the scale of each image is usually consistent, and in time series prediction tasks, the
length of the historical series is also fixed. However, NLP tasks often have variable input lengths
for word sequences. Additionally, both image- and time-sequences require pre-defined scales for
attention, for example, times series also require division into patches to eliminate the randomness



Under review as a conference paper at ICLR 2024

1 1l o | (& VN [ &[N

A series of image patches

g ] L/ DI PIIPN

A series of time patches

Figure 1: Illustrations of a series of image patches and a series of time patches.

and enhance the representation, whereas the scale of word sequences is inherently determined by
individual words.

This raises a natural question: can advanced ViT models be applied to facilitate time series mod-
eling? If the answer is “Yes”, connecting time series with ViT would allow leveraging the fruitful
well-established models of ViT for time series analysis. Very recent studies have showcased some
heuristic examples toward this hypothesis, such as MV-DTSA (Yang et al., 2023) and ViTST (L1
et al.} |2023)) which draw time sequences into binary images and then utilize mature CV models for
downstream forecasting and classification tasks, respectively. However, these methods do not di-
rectly align time series with CV model on the data structure. Besides, converting the time series into
images in this way might introduce redundant information.

In this article, we propose the Swin Transformer for Time Series (SwindTS) algorithm to tackle
LTSF, as a response to the aforementioned hypothesis. Swin Transformer (Liu et al.| [2021c) is a
well-known variant of ViT, and here we borrow two core designs from it: window-based attention
and hierarchical representation. A major drawback of Transformer-based methods is their quadratic
computational complexity with input time series. Swin4TS overcomes this by restricting attention to
a size-fixed window, resulting in linear complexity and enabling the processing of longer inputs. Ad-
ditionally, the hierarchical representation captures temporal information at different scales, leading
to a more comprehensive representation of time series data. Benefiting from the similarity in data
structure between time series and image patches, Swind4TS can easily adapt to channel-dependence
and channel-independence strategies, where the former considers the multivariate correlation, while
the latter does not. These two strategies complement each other in different cases, enabling Swin4TS
to achieve the best performance compared to the latest baselines.

Our contributions with SwindTS are as follows:

(1) We propose the SwindTS algorithm for LTSF, motivated by the similarity of data structure be-
tween time series and image patches. SwindTS has linear computational complexity and allows
representation across multiple scales. Besides, it is designed to be compatible to either channel-
dependence and channel-independence strategies, which consider the multivariate correlation or
not, respectively.

(2) We evaluate Swin4TS on 32 prediction tasks across 8 benchmark datasets and achieve perfor-
mance surpassing the latest baseline methods (both Transformer-based and non-Transformer-based)
on almost all tasks.

(3) We successfully apply techniques from ViT to LTSF, indicating the feasibility of modeling time
series modality using architectures from image modality. This allows advancements at the forefront
of ViTs to facilitate research in time series analysis.

2 RELATED WORK

Transformers for LTSF Transformer model excels in processing sequential data, which has been
extensively validated in the domain of NLP (Vaswani et al.| [2017). Therefore, it has recently at-
tracted growing interests in time series analysis. Notable works include Informer (Zhou et al.,
2021)), which proposes a sparse attention mechanism that only considers the top-ranked attention
components; Pyraformer (Liu et al) [2021a) and Triformer (Cirstea et al., |2022) aim to reduce the
computational complexity by introducing a pyramid or triangular structure to hierarchically perform
attention; Autoformer (Wu et al., [2021) and FEDformer (Zhou et al [2022) priorly decompose the
time series to obtain key temporal information that enhances the prediction accuracy; Crossformer
(Zhang & Yan, 2023)) explicitly considers the multivariate correlations instead of fusing variables
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by an embedding layer; PatchTST (Nie et al} [2023) divides the time series into patches to reduce
complexity and models the time series independently. Scaleformer (Shabani et al.| [2023) uses an
external hierarchy design to obtain predictions at multiple scales and is compatible with various
transformer-based models.

LTSF with cross-domain models Transformer exhibits the ability to adapt to a wide range of do-
mains. A fascinating topic revolves around whether Transformer has a universal representation
ability that allows for transferring knowledge between different domains. Recently, Zhou et al.
(Zhou et al., 2023) proposed utilizing the Frozen Pretrained Transformer technique to fine-tune the
language model GPT2 for handling temporal-related tasks such as forecasting, anomaly detection,
classification, and imputation. Surprisingly, they achieved state-of-the-art performance on all tasks
except forecasting the second best. In addition to fine-tuning, another approach for cross-domain
temporal processing is to transform the temporal data into the content of another domain, and di-
rectly employ mature models from that domain for modeling. For instance, MV-DTSA (Yang et al.,
2023)) draws time series to the binary images and utilizes the U-net (Falk et al.,|2018]) or DeepLabV?2
(Chen et al.| 2016)) (popular generative CV models) to generate the predicted images which depict
the change of time series. Similarly, ViTST (Li et al.}2023)) draws irregular times series into images
and then uses Swin Transformer to mine the underlying patterns for downstream classification tasks.

Vision Transformer ViT is a hotspot of current CV research, and it has spawned a series of models
Yuan et al.[(2021); |Wang et al.| (2021); |Chen et al.| (2021) for various downstream tasks in CV. Its
core principle is to divide the image into a series of image patches and convert these patches into
sequential data, which is then processed by Transformer. Typical models include Swin Transformer
(Liu et al., 2021cibid) and Transformer in Transformer (TNT) (Han et al.,[2021)). Swin Transformer
considers space correlations in images by introducing the window-based attention and hierarchical
design, which performs well in processing large-size images. It has achieved leading performance
on multiple image classification benchmark datasets and also has remarkable advantages in compu-
tational efficiency. TNT introduces another ViT model on top of the existing ViT model to consider
fine-grained information. These two ViT models separately process the patches at two different
scales, and their representations are fused for downstream tasks. Despite both the TNT and Swin
Transformer adopting a hierarchical structure, the computational complexity in practice of the TNT
is higher than that of the Swin Transformer.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

The time series forecasting problem can be described as: given a look-back window L : X =
(X1,...,X) € RMXL of multivariate time series with M channels (variables), where each x; at
time step ¢ is a M -dimensional vector, the goal is to forecast the future T values (X711, ..,Xp+7) €
RMXT The real values of future series are depicted as (yz.1,..,yr+7) € RM*T thus one can get
the error between forecasting values and real values to measure the performance of forecasting.

For the modeling of multi-channel time series, it can be divided into two strategies: channel-
dependence (CD) and channel-independence (CI), resulting in two variants SwindTS/CD and
SwindTS/CI, respectively. The former considers the multivariate correlation, while the latter does
not.

3.2 MODEL ARCHITECTURE

Channel-independence strategy We first consider the SwindTS/CI with CI strategy, namely X" =
(z7,...,27) € RYL as the series m € [1, M] is independently considered. For simplicity, we
omit the superscript m in what follows. Swin4TS/CI essentially shares the same network across all
channels. Thus, all channels during training are trained together to obtain a generalized model.

Window-based attention A significant drawback of Transformer-based models is the complexity
of O(L?) for encoding time series of length L. In this work, we adopt Window-based Attention
(WA) to achieve linear complexity. As shown in Fig. [2(a), an independent time series X is first
divided into W windows {z'}, i € [1, W]. Then each window z is further divided into N patches
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Figure 2: (a) Mechanism of window attention and hierarchical design. The solid and dashed lines
distinguish the windows and patches, respectively. Attention among patches is localized within a
window. (b) Mechanism of shift-window attention for a time series.

with patch length P, resulting in x* € R¥*P (L = W x N x P). For j-th patch xé in ¢-th window,

ah ={a;; | i —1)NP+(j —1)P <t < (i—1)NP+jP}, j € [LLN],i € [LW]. (D)

Unlike PatchTST and Crossformer, attention here is applied within each window to focus on local
interactions. Thus the overall computational complexity is O(L/N P - N?), and it actually is O(L)
due to that N and P are fixed within each window. For M independent channels, it further comes
to O(ML).

x’ is first embedded to the latent space with dimension D by a learnable linear projection matrix
W, € RPXP e, 7t = x*W,, € RV*P_ Then z' is mapped to a sequence of output O = {O},}
by:

0, = Softmax(QLK, /Vd) V), )

where O;, € RV*P/H and h € [1, H] denotes the one of H heads. Here Q;, = ziwg,Kh =
z'WK V), = z'W} are projected queries, keys and values corresponding to the head h with
learnable projection matrix Wg € RP*d WK ¢ RP*d W) € RP*P/H respectively.

To consider the relation between two consecutive windows, we refer to the Shift-Window Attention
(SWA) used in the Swin Transformer for image processing, and make it applicable for time series
processing. In Fig. [Zb), the representation of time series is shifted half of window to the right,
and the part sticking out from the right side complements the leftmost window. Then the new
representation is again processed by window-based attention (note the nonphysical part in the first
window is masked), ending with shifting it back to the previous position.

A complete attention module additionally includes the Batch Normalization (BN) layers E| and a
Feed Forward (FF) layer with residual connections (as illustrated in Fig. [3). Overall, the attention
process can be described as:

z!, = BN(WA(z") + z') 3)
z' = BN(FF(z') + z!)) (4)
z! = BN(SWA(z') + z') (5)
z' = BN(FF(z!) + z!) (6)

where z' € RN X’? that preserves the shape as the input. Finally, all the windows’ output can be
merged as Z = {z'} € RW*XNxD i ¢ [1, W].

Hierarchical representation To this end, the model has only focused on a single scale, but in-
formation from other scales can represent the time series more comprehensively. Therefore, we
introduce the hierarchical representation. For ease of description, we firstly consider two scales that
correspond to local and global scales, respectively.

"LayerNorm is usually adopted for ViT, but it is shown (Zerveas et al.,2020) that BatchNorm outperforms
LayerNorm in Transformers for modeling time series.
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Figure 3: Architecture of SwindTS with K-stage hierarchical design. For multivariate forecasting
as illustrated, the inputs and outputs are M historical series with length L and T', respectively. For
univariate forecasting, the inputs are 1 and M historical series for CI and CD strategies, respectively.

As described above, the input X is partitioned into W windows {2} which subsequently transfer
10 Zioear = {2'} € RWXNXD representing the local information. Then Zj,cq; is downscaled to
obtain

Zglobal = DS(Zlocal) S RW/2><NX2D (7)
where DS(-) consists of the unfold and reshape operations followed by a linear layer to map the target
dimension. Zgj,pq; contains half of windows with invariable patch number [V, thus it represents a
larger scale compared t0 Zjocq;. Similarly, Zgiopq; also needs to undergo (shift) window-based
attention to extract global scale information. From a general view, as illustrated in Fig. 3] one can
consider K scales for a time series. For the consecutive k" and k + 1" scales,

Zj11 = Attention(DS(Zy,)), k € [1, K — 1]. (8)

After obtaining the output of the last scale Z k, the final prediction (x4 1, .., 2 +7) can be obtained
through a flatten layer with a linear head.

Channel-dependence
of SwindTS with

strategy The above section describes the implementation
the CI strategy. In fact, SwindTS can be easily extended
to the CD strategy to simultaneously consider correla-
tions in both the time and channel dimensions, known as
| | SwindTS/CD. Under the CD strategy, multivariate time
series data X is structurally similar to an image, allowing
i us to also apply window-based attention and hierarchical
E representation in the channel dimension. Concretely, X is
' first divided equally into W, x W; windows, resulting in
. {x'}, i € [1, W.W,], where the subscripts ¢ and ¢ corre-
spond to channel and time, respectively. For each window
x?, it is further divided equally at the channel and time di-
mension and obtains N, x Ny patches with height P, and
width P;, namely x? € RNeNex PPy

It should be noted that although the SWA used to consider
cross-window attention is consistent with the CI strategy,
it comes slightly more complex since the shift occurs in
both the channel and time dimensions, as shown in Fig.
A Additionally, in the hierarchical representation, win-
dow downscaling needs to be performed separately in both
two dimensions. Apart from these considerations, the CD
and CI strategies are consistent in the frame of Swin4TS.
When processing long multi-variable sequences for prediction, the design of last Linear layer as CI
strategy may not be a good choice. Additionally, we offer a possible solution as an alternative design
(shown in Appendix D).

|

Figure 4: Schematics of Swin4TS with
CD strategies. The black and red boxes
respectively represent the window and
patch. Shift operations are conducted
along channel and time dimensions as
shown by the arrows.

Compared to the CI strategy, a patch here not only correlates to the patches belonging to the same
channel, as can be seen in Fig. [4] but also correlates to patches across channels. Moreover, through
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the SWA and hierarchical operations, it becomes possible to establish correlations with channels
across windows.

Loss function Following the common setting, we utilize the Mean Squared Error (MSE) loss as a
metric to quantify the disparity between the predicted values and the ground truth. The loss for each
channel is collected and then averaged across 7' predicted time steps and all channels to obtain the
overall objective loss:

1
L= TE%:IEZ:1||XL+1S — vl ©))

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We evaluate the performance of our proposed SwindTS on 8 real-world public benchmark
datasets, including Weather, Traffic, Electricity, ILI and 4 ETT datasets (ETTh1, ETTh2, ETTml
and ETTm?2). More details can be referred to Appendix A.1.

Settings The length L of historical series is set to 108 for ILI and 512 for the others, and
four prediction tasks are considered with prediction lengths 7' € {24, 36,48,60} for ILI and
T € {96,192,336,720} for the others. Mean Squared Error (MSE) and Mean Absolute Error
(MAE) are utilized as evaluation metrics. For more algorithmic details, hyperparameter settings,
and information about the training, please refer to Appendix A.2

Compared baselines We compare our proposed method with 7 the most recent and popular models
in long-term forecasting tasks, including 4 Transformer-based model: PatchTST (Nie et al.,|2023),
Crossformer (Zhang & Yan|, 2023), FEDformer (Zhou et al., |2022) and Autoformer (Wu et al.,
2021)); 4 none-Transformer-based model: DLinear (Zeng et al.,[2023), MICN (Wang et al., 2023) ,
TimesNet (Wu et al., [2023) and N-HiTS (Challu et al., [2023)). Besides, PatchTST and DLinear em-
ploy the CI strategy, while the remaining models adopt the CD strategy. In these models, PatchTST
and DLinear use longer historical series with L = 336 or 512 as input. On the other hand, the
remaining models use shorter historical series with L = 96 as input. We know that different models
require suited L to achieve their best performance. To make a fair comparison, for each dataset, the
involved baseline algorithms are evaluated with L = 96, 336, and 512 respectively, and then the
best one is selected as their final result (see Appendix B.3). This ensures that we always compare
with the strongest results of each baseline algorithm.

4.2 RESULTS

Main results Table [T] presents the prediction results of SwindTS/CI and Swin4TS/CD compared
with other baselines on 8 datasets. Overall, SwindTS achieves the state-of-the-art performance
across all datasets (full results can be seen in Appendix B.1). Particularly, on the ILI and
Traffic datasets, SwindTS/CD and SwindTS/CI outperform the previous best results by 15.8%
(1.967—1.657) and 10.3% (0.397—0.356) respectively. On the 4 ETT datasets, both SwindTS/CI

Table 1: Multivariate long-term series forecasting on 8 datasets. Bold/underline indicates the
best/second. Algorithm with * suggests the use of CI strategy otherwise the CD strategy. All the
results are averaged from 4 different prediction lengths.

SwindTS/CI* | SwindTS/CD* | PatchTST/64* DLinear* MICN Crossformer TimesNet N-HiTS FEDformer Autoformer
(ours) (ours) (2023) (2023) (2023) (2023) (2023) (2023) (2022) 2021
Metrics MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

Models

Weather | 0.220 0.259 | 0.224 0.260 | 0.224 0.262 | 0.246  0.300 | 0.241  0.295 | 0.250 0.286 | 0.225 0.286 | 0.249 0.274 | 0.310 0.357 | 0.335 0.379

Traffic 0.356 0.254 | 0.526 0.336 | 0.397 0.270 | 0.434 0.295 | 0.484 0.306 | 0.523 0.290 | 0.620 0.336 | 0.452 0.311 | 0.604 0.372 | 0.617 0.384

Electricity | 0.157 0.250 | 0.176  0.280 | 0.160 0.254 | 0.166 0.264 | 0.178 0.287 | 0.194 0.291 | 0.193 0.295 | 0.186 0.287 | 0.207 0.321 | 0.214 0.327

LI 1.740 0.874 | 1.657 0.849 | 1.967 0921 | 2.169 1.041 | 2.548 1.105 | 3.322 1.222 | 2.139 0.931 | 2.051 0.926 | 2.597 1.070 | 2.819 1.120

ETThl 0411 0428 | 0.406 0.425 | 0.419 0438 | 0423 0437 | 0.500 0.500 | 0.454 0471 | 0.458 0.450 | 0434 0.467 | 0.428 0.454 | 0473 0477

ETTh2 0.337 0385 | 0.335 0.383 | 0.342 0.388 | 0.431 0.447 | 0.523 0.492 | 1.023 0.729 | 0.410 0.442 | 0409 0.432 | 0.388 0.434 | 0422 0.443

ETTml 0.341 0376 | 0.348 0.380 | 0.353 0.382 | 0.357 0.379 | 0.371 0.398 | 0.435 0.450 | 0.400 0.406 | 0.362 0.394 | 0.382 0.422 | 0.515 0.493

ETTm2 | 0250 0.311 | 0.248 0.308 | 0.255 0.315 | 0.267 0.332 | 0.291 0.351 | 0.908 0.667 | 0.282 0.334 | 0.279 0.330 | 0.292 0.343 | 0.310 0.357
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Table 2: Univariate long-term forecasting results with Swin4TS. Bold/underline indicates the
best/second. Algorithm with * suggests the use of CI strategy otherwise the CD strategy. All the
results are averaged from 4 different prediction lengths.

SwindTS/CI* | SwindTS/CD | PatchTST/64* DLinear* MICN TimesNet FEDformer Autoformer
(ours) (ours) (2023) (2023) (2023) (2023) (2022) (2021)
Metrics | MSE  MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
ETThl | 0.073 0.214 | 0.069 0.211 | 0.074 0.215 | 0.104 0.247 | 0.122 0.274 | 0.086 0.231 | 0.111 0.257 | 0.105 0.252
ETTh2 | 0.160 0.319 | 0.175 0.344 | 0.177 0.335 | 0.198 0.350 | 0.207 0.360 | 0.196 0.353 | 0.206 0.350 | 0.218 0.364
ETTml | 0.047 0.162 | 0.055 0.181 | 0.048 0.163 | 0.054 0.168 | 0.056 0.174 | 0.056 0.180 | 0.069 0.202 | 0.081 0.221
ETTm2 | 0.111 0.250 | 0.159 0.313 | 0.112 0.251 | 0.112 0.248 | 0.117 0.256 | 0.171 0.321 | 0.119 0.262 | 0.130 0.271

Models

and Swin4TS/CD exhibit impressive prediction performance, complementing each other to achieve
the best.

However, on datasets like Traffic and Electricity that contain hundreds of channels, the performance
of SwindTS/CD is significantly inferior to SwindTS/CI. This may be due to the complex correlations
between these hundreds of channels, making it challenging for Swin4TS/CD to uncover the under-
lying correlations in limited data. Besides, recent studies (Han et al., [2023) have shown that due
to the significant distribution shift between training and testing sets of existing datasets, the models
with CI strategy would perform better than that with CD strategy especially on datasets with a mass
of channels. Nevertheless, compared with other baselines with CD strategies, Swin4TS/CD still per-
forms sufficiently well on all datasets. For example, on the 4 ETT datasets, SwindTS/CD achieves
nearly an average 10% improvement over the best of these models (ETTh1-5.14%, ETTh2-13.1%,
ETTm1-6.2% and ETTm2-14.1%).

Univariate forecasting is additionally investigated on the scheme of Swin4TS. The performance on
4 ETT datasets is shown in Table [2| (full results are in Appendix B.2). It can be seen that Swin4TS
achieves the SOTA on all 4 ETT datasets and outperforms all baselines. Especially on ETThl,
SwindTS/CD surpasses the second-best result by 6.8% (0.069—0.074), and on ETTh2, SwindTS/CI
achieves 9.6% improvement (0.16—0.177).

Correlations across channel and time The
above results show that Swind4TS/CD achieves
the best performance on some datasets, such
as ILI and ETThl, and the MSE is sufficiently
declined compared with SwindTS/CI. This in-
dicates that these improvements may be at-
tributed to the correlations between channels
discovered by Swin4TS/CD. In vision tasks, at-
tention maps are often used to illustrate the dis-
tribution of attention or correlation on an im-

Figure 5: Attention map of SwindTS/CD on 38 Similarly, here we use the attention maps

ETThI dataset, showing the attention across both of Swin4TS/CD to visualize the attention distri-
the time and cl;annel dimensions. bution for the multivariate time series. The left

side of Fig. [5] shows the attention map of the

first window on ETTh1 dataset, and the corre-
sponding time series are shown on the right side. The size of this window is 7 x 4, representing the
number of patches in the channel and time dimensions, respectively. Thus it results in an attention
map with size 28 x 28. We circle three representative bright spots on the map, corresponding to
the locations of important attention, and match them with the actual positions in the time series.
Clearly, the patches are not only correlated with patches in the same channel but also with patches
from other channels. Intuitively, one can notice that two patches with similar trends seem to exhibit
strong correlations. Nevertheless, this information could provide valuable guidance for understand-
ing the complex patterns of multivariate time series.

Ablation study We further conduct ablation experiments on two key designs of Swin4TS. First is the
shift window attention (referred as “shift” here), which is used to connect information between two
consecutive windows. We remove this design by replacing it with normal window attention. Second
is the hierarchical design (referred as “scale” here), which is used to explore temporal features at
different scales. The ablation of it can be achieved by removing the downscaling operation after
the first stage to ensure that all stages focus on the same scale. The results of SwindTS/CD on
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Table 3: Ablation study of SwindTS/CD on ETTm1 and ETTm2. Bold/underline indicates the
best/second in Swin4TS/CD.

Models . 'SW1n4TS/CD . Crossformer MICN
shift&scale w/o shift w/o scale w/o shift&scale
Metrics MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 | 0.292 0.346 | 0.291 0.344 | 0.296 0.35 | 0295 035 | 0335 0.386 | 0.305 0.354
192 | 0.334 0.369 | 0.335 0.37 | 0.336 0.374 | 0.339 0.376 | 0.383 0.429 | 0.353 0.390
ETTml1 | 336 | 0.364 0.387 | 0.365 0.389 | 0.371 0.397 | 0.377 0.401 | 0.424 0.442 | 0.382 0.405
720 | 0.402 0.417 | 0427 0.423 | 0423 0432 | 0434 0434 | 0.598 0.545 | 0.445 0.442
Avg. | 0.348 0.380 | 0.355 0.382 | 0.357 0.388 | 0.361  0.390 | 0.435 0.450 | 0.371 0.398
96 | 0.160 0.249 | 0.164 0.253 | 0.173 0262 | 0.173  0.262 | 0.353 0.424 | 0.193 0.283
192 | 0.219 0.290 | 0.224 0.293 | 0.228 0.298 | 0.23 0.3 0.531 0.513 | 0.248 0.321
ETTm2 | 336 | 0.268 0.322 | 0.272 0.325 | 0.284 0.333 | 0.285 0.334 | 0.868 0.722 | 0.295 0.353
720 | 0.344 0.371 | 0.351 0.376 | 0.361 0.381 | 0.363 0.382 | 1.880 1.010 | 0.427 0.447
Avg. | 0.248 0.308 | 0.253 0.312 | 0.262 0.319 | 0.263  0.320 | 0.908 0.667 | 0.291 0.351

two datasets are presented in Table [3] compared with two baselines in CD strategy (More ablation
studies on Swin4TS/CI can be referred in Appendix C.2). It can be seen that after removing these
two designs, the average prediction MSE of the model increases by 3.2% and 2.7% on ETTml
and ETTm?2, respectively. Removing either one of these two designs individually also significantly
increases the prediction error. This indicates that these two key designs in Swind TS play important
roles in ensuring prediction accuracy.

Hierarchical information In the ablation ex-
| periment above, we confirmed the effectiveness

of the hierarchical design. Here, we further ex-
plore the information extracted by Swin4TS at
different scales. A 2-stage SwindTS/CI frame-
work is designed for the ETTh1 dataset, which
enables us to examine the information at local
and global scales. The information at different
scales can be presented by the one-dimensional
attention map (reduced by the attention matrix)
of the corresponding stage. Fig. []shows a sam-
ple of time series of the ETTh1 dataset with lo-
0 128 256 384 512 cal and global attention maps above and below
it, respectively. It can be seen that the time se-
ries exhibit strong periodicity at the local scale,
which is also reflected in the local attention
map. At the global scale, there is a significant
upward trend on the left, and this anomaly sig-
nal is also captured by global attention. Al-
though the underlying patterns of time series
represented by attention maps may be very complex, they qualitatively demonstrate the charac-
teristics of time series at different scales, which helps improve the interpretability of predictions.

\Local Attention

%Globai Attenfion

Figure 6: Attention map of SwindTS/CI on
ETTh1 dataset, showing the attention at local and
global scale, respectively. The darker color means
stronger attention.

4.3 OTHER RESULTS
Randomness test SwindTS demonstrates strong robustness to different random seeds or model
initialization. See Appendix C.1.

Effect of channel order A shuffled initial channel order for SwindTS/CD benefits the performance.
See Appendix C.3

Varying hierarchical design Different hierarchical designs capture different scale information hid-
den in the time series which vary much among different datasets. See Appendix C.4

Varying historical series length In most cases, longer historical series length leads to better predic-
tion. See Appendix C.5

Effect of dynamic covariate Dynamic covariate facilitates the prediction for datasets with obvious
periodicity. See Appendix C.6
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Transferability of SwindTS/CI The model trained on data from one channel can still perform well
in predicting unseen data from other channels. See Appendix C.7.

5 COMPUTATIONAL COMPLEXITY ANALYSIS

For the historical series with M channels of length L , the complexity of SwindTS/CI is O(M L)
as aforementioned. Despite considering both channel and time, the complexity of SwindTS/CD is
still linear with the number of windows as the complexity within a window is fixed by pre-defined
window size. Thus one can easily prove that SwindTS/CD shares the same complexity O(M L) with
Swin4TS/CI.

Table ] shows the complexity for Swin4TS and other Transformer-based models. Although the ear-
lier models (Transformer, Informer, Autoformer and FEDformer) adopt the CD strategy, they do not
consider the correlations between channels explicitly and just fuse multiple channels by an embed-
ding layer, and thus the complexity of these models is irrelevant with channels. The recent models,
PatchTST and Crossformer, show the relevance with channels. But the complexity of these models is
essentially quadratic with L. To the best of our knowledge, Swin4TS is the first Transformer-based
model owning linear complexity with both L and M. Besides, Table [ also shows the inference
efficiency on the Electricity dataset. As can be seen, Swin4TS achieves a good balance between
inference time and memory usage. Especially when dealing with large datasets, the inference effi-
ciency of SwindTS/CI is significantly better than all Transformer-based algorithms.

Table 4: Computational complexity analysis and inference efficiency on Electricity for Swin4TS
and other Transformer-based models.

Method Encoder layer Decoder layer Time (ms) | Memory (GB)
Transformer (Vaswani et al.|[2017) O(L?) O(T(T+ L)) 21.1 5.8
Informer (Zhou et al.|[2021) O(LlogL) O(T(T + logL)) 43.8 39
Autoformer (Wu et al.[[2021) O(LlogL) | O((% + T)log(% + 1)) 1234 7.6
FEDformer (Zhou et al.|2022) O(L) O(% +1) 33.5 43
PatchTST (Nie et al.| 2023} O(ML?) O(MT) 154 32
Crossformer (Zhang & Yan|[2023) O(ML?) O(MT(T + L)) 25.2 2.0
SwindTS/CI (ours) O(ML) O(MT) 11.3 2.0
Swin4TS/CD (ours) O(ML) O(MT) 453 5.4

6 CONCLUSION AND DISSUSION

In this work, we have proposed the Swin4TS algorithm for long-term time series forecasting.
SwindTS incorporates two key designs, window-based attention and hierarchical representation,
from the Swin Transformer to model the time series. It can easily adapt to both channel-dependent
and channel-independent strategies, resulting in two variants: Swin4dTS/CD and Swin4TS/CIL
Swind4TS/CD can simultaneously capture correlations in both channel and time dimensions, while
SwindTS/CI considers the channels independently and thus shows impressive computational effi-
ciency. These two variants complement each other and outperform the latest baselines, achieving
state-of-the-art performance on 8 benchmark datasets.

The effectiveness of SwindTS confirms that time series and image (partitioned into patch series)
can be modeled using the same framework, thanks to their similarity in data structure. Although
images have inherent inductive biases such as shift invariance, and time series also have inherent
characteristics such as trend and seasonality, these features can be integrated into underlying patterns
and learned by Transformer. To further confirm this point, we designed the TNT4TS architecture.
TNT (Transformer in Transformer (Han et al.,|2021)) is a classic ViT architecture that can effectively
capture both local and global information. When applied to time series forecasting, we found that it
also performs quite well (see the Appendix E). Both SwindTS and TNT4TS differ from the original
ViT models used for processing images, only in that time series are one-dimensional, while images
are two-dimensional. We hope that this work can inspire more similar endeavors to utilize advanced
ViT models for other time series tasks, e.g., anomaly detection, classification, and imputation.
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A EXPERIMENTAL DETAILS

A.1 DESCRIPTION OF DATASET
We use 8 widely-used datasets in the main text. The details are listed in the following:
. Trafﬁ describes the hourly 862 road occupancy rates of San Francisco freeways from
2015 to 2016.
. Electricityﬂ measures the electricity consumption of 321 clients from 2012 to 2014.

. Weathelﬂ that contains 21 climate features, such as temperature, pressure and humidity, in
10-minute-level for 2020 whole year in Germany.

. IL]E] describes the weekly ratio of patients seen with influenza-like illness and the number
of patients. It includes data from the Centers for Disease Control and Prevention of the
United States from 2002 to 2021.

. ETTE] (Electricity Transformer Temperature) measures 6 power load features and 1 oil tem-
perature feature, which consists of two hourly-level datasets (ETThl, ETTh2) and two
15-minute-level datasets (ETTm1 and ETTm2), from July 2016 to July 2018.

The statistics of these datasets are listed in Table[5]

Table 5: The statistics of the 8 benchmark datasets.

Datasets Weather Traffic Electricity ILI ETThl ETTh2 ETTml ETTm2
Number of series 21 862 321 7 7 7 7 7
Timesteps 52696 17544 26304 966 17420 17420 69680 69680

A.2 REPRODUCTION DETAILS FOR SWIN4TS

The input series of SwindTS are firstly normalized by the mean and standard value, which further
are used to rescale the output. For the 4 ETT datasets, each one is split in chronological order with
60% for training, 20% for validation, and 20% for testing. While for the left 4 datasets, each one
is split in chronological order with 70% for training, 10% for validation, and 20% for testing. The
used 8 benchmark datasets can be categorized into two sets: Weather, Traffic and Electricity are
regarded as large datasets, and the left containing 7 channels are regarded as small datasets. In
all our experiments, the maximum training epoch is set to 100, and the training process will stop
early if the validation loss does not decrease within 20 epochs. Optimizer uses ADAM for L2 loss
with an initial learning rate of 5 x 10~%. Batch size is set to 64 and 128 for large datasets and
small datasets, respectively. All the experiments are implemented in Pytorch 1.12 and conducted on
NVIDIA A100-SXM4-40GB GPU.

Table@]shows the details of hierarchical architecture of Swind4TS/CI. Window size, heads and layers
in each stage are uniformly set to 8 (except 9 for ILI), 4 (except 16 for ETTm1 and ETTm?2) and
2, respectively. The small datasets adopt a 2-stage hierarchical design, except that the ILI dataset
adopts only 1 stage architecture. The large datasets adopt a 4-stage hierarchical design, except that
the Weather dataset adopts a 2-stage architecture.

Table [7] shows the details of hierarchical architecture of SwindTS/CD. As same as the choice of
SwindTS/CI, Weather and 4 ETT datasets adopt a 2-stage hierarchical design, and ILI dataset adopts
only 1-stage architecture. However, due to the limitation of memory usage, Traffic and Electricity
here also take a 2-stage architecture.

2https://pems.dot.ca.gov/
3https://archive.ics.uci.edu/ml/datasets/
*https://www.bgc-jena.mpg.de/wetter/
Shttps://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
Shttps://github.com/zhouhaoyi/ETDataset
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Table 6: Key parameters of the hierarchical architecture for Swin4TS/CI.

Parameters Weather | Traffic | Electricity | ILI | ETThl | ETTh2 | ETTml | ETTm2
window_size 8 8 8 9 8 8 8 8
downscaling 8 8 8 2 4 4 4 4
stage 1 | heads 4 4 4 4 4 4 16 16
layers 2 2 2 2 2 2 2 2
downscaling 8 2 2 - 8 8 8 8
stage 2 | heads 4 4 4 - 4 4 16 16
layers 2 2 2 - 2 2 2 2
downscaling - 2 2 - _ _ _ _
stage 3 | heads - 4 4 - - - - -
layers - 2 2 - - - - -
downscaling - 2 2 - - - - -
stage 4 | heads - 4 4 - - - - -
layers - 2 2 - - - - -

Table 7: Key parameters of the hierarchical architecture for Swin4TS/CD.

Parameters Weather | Traffic | Electricity | ILI | ETThl | ETTh2 | ETTml | ETTm2
window _size_t 8 8 4 9 8 16 8 4
window _size_c 7 11 4 7 7 7 7 7

downscaling_t 8 8 4 3 8 8 4 4
stage 1 downscaling_c 1 13 4 1 1 1 1 1
heads 4 4 4 16 16 4 4 8
layers 2 2 2 2 2 2 2 2
downscaling _t 8 8 4 - 4 4 8 8
stage 2 downscaling_c 1 1 2 - 1 1 1 1
heads 4 4 4 - 16 4 4 4
layers 2 2 2 - 2 2 2 2

A.3 REPRODUCTION DETAILS FOR BASELINES

In this work, we have introduced a total of 7 the most recent and popular baseline models used for
long-term forecasting: PatchTST, DLinear, MICN, TimesNet, N-HiTS, Crossformer, FEDformer,
and Autoformer. For all these models, we use the open-source codes from their respective GitHub
repositories, and adopt their default hyperparameters to train the models. The historical series length
L in the original paper for MICN, TimesNet, Crossformer, FEDformer, and Autoformer is set as 96,
and it for DLinear is set as 336, while it for PatchTST and our SwindTS is set as 512. To make a
fair comparison, we evaluate the involved baseline models on L = 96, 336, and 512 for each task,
respectively, and then select the best one as their final result. This ensures that the results presented
here will not be worse than those presented in their original papers. It is important to note that for
Swin4TS and all baseline models being compared, we set the batch size to 1 during testing. This is
because if the batch size is not back to 1 during testing, it may result in the omission of some test
samples from the last batch and lead to inaccurate testing. Thus the results of PatchTST shown in
the present work are slightly different from that in its original paper.

In addition, we also notice some excellent recent works such as MLP-based TSMixer (Ekambaram
et al., 2023) and TiDE (Das et al., 2023). They focus more on the efficiency of model training
and inference, but their performance is basically consistent with PatchTST. There are also some
algorithms based on contrastive learning, such as TS2Vec (Yue et al., 2021)), CoST (Woo et al.,
2023), LaST (Wang et al.||2022c)), and so on. These works emphasize generalizability on time series
analysis tasks including time series prediction, anomaly detection, classification, imputation, etc.
Therefore, due to page limitations, we do not compare with these algorithms.

B FULL RESULTS

B.1 FULL RESULTS OF MULTIVARIATE FORECASTING

The full results of multivariate forecasting for SwindTS/CI and Swin4TS/CD compared with other
baselines are shown in Table[8] These algorithms are evaluated on 8 datasets with a total of 32 pre-
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Table 8: Full results of multivariate long-term series forecasting on 8 datasets. Bold/underline in-
dicates the best/second. Algorithm with * suggests the use of CI strategy otherwise the CD strategy.
Prediction length T' € {24, 36,48, 60} for ILI dataset and T' € {96,192, 336, 720} for the others.

SwindTS/CI* | SwindTS/CD* | PatchTST/64* DLinear* MICN N-HiTS TimesNet Crossformer FEDformer Autoformer
(ours) (ours) (2023) (2023) (2023) (2023) (2023) (2023) (2022) 2021

Metrics MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 | 0.143 0.191 | 0.147  0.194 | 0.148 0.197 | 0.176 0.237 | 0.181 0.249 | 0.158 0.195 | 0.150 0219 | 0.170 0.228 | 0.238 0.314 | 0.249 0.329
192 | 0.189 0.235 | 0.191 0.238 | 0.191 0.239 | 0.220 0.282 | 0.219 0.276 | 0.211 0247 | 0.194 0.262 | 0.215 0.263 | 0.275 0.329 | 0.325 0.370
336 | 0.238 0.278 | 0.242  0.277 | 0.243 0.280 | 0.265 0.319 | 0.259 0.310 | 0.274 0.300 | 0.243  0.304 | 0.272 0.301 | 0.339 0.377 | 0.351 0.391
720 | 0.312 0.328 | 0315 0330 | 0.312 0.331 | 0.323 0.362 | 0.307 0.343 | 0.351 0.353 | 0.315 0359 | 0.342  0.352 | 0.389 0.409 | 0415 0.426
96 | 0.329 0.241 | 0512 0325 | 0360 0.248 | 0.410 0.282 | 0457 0.295 | 0.402 0.282 | 0.591 0.318 | 0.496 0.279 | 0.576 0.359 | 0.597 0.371
192 | 0351 0.252 | 0.522  0.333 | 0.379 0.256 | 0.423 0.287 | 0.468 0.303 | 0.420 0.297 | 0.620 0.342 | 0.499 0.276 | 0.610 0.380 | 0.607 0.382
336 | 0.367 0259 | 0.529 0341 | 0.392 0.265 | 0.436 0.296 | 0.480 0.301 | 0.448 0.313 | 0.623 0.339 | 0.534 0.298 | 0.608 0.375 | 0.623 0.387
720 | 0.377 0.266 | 0.541  0.343 | 0453 0.312 | 0.466 0.315 | 0.529 0.323 | 0.539 0.353 | 0.648 0.344 | 0.564 0.308 | 0.621 0.375 | 0.639 0.395
96 | 0.127 0.221 | 0.159 0271 | 0.129 0.223 | 0.140 0.237 | 0.156 0.265 | 0.147 0.249 | 0.168 0.272 | 0.149 0.249 | 0.186 0.302 | 0.196 0.313
192 | 0.144 0.237 | 0.170  0.268 | 0.148 0.241 | 0.153 0249 | 0.165 0.275 | 0.167 0.269 | 0.184 0.289 | 0.164 0.262 | 0.197 0311 | 0.211 0.324
336 | 0.16 0.255 | 0.175 0.282 | 0.165 0.261 | 0.169 0.267 | 0.180 0.290 | 0.186 0.290 | 0.198 0.300 | 0.196 0.295 | 0.213 0.328 | 0.214 0.327
720 | 0.197 0.288 | 0.201 0299 | 0.198 0.290 | 0.203 0.301 | 0.210 0.318 | 0.243 0.340 | 0.220 0.320 | 0.266 0.356 | 0.233 0.344 | 0.236  0.342
96 1.740 0.854 | 1.826 0.909 | 2.044 0.876 | 2215 1.081 | 2.453 1.081 | 1.862 0.869 | 2.317 0.934 | 3.064 1.180 | 2.624 1.095 | 2.906 1.182
192 | 1L.713 0.859 | 1.729 0.878 | 2.012 0.938 | 1.963 0.963 | 2.356 1.053 | 2.071 0.934 | 1.972 0.920 | 3.150 1.188 | 2.516 1.021 | 2.585 1.038
336 | 1.718 0.877 | 1.539 0797 | 1.768 0.897 | 2.130 1.024 | 2.749 1.145 | 2.134 0.932 | 2.238 0.940 | 3.332 1.227 | 2.505 1.041 | 3.024 1.145
720 | 1.790  0.908 | 1.533  0.813 | 2.043 0.971 | 2368 1.096 | 2.636 1.141 | 2.137 0968 | 2.027 0928 | 3.740 1.294 | 2.742 1122 | 2761 1.114
96 | 0366 0.394 | 0.365 0.392 | 0.377 0405 | 0.375 0.399 | 0431 0442 | 0.378 0393 | 0.384 0402 | 0451 0461 | 0.376 0.415 | 0.435 0.446
192 | 0.403 0.420 | 0.400 0.414 | 0411 0.428 | 0.405 0.416 | 0.443 0461 | 0.427 0.436 | 0436 0.429 | 0.422 0.447 | 0423 0446 | 0.456 0457
336 | 0.425 0.433 | 0.425 0440 | 0432 0445 | 0.439 0443 | 0.502 0.502 | 0.458 0.484 | 0.491 0.469 | 0.437 0462 | 0.444 0.462 | 0486 0.487
720 | 0448 0.463 | 0.432 0456 | 0.456 0473 | 0.472 0.490 | 0.622 0.596 | 0.472 0.561 | 0.521 0.500 | 0.505 0.513 | 0.469 0.492 | 0.515 0.517
96 | 0272 0.334 | 0.264 0.330 | 0.275 0.339 | 0.289 0.353 | 0.296 0362 | 0.274 0.345 | 0.383 0.420 | 0.894 0.671 | 0.332 0.374 | 0.332 0.368
192 | 0336 0.377 | 0.331 0.375 | 0.339 0.380 | 0.383 0.418 | 0.406 0.427 | 0353 0.401 | 0.409 0.436 | 0.886 0.666 | 0.407 0.446 | 0.426 0.434
336 | 0362 0.404 | 0.358 0.401 | 0.365 0.404 | 0.448 0.465 | 0.513 0.498 | 0.382 0.425 | 0.389 0.435 | 1.115 0.764 | 0.400 0.447 | 0.477 0.479
720 | 0.384 0.427 | 0386  0.427 | 0.390 0.430 | 0.605 0.551 | 0.875 0.680 | 0.625 0.557 | 0460 0.476 | 1.197 0.815 | 0.412 0469 | 0453 0.490
96 | 0.283 0.341 | 0.292 0.346 | 0.292 0.346 | 0.299 0.343 | 0.305 0.354 | 0.302 035 | 0.338 0.375 | 0.335 0.386 | 0.326 0.390 | 0.510 0.492
192 0325 0.366 | 0.334  0.369 | 0.331 0.370 | 0.335 0.365 | 0.353 0.390 | 0.347 0.383 | 0.374 0.387 | 0.383 0.429 | 0.365 0.415 | 0.514 0.495
336 | 0.355 0.383 | 0.364 0.387 | 0.367 0.391 | 0369 0.386 | 0.382 0.405 | 0.369 0.402 | 0.410 0411 | 0424 0442 | 0392 0425 | 0.510 0.492
720 | 0.401 0.413 | 0402 0417 | 0421 0420 | 0.425 0421 | 0445 0442 | 0431 0441 | 0478 0.450 | 0.598 0.545 | 0.446 0.458 | 0.527 0.493
96 | 0.163 0.251 | 0.160 0.249 | 0.166 0.256 | 0.167 0.260 | 0.193 0.283 | 0.176 0.255 | 0.184 0.272 | 0.353 0.424 | 0.180 0.271 | 0.205 0.293
192 | 0.216 0.292 | 0.219  0.290 | 0.221 0.294 | 0.224 0303 | 0.248 0.321 | 0.245 0.305 | 0.240 0.309 | 0.531 0.513 | 0.252 0318 | 0.278 0.336
336 | 0.268 0.323 | 0.268 0.322 | 0.271 0327 | 0.281 0.342 | 0.295 0.353 | 0.295 0.346 | 0.305 0.349 | 0.868 0.722 | 0.324 0.364 | 0.343  0.379
720 | 0354 0.378 | 0.344  0.371 | 0361 0.384 | 0.397 0421 | 0427 0447 | 0401 0.413 | 0.400 0407 | 1.880 1.010 | 0.410 0.420 | 0.414 0419

Models

‘Weather

Traffic

Electricity

ILI

ETThl

ETTh2

ETTml

ETTm2

diction tasks. It can be seen that overall, Swind TS surpasses the previous state-of-the-art algorithms
in nearly all 32 tasks, demonstrating excellent prediction performance. Among them, Swin4TS/CI
performs better than the previous best results in almost all tasks, but its performance is slightly
worse than Swind4TS/CD in the ILI and 4 ETT datasets. Although the performance of SwindTS/CD
on three large datasets does not reach the best, it shows significant improvement compared with
other algorithms in the CD category (namely MICN, Crossformer, and TimesNet, FEDformer and
Autoformer). For example, comparing with the best of these models, SwindTS/CD achieves nearly
an average 10% improvement on the 4 ETT datasets (ETTh1-5.14%, ETTh2-13.1%, ETTm1-6.2%
and ETTm2-14.1%).

B.2 FULL RESULTS OF UNIVARIATE FORECASTING

We also conduct the experiment of univariate long-term forecasting on 4 ETT datasets. There is a
feature “oil temperature” within those datasets, which is the target univariate series to forecast. For
SwindTS/CD, full channels are utilized to predict the target channel. While for Swind4TS/CI, only
the target channel is involved in the model. The full results containing 6 baseline methods are shown
in Table[9} The results of MICN and TimesNet are obtained by running their source code, while the
remaining baseline results are referred to (Nie et al., 2023). It can be seen that Swind TS achieves the
SOTA on all 4 ETT datasets. Especially on ETTh1, SwindTS/CD surpasses the second-best result
by 6.8% (0.069—0.074). And on ETTh2, Swind4TS/CI surpasses the second-best result by 9.6%
(0.16—0.177).

B.3 FULL RESULTS OF BASELINES WITH DIFFERENT LENGTH OF HISTORICAL SERIES

The full results of 3 newest baselines (MICN, TimesNet and Crossformer) with different lengths of
L are shown in Table [I0] Here 3 input lengths L = 96, 336 and 512 are considered. As can be
seen, there is no single L for any baseline that consistently achieves the best performance across all
datasets. For example, the best performance of MICN on large datasets occurs at L = 512, while on
small datasets, the optimal L varies. Similar conclusions can be drawn for Crossformer. However,
as shown in Table [T3] longer inputs for Swin4TS tend to yield consistently better results in most
cases.
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Table 9: Univariate long-term forecasting results with SwindTS. ETT datasets are used with histor-
ical series length L = 512 and prediction lengths T € {96, 192, 336, 720}. Bold/underline indicates
the best/second. Algorithm with * suggests the use of CI strategy otherwise the CD strategy.

Model SwindTS/CI* | SwindTS/CD | PatchTST/64* DLinear* MICN TimesNet FEDformer Autoformer
odels

(ours) (ours) (2023) (2023) (2023) (2023) (2022) (2021)
Metrics MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 0.057 0.187 | 0.067 0.206 | 0.058 0.187 | 0.056 0.180 | 0.072 0.218 | 0.070 0.205 | 0.079 0.215 | 0.071 0.206
192 | 0.073 0215 | 0.068 0.208 | 0.073 0.214 | 0.071 0.204 | 0.080 0.220 | 0.085 0.229 | 0.104 0245 | 0.114 0.262
ETThl | 336 | 0.079 0.226 | 0.069 0.212 | 0.079 0.225 | 0.098 0.244 | 0.139 0.298 | 0.095 0.245 | 0.119 0.270 | 0.107 0.258
720 | 0.083 0.230 | 0.073 0.220 | 0.086 0.234 | 0.189 0.359 | 0.195 0.359 | 0.093 0.244 | 0.142 0.299 | 0.126 0.283
Avg. | 0.073 0.214 | 0.069 0.211 | 0.074 0.215 | 0.104 0.247 | 0.122 0274 | 0.086 0.231 | 0.111 0.257 | 0.105 0.252
96 0.126  0.280 | 0.176  0.345 | 0.132 0.285 | 0.131 0.279 | 0.134 0.286 | 0.170 0.325 | 0.128 0.271 | 0.153  0.306
192 | 0.158 0.317 | 0.174 0344 | 0.171 0.329 | 0.176  0.329 | 0.174 0.334 | 0.191 0.343 | 0.185 0.330 | 0.204 0.351
ETTh2 | 336 | 0.165 0.327 | 0.175 0.343 | 0.185 0.347 | 0.209 0.367 | 0.199 0359 | 0.204 0.361 | 0.231 0.378 | 0.246 0.389
720 | 0.192 0.354 | 0.174 0.343 | 0.220 0.377 | 0.276 0.426 | 0.322 0.462 | 0.219 0.385 | 0.278 0.420 | 0.268 0.409
Avg. | 0.160 0.319 | 0.175 0.344 | 0.177 0.335 | 0.198 0.350 | 0.207 0.360 | 0.196 0.353 | 0.206 0.350 | 0.218 0.364
96 0.026 0.122 | 0.035 0.149 | 0.026 0.122 | 0.028 0.123 | 0.028 0.125 | 0.029 0.132 | 0.033 0.140 | 0.056 0.183
192 | 0.039 0.150 | 0.046 0.167 | 0.040 0.152 | 0.045 0.156 | 0.041 0.153 | 0.049 0.170 | 0.058 0.186 | 0.081 0.216
ETTml | 336 | 0.053 0.175 | 0.058 0.186 | 0.053 0.174 | 0.061 0.182 | 0.063 0.187 | 0.064 0.193 | 0.084 0.231 | 0.076 0.218
720 | 0.069 0.202 | 0.079 0.222 | 0.073 0.205 | 0.08  0.21 | 0.092 0.232 | 0.083 0.223 | 0.102 0.250 | 0.110 0.267
Avg. | 0.047 0.162 | 0.055 0.181 | 0.048 0.163 | 0.054 0.168 | 0.056 0.174 | 0.056 0.180 | 0.069 0.202 | 0.081 0.221
96 0.063 0.185 | 0.126  0.281 | 0.065 0.188 | 0.063 0.183 | 0.065 0.187 | 0.103 0.247 | 0.067 0.198 | 0.065 0.189
192 | 0.093 0.231 | 0.144 0.295 | 0.093 0.232 | 0.092 0.227 | 0.094 0232 | 0.162 0.312 | 0.102 0245 | 0.118 0.256
ETTm2 | 336 | 0.121 0.267 | 0.162 0.316 | 0.119 0.265 | 0.119 0.261 | 0.130 0.275 | 0.213 0.362 | 0.130 0.279 | 0.154 0.305
720 | 0.167 0.319 | 0.206 0.360 | 0.170 0.321 | 0.175 0.32 | 0.180 0.328 | 0.208 0.365 | 0.178 0.325 | 0.182 0.335
Avg. | 0.111 0.250 | 0.159 0313 | 0.112 0.251 | 0.112 0.248 | 0.117 0256 | 0.171 0.321 | 0.119 0262 | 0.130 0.271

Table 10: Full results of the 3 newest baselines, MICN, TimesNet and Crossformer, with 3 historical
series lengths L = 96, 336 and 512 are considered. The results of different L of each baseline are
compared internally. The bold indicates the best. Prediction length T' € {24, 36, 48,60} for ILI
dataset and T € {96, 192, 336, 720} for the others.

Models MICN (96) MICN (336) MICN (512) | Timesnet (96) | Timesnet (336) | Timesnet (512) | Crossformer (96) | Crossformer (336) | Crossformer (512)
Metrics MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE MSE MAE MSE MAE
96 | 0.161 0229 | 0.170 0.235 | 0.181 0.249 | 0.172 0.220 | 0.170  0.228 | 0.159 0214 [ 0.157 0228 | 0.161 0.240 0.150 0.219
Weather 192 1 0220 0.281 | 0.218 0.279 | 0.219 0.276 | 0.219 0261 | 0.215 0.263 | 0.222 0270 | 0.207  0.276 | 0.193 0.262 0.194 0.262
336 | 0.278 0.331 | 0.281 0.329 | 0.259 0.310 | 0.280 0.306 | 0.272 0.301 | 0.279 0.310 | 0.261 0.320 | 0.247 0.308 0.243 0.304
720 | 0.311 0.356 | 0.327 0.366 | 0.307 0.343 | 0.365 0.359 | 0.342 0.352 | 0.343 0355 | 0.364  0.391 0312 0.356 0.315 0.359
96 | 0519 0309 | 0.488 0.298 | 0457 0.295 | 0.593 0.321 | 0.591 0.318 | 0.600 0.321 | 0.534 0301 | 0.499 0.271 0.496 0.279
Traffic 192 | 0.537 0315 | 0.481 0.304 | 0.468 0.303 | 0.617 0.336 | 0.620 0.342 | 0.614 0.329 | 0.558 0314 | 0.494 0.403 0.499 0.276
336 | 0.534 0.313 | 0489 0.296 | 0.480 0.301 | 0.629 0.336 | 0.623  0.339 | 0.659 0.349 | 0.530  0.300 | 0.551 0.306 0.534 0.298
720 | 0.577 0325 | 0.516 0.313 | 0.529 0.323 | 0.640 0.350 | 0.648 0.344 | 0.654 0.347 | 0.573 0313 | 0.579 0.310 0.564 0.308
96 | 0.164 0269 | 0.155 0.265 | 0.156 0.265 | 0.168 0.272 | 0.177 0.284 | 0.181 0.286 | 0.149  0.249 | 0.143 0.244 0.153 0.257
Electricity 192 | 0.177 0.285 | 0.180 0.288 | 0.165 0.275 | 0.184 0.289 | 0.183 0.286 | 0.194 0295 | 0.164  0.262 | 0.167 0.271 0.218 0314
336 | 0.193  0.304 | 0.201 0.307 | 0.180 0.290 | 0.198 0.300 | 0.204 0305 | 0.200 0.302 | 0.196  0.295 | 0.195 0.299 0.223 0315
720 | 0212 0.321 | 0.280 0.366 | 0.210 0.318 | 0.220 0.320 | 0216  0.318 | 0.227  0.324 | 0.266  0.356 | 0.268 0.355 0.264 0.353
24 | 2.684 1.112 | 2453 1.081 | 2442 1.071 | 2317 0.934 | 2.157 0978 | 2.220 0.993 | 3.041 1.186 | 3.078 1.202 3.064 1.180
I 36 | 2.667 1.068 | 2.356 1.053 | 2737 1.140 | 1.972 0.920 | 2.318 1.031 | 2498 1.072 | 3.406  1.232 | 3.206 1.154 3.150 1.188
48 | 2558 1.052 | 2.749 1.145 | 2.393 1.076 | 2.238 0.940 | 2.122 1006 | 2.540 1.080 | 3.459 1.221 3.505 1.252 3.332 1.227
60 | 2747 1.110 | 2.636 1.141 | 2.831 1.186 | 2.027 0.928 | 1.975 0.975 | 2.091 0.990 | 3.640 1.305 | 3.740 1.294 3.745 1314
96 0.431  0.442 | 0423 0444 | 0406 0431 | 0.384 0.402 | 0.421 0436 | 0442 0457 | 0.410 0.432 0.457 0.468 0.451 0.461
ETThI 192 | 0.443  0.461 | 0.449 0466 | 0497 0.502 | 0.436 0.429 | 0.474 0477 | 0491 0491 | 0469 0470 | 0.426 0.441 0.422 0.447
336 | 0.502 0.502 | 0.577 0.548 | 0.514 0.524 | 0.491 0.469 | 0.487 0477 | 0489 0.491 | 0440  0.461 0.447 0.460 0.437 0.462
720 | 0.622  0.596 | 0.701 0.640 | 0.693 0.643 | 0.521 0.500 | 0.538 0.518 | 0.555 0.528 | 0.519  0.524 | 0.503 0.516 0.505 0.513
96 |0.296 0362 | 0362 0.417 | 0.300 0.385 | 0.340 0.374 | 0.356 0.413 | 0.383  0.420 | 0.894  0.671 1.101 0.802 0.653 0.596
ETTh2 192 | 0.406 0.427 | 0405 0432 | 0.453 0.496 | 0.402 0.414 | 0.409 0439 | 0.409 0.436 | 0.886 0.666 0.780 0.647 0.834 0.684
336 | 0.513 0.498 | 0.750 0.625 | 0.705 0.610 | 0.452 0.452 | 0.413 0441 | 0.389 0435 | 1115  0.764 | 0.963 0.762 0.932 0.711
720 | 0.875 0.680 | 1.107 0.775 | 1.223 0.825 | 0.462 0.468 | 0.485 0.486 | 0.460 0.476 | 1.197  0.815 | 1.468 0.950 1.716 1.022
96 | 0316 0368 | 0.305 0.354 | 0.307 0.352 | 0.338 0.375 | 0.335 0375 | 0.340 0.379 | 0320 0373 | 0.332 0.380 0.335 0.386
ETTml 192 | 0374 0.404 | 0.353 0.390 | 0.354 0.386 | 0.374 0.387 | 0.448 0429 | 0436 0425 | 0427 0451 0.375 0.422 0.383 0.429
336 | 0.384 0412 | 0.382 0.405 | 0.398 0.422 | 0.410 0.411 | 0430 0.435 | 0415 0432 | 0.489 0.480 0.438 0.450 0.424 0.442
720 | 0.467 0.467 | 0.445 0.442 | 0.446 0.447 | 0.478 0.450 | 0464 0456 | 0462 0461 | 0.589  0.545 | 0.595 0.557 0.598 0.545
96 | 0.179 0275 | 0.177 0.278 | 0.193 0.283 | 0.187 0.267 | 0.184 0.272 | 0.191 0277 | 0353  0.424 | 0.459 0.463 0.361 0413
ETTm2 192 | 0307 0.376 | 0.273 0.355 | 0.248 0.321 | 0.249 0.309 | 0.240  0.309 | 0.252 0322 | 0.531  0.513 | 0.894 0.676 0.839 0.647
336 | 0.325 0.388 | 0.356 0.383 | 0.295 0.353 | 0.321 0.351 | 0.305 0.349 | 0.318 0363 | 0.868  0.722 | 0.811 0.694 1.175 0.731
720 | 0.502  0.490 | 0.433  0.445 | 0.427 0.447 | 0.408 0.403 | 0.400 0.407 | 0.390 0.409 | 1.880  1.010 | 2.052 1.098 1.319 0.907

C SUPPLEMENT OF RESULTS

C.1 RANDOMNESS TEST

The parameters of deep neural networks are typically generated through random initialization, which
means that different random seeds may lead to different convergence results for the same training
set. In this section, we study the impact of different random seeds on the performance of Swin4TS.
As a convention, the results of the main text select the current year 2023 as the random seed. In
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addition to this, we add four random seeds: 2022, 2021, 2020, and 2019, and evaluate them on 32
tasks across all eight datasets.

In Fig. [7] corresponding to the results of Swin4TS/CI , the influence of random seeds on predic-
tion accuracy is subtle in almost all datasets. Particularly for the Traffic, Electricity, ETThl1, and
ETTh2 datasets, the prediction accuracy hardly varies with random seeds. Moreover, SwindTS/CD
is evaluated across 4 ETT datasets (the other 4 datasets are ignored due to the limited time and com-
puter resources) and the results are shown in Fig. [§] Compared to Swin4TS/CI, the random seed
seems to have a slightly larger impact on the prediction accuracy of the 4 ETT datasets. However,
these effects are still very small in an overall view. All these experiments indicate that the proposed
SwindTS demonstrates strong robustness to different random seeds or model initialization.
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Figure 7: Impact of different random seeds on the performance of Swind4TS/CI
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Figure 8: Impact of different random seeds on the performance of Swin4TS/CD

C.2 ABLATION OF SWIN4TS/CI

As a supplement to the ablation of Swin4TS/CD in the main text, we also conduct experiments on
Swin4TS/CI using the ETTm1 and ETTm?2 datasets. As shown in Table [TT] whether the model re-
moves the shift window attention operation or the hierarchical operation (referred as “’scale” here),
or removes both, it will result in a decrease in prediction accuracy. Particularly, removing the hierar-
chical operation leads to a decrease of 4.1% and 2.8% in average prediction accuracy for the ETTm1
dataset (0.341—0.355) and ETTm?2 dataset (0.250—0.257), respectively. This indicates that these
two key designs in Swin4TS play important roles in ensuring prediction accuracy.

C.3 EFFECT OF CHANNEL ORDER

For vision models, patches in the window represent adjacent areas in the image. However, when
using the CD (channel dependent) strategy on multiple time series data, the channel order cannot be
arbitrarily fixed as in images. To learn attention that is independent of channel order, we randomly
shuffle the sequence of time series data in the channel dimension at each training batch and shuffle
the corresponding labels accordingly in our code implementation.
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Table 11: Ablation of SwindTS/CI on ETTm1 and ETTm2 datasets.
best/second. Prediction length T' € {96,192, 336, 720}.

Bold/underline indicates the

Models SwindTS/CI w/o shift w/o scale w/o shift&scale
Metrics MSE MAE | MSE MAE | MSE MAE | MSE MAE

96 | 0.283 0.341 | 0.285 0.340 | 0.308 0.357 | 0.286 0.342

192 | 0.325 0.366 | 0.326 0.367 | 0.335 0.372 | 0.330 0.368

ETTml | 336 | 0.355 0.383 | 0.359 0.387 | 0.356 0.387 | 0.361 0.386
720 | 0.401 0413 | 0412 0.421 | 0420 0418 | 0414 0417

Avg. | 0.341 0.376 | 0.345 0.379 | 0.355 0.383 | 0.348  0.378

96 | 0.163 0.251 | 0.164 0.253 | 0.168 0.256 | 0.174  0.263

192 | 0.216 0.292 | 0.225 0.298 | 0.221 0.293 | 0.224  0.296

ETTm2 | 336 | 0.268 0.323 | 0.269 0.325 | 0.278 0.331 | 0.276  0.330
720 | 0.354 0.378 | 0.367 0.386 | 0.363 0.383 | 0.364 0.385

Avg. | 0.250 0.311 | 0.256 0.315 | 0.257 0.316 | 0.260  0.318

Table [T2] shows the experimental results of shuffling channels and fixing channels, and the results
show that this technique achieved better results than fixing the initial order. This indicates that under
the CD strategy, the model can learn interrelationship among multiple series that is independent of
channel order. In other words, the order of time series in the channel dimension is insignificant in
ideal situations.

Table 12: Effect of channel order under the CD strategy .

Datasets ETThl ETTh2 ETTml ETTm2
prediction 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720
Channel-fixed MSE | 0382 0414 0435 049 | 0286 035 0375 0417 | 0288 034 0375 0441 0.165 0229 0279 0.365
MAE | 0407 0431 0451 0492 | 0351 0400 0.422 0448 | 0.341 037 039 0427 | 0252 0.298 0.329 0.385
Channel-shuffled MSE | 0.365 0.400 0.425 0.432 | 0.264 0.331 0.358 0.386 | 0.292 0.334 0.364 0.402 | 0.160 0.219 0.268 0.344
MAE | 0.392 0.414 044 0456 | 0.33 0375 0.401 0427 | 0.346 0.369 0.387 0.417 | 0.249 029 0322 0.371

C.4 EFFECT OF HISTORICAL SERIES LENGTH

The full results considering the effect of L of SwindTS are shown in Table@ Opverall, the best result
for each prediction task occur in a longer L, which is L = 512 for most cases. Even in many tasks
for ETT datasets, although L = 640 can provide the best results, the difference from the second-
best results obtained with L = 512 is negligible. Additionally, due to the linear computational
complexity of SwindTS with respect to L, it is inherently more suitable for processing longer L
compared to other baselines. It is worth noting that even with L = 96, the prediction results of
Swin4TS are better than those of most baselines.

C.5 EFFECT OF HIERARCHICAL DESIGN

The full results considering the effect of hierarchical design of Swin4TS are shown in Table[T4] As
mentioned in the main text, different hierarchical designs capture different scale information hidden
in the time series. For Weather and 4 ETT datasets, a 2-stage design yields the best performance.
On the other hand, the Traffic and Electricity datasets require a 4-stage design to achieve optimal
performance. Additionally, the impact of different stage designs on the same dataset varies much.
For example, for Weather dataset, the four hierarchical designs show minor differences in prediction
results. However, for ETTm?2 dataset, switching from a 2-stage to a 4-stage design leads to a 22.5%
decrease in average prediction performance (0.253—0.309).

C.6 EFFECT OF DYNAMIC COVARIATES

In many time series prediction scenarios, the design of the model often considers known auxiliary
covariates, such as timestamps, or specific time series. As a test, the dynamic covariates are in-
corporated into the Swin4TS/CI model. Specifically, given a look-back window L : X € R*F
of time series, we obtain the same length of timestamp X. € R'*%, map the time covariates to
a low-dimensional space X, € R4*L, where d represents the dimensional space of dynamic time
covariates. We then concatenate the mapped time covariates X . with the time variable X and input
them together into the Swin4TS/CI model.
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Table 13: Full results for the study of historical sequence length L. The best results are bolded.
Prediction length T' € {24, 36, 48,60} for ILI dataset and T' € {96, 192, 336, 720} for the others.
And L € {36,54, 81,108,135} for ILI dataset and L € {96, 128,256,512, 720} for the others.

Models 96(36) 128(54) 256(81) 512(108) 640(135)
Metrics MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 | 0.177 0218 | 0.162 0.205 | 0.152 0.196 | 0.143 0.191 | 0.146 0.196
192 | 0218 0254 | 0207 0246 | 0.196 0.239 | 0.189 0.235 | 0.188 0.236
336 | 0274 0294 | 0263 0287 | 0248 0.280 | 0.238 0278 | 0.241 0.279
720 | 0353 0345 | 0342 0340 | 0.328 0335 | 0312 0.328 | 0325 0.750
96 | 0.485 0308 | 0429 0.283 | 0401 0.270 | 0.362 0.249 | 0.376 0.265
192 | 0.482 0304 | 0.448 0290 | 0.413 0273 | 0378 0.255 | 0.389 0.270
336 | 0500 0311 | 0458 0294 | 0425 0279 | 0.389 0261 | 0.402 0.277
720 | 0.531 0328 | 0490 0312 | 0.453 0.297 | 0426 0.282 | 0437 0.293
96 | 0.178 0262 | 0.155 0.246 | 0.138 0.232 | 0.127 0.221 | 0.131 0.227
192 | 0.184 0268 | 0.170 0258 | 0.153 0.245 | 0.144 0.237 | 0.147 0.242
336 | 0200 0285 | 0.185 0274 | 0.169 0262 | 0.16 0255 | 0.164 0.259
720 | 0241 0319 | 0225 0308 | 0210 0298 | 0.197 0.288 | 0.199 0.292
24 | 2525 00944 | 1.716 0.813 | 1912 0855 | 1.740 0.854 | 1.854 0.892
36 2953 0971 | 1.901 0.855| 1.823 0.864 | 1.713 0.859 | 1.971 0.935
48 | 2431 0929 | 1.863 0.850 | 2.102 0.948 | 1.718 0.877 | 2.048 0.956
60 | 1.951 0.858 | 2.049 0954 | 2.115 0971 | 1.790 0.908 | 2.117 0.975
96 | 0.384 0395 | 0383 0.395 | 0.376 0.394 | 0.366 0.394 | 0.366 0.395
192 | 0435 0424 | 0433 0422 | 0414 0.416 | 0403 0.420 | 0.401 0417
336 | 0478 0445 | 0.469 0440 | 0440 0431 | 0.425 0433 | 0430 0.437
720 | 0481 0468 | 0474 0.463 | 0454 0.461 | 0.448 0463 | 0462 0.477
96 | 0288 0338 | 0.288 0339 | 0.276 0.336 | 0.272 0.334 | 0.268 0.333
192 | 0372 0.389 | 0339 0.388 | 0.345 0381 | 0.336 0377 | 0.334 0.376
336 | 0413 0425 | 0404 0422 | 0371 0406 | 0.362 0.404 | 0.358 0.396
720 | 0.420 0440 | 0415 0.415 | 0.396 0.429 | 0.384 0.427 | 0.389 0.431
96 | 0326 0359 | 0.304 0.350 | 0.290 0.345 | 0.283 0341 | 0.282 0.339
192 | 0362 0380 | 0345 0375 | 0.325 0369 | 0.325 0.366 | 0323 0.367
336 | 0389 0.399 | 0376  0.396 | 0.357 0.388 | 0.355 0.383 | 0.353 0.388
720 | 0452 0435 | 0437 0432 | 0418 0426 | 0.401 0.413 | 0.399 0.417
96 | 0.175 0260 | 0.174 0.260 | 0.164 0.252 | 0.163 0.251 | 0.161 0.251
192 | 0241 0302 | 0.234 0299 | 0221 0293 | 0.216 0.292 | 0216 0.290
336 | 0301 0.340 | 0293 0.339 | 0277 0329 | 0.268 0.323 | 0.269 0.325
720 | 0399 0396 | 0389 0392 | 0.369 0.387 | 0.354 0.378 | 0352 0.378

‘Weather

Traffic

Electricity

ILI

ETThl

ETTh2

ETTml1

ETTm2

The experimental results are shown in Table[T3] As can be seen, the performances of most datasets
become worse after adding this covariate, with the exception of the Traffic dataset which performed
much better, possibly due to the strong periodicity of traffic flow with time.

C.7 TRANSFERABILITY OF SWIN4TS/CI

In Fig. O] we further test the effect when one of these 7 channels is fixed (instead of randomly chosen)
in the training stage of SwindTS/CI. For ETThl and ETTml, fixing one of the first 4 channels
for training, the prediction accuracy does not change much, suggesting that these 4 channels can
globally capture the underlying characteristics of the whole dataset. While fixing one of the left
3 channels, the prediction accuracy increases by a large margin. For ETTh2 and ETTm2, fixing
any one of these 7 channels can impact the prediction accuracy, but the fluctuations of impacts are
not substantial, especially for ETTm2. In fact, this experiment can be considered as a test of the
transferability for Swind4TS. That is, the model trained on data from one channel can still perform
well in predicting unseen data from other channels.

D A U-NET DESIGN FOR SWIN4TS/CD

In SwindTS/CD, the final layer is mapped to MT (where M represents the number of series and
T denotes the prediction length) by a linear layer which keeps the consistency with Swin4TS/CI.
However, this may not be a good choice especially for large datasets where the size of last layer
would become very large for long-term prediction. To address this issue, we have additionally
designed a U-net architecture to consider the problem in the last layer. The overall structure of
the network is shown in Fig. [T0] which consists of a symmetrical Encoder-Decoder structure. The
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Table 14: Full results for the study of hierarchical design. Four cases, representing 1-stage, 2-stage,
3-stage and 4-stage, are studied across 8 datasets. Prediction length T € {24, 36, 48,60} for ILI
dataset and T" € {96, 192, 336, 720} for the others.

Models 1-stage 2-stage 3-stage 4-stage
Metrics MSE MAE | MSE MAE | MSE MAE | MSE MAE
96 | 0.149 0.199 | 0.143 0.191 | 0.146 0.196 | 0.145 0.195
192 | 0.192 0.240 | 0.189 0.235 | 0.191 0.238 | 0.191 0.239
336 | 0.244 0.281 | 0.238 0.278 | 0.244 0.279 | 0.241 0.277
720 | 0.316 0331 | 0.312 0.328 | 0.318 0.332 | 0.317 0.333
96 | 0.381 0.261 | 0.378 0.263 | 0.368 0.254 | 0.362 0.249
192 | 0.394 0.266 | 0.392 0.268 | 0.384 0.260 | 0.378 0.255
336 | 0404 0.271 | 0.401 0.272 | 0.394 0.265 | 0.389 0.261
720 | 0439 0.290 | 0.436 0.291 | 0431 0.286 | 0.426 0.282
96 | 0.132 0.227 | 0.131 0.226 | 0.128 0.223 | 0.127 0.221
192 | 0.148 0.240 | 0.147 0.241 | 0.145 0.238 | 0.144 0.237
336 | 0.164 0257 | 0.163 0.258 | 0.161 0.256 | 0.16  0.255
720 | 0.202 0.290 | 0.201 0.292 | 0.198 0.289 | 0.197 0.288
24 1.82 0.873 | 1.874 0.883 | 1.901 0.848 - -
36 | 1.758 0.873 | 1.703 0.849 | 2.382 1.045 - -
48 | 1.619 0.851 | 2205 1.013 | 2.133 0.973 - -
60 | 2.011 0.938 | 2.088 0.960 | 2.137 2.137 - -
96 | 0.369 0.395 | 0.366 0.394 | 0.367 0.393 | 0.376 0.404
192 | 0401 0.413 | 0.403 0.42 | 0401 0421 | 042 0435
336 | 0.425 0.444 | 0.425 0.433 | 0427 0438 | 045 0.458
720 | 0.445 0.468 | 0.448 0.463 | 0.475 0485 | 0474 0.478
96 | 0273 0336 | 0.272 0.334 | 0.285 0.345 | 0.318 0.373
192 | 0.337 0.380 | 0.336 0.377 | 0.346 0.383 | 0.369 0.407
336 | 0.361 0.402 | 0.362 0.404 | 0.368 0.404 | 0.382 0.422
720 | 0.390 0.432 | 0.384 0.427 | 0.392 0430 | 0414 0.449
96 | 0.285 0.342 | 0.283 0.341 | 0.282 0.340 | 0.289 0.346
192 | 0.331 0.371 | 0.325 0.366 | 0.323 0.367 | 0.329 0.371
336 | 0.371 0395 | 0.355 0.383 | 0.355 0.387 | 0.369 0.39
720 | 0407 0.418 | 0.401 0.413 | 0.404 0419 | 0414 0.424
96 | 0.165 0254 | 0.163 0.251 | 0.179 0.267 | 0.232 0.317
192 | 0.220 0.292 | 0.216 0.292 | 0.240 0.309 | 0.271 0.338
336 | 0.270 0.326 | 0.268 0.323 | 0.291 0.342 | 0.327 0.373
720 | 0.358 0.381 | 0.354 0.378 | 0.384 0.402 | 0.405 0.419

‘Weather

Traffic

Electricity

ILI

ETThl

ETTh2

ETTml

ETTm2

Table 15: Effect of dynamic covariates under the CI strategy.

Datasets ETThl ETTh2 ETTml ETTm2
prediction 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720
MSE | 0371 0408 0436 05 | 0281 035 0372 0401|0291 0342 0409 046 | 0.171 0229 0297 0418
MAE | 0.400 0423 0446 0498 | 0.345 0.389 0408 0.442 | 0.348 038 0424 0446 | 026 0301 0.346 0425
MSE | 0.366 0.400 0.425 0.448 | 0.269 0.336 0.359 0.384 | 0.283 0.325 0.355 0.401 | 0.163 0.216 0.268 0.354
MAE | 0.392 0.416 0.433 0.463 | 0.334 0.377 0.400 0.427 | 0.341 0.366 0.385 0.415 | 0.251 0.292 0.323 0.378

w/timestamp

w.o/timestamp

Datasets Weather Traffic Electricity ILI
prediction 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720
MSE | 0.149 0.195 0.246 0318 | 0.329 0.351 0.367 0.377 | 0.131 0.147 0.172 0.212 | 1.818 1948 1.884 1.904
MAE | 0.200 0242 0.281 0.333 | 0.241 0.252 0.259 0.266 | 0.231 0246 0.273 0.303 | 0.867 0.924 0.925 0.945
MSE | 0.144 0.190 0.240 0.312 | 0.362 0.378 0.389 0.426 | 0.127 0.144 0.160 0.197 | 1.74 1713 1.718 1.79
MAE | 0.192 0.236 0.278 0.329 | 0.249 0255 0.261 0.282 | 0.221 0.237 0.255 0.288 | 0.854 0.859 0.877 0.908

w/timestamp

w.o/timestamp

ETThl ETTh2 ETTm1 ETTm2
96 —e—192 —4—336 —v—720 96 —e—192 —4—336 —v—720 96 —e—192 —A—336 —v—720 96 —e—192 —A—336 —v—720

0.54
. o . v//—v\\
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Figure 9: Swin4TS/CI with one fixed channel as training data. Four ETT datasets are considered.
Prediction length T’ € {96, 192, 336, 720}.
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left half of the network is exactly the same as SwindTS/CD, while the right half shares the same
framework only replacing the downsampling layer with upsampling layer. Such a U-net architecture
is quite similar to the one in CV for image generation tasks, and the decoder gradually recovers the
target multi-series. Additionally, we included residual connections to the attention models to better
utilize the information from the encoder network.
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Figure 10: The overall structure of the U-net design for Swin4TS/CD.

We have performed experiments on four datasets: Traffic, Electricity, ETTh1 and ETTh2, and the
results are shown in Table [T6] As can be seen, the U-net design outperforms the Linear design
in handling datasets with a large number of channels, such as Traffic and Electricity, indicating
the efficiency in addressing challenges in modeling the multi-variables correlation for long-term
prediction. In consideration of the simplicity and consistency with the CI strategy, the last layer of
SwindTS/CD in the main text still adopts the simple linear design.

Table 16: Comparison of the different designs of last layer for SwindTS/CD. Best results are bold.

Datasets Traffic Electricity ETTh1 ETTh2
prediction 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720
MSE | 0512 0.522 0.529 0.541 | 0.159 0.170 0.175 0.201 | 0.365 0.400 0.425 0.432 | 0.264 0.331 0.358 0.386
MAE | 0.325 0.333 0.341 0343 | 0271 0268 0.282 0.299 | 0.392 0414 0.440 0456 | 0.330 0.375 0.401 0.427
MSE | 0478 0482 0.522 0.518 | 0.142 0.158 0.166 0.187 | 0.371 0.398 0.432 0433 | 0.277 0.352 0366 0.389
MAE | 0.298 0.302 0.314 0.320 | 0.243 0.255 0.265 0.283 | 0.401 0.412 0444 0454 | 0.345 0393 0416 0.441

Linear

U-net

E TEST OF THE TNT4TS MODEL

In the main text, we addressed the consistency in data structure between the time series and image
modalities, thus enabling the processing of these two modalities in a unified framework. To further
support this view, we designed the TNT4TS model in addition. TNT (Transformer in Transformer)
is an early ViT model that examines the internal structure of images, using two Transformer models
to process local and global information, respectively. TNT4TS is an attempt on TNT to model time
series. As shown in Fig. [T} time series are first divided into multiple patches, and then each patch
is further divided into multiple sub-patches. TNT4TS constructs an Outer Transformer to process
the patch series, and then uses an Inner Transformer to locally process the sub-patch series of each
patch. The information from the Inner Transformer is fused into the Outer Transformer, and finally
the output of the latter is mapped to the predicted sequence via a Linear layer. The main difference
between TNT4TS and TNT is just that the former processes one-dimensional information while the
latter processes two-dimensional information. For detailed framework design, please refer to the
original paper of TNT.

Using the CI strategy, we evaluate the performance of TNT4TS on 4 ETT datasets and compared it
with Swind4TS/CI and PatchTST. Results are presented in Table As can be seen, overall, TNT4TS
shows comparable performance with SwindTS/CI, but outperforms PatchTST on all datasets. This
further demonstrates the feasibility of using the ViT framework for time series modeling. We look
forward to seeing more advanced ViT models being used for time series modeling in the future.
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Figure 11: The overall structure of the TNT4TS model.

Table 17: The evaluation of TNT4TS on 4 ETT datasets. Best results are bold.

Datasets

ETTh1

ETTh2

ETTml

ETTm2

prediction

96

192

336

720

96

192

336

720

96

192

336

720

96

192

336

720

SwindTS/CI

MSE
MAE

0.366
0.394

0.403
0.42

0.425
0.433

0.448
0.463

0.272
0.334

0.336
0.377

0.362
0.404

0.384
0.427

0.283
0.341

0.325
0.366

0.355
0.383

0.401
0.413

0.163
0.251

0.216
0.292

0.268
0.323

0.354
0.378

TNT4TS

MSE
MAE

0.363
0.390

0.403
0.422

0.416
0.427

0.445
0.461

0.269
0.328

0.335
0.378

0.360
0.401

0.378
0.423

0.288
0.348

0.335
0.381

0.362
0.388

0.409
0.422

0.164
0.254

0.218
0.292

0.268
0.327

0.355
0.377

PatchTST

MSE
MAE

0.377
0.405

0411
0.428

0.432
0.445

0.456
0.473

0.275
0.339

0.339
0.38

0.365
0.404

0.39
043

0.292
0.346

0.331
0.37

0.367
0.391

0.421
0.42

0.166
0.256

0.221
0.294

0.271
0.327

0.361
0.384

F PREDICT EXAMPLES

Here we present a comparison of the actual prediction results of Swind4TS/CI with several represen-
tative baselines. As shown in Fig. @ the four columns represent SwindTS/CI, PatchTST, MICN,
and TimesNet. The four rows correspond to the ETThl, ETTm1, ETTm2, and Weather datasets,
predicting 192, 192, 336, and 336 future values, respectively.

For the first prediction scenario, ETTh1 dataset, Swin4TS/CI and TimesNet provide reasonable pre-
dictions, but PatchTST exhibits excessive fluctuations, and MICN shows significant deviations in the
prediction trends. In the second scenario, ETTm1 dataset, all four algorithms seem to have less accu-
rate predictions in the first half, but Swin4TS/CI and TimesNet give accurate forecasts in the second
half. In the third scenario, ETTm2 dataset, where the ground truth of predicted part demonstrates a
downward trend, SwindTS/CI and PatchTST accurately predict this trend, although PatchTST has
a larger deviation in predicting the second peak. Meanwhile, MICN and TimesNet fail to fore-
cast this downward trend. In the fourth scenario, Weather, Swin4TS/CI and PatchTST can provide
fairly accurate trends, while MICN significantly overestimates the predicted values, and TimesNet
underestimates the predicted values (especially the second peak). Overall, PatchTST, MICN, and
TimesNet perform well only in certain scenarios, while SwindTS/CI can provide relatively accurate
forecasts across all scenarios.
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Figure 12: Predicted examples of ETTh1, ETTm1, ETTm2 and Weather datasets, corresponds to the
results of four rows, respectively.

23



	Introduction 
	Related work
	Methodology
	Problem Definition 
	Model Architecture

	Experiments
	Experimental Setup
	Results
	Other results

	Computational complexity analysis
	Conclusion and Dissusion
	Experimental details
	Description of dataset
	Reproduction details for Swin4TS
	Reproduction details for baselines

	Full results
	Full results of multivariate forecasting
	Full results of univariate forecasting
	Full results of baselines with different length of historical series

	Supplement of results
	Randomness test
	Ablation of Swin4TS/CI
	Effect of channel order
	Effect of historical series length
	Effect of hierarchical design
	Effect of dynamic covariates
	Transferability of Swin4TS/CI

	A U-net design for Swin4TS/CD
	Test of the TNT4TS model
	Predict examples

