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Abstract

The impressive capabilities of large language001
models (LLMs) have attracted extensive inter-002
ests of applying LLMs to medical field. How-003
ever, the complex nature of clinical environ-004
ments presents significant hallucination chal-005
lenges for LLMs, hindering their widespread006
adoption. In this paper, we address these hallu-007
cination issues in the context of Medical Infor-008
mation Extraction (MIE) tasks by introducing009
ALternate Contrastive Decoding (ALCD). We010
begin by redefining MIE tasks as an identify-011
and-classify process. We then separate the iden-012
tification and classification functions of LLMs013
by selectively masking the optimization of to-014
kens during fine-tuning. During the inference015
stage, we alternately contrast output distribu-016
tions derived from sub-task models. This ap-017
proach aims to selectively enhance the iden-018
tification and classification capabilities while019
minimizing the influence of other inherent abil-020
ities in LLMs. Additionally, we propose an021
alternate adaptive constraint strategy to more022
effectively adjust the scale and scope of con-023
trastive tokens. Through comprehensive ex-024
periments on two different backbones and six025
diverse medical information extraction tasks,026
ALCD demonstrates significant improvements027
in resolving hallucination issues compared to028
conventional decoding methods.029

1 Introduction030

Medical Information Extraction (MIE), including031

tasks such as medical entity recognition and re-032

lation extraction, is a fundamental component of033

medical NLP (Hahn and Oleynik, 2020). It enables034

the derivation of structured knowledge from plain035

text, benefiting a wide array of applications, like036

medical knowledge graph construction (Wu et al.,037

2023; Xu et al., 2024), medical dialogue (Gao et al.,038

2023; Wu et al., 2024), and medical report genera-039

tion (Liu et al., 2021). Previous MIE tasks (Yu et al.,040

2019; Guan et al., 2020) have been supervised, and041

Please identify each clinical symptom from following [Medical Dialogue] and 
classify it as [Options]:

Input

Ground Truth: “vomiting: positive \n fever: negative \n stomach bloated: other”
Prediction: “vomiting: positive \n fever: positive \n belly swelling: other”

Output

p Patient: My baby is 1 year old and suddenly started vomiting and having diarrhea. 
p Doctor: Hello, does the child have a fever or not? How is the child's mental state? 
p Patient: No fever, the child is in good spirits. It happened suddenly today. Could it 

be related to the formula milk? 
p Doctor: How many times does the child have bowel movements in a day? Is the 

stomach bloated? Does the child suck on their hands? 
p Patient: It started today and so far only had one bowel movement.

Medical Dialogue

Reasoning errors when 
classifying medical entities

Nonexistent entities in 
Medical Dialogue

Hallucination Hallucination

Figure 1: An example demonstrating the hallucination
generated by LLMs in MIE tasks. The green font in med-
ical dialogue indicates a high correlation with ground
truth. The blue font in the output represents correct
token, while the red font represents tokens with hallu-
cination problems. These problems mainly include the
presence of nonexistent entities and reasoning errors.

their performance heavily depends on the quality 042

and quantity of available training data. However, la- 043

beling medical documents requires specific knowl- 044

edge which is both costly and time-consuming. 045

Recently, the remarkable zero-shot capabilities 046

of large language models (LLMs) such as Chat- 047

GPT and GPT-4 (OpenAI, 2023) have inspired re- 048

searchers to transform MIE tasks into a generation 049

paradigm (Zhu et al., 2023). However, the medi- 050

cal domain is less tolerant of errors compared to 051

other domains. While there have been attempts to 052

apply LLMs to the medical field (Singhal et al., 053

2022; Sharma et al., 2023; Liu et al., 2024), there 054

is a growing concern about the issue of hallucina- 055

tion (Huang et al., 2023). In the context of MIE, 056

two types of hallucinations exist: (1) LLMs may 057

identify medical entities that are not present in orig- 058

inal texts, thereby fabricating facts and deviating 059

from the original information. (2) LLMs may face 060
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reasoning errors when classifying medical entities,061

due to statistic biases in the pre-trained corpus. We062

show such a hallucination problem in Figure 1.063

In this paper, we address the challenges of hal-064

lucination when applying LLMs to MIE tasks. We065

observe that LLMs for MIE can be conceptualized066

as an identify-and-classify process: initially iden-067

tifying potential medical concept spans from the068

plain text, and then classifying these text spans into069

predefined categories (e.g., start token of a specific070

entity, subject of a specific relation), as shown in071

the ‘Output’ of Figure 1. The natural approach to072

applying LLMs is to prompt them to simultane-073

ously complete both identify and classify steps in074

a unified decoding process (Lu et al., 2022; Wang075

et al., 2023b). We speculate that the hallucination076

problem may be linked to the joint next-word gen-077

eration abilities of identification and classification,078

which could have inadvertently compromised each079

other’s performance. Therefore, we believe that080

decoupling abilities of identification and classifi-081

cation, allowing LLMs to concentrate on specific082

sub-tasks, could simplify the complexity of the083

MIE task and potentially reduce hallucination is-084

sues (Khot et al., 2022; Bian et al., 2023).085

Motivated by the aforementioned observation,086

we introduce ALternate Contrastive Decoding087

(ALCD), a straightforward decoding strategy de-088

signed to enhance the performance of LLMs on089

MIE tasks. In the training stage, we mask the opti-090

mization of tokens separately to decouple the iden-091

tification and classification models. For instance,092

when fine-tuning the parameters of the identifica-093

tion model, classification tokens are masked to fo-094

cus the model’s attention solely on identification095

tokens, thereby ignoring its classification capability.096

During the inference stage, ALCD bolsters its clas-097

sification/identification ability and contrasts logit098

predictions with another model. This contrastive099

decoding process alternates between classification100

and identification, depending on the type of the101

next token, which is determined by a simple rule-102

based judgment. Furthermore, we propose an adap-103

tive constraint strategy to dynamically adjust the104

scale and scope of contrastive tokens. This allows105

individual samples to adapt to their unique charac-106

teristics by measuring the consistency among the107

three models and the level of confidence. Overall,108

this work makes three key contributions:109

• To our knowledge, we are the first to employ110

contrastive decoding as a strategy to reduce hal-111

lucinations in LLMs for MIE tasks.112

• We validate the broad applicability of our ALCD 113

approach through experiments using two LLM 114

backbones across six diverse medical tasks, such 115

as determining causal relationships in medical 116

concepts (Zhu et al., 2023). 117

• Our experimental results underscore the superi- 118

ority of ALCD over eight established decoding 119

methods. Codes will be released 1. 120

2 Related Work 121

2.1 LLMs for Medical Domain 122

Rapid development has been seen in directly em- 123

ploying general LLMs (e.g., ChatGPT (OpenAI, 124

2023), ChatGLM (Du et al., 2022), and Qwen (Bai 125

et al., 2023)) to the medical domain and training 126

medical LLMs using medical data, such as Med- 127

PaLM (Singhal et al., 2022), clinicalGPT (Wang 128

et al., 2023a), and MedAlpaca (Han et al., 2023). 129

Both general LLMs and medical LLMs may suf- 130

fer from hallucinations, the undesired phenomenon 131

of LLMs generating contents not based on train- 132

ing data or facts when applying them to complex 133

medical tasks. Hallucinations could be caused by 134

multiple factors, such as imperfect representation 135

learning or erroneous decoding (Ji et al., 2023a). 136

Due to the high demand for reliability in the med- 137

ical domain, the hallucinations are thus less toler- 138

ated. Although previous works have explored the 139

problem of hallucination in the medical domain 140

(Umapathi et al., 2023; Ji et al., 2023b), there is a 141

lack of exploration in MIE task, particularly regard- 142

ing the efficiency of different decoding methods 143

for mitigating hallucination. 144

2.2 Contrastive Decoding 145

The idea of contrastive decoding for LLM has 146

been explored in various previous works, and dif- 147

ferent decoding strategies focus on different as- 148

pects of LLM improvements. Contrastive Decod- 149

ing (CD) (Li et al., 2023) is proposed to contrast 150

output probability of large-scale expert LLMs with 151

small-scale amateur LLMs to diminish undesired 152

amateur behavior and improve fluency and coher- 153

ence in the generated contents. Context-aware De- 154

coding (CAD) (Shi et al., 2023) focuses on the 155

issue of LLMs’ insufficient attention to context. 156

CAD downweights output probability associated 157

with LLMs’ prior knowledge to promote LLMs’ at- 158

tention to context, thus improving the faithfulness 159

1https://anonymous.4open.science/r/ALCD-8831

2

https://anonymous.4open.science/r/ALCD-8831


of the generated contents. Chuang et al. (2024) in-160

troduced DoLa, where the output next-word prob-161

ability is obtained from the difference in logits162

between a higher layer versus a lower layer, to163

reduce hallucinations and enhance truthfulness in164

the knowledge-based question-answering tasks. Vi-165

sual Contrastive Decoding (VCD) is another de-166

coding method to mitigate object hallucinations for167

large vision-language models by contrasting out-168

put distributions from original and distorted visual169

inputs (Leng et al., 2023). Sanchez et al. (2023)170

adapted Classifier-Free Guidance (CFG) (Ho and171

Salimans, 2022) from text-to-image generation to172

text-to-text generation and they showed CFG can173

increase the LLMs’ performance and adherence to174

various prompts, including basic prompting, chain-175

of-thought prompting, and chatbot prompting.176

Although previous contrastive decoding strate-177

gies have been shown effective in addressing spe-178

cific hallucinations in LLMs, their performance is179

inadequate for MIE tasks. In contrast, our ALCD180

effectively decouples the abilities to contrast and181

decode outputs, leading to notable enhancements.182

3 Methodology183

In this section, we introduce ALternate Contrastive184

Decoding (ALCD), a method specifically designed185

for medical information extraction tasks. Section186

3.1 provides the foundational knowledge of Con-187

trastive Decoding, while Section 3.2 delves into the188

details of our proposed ALCD method.189

3.1 Preliminary190

For generative LLMs, the common method for191

text generation is to predict next token in an auto-192

regressive manner. Specifically, we denote the pa-193

rameters of an LLM as θ. The model utilizes input194

text x and system instructions (prompts) i to gen-195

erate a response y. For each time step t, we have:196

yt ∼Pθ(yt|i,x,y<t),

∼softmax(logitθ(yt|i,x,y<t)),
(1)197

where yt represents the output token at a specific198

time step t, and y<t denotes the sequence of gener-199

ated token sequence until the time step t− 1. The200

common ways of the next token selection include201

selecting the highest probability token (greedy202

search), exploring multiple high-probability paths203

simultaneously (beam search), or sampling accord-204

ing to the probability distribution (e.g., nucleus205

sampling (Holtzman et al., 2019)).206

While, in contrastive decoding, there are typ- 207

ically two logits, which may be obtained from 208

different LLMs using the same input source (Li 209

et al., 2023) or the same LLM using different input 210

sources (Shi et al., 2023). It should be noted that 211

they need to share the same tokenizer to keep con- 212

sistency between different logits. The probability 213

for the next token is adjusted through subtraction: 214

logitθ(yt|i,x,y<t)− logitθ′(yt|i,x,y<t). (2) 215

The logitθ and logitθ′ are usually generated from 216

an LLM with high capabilities and low capabilities, 217

respectively. For example, in CD (Li et al., 2023), 218

logitθ comes from a large expert LLM and logitθ′ 219

comes from a small amateur LLM. Subtracting 220

these two logits helps amplify the ground-truth to- 221

kens in logitθ and downplay hallucinated tokens in 222

logitθ′ . Inspired by CD, we propose to alternately 223

amplify or downplay the classification and identi- 224

fication capabilities of LLMs during the decoding 225

process, to improve final generation results. 226

3.2 Alternate Contrastive Decoding 227

The process of our proposed ALCD is illustrated 228

in Figure 2. We break down medical information 229

extraction into two stages: identification and classi- 230

fication. In Section 3.2.1, we fine-tune LLMs sepa- 231

rately for identification and classification. In Sec- 232

tion 3.2.2, we utilize the decoders of three LLMs 233

(identification, classification, and normal) together 234

to perform MIE. As the two new LLMs are trained 235

with Lora (Hu et al., 2021), they do not cause an 236

excessive increase in parameter volume. 237

3.2.1 Decoupling with optimization masking 238

To effectively harness identification and classifi- 239

cation capabilities of LLMs while minimizing in- 240

terference from one another, we propose to de- 241

compose their respective abilities. Typically, it 242

is natural to fine-tune two subtasks independently, 243

resulting in a identification model Mid and a clas- 244

sification model Mcl. But this method has distinct 245

instructions and input-output formats compared 246

to normal model Mnl. It poses an issue when 247

these models are combined during the inference 248

step, which can lead to inconsistent input with fine- 249

tuning step, ultimately reducing the accuracy. 250

In this work, we propose to optimize two ca- 251

pabilities separately using optimization masking 252

during the fine-tuning process, as shown in Figure 253

2(Step #1). We employ the same inputs as origi- 254

nal task for fine-tuning both Mid and Mcl models. 255
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Normal
LLM

Identification
LLM

Classification
LLM

[Next ‘cls’ Token]

𝑝!"↑ 𝑝#$↓

Decoding at Time Step 𝑡

❄

❄

❄

𝑑!"

𝑑#$

Dizziness : positive \n fever : negative

LLMs

Masking ‘cls’ 
tokens for 

Optimization

Regular
Optimization

🔥
❄

Normal

Identification

Classification LLMs
🔥

❄

LLMs
🔥 ❄

𝑙!"%

𝑙#$%

𝑙&"%

Dizziness : positive \n fever:

JSD

JSD

𝑦! 

positive
negative
dizziness

positive
negative
dizziness
hepatitis

positive
negative
dizziness
hepatitis

positive
negative
dizziness
hepatitis

Dizziness : positive \n fever : negative

Dizziness : positive \n fever : negative

Masking ‘ide’ 
tokens for 

Optimization

Step #1: Decoupling LLMs Step #2: Adaptively Contrasting Predictions

Scope Constraint on Tokens
with Intersection: 𝑉!"#$%&'"(

𝑦"! 

Input [Instruction] + [Text]
❄ Frozen
🔥 Tunable

Masking

Scale Constraint on Tokens

Scale Constraint on Tokens

Input
Please identify each clinical symptom from
[Text] and classify it as positive or negative:

Output

Output

Output

Figure 2: The overall pipeline of our proposed ALCD consists of two main steps. In step #1, our goal is to fine-tune
sub-models individually in order to decouple the abilities of identification and classification. In step #2, our objective
is to adaptively contrast the predictions at each time step by applying scale and scope constraints on tokens.

During fine-tuning, we selectively optimize tokens,256

and for instance, when optimizing parameter θid of257

identification model Mid, we mask the tokens for258

classification task:259

max
θid

∑
(x,y)∈D

|y|∑
t=1,t/∈Tcl

log(Pθid(yt|i,x,y<t)), (3)260

where Tcl represents the time step of classification261

tokens, which do not require optimization, and D262

denotes training dataset. On the other hand, when263

optimizing parameter θcl of classification model264

Mcl, we mask the tokens for identification task:265

max
θcl

∑
(x,y)∈D

|y|∑
t=1,t/∈Tid

log(Pθcl(yt|i,x,y<t)), (4)266

where Tid represents time step of identification to-267

kens. By employing masking optimization, we ex-268

pect to develop LLMs that possess diverse capabil-269

ities. For fine-tuning normal model Mnl, we also270

employ formulas similar to 3 and 4, but without any271

masking operations. Given the constraints of com-272

putational resources, we implemented parameter-273

efficient fine-tuning techniques (e.g., LoRA (Hu274

et al., 2021) ) to train these models.275

3.2.2 Adaptively Contrasting the Predictions276

After decoupling the capabilities, a significant chal-277

lenge arises: how can we effectively harness the278

individual abilities of sub-models? To address this,279

ALCD is designed to alternate the enhancement280

of the classification ability of Mcl and the iden-281

tification ability of Mid during LLM’s inference282

stage, while excluding the influence of other ca- 283

pabilities originally present in normal model Mnl. 284

An illustration is shown in Figure 2(Step #2). 285

We denote nt ∈ {cls, ide, other} as the type 286

of next token prediction, where cls, ide, other in- 287

dicate classification, identification, and other to- 288

kens, respectively. Generally, in order to facilitate 289

the evaluation of text generated from LLMs, it is 290

typically to present the output of MIE in a struc- 291

tured format (Lu et al., 2022). Therefore, when 292

LLMs generate token yt at time t, we can deter- 293

mine the next token based on previous tokens y<t 294

using a simple rule-based judgment: In our case, 295

we require LLMs to utilize colon ‘:’ to split ide 296

and cls tokens, and each ide-cls pair is separated 297

by a newline character ‘\n’. For instance, in this 298

text: “Dizziness: positive\n fever: negative”, the 299

ide tokens (Dizziness or fever) are expected to be 300

followed by a colon and then a cls token (posi- 301

tive or positive). We abbreviate the representation 302

logitθ(·|i,x,y<t) generated by Mnl, Mcl, and 303

Mid as lθnl, l
θ
cl, and lθid, respectively. The overall 304

formula is as follows: 305

lθnl + α(lθnl + lθcl − (did ∗ lθid + dcl ∗ lθcl)),
if nt = cls

lθnl + α(lθnl + lθid − (dcl ∗ lθcl + did ∗ lθid)),
if nt = ide

(5) 306

where α is a hyper-parameter and analyzed in Sec- 307

tion 4.4. did and dcl are adaptive scales proposed 308

to measure the distance between two logit distribu- 309

4



tions: one between Mnl and Mid, and the other310

between Mnl and Mcl. We leverages Jensen-311

Shannon Divergence (JSD) to calculate them:312

did = JSD(logitθnl
||logitθid),

dcl = JSD(logitθnl
||logitθcl).

(6)313

Specifically, when predicting the next token in For-314

mula (5), ALCD includes two extra components315

in addition to the logit lθnl of the normal model.316

For example, if nt is a cls token, The first compo-317

nent is enhancing lθcl, with the motivation to utilize318

the classification ability of sub-model Mcl. The319

second component involves contrasting the influ-320

ence of sub-models Mcl and Mid, by decreasing321

logit values lθcl and lθid through adaptive scales (dcl322

and did). The motivation behind this is that if the323

outputs of Mid is more different from Mnl (e.g.,324

larger did), indicating a stronger contrast (denoted325

as −did∗ lθid), which makes sure that ALCD has the326

potential to mitigate the hallucinations arising from327

identification ability. While, we subtract dcl ∗ lθcl as328

a compensation item when utilizing Mcl. Consid-329

ering the strong classification ability of Mcl, our330

objective is to aggregate the outcomes when both331

the Mcl and Mnl exhibit high confidence in pre-332

dicting the cls token (e.g., ‘negative’ in Figure 2).333

They should be more combined as their similarity334

increases (i.e., smaller dcl value). This ensures that335

ALCD can adaptively adjust the utilization of Mcl.336

Conversely, when the next token is an ide token,337

the same rule is applicable. For the next token that338

do not belong to either ide or cls, we solely utilize339

logit output lθnl of normal model. By employing340

this alternating contrast prediction, ALCD has the341

capability to modify the overall probability of to-342

kens and then harness the abilities of sub-models.343

3.2.3 Scope Constraints on Tokens344

In addition, it is worth noting that certain tokens345

may exhibit a significant discrepancy when sub-346

jected to contrastive decoding, which makes the347

implausible tokens receive a high score after con-348

trast, leading to what is referred to as the false349

positives (Li et al., 2023; Chuang et al., 2024). In350

light of this, we implement a constraint that is con-351

tingent upon the confidence level:352

Vhead(y<t) = {v ∈ V :

Pθ(v|i,x,y<t) ≥ βmax
v

Pθ(v|i,x,y<t)},
(7)353

where V represents the output vocabulary of LLMs,354

v is the token of output vocabulary, and β is a355

hyper-parameter used to determine the max trunca-356

Dataset #Train #Valid #Test

CMeEE-V2 4,600 400 400
CMeIE-V2 4,600 400 400
IMCS-V2-NER 4,600 400 400
CMedCausal 2,600 400 400
IMCS-V2-SR 4,600 400 400
CHIP-MDCFNPC 4,600 400 400

Table 1: Dataset partitioning statistics.

tion rate of low-probability tokens. Instead of em- 357

ploying constraints with a single model in Li et al. 358

(2023), our approach involves combining the inter- 359

section of confidence values V inter
head obtained from 360

three models (outputs of Mnl, Mid, and Mcl). To- 361

kens with confidence levels below a specific thresh- 362

old are assigned a negative infinity value: 363

V inter
head = Vnl

head ∩ Vcl
head ∩ V id

head,

logitθ(v|i,x,y<t) = −∞, if v /∈ V inter
head (y<t).

(8) 364

By combining token constraints to enhance and 365

contrast predictions, our proposed ALCD is able 366

to effectively leverage capabilities of Mid or Mcl, 367

while addressing the issue of hallucinations in Mnl 368

that arise from other capabilities in Mcl or Mid. 369

4 Experiments 370

4.1 Experimental Setup 371

Tasks and Datasets. We apply six MIE 372

tasks from a Chinese medical dataset named 373

PromptCBLUE (Zhu et al., 2023) for evaluation. 374

CMeEE-V2 is a task of Chinese medical entity 375

recognition. IMCS-V2-SR aims to normalize 376

the patient-doctor dialogue by medical concepts. 377

IMCS-V2-NER targets extracting medical con- 378

cepts from dialogues. CMedCausal is a task of 379

causal relation extraction for medical texts. CHIP- 380

MDCFNPC refers to clinical concept finding and 381

discrimination. CMeIE-V2 aims to recognize and 382

categorize the entity relation contained in medical 383

texts. The output forms of all tasks are built with 384

the identify-and-classify pattern, as mentioned in 385

Section 1. Due to space limitations, we leave more 386

details about the tasks to Appendix A.1. Since 387

the open-source test set was not available, we used 388

the validation set as our test set. Subsequently, we 389

partition the training set into a new training set and 390

validation set and ensure the validation set contains 391

the same number of samples as the test set. Table 1 392

presents the dataset partitioning statistics. 393

Models and Baselines. To improve the learning 394

of data, we experimented with two widely-used 395
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Decoding Method CMeEE-V2 CMeIE-V2 IMCS-V2-NER CMedCausal IMCS-V2-SR CHIP-MDCFNPC

ChatGLM-6B

Greedy Search 66.48 45.60 88.37 41.01 71.55 42.58
Beam Search 66.77 45.80 88.60 41.41 71.84 42.77
Top K Sample 63.38 39.02 88.19 39.41 69.40 38.87
Nucleus Sample 64.93 41.13 88.26 40.58 69.88 41.92
CFG (Sanchez et al., 2023) 66.95 43.84 88.76 40.61 72.06 42.49
CAD (Shi et al., 2023) 66.88 44.04 88.77 40.57 72.06 42.49
CD (Li et al., 2023) 66.34 46.03 88.54 40.72 72.40 42.33
DoLa (Chuang et al., 2024) 66.46 43.78 88.96 40.47 38.68 42.92

ALCD (Ours) 67.44 47.02* 89.64 42.53* 73.57* 43.90*
Qwen-7B-Chat

Greedy Search 65.49 42.87 88.65 30.10 71.28 40.61
Beam Search 66.61 43.40 89.46 30.21 71.35 40.94
Top K Sample 65.71 36.34 88.83 19.55 71.04 40.19
Nucleus Sample 66.04 33.87 89.08 25.81 70.09 39.40
CFG (Sanchez et al., 2023) 65.18 39.07 88.64 12.96 71.15 40.18
CAD (Shi et al., 2023) 66.09 36.67 88.00 14.40 71.72 39.49
CD (Li et al., 2023) 65.19 35.86 88.98 14.69 70.27 39.35
DoLa (Chuang et al., 2024) 65.16 35.51 88.49 16.52 71.29 39.37

ALCD (Ours) 68.12* 44.89* 90.82* 31.68* 72.40* 41.91

Table 2: Experiment results (micro F1 score↑: higher is better) on six medical datasets with the best scores
highlighted in bold. All baselines are based on the same fine-tuned normal model, and the model-agnostic
parameters for fine-tuning and inference are kept consistent, with only the specific decoding method being changed.
“*” indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best baseline.

multilingual LLMs, ChatGLM-6B v1 (Du et al.,396

2022) and Qwen-7B-Chat v1 (Bai et al., 2023). We397

compared our method for mitigating hallucinations398

with eight decoding baselines, which can be cat-399

egorized as follows: Deterministic decoding: 1)400

greedy search decoding; 2) beam search decod-401

ing; Stochastic decoding: 3) Top K sample de-402

coding; 4) nucleus sample decoding; Contrastive403

decoding: 5) CFG (Ho and Salimans, 2022); 6)404

CAD (Shi et al., 2023); 7) CD (Li et al., 2023);405

8) DoLa (Chuang et al., 2024). For the validation406

of Deterministic and Stochastic methods, we uti-407

lized the implementation provided by the Hugging-408

face toolkit (Wolf et al., 2020). However, for the409

contrastive decoding methods, adjustments were410

required when applying them to MIE tasks as they411

were not specifically designed to tackle the halluci-412

nation problem in MIE. For CFG, we simply use413

logits with normal input text and logits with the414

last token of input text as a comparison. For CAD,415

we employ both normal input text and input text416

without classification labels to contrast the output417

in different contexts. For CD, we employ the nor-418

mal model as the expert model and proceed with419

a model using only half the number of fine-tuning 420

steps for the amateur model. DoLa is implemented 421

following their published paper. 422

Implementation Details. We conducted all ex- 423

periments using four NVIDIA V100 GPUs. As 424

we fine-tuned LLMs using LoRA, the decoding 425

process was performed using a single GPU. All ex- 426

perimental results were evaluated using the Micro- 427

F1 score following Zhu et al. (2023). All hyper- 428

parameters of baselines are set based on the optimal 429

values found in the validation set of the correspond- 430

ing works. For ALCD, we conducted a search in 431

the validation set to determine the appropriate val- 432

ues for the scale of contrasting prediction α, the 433

maximum rate of constraint β, and the step of fine- 434

tuning. For α, we limit the search scope to the 435

values of [0.01, 0.1, 0.2, 0.3, 0.4, 0.5]. For β, we 436

limit the search scope to the values of [0.4, 0.45, 437

0.5, 0.55, 0.6, 0.65]. The fine-tuning step of the nor- 438

mal model remains consistent across all baselines. 439

We employ a batch size of 8 and perform 1,000 440

steps to fine-tune all datasets and LLMs, except 441

for Qwen-7B-Chat where we use 3,000 steps in 442

CMeIE-V2, CMedCausal, and CHIP-MDCFNPC, 443
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Figure 3: Ablation study on six medical datasets using
ChatGLM-6B.

due to that extra steps are required for convergence.444

4.2 Main Results445

In this section, we provide a comprehensive per-446

formance comparison of ALCD against other base-447

lines on six medical datasets and two different back-448

bone LLMs. As shown in Table 2, our proposed449

ALCD outperforms both contrastive decoding and450

non-contrastive decoding methods and the perfor-451

mance gap reaches the largest of 4.87% in Qwen-452

7B-chat on the CMedCausal dataset. Our proposed453

ALCD has been shown to improve performance on454

both ChatGLM-6B and Qwen-7B-Chat, which con-455

firms its universality. Besides, ALCD particularly456

performs well on CMeEE-V2, IMCS-V2-NER, and457

CHIP-MDCFNPC datasets, and outperforms other458

baselines by a large margin. This finding aligns459

with our motivation as these datasets include more460

entity candidates, more classification labels, and461

thus higher difficulties for LLMs. Some contrastive462

decoding methods, such as DoLa, achieve much463

lower results on IMCS-V2-SR in the ChatGLM-464

6B, indicating the coupled difficulties for the med-465

ical identify-and-classify tasks. We find that the466

proposed adaptive method of DoLa predominantly467

selects the 2nd or 8th layer as the optimal prema-468

ture layer, which suggests that DoLa’s intended469

ability to amplify factual knowledge across differ-470

ent layers may not be fully aligned with the MIE471

tasks. We observed that the poor performance of472

sampling methods (Top K and Nucleus Sample)473

indicates that high diversity generation may not be474
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Figure 4: (a) Analysis of the scale of contrasting pre-
diction α (in Formula 5); (b) Analysis of max rate of
constraint β (in Formula 7).

essential for the MIE task. 475

4.3 Ablation Study 476

In this section, we analyze the effects of different 477

components on ALCD. Specifically, we experiment 478

with ALCD against three variants: 1) ALCD with- 479

out Constraint: removing the dynamic constraints 480

on tokens, 2) Alternate Sum: alternately summing 481

the logits from three models instead of utilizing 482

contrastive decoding (i.e., replacing Formula 5 with 483

lθnl + αlθcl, if nt = cls; lθnl + αlθid, if nt = ide), 3) 484

Weighted Sum: directly summing the logits from 485

three models with the same weight of ALCD (i.e., 486

replacing Formula 5 with lθnl + α(lθcl + lθid)). As 487

depicted in Figure 3, the results confirm that in- 488

corporating token constraints enhances the perfor- 489

mance of the normal model. Specifically, on the 490

CMeIE-V2 dataset, the micro F1 score decreased 491

from 47.02% to 46.19% when no constraints were 492

utilized. Moreover, removing the alternate contrast- 493

ing with either Alternate Sum or Weighted Sum re- 494

sulted in performance declines, with Weighted Sum 495

yielding the poorest overall performance. This find- 496

ing highlights the effectiveness of applying alter- 497

nate contrastive decoding and indicates that solely 498

ensembling multiple LLMs for these tasks does not 499

lead to performance improvement. 500

4.4 Scale of Contrasting Prediction 501

To investigate the effect of hyper-parameter α in 502

Formula 5, we set different values from 0.01 to 503

0.5 and conduct experiments on CMeEE-V2 and 504

IMCS-V2-SR datasets. A larger α means a larger 505

7



Dataset Constraint in CD Ours

CMeEE-V2 66.16 67.44
CMeIE-V2 46.15 47.02
IMCS-V2-NER 89.01 89.64
CMedCausal 41.88 42.53
IMCS-V2-SR 72.71 73.57
CHIP-MDCFNPC 42.72 43.90

Table 3: Comparison of token constraint method on all
datasets using ChatGLM-6B.

scale of contrastive decoding. As shown in Fig-506

ure 4(a), it can be observed that increasing the scale507

of contrastive decoding appropriately enhances the508

micro F1 score of both backbone LLMs, indicating509

the efficiency of our contrastive decoding method.510

While, excessively large values of α (e.g., exceed-511

ing 0.4), can lead to a decline in performance,512

which demonstrates that excessive utilization or513

weakening of the sub-models’ ability may result in514

a decrease in the final effect.515

4.5 Max Rate of Constraint516

In this section, we examine the effect of β in For-517

mula 7, which controls the max truncation rate518

of low-probability tokens for contrastive decoding.519

The results are shown in Figure 4(b). We observed520

that small β values (e.g., smaller than 0.45) have521

a minimal impact on the low-probability tokens,522

suggesting that these tokens are unlikely to signif-523

icantly influence the model. We also found that524

the performance reaches its peak at around 0.5 and525

subsequently decreases with a further increase in526

β. This finding aligns with our analysis, as larger527

values of β tend to remove more false positive to-528

kens. However, excessively large values of β can529

also result in the removal of true positive tokens,530

thereby reducing overall performance.531

4.6 Comparison of Token Constraint532

To further validate the effectiveness of our pro-533

posed constraint method for avoiding noisy tokens534

in contrastive decoding, we compare against the535

constraint method of CD. Specifically, we replace536

the token constraint related to scale and range in537

ALCD with a constraint employed in CD, while538

maintaining the alternative contrastive decoding539

technique unchanged. As shown in Table 3, our540

method consistently outperforms the ‘constraint in541

CD’ approach across all datasets. We attribute this542

improvement to the successful implementation of543

alternating adaptive token constraints on both scale544
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Figure 5: Analysis of varying decoupling steps during
fine-tuning on IMCS-V2-SR dataset. ‘Vanilla’ refers to
the performance of normal model using greedy search.

and scope in our ALCD, whereas CD relies solely 545

on a maximum value judgment. 546

4.7 Affect of Decoupling Steps 547

To investigate how the capabilities of sub-models 548

affect overall performance of ALCD, we conducted 549

experiments by individually fine-tuning two sub- 550

task LLMs (i.e., Mid and Mcl) with varying steps 551

while keeping normal model (i.e., Mnl) unchanged. 552

As illustrated in Figure 5, we observed that fine- 553

tuning on sub-models effectively enhances perfor- 554

mance, resulting in higher micro F1 scores com- 555

pared to vanilla ones with 300 steps or larger. When 556

the number of fine-tuning steps increases, the per- 557

formance rises for both LLMs, while decreases 558

after 600 steps for ChatGLM-6B and 400 steps for 559

Qwen-7B-Chat, respectively. We believe the reason 560

is that excessive fine-tuning steps can potentially 561

improve the identification capabilities of Mcl and 562

the classification capabilities of Mid, consequently 563

compromising the desired decoupling effect be- 564

tween the two abilities. As a result, contrasting the 565

predictions in ALCD fails to improve performance. 566

5 Conclusion 567

In this paper, we propose ALCD to address hal- 568

lucinations of LLMs in MIE tasks. ALCD uti- 569

lizes decoupled fine-tuning process to separately 570

learn LLM’s identification and classification abili- 571

ties. During inference, ALCD alternately enhances 572

these abilities while excluding other capabilities 573

that may result in hallucinations. We also introduce 574

adaptive scales based on distribution similarities to 575

enable the flexible use of identification or classifi- 576

cation abilities. Extensive experiments conducted 577

on two backbones have demonstrated substantial 578

enhancement achieved by ALCD in MIE tasks. 579
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6 Limitation580

Our approach aims to decouple the identification581

and classification abilities of LLMs in the medical582

information extraction tasks and leverage their re-583

spective capabilities through alternate contrastive584

decoding. However, this strategy leads to an in-585

crease in both fine-tuning and inference costs. In586

this paper, ALCD switches between identification587

or classification capabilities based on simple rule-588

based judgment, but it is worth exploring more589

automatic and flexible judgment methods in future590

work. Furthermore, we have only investigated the591

effectiveness of our approach in medical informa-592

tion extraction tasks, and expanding our ALCD593

framework to other medical tasks, other domains,594

and other language settings is an avenue for future595

exploration. Exploring more robust decoupling596

methods and contrasting decoding techniques are597

also potential future research directions.598
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including several common tasks. Due to limited798

resources, we select 6 tasks for validation. The799

statistics are in Table 1, and the dataset details are800

listed as follows:801

• CMeEE-V2. Chinese medical name entity802

recognition. We consider “extracting entities803

from medical texts” as identify and “categoriz-804

ing the entities” as classify.805

• CMeIE-V2. Chinese medical entity relation806

extraction. We consider “recognizing the head807

and tail entities from medical texts” as identify808

and “categorizing the relation types between809

entities”.810

• IMCS-V2-NER. Medical entity recognition811

from the doctor-patient dialogue. We con-812

sider “identifying the medical entities from di-813

alogues” as identify and “classifying the med-814

ical entity types” as classify.815

• CMedCausal. Causal relation extraction for816

medical texts. We consider “recognizing the817

causal and effect words from medical texts” as818

identify and “categorizing the causal relation”819

as classify.820

• IMCS-V2-SR. Medical normalization of the821

doctor-patient dialogue. We consider “extract-822

ing the normalized words from dialogues” as823

identify and “imputing the normalization la-824

bels” as classify.825

• CHIP-MDCFNPC. Clinical concept find-826

ing and discrimination for the clinical report.827

We consider “extracting the clinical concepts828

from reports” as identify and “classifying the829

derived clinical concepts” as classify.830
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