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ABSTRACT

Recent advancements in reinforcement learning with verifiable rewards have
pushed the boundaries of the visual reasoning capabilities in large vision-language
models (LVLMs). However, training LVLMs with reinforcement fine-tuning
(RFT) is computationally expensive, posing a significant challenge to scaling
model size. In this work, we propose PROXYTHINKER, an inference-time
technique that enables large models to inherit the visual reasoning capabilities
from small, slow-thinking visual reasoners without any training. By subtract-
ing the output distributions of base models from those of RFT reasoners, PROX-
YTHINKER modifies the decoding dynamics and successfully elicits the slow-
thinking reasoning demonstrated by the emerged sophisticated behaviors such as
self-verification and self-correction. PROXYTHINKER consistently boosts perfor-
mance on challenging visual benchmarks on spatial, mathematical, and multi-
disciplinary reasoning, enabling untuned base models to compete with the per-
formance of their full-scale RFT counterparts. Furthermore, our implementation
efficiently coordinates multiple language models with parallelism techniques and
achieves faster inference compared to previous decoding-time methods, paving
the way for the practical deployment of PROXYTHINKER. Code is available at
https://anonymous.4open.science/r/ProxyThinker-FAAF.

1 INTRODUCTION

Recent advances in large language models have led to the development of systems capable of ex-
tended reasoning and deliberation, often referred to as “slow-thinking” models, such as OpenAI-
o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025), and QwQ (Team, 2025). Unlike “fast-
thinking” models such as GPT-4o (Hurst et al., 2024), “slow-thinking” models usually engage in
multi-step self-reflection to produce an answer that resembles the thorough thinking process that hu-
mans make before producing a final answer for non-trivial problems. These models have achieved
remarkable success in complex problem-solving benchmarks, particularly in mathematical and sci-
entific reasoning domains (Shao et al., 2024b; Zeng et al., 2025; Yu et al., 2025). Recent research
has also extended such reflective reasoning to multimodal tasks (Huang et al., 2025; Deng et al.,
2025; Yang et al., 2025; Zhou et al., 2025; Wang et al., 2025a), pushing large vision-language
models (LVLMs) toward greater performance in scenarios that require structured and contextual
understanding across modalities.

Many of the most effective “slow-thinking” models rely on reinforcement learning with verifiable
rewards (RLVR) (Face, 2025; Su et al., 2025; Wei et al., 2025a), a reinforcement fine-tuning (RFT)
framework that encourages the model to generate intermediate reasoning steps that lead to a correct
answer for automatically verifiable tasks. While effective, this approach is computationally intensive
and resource-demanding. First, the process often requires maintaining multiple model copies when
using algorithms such as Proximal Policy Optimization (PPO) (Schulman et al., 2017) or Group
Relative Policy Optimization (GRPO) (Shao et al., 2024a), which significantly increases memory
usage. Second, the training process typically alternates between rollout and optimization phases,
resulting in significant complexity and extensive training time.

Due to these high training costs, prior work has rarely applied RFT to LVLMs with more than 7 bil-
lion parameters. Recent research findings (Shah et al., 2025; Yue et al., 2025b; Gandhi et al., 2025;
Liu et al., 2025a; Wang et al., 2025c) suggest that RFT does not teach new knowledge beyond the
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Figure 1: Illustration of PROXYTHINKER design. Without training, we migrate the reasoning be-
haviors learned by the small visual reasoner by capturing the token-level logit difference between
a small, reasoning expert after reinforcement fine-tuning (RFT) and a small, base model. The logit
difference can effectively guide a large base model to become a large reasoning expert at test time.

capabilities of the base model, but rather elicits and amplifies reasoning behaviors that are already in-
cluded in the sampling distributions of the base model. In this work, we introduce PROXYTHINKER,
a simple yet effective inference-time method that allows for efficient transfer of visual reasoning ca-
pabilities without incurring any training costs, illustrated in Figure 1. Motivated by the line of work
that explores decoding-steering of language models (Liu et al., 2021; Li et al., 2023b; O’Brien &
Lewis, 2023; Leng et al., 2024; Liu et al., 2024a), we propose using the difference between the last-
token logits from a reasoning Expert model after RFT training and those from a non-RFT Amateur
model to represent the reasoning abilities induced by RFT. Such a difference could steer a larger
Base model toward the slow-thinking reasoning pattern. To investigate the effectiveness of PROX-
YTHINKER, we conduct experiments on mathematical, multi-disciplinary and complex reasoning
tasks using larger base models with 32B and 72B parameters. Quantitative results show significant
improvements on benchmarks such as MathVista (Lu et al., 2024), MathVerse (Zhang et al., 2024),
MathVision (Wang et al., 2024a), MMMU-Pro (Yue et al., 2025a) and R1-OneVisionBench (Yang
et al., 2025). For example, on the MathVision test split, we improved the accuracy of Qwen2.5-
VL-32B-Instruct (Bai et al., 2025) from 38.4% to 40.8% by integrating OpenVLThinker-7B (Deng
et al., 2025) as a reasoning expert, despite the latter’s poor accuracy of 25.3%. This even surpasses
the 40.5% achieved by the full-scale RFT model VL-Rethinker-32B (Wang et al., 2025a).

To reduce the computation overhead of running multiple models, we implement our system on
top of vLLM (Kwon et al., 2023), fully exploiting modern parallelism techniques. Our optimized
scheduling of logits computation across models yields a 38× speedup over earlier open-sourced
decoding-time steering methods. Ablation studies show that our method works robustly without any
hyperparameter tuning to achieve substantial gains. We further conducted a comprehensive analysis
to show emerging reasoning behaviors in PROXYTHINKER, hoping to shed light on future research
work in decoding-time algorithms that enhance reasoning abilities.

2 METHODOLOGY

2.1 PRELIMINARIES

Vision-Language Model (VLM) Decoding. A VLM defines a conditional probability distribution
pθ over output sequences, parameterized by model weights θ, and conditioned on both a textual
prompt x = [x1, . . . , xn] and a set of input images I = {I1, . . . , Ik}. The model autoregressively
generates a response y = [y1, . . . , ym] according to:

pθ(y | x, I) =
m∏
j=1

pθ(yj | x, I, y<j). (1)
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What is the area of the room?
Question: 

Current Thinking Process: 

A.         B. 

C.         D.        E. 

 

5. Simplify the expression:

6. Rewrite the expression in a form that matches one of the given choices:

 

large, Base model

small, reasoning Expert

small, Amateur model

Final Thus Answer

…

Wait However But

…

…

Final Thus Answer

…

+ α ( − )
Wait However But

…

…

Final Thus Answer

Final Thus Answer

… = …

Wait However But

Final answer: .

a
a

a
a
aa

b

Wait, does it seem right? 
Let's double check the choices:
(A)      (B) 
(C)      (D)      (E) 
The correct choice is .

Answer: .

Wait, let's double check. The room can be 
divided into a large rectangle and two 
smaller rectangles. Simplify the expression:
  
The expression  matches choice (E).
Thus, the area of the room is: 

 

Figure 2: PROXYTHINKER with a case study from MathVision. When provided with the same incor-
rect thinking process, both the large and small base models tend to finalize the answer prematurely
in the decoding process. The small reasoning expert shows signs of self-verification behaviors, e.g.,
assigning high probabilities to “Wait”, “However”, “But”. However, its limited capacity confines
it to shallow reasoning, such as restating answer choices. Through logits manipulation, PROXY-
THINKER transfers this reasoning behavior to the large base model, effectively triggering accurate
self-correction and leading to the correct option.

Decoding-Time Algorithm refers to a technique that modifies a language model (LM) output dis-
tribution at inference time as a means to improve generation quality and control without training.
DExperts (Liu et al., 2021) first proposes to steer the output of an LM toward desirable attributes,
such as reducing toxicity and controlling sentiment, with a pair of expert and anti-expert LMs,
encouraging safe continuation and penalizing toxic completions. Contrastive Decoding (Li et al.,
2023b) improves open-ended text generation quality by contrasting the predictions of a large expert
LM against those of a small amateur LM. The intuition behind this is that if both a big and small
model are likely to produce an undesirable token (e.g., a generic, repetitive word), that token score
is suppressed, whereas tokens favored by the expert but not the amateur are boosted. We include
additional related work in §5. In contrast to these approaches, our motivation lies in transferring the
reasoning abilities of a small visual reasoner, which is orthogonal to their goals and contributions.

2.2 PROXYTHINKER: NEXT-TOKEN-PREDICTION WITH TEST-TIME GUIDANCE

There is increasing evidence that reinforcement fine-tuning (RFT) does not impart fundamentally
new knowledge into a base model, but rather amplifies reasoning behaviors that the base model was
already capable of in principle (Yue et al., 2025b). Or in other words, RFT shifts the probability mass
of a model toward token sequences that exhibit structured, “slow-thinking” reasoning strategies,
such as branching into sub-cases, backtracking after a contradiction (Swamy et al., 2025), and self-
checking intermediate answers (Gandhi et al., 2025). These reasoning strategies are reflected in the
high activation of relevant tokens at specific stages of the reasoning process.

In the upper part of Figure 2, we present an example from the MathVision dataset, where we pro-
vide three different vision-language models (VLMs) with the same incorrect reasoning process.
Both large and small base models tend to directly provide an answer after reading the reasoning
process, whereas a small RFT-trained expert exhibits reflective reasoning strategies. However, due
to its limited model capacity, this reflective behavior remains shallow and largely restricted to re-
stating answer options. We therefore ask: Can the reasoning skills acquired during RFT be directly
transferred to a larger model via logits delta? By combining the reasoning patterns of the small RFT
expert with the enhanced capacity of the large base model, we anticipate that such a transfer could
deepen the model’s reasoning behaviors and improve performance on reasoning-intensive tasks. In
the lower part of Figure 2, we observe that applying logits delta successfully elicits the effective
reflection of the large base model and ultimately leads to a correct option.

Formally, consider a pretrained VLM Ψ, or Base model, which we wish to adapt toward improved
“slow-thinking” reasoning behavior without updating its parameters. Given a set of input images

3
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I = {I1, I2, . . . , Ik} and a text prompt x<t with t being the current decoding time step, Ψ produces
a logit vector over the vocabulary, conditioned jointly on both modalities. The goal is to guide
Ψ to behave as if it had undergone RFT while avoiding any parameter updates to Ψ. To achieve
this, we introduce two auxiliary models: a small, base Amateur model ψ0 and its RFT counterpart,
reasoning Expert model ψ1, which is much cheaper to tune than tuning the large model Ψ itself with
the RFT method. The proposed PROXYTHINKER modifies the output distribution of Ψ at inference
time using a logit shift computed from the difference between the output logits of ψ1 and ψ0.

At each decoding step t, we condition Ψ, ψ1, and ψ0 on the shared image set I and the current text
prefix x<t to compute logits zΨ, zψ1

, and zψ0
, respectively. A hyperparameter α ∈ R+ controls the

influence of this difference signal, which we will discuss its impact in §4.1. The adjusted distribution
from PROXYTHINKER model Ψ̂ is given by:

p (xt | x<t, I) = softmax [zΨ (xt | x<t, I) + α · (zψ1
(xt | x<t, I)− zψ0

(xt | x<t, I))] . (2)

A token xt is then sampled from this adjusted distribution and appended to the input sequence x<t,
forming x≤t, used as the next-step input for all three models — Ψ, ψ0, and ψ1 — in the subsequent
decoding iteration. This feedback loop continues autoregressively until the end of the generation.

2.3 IMPLEMENTATION
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Figure 3: Comparison between PROXYTHINKER
implementation and previous methods.

In practice, using multiple models inevitably
introduces computational overhead. Prior
decoding-time algorithms have naively em-
ployed coarse-grained pipeline parallelism,
where the execution of different models is se-
quential and synchronous. For instance, the
expert model must wait for the base model to
complete all pipeline stages before proceeding.
This leads to a significant amount of idle time in
the multi-GPU pipeline, as shown in Figure 3.

We address this by first implementing collab-
orative decoding with multiple models in the
vLLM framework (Kwon et al., 2023), which
enables us to leverage modern inference fea-
tures such as KV cache, tensor parallelism, and
continuous batching, corresponding to the Ours
implementation in Figure 3. Furthermore, we
find that small models typically exhibit marginal returns in speedup as the tensor parallel size in-
creases (Wu et al., 2025). Therefore, we apply tensor parallelism to the large base model and asyn-
chronously run the small expert and amateur models in separate tensor-parallel process groups to
further increase throughput. Logits from different models are synchronized via collective communi-
cation right before sampling. This optimized scheduling of multiple language models, as indicated
in Optimized in Figure 3, minimizes GPU idle time and significantly reduces inference time, as
shown in §4.4.

3 EXPERIMENTS

In this section, we first introduce the evaluation setup, including models and benchmarks used and
evaluation strategies. We next report the effectiveness of PROXYTHINKER from these perspectives:
mathematical and multi-disciplinary reasoning.

3.1 EXPERIMENT SETUP

Benchmarks and Evaluation Setup. To quantitatively assess PROXYTHINKER’s reasoning ca-
pabilities across various domains, we evaluate it on several established benchmark datasets. For
math-related reasoning, we use MathVerse (Zhang et al., 2024), MathVista (Lu et al., 2024), and
MathVision (Wang et al., 2024a). Specifically, we adopt the testmini splits of MathVerse and
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Table 1: Performance (Accuracy %) on mathematical and multi-disciplinary reasoning benchmarks.
α is set to 0.5 for PROXYTHINKER methods. R1-Bench stands for R1-Onevision-Bench. Overall
best PROXYTHINKER method is marked with light blue. Ceiling performance of full-scale RFT
expert is highlighted with gray. ∆ shows the average relative improvement in % compared to the
base model. indicates an RFT reasoning expert, and denotes a PROXYTHINKER variant.

Model Expert Math
Vista

Math
Verse

Math
Vision

MMMU
Pro

R1-
Bench ∆

Qwen2.5-VL-7B – 68.2 46.3 25.1 36.9† 32.1 –
OpenVLThinker-7B – 70.2 47.9 25.3 39.4∗ 32.9∗ –
ThinkLite-VL-7B – 75.1 50.7 32.9 41.1∗ 39.0∗ –
VL-Rethinker-7B – 74.9 54.2 32.3 41.7 47.2∗ –

Qwen2.5-VL-32B – 74.7 53.8∗ 38.4 49.5† 49.4∗ 0.0
Qwen2.5-VL-32B OpenVLThinker-7B 77.4 (+2.7) 53.8 (0.0) 40.8 (+2.4) 51.8 (+2.3) 53.0 (+3.6) +2.2
Qwen2.5-VL-32B ThinkLite-VL-7B 77.6 (+2.9) 56.0 (+2.2) 38.8 (+0.4) 51.7 (+2.2) 49.7 (+0.3) +1.6
Qwen2.5-VL-32B VL-Rethinker-7B 78.1 (+3.4) 55.3 (+1.5) 39.2 (+0.8) 52.8 (+3.3) 52.5 (+3.1) +2.4

VL-Rethinker-32B – 78.8 56.9 40.5 50.6 50.8∗ +2.4

Qwen2.5-VL-72B – 74.8 55.1∗ 38.1 51.6† 50.4 0.0
Qwen2.5-VL-72B OpenVLThinker-7B 77.8 (+3.0) 56.4 (+1.3) 36.2 (-1.9) 52.4 (+0.8) 50.4 (0.0) +0.6
Qwen2.5-VL-72B ThinkLite-VL-7B 78.7 (+3.9) 57.2 (+2.1) 40.4 (+2.3) 51.7 (+0.1) 50.2 (-0.2) +1.6
Qwen2.5-VL-72B VL-Rethinker-7B 78.1 (+3.3) 58.6 (+3.5) 39.5 (+1.4) 53.1 (+1.5) 54.4 (+4.0) +2.7

VL-Rethinker-72B – 80.3 61.7 43.9 55.9 57.9∗ +5.9
†

indicates results from Wang et al. (2025a) where we adopt the same evaluation protocol.
∗

indicates reproduced results by us because the original authors did not conduct such an evaluation.

MathVista, and the full test split of MathVision. For assessing multi-disciplinary understanding
and reasoning, we employ the MMMU-Pro (Yue et al., 2025a) overall split and the R1-Onevision-
Bench (Yang et al., 2025) dataset. Following prior work, we use VLMEvalKit (Duan et al., 2024)
to perform the extract-and-score procedure on MathVerse with gpt-4o-mini as a judge. For the
remaining datasets, we apply exact matching and a rule-based grading function from their official
benchmark toolkits to extract answers from model outputs and compare them to the ground truth.
Unless stated otherwise, we report Pass@1 accuracy across all benchmarks using greedy decod-
ing following previous works (Wang et al., 2025a; Deng et al., 2025) and set the hyper-parameter
α = 0.5.

Model Selection. PROXYTHINKER employs three distinct types of models, each serving a unique
role: a large Base model to be steered, a compact reasoning Expert model, and a compact Amateur
model. We use Qwen2.5-VL-32B-Instruct and Qwen2.5-VL-72B-Instruct (Bai et al., 2025) as Base
Models, while Qwen2.5-VL-7B-Instruct serves as the Amateur Model across all RFT Experts. In
later sections, PROXYTHINKER-32B and PROXYTHINKER-72B correspond to our methods using
32B and 72B base models, respectively. Based on differing training paradigms and data selec-
tion strategies, we include these public models as the compact reasoning experts: OpenVLThinker-
7B (Deng et al., 2025), ThinkLite-VL-7B (Wang et al., 2025b) and VL-Rethinker-7B (Wang et al.,
2025a). We refer to Appendix A.1 for details of the used benchmarks and reasoning expert models.

3.2 MAIN RESULTS ON MATHEMATICAL AND MULTI-DISCIPLINARY REASONING

To further investigate the generality and scalability of PROXYTHINKER, we examine whether similar
effects can be observed on widely used mathematical and multi-disciplinary reasoning tasks using
32B and 72B models with different types of RFT reasoning experts. The prompt template for each
reasoning expert is attached in Appendix A.3. We report these results in Table 1. To explore the
upper bound of our method, we also use two larger models, VL-Rethinker-32B and VL-Rethinker-
72B, which are directly trained via RFT, as ceiling performance references.
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Figure 4: Hyper-parameter search results of α on MathVerse and MathVision benchmarks with
VL-Rethinker-7B as the expert model. Red dotted lines provide the ceiling performance of VL-
Rethinker-32B, a full-scale RFT reasoning expert.

PROXYTHINKER provides consistent improvements on nearly all benchmarks. With the ex-
ception of the MMMU validation set, we observe consistent performance improvements across all
benchmark tasks and model-expert combinations. For example, using OpenVLThinker-7B as an
expert improves Qwen2.5-VL-32B-Instruct’s MathVision test accuracy from 38.4% to 40.8%, sur-
passing even the fully RFT-trained VL-Rethinker-32B (40.5%). This improvement is unlikely due to
knowledge transfer, as OpenVLThinker-7B achieves only 25.3% on MathVision. Rather, it suggests
that the reasoning patterns of the small expert have been effectively extracted and applied to enhance
the large base model’s reasoning abilities that otherwise would require full-scale RFT to activate. We
discuss the domain-agnostic transferability of PROXYTHINKER in Appendix B.1, providing strong
evidence that PROXYTHINKER enables the transfer of a general visual reasoning prior.

Quality of RFT expert generally determines the degree of PROXYTHINKER improvement.
Consistent with our intuition, a stronger RFT expert tends to provide more structured reasoning
paths, enhancing the base model’s reasoning abilities more effectively. VL-Rethinker-7B, the most
competitive of the experts, achieves the best overall results with both Qwen2.5-VL-32B and 72B.
To gain deeper insights into the role of RFT experts, we discuss in Appendix B.2 on how underper-
forming experts may introduce negative effects on PROXYTHINKER.

PROXYTHINKER maintains competitive scalability across model sizes. At the 32B scale, we
observe that PROXYTHINKER achieves a similar average relative improvement to full RFT models
at the 32B scale. This indicates that ProxyThinker can extract and transfer structured reasoning
behaviors almost as effectively as direct RFT training at this size. Notably, PROXYTHINKER can
even surpass the RFT ceiling on certain tasks. At the 72B scale, ProxyThinker continues to yield
consistent gains across benchmarks – smaller in magnitude but still positive – demonstrating that
the approach remains effective even as the base model grows.

4 ANALYSIS

In this section, we further analyze PROXYTHINKER both qualitatively and quantitatively, with a
focus on hyperparameter sensitivity, the type of RFT expert, the emergence of transferred reasoning
behaviors, and the computational overhead of multiple model inference.

4.1 HYPERPARAMETER SENSITIVITY

The only hyperparameter in PROXYTHINKER, α in Equation 2, regulates the scaling of the log-
its difference applied to the base model’s logits, where a smaller α results in the logits closer to
the original base model. To validate the robustness, we run experiments with Qwen2.5-VL-32B-
Instruct with VL-Rethinker-7B as the expert model, across MathVision and MathVerse benchmarks.
We show a sweep of results on α ∈ [0.1, 1.5] in increments of 0.1 in Figure 4. To demonstrate
the advantage of PROXYTHINKER design, we additionally include a modified contrastive decoding
baseline shown as the blue curve in the sweep, which relies on the base model distribution zbase,
expert distribution zexpert and performs decoding by sampling from zbase + α · zexpert.
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Figure 5: Pass@k curve of base model, VL-Rethinker-7B RFT expert and PROXYTHINKER.

We found PROXYTHINKER to be highly robust to α, as values between 0.1 to 1.0 could yield no-
ticeable improvements over the base model (α = 0.0). Specifically, we highlight that the results
reported in Table 1 with the default setting of α = 0.5 do not reflect the best performance. For
VL-Rethinker-7B, the best α yields 40.3% on MathVision and 57.2% on MathVerse, surpassing the
39.2% and 55.1% reported in Table 1, and even reaching the ceiling performance of VL-Rethinker-
32B, a full-scale, large reasoning expert. In addition, we observe that as α approaches 1.5, the perfor-
mance gradually converges toward that of the small expert, which aligns with our intuition: a larger
α amplifies the influence of the logits delta, resulting in the decoding process being increasingly
dominated by the small reasoning expert. Finally, the performance gap between PROXYTHINKER
and contrastive decoding indicates that the Amateur model in PROXYTHINKER is a critical compo-
nent. It plays a key role in calibrating the logits distribution introduced by the RFT-trained small
visual reasoning expert and effectively leveraging the capabilities of the large base model.

4.2 MEASURE THE REASONING CAPACITY BOUNDARY BY PASS@k

Recent studies (Yue et al., 2025b) argue that single-pass greedy decoding reflects only average-
case performance of a model, and advocate for pass@k (Chen et al., 2021) as a better measure of
reasoning capacity boundary. These studies found that while RFT improves sampling efficiency, it
lowers the reasoning boundary: as k increases, RFT models produce less diverse outputs, leading to
lower pass@k scores compared to base models.

To investigate whether PROXYTHINKER inherits this phenomenon, we first compare the pass@k
curves of Qwen2.5-VL-7B-Instruct (base model) and VL-Rethinker-7B (reasoning expert) on a
MathVision subset on the left of Figure 5 with evaluation details in Appendix A.2. Echoing
prior findings, VL-Rethinker-7B outperforms the base model at k ≤ 4 in pass@k but is sup-
pressed as k grows, indicating a reduced reasoning boundary brought by RFT training. We then
compared Qwen2.5-VL-32B-Instruct (base model), VL-Rethinker-32B (full-scale RFT expert), and
ProxyThinker-32B w/ VL-Rethinker-7B shown on the right of Figure 5. ProxyThinker outperforms
both at k = 1, though the base model dominates as k increases. In terms of curve trends, the Proxy-
Thinker curve consistently lies between those of the base model and the reasoning expert for k ≥ 2,
striking a balance by transferring the efficient sampling behavior of the expert while retaining the
diverse exploration capability of the base model.

4.3 EMERGING REASONING BEHAVIORS

Table 2: Reasoning pattern statistics on MathVision of
Base, Expert, and PROXYTHINKER with relative gains
over Base. Base model is Qwen2.5-VL-32B and Ex-
pert model is OpenVLThinker-7B.

Model Backtracking Verification Subgoal

Base 203 1206 2980
Expert 805 (+296.6%) 1585 (+31.4%) 2427 (-18.5%)
ProxyThinker 482 (+137.4%) 1736 (+43.9%) 2998 (+0.6%)

In addition to the example in Figure 2,
we present a qualitative MathVision test
case in Figure 6, showcasing the reason-
ing process of three models to examine
the emerging reasoning abilities of PROX-
YTHINKER. We find that the large base
model makes a commonsense error and
fails to reach the correct answer, while the
small reasoning expert remains confined
to shallow reasoning patterns. In contrast,
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PROXYTHINKER successfully combines the strengths of both: it inherits the explicit “thinking pro-
cess” tags (<think>) from the small reasoning expert, while adopting the step-by-step reasoning
style and even providing an interpretable, visualized solution.

To quantitatively analyze emerging reasoning behaviors, we report statistics on 3,040 MathVision
samples in Table 2 on different reasoning patterns, such as backtracking, verification and sub-goal
branching. Motivated by Gandhi et al. (2025), we employ gpt-4o-mini as a judge to classify rea-
soning trajectories from the large base model, the small reasoning expert, and PROXYTHINKER it-
self on MathVision 3040 samples. We observe that while large base models exhibit subgoal-oriented
reasoning patterns, their performance on backtracking and verification remains limited. In contrast,
small visual reasoners trained with RFT show significant improvements in these aspects – a strength
that ProxyThinker successfully inherits. Notably, ProxyThinker also retains the subgoal planning
ability, which appears to diminish in small RFT models.

4.4 INFERENCE OVERHEAD

Table 3: Inference Statistics of PROXYTHINKER.

Method Duration (s) Acc (%)

PROXYTHINKER

Huggingface 19133 40.78
Ours Implementation 578 41.44
Optimized TP 501 41.44

Full-scale RFT expert

VL-Rethinker-32B 451 41.77

Running multiple language models at in-
ference time inevitably incurs overhead,
which has been particularly problematic
in previous decoding-time algorithms be-
cause of their naive implementation men-
tioned in §2.2. To investigate the effi-
ciency of PROXYTHINKER, Table 3 re-
ports runtime and accuracy on MathVi-
sion testmini split using Qwen2.5-VL-
32B-Instruct as the base model and VL-
Rethinker-7B as the expert model under
several implementation variants. We also
ran the full-scale reasoning RFT expert with vLLM as a reference. All evaluations were con-
ducted on 8 A100 PCIe 40GB GPUs. The results show that our implementation delivers close to
33× speedup over the Huggingface implementation, which was adopted by all previous decoding-
steering methods. With the optimized tensor parallel group design, the runtime duration could be
cut by another 13%, yielding a total speedup of 38×, which closely matches the duration of di-
rectly running a 32B RFT expert. We discuss the computational overhead in depth in Appendix C
to demonstrate PROXYTHINKER is a practical solution in terms of memory and compute.

5 RELATED WORK

Large Vision-Language Models (LVLMs). Large Vision-Language Models (LVLMs) (Wang
et al., 2024b; Bai et al., 2025; Chen et al., 2024a; Zhu et al., 2024; Li et al., 2023a; Ye et al., 2023;
Awadalla et al., 2023; Chen et al., 2024b) have demonstrated significant capabilities in multimodal
understanding through a series of architectural advances. The Qwen2-VL (Wang et al., 2024b)
and its extension introduced efficient visual tokenization through dynamic resolution mechanisms.
Despite these advances, current LVLMs continue to struggle with complex reasoning tasks requiring
spatial understanding and mathematical reasoning, highlighting the need for novel approaches to
enhance reasoning capabilities without increasing computational demands.

Improving Visual Reasoning with Reinforcement Learning. Reinforcement learning has
become an approach to enhance reasoning capabilities in LLMs and VLMs. OpenVLThinker-
7B (Deng et al., 2025) demonstrates how reasoning capabilities can be integrated into LVLMs
through an iterative self-improvement process combining supervised fine-tuning and reinforcement
learning. The R1-style frameworks (Wang et al., 2025a;b; Huang et al., 2025; Zhang et al., 2025;
Shen et al., 2025; Li et al., 2025; Wei et al., 2025b) apply Group Relative Policy Optimization
(GRPO) to the visual domain, demonstrating that slow-thinking reasoning abilities can be transferred
to multimodal contexts. Variants like Visual-RFTs (Liu et al., 2025b) design task-specific reward
and VisualThinker-R1-Zero (Zhou et al., 2025) explore applying the ”Aha moment” of DeepSeek-
R1 (Guo et al., 2025) to visual reasoning without supervised fine-tuning. While these approaches
yield notable improvements in visual reasoning benchmarks, they require substantial computational
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MathVision Test Set Sample #10

Four people can be seated at a square table. How many people at most could be seated if we pushed four tables of this kind 
together in one row? <image1> 

<image1>

To solve the problem, let's analyze the seating arrangement step by step. 
… 
### Step 4: Determine the number of usable sides 
- When four tables are joined in a row, there are 3 inner sides that are shared and thus not usable for seating. 
- The total number of usable sides is therefore $ 16 - 3 = 13 $. 
… 
### Final Answer: \boxed{13} 

<think> 
Okay, so I need to figure out how many people can be seated if 
four square tables are pushed together in a row. Each table can 
seat four people. So, if I have four tables, I just need to multiply 
the number of tables by the number of people each can seat. 
That would be 4 tables times 4 people per table. 
</think> 
…the total number of people that can be seated is 4 * 4 = 16. 

<answer>16</answer>

<think>… 
#### Step 2: Consider the Arrangement of Four Tables in a Row 
When four square tables are pushed together in a row, they form 
a longer rectangular table. The arrangement looks like this: 
+----+----+----+----+ 
|       |       |      |      | 
+----+----+----+----+ 
… 
### Final Answer: 
The maximum number of people that can be seated when four 
square tables are pushed together in a row is: \boxed{10}.

Reasoning from Qwen2.5-VL-32B-Instruct

Reasoning from OpenVLThinker-7B Reasoning from ProxyThinker-32B

Figure 6: Case study presenting the reasoning process of large base model (Qwen2.5-VL-32B-
Instruct), small reasoning expert (OpenVLThinker-7B), and PROXYTHINKER. Bold in the reasoning
process highlights typical reasoning patterns. Red bold denotes wrong intermediate reasoning steps
that ultimately lead to a wrong prediction, while green bold indicates correct reasoning steps.

resources, making it harder to scale. In contrast, PROXYTHINKER is a test-time decoding method
that requires no further training and adds minimal computation, allowing larger VLMs to gain rea-
soning skills efficiently.

Decoding-time Algorithms for Language Model. Decoding-time algorithms steer LLMs at in-
ference without expensive retraining. Contrastive decoding method (O’Brien & Lewis, 2023) has
been applied to maximize the differences between the likelihoods of expert and amateur models to
improve reasoning. CAL (Xiao et al., 2024) and VCD (Leng et al., 2024) extend this approach to
multimodal settings by subtracting logits from original and perturbed images. DoLa (Chuang et al.,
2024) targets the pervasive issue of LLM hallucinations – generating text not supported by factual
knowledge. It obtains the next-token distribution by contrasting the later layers of the model against
its earlier layers, essentially subtracting or down-weighting the contributions of lower-layer repre-
sentations. DeRa (Liu et al., 2024b) and MOD (Shi et al., 2024) approximate geometric mixtures
of aligned and base models or linearly combine expert predictions across objectives. In the line of
these decoding-time methods, PROXYTHINKER leverages the difference between last-token logits
of a reward-aligned RFT expert and a non-RFT base model, eliciting the reasoning ability learned
during RFT with no additional training. A similar training-free technique was proposed recently to
improve visual reasoning through the lens of model merging (Chen et al., 2025b).

6 CONCLUSION

We present PROXYTHINKER, a simple yet effective decoding-time algorithm for transferring visual
reasoning capabilities from small visual reasoning models. PROXYTHINKER leverages the token-
level logits difference between an RFT expert and an amateur model to effectively steer a large
model’s generation toward “slow-thinking”, multi-step reasoning behaviors. Through extensive ex-
periments on vision-centric and multimodal reasoning tasks, we demonstrate that PROXYTHINKER
can consistently enhance performance across model sizes, including substantial improvements on
spatial, mathematical, and multi-disciplinary reasoning benchmarks. We believe PROXYTHINKER
provides a promising direction for efficient reasoning transfer in large vision-language models and
offers insights into the understanding of how RFT influences model behavior.

9
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ETHICS STATEMENT

This work studies a decoding-time method that steers large vision-language models using the logits
difference from small visual reasoners. Because decoding-time steering can alter model behavior,
there is a risk of reinforcing or amplifying biases present in either the base vision-language model
or the RFT steering models. This may result in unfair treatment of certain demographic groups,
marginalized communities, or sensitive contexts. We therefore request users to carefully consider
the potential risks when deploying PROXYTHINKER.

REPRODUCIBILITY STATEMENT

Experimental setups, including benchmarks, evaluation protocols, and model roles (Base / Expert /
Amateur), are detailed in §3.1. Main results across mathematical and multi-disciplinary reasoning
appear in Table 1 with analysis in §3.2, while efficiency considerations and multi-model scheduling
are depicted in Figure 3 and summarized in Table 3. Additional implementation specifics, bench-
mark/model descriptions, and prompts are provided in Appendix A.1 and A.3. Pass@k evaluation
details are in Appendix A.2. An anonymized repository with inference scripts, evaluation harnesses,
configuration files, and implementation is included in the abstract to reproduce Tables 1, 3, and
Figures 1-5.
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A IMPLEMENTATION DETAILS

General Conversation Template

Instruction Prompt for ThinkLite-VL

<|im_start|>system 
You are a helpful assistant.<|im_end|> 
<|im_start|>user<|vision_start|><|image_pad|><|vision_end|> 
{query_question} 
{instruction_prompt} <|im_end|> 
<|im_start|>assistant

You FIRST think about the reasoning process as an internal monologue and then 
provide the final answer. The reasoning process MUST BE enclosed within <think> </
think> tags. The final answer MUST BE put in \boxed{}.

Instruction Prompt for OpenVLThinker

Your final answer MUST BE put between <answer> </answer>.

Instruction Prompt for VL-Rethinker

Please reason step by step, and put your final answer within \boxed{}.

Figure 7: Prompt templates of different RFT experts in §3.2.

A.1 INTRODUCTION FOR BENCHMARKS AND REASONING EXPERT MODELS

To rigorously evaluate multimodal reasoning, we adopt several recent benchmark datasets designed
to probe different dimensions of model understanding.

MathVerse (Zhang et al., 2024) contains 3,940 samples (testmini split) and tests a model’s ability to
interpret diagrams and solve multi-subject visual math problems presented in varying multimodal
formats.

MathVista (Lu et al., 2024) provides 1,000 examples (testmini split) of visual mathematical reason-
ing tasks drawn from real-world diagrams, charts, and images, with both open-ended and multiple-
choice formats.

MathVision (Wang et al., 2024a) includes 3,040 visual math problems across 16 mathematical dis-
ciplines, sourced from real competition problems and annotated at five distinct difficulty levels.

MMMU (Yue et al., 2024) supplies a validation split of 900 samples covering a broad range of
college-level disciplines, designed to assess deliberate, multi-disciplinary multimodal understand-
ing.

MMMU-Pro (Yue et al., 2025a) comprises 5,190 items across a Standard setting (4- and 10-option
MC) and a Vision-only setting where questions are embedded directly in images, designed to stress
integrated visual–textual understanding across diverse academic subjects by filtering out text-only-
solvable items and augmenting candidate options.

EMMA (Hao et al., 2025) offers 2,788 multimodal problems spanning math, physics, chemistry,
and coding, targeting organic cross-modal reasoning that cannot be solved by treating modalities
independently.
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MathVerse Answer Extraction Prompt

I am providing you a response from a model to a math problem, termed 'Model 
Response'. You should extract the answer from the response as 'Extracted Answer'. 
Directly output the extracted answer with no explanation.\n\n

MathVerse Answer Score Prompt

Below are two answers to a math question. Question is [Question], [Standard 
Answer] is the standard answer to the question, and [Model_answer] is the answer 
extracted from a model's output to this question.  Determine whether these two 
answers are consistent. 
Please note that only when the [Model_answer] completely matches the [Standard 
Answer] means they are consistent. For non-multiple-choice questions, if the 
meaning is expressed in the same way, it is also considered consistent, for example, 
0.5m and 50cm. 
If they are consistent, Judement is 1; if they are different, Judement is 0.

Figure 8: MathVerse extraction and scoring prompt for gpt-4o-mini as a judge.

R1-Onevision-Bench (Yang et al., 2025) consists of 942 samples organized into five academic do-
mains and five difficulty levels, offering a structured framework to benchmark model performance
across educational subject areas.

In addition, we choose the following public models as reasoning experts based on differing training
paradigms and data selection strategies:

• OpenVLThinker-7B (Deng et al., 2025): Enhances reasoning through iterative alternation be-
tween SFT and RFT stages using progressively challenging questions.

• ThinkLite-VL-7B (Wang et al., 2025b): Improves training efficiency via Monte Carlo Tree Search
(MCTS)-guided data selection to achieve data-efficient RFT paradigm.

• VL-Rethinker-7B (Wang et al., 2025a): Addresses the vanishing advantage issue through Selec-
tive Sample Replay and enforces self-reflection using the Forced Rethinking technique.

A.2 PASS@k EVALUATION DETAILS

For the pass@k evaluation in §4.2, we use a temperature of 0.6 and a top-p value of 0.95, allowing
a maximum generation of 4,096 tokens during generation. To prevent the model from randomly
guessing the multiple-choice answer through repeated sampling, we filtered the MathVision dataset
to a subset where no multiple-choice problems are included, resulting in 114 samples.

We adopt an extended version of the pass@k metric originally proposed for code generation by
(Chen et al., 2021). Given a dataset D and a particular problem xi ∈ D, we generate n indepen-
dent outputs from the model, where n ≥ k, and record ci as the number of outputs that pass the
mathematical checker. The pass@k score is then estimated using the following unbiased formula:

pass@k = Exi∼D

[
1−

(
n−ci
k

)(
n
k

) ]
(3)

This estimator provides a low-variance measurement of the proportion of problems solved correctly
within k attempts, applicable for all k ≤ n.
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Some controversial groups that may be mislabelled as <image 1> include:

MMMU Validation Set Sample #898

<image 1>

To determine the correct answer, let's 
analyze the image and the options 
provided: 

1. Image Analysis: 
   - The image shows a group of people 
sitting in a circle, dressed in white 
clothing, which is often associated with 
certain spiritual or religious groups. 

2. Option Analysis: 
   - A. Scientology and the Hare Krishna: 
… 
     - The image could be consistent with 
the Hare Krishna movement, as they often 
gather in circles for kirtan (chanting) and 
meditation. 
… 
Given the analysis, the group in the 
image is most consistent with the Hare 
Krishna movement, which is often 
mislabelled or associated with 
controversial groups. 

\boxed{A}

To determine the correct answer, let's 
analyze the image and the options 
provided: 

1. Image Analysis: The image shows a 
group of people gathered in a circle, with 
one individual standing in the center, 
possibly leading a meditation or spiritual 
practice. The attire and the setting 
suggest a spiritual or communal 
gathering, which is characteristic of 
certain New Age or spiritual movements. 

2. Option Analysis: 
   - A. Scientology and the Hare Krishna:  
…Neither fits the description of the 
image well. 
   - B. the Peoples Temple and Heavens 
Gate:  
…This description aligns more closely 
with the image. 
… 
Therefore, the correct answer is 
\boxed{B}.

To determine the correct answer, let's 
analyze the image and the options 
provided: 

1. Image Analysis: 
   - The image shows a group of people 
sitting in a circle, dressed in white, with 
one person standing in the center. This 
setup is reminiscent of a spiritual or 
religious gathering. 

2. Option Analysis: 
   - A. Scientology and the Hare Krishna: 
… However, they are not typically 
associated with… 
   - B. the Peoples Temple and Heaven's 
Gate: …The image could be associated 
with such groups due to the organized 
and somewhat cult-like appearance… 
… 
Given the analysis, the group in the 
image is most closely associated with the 
controversial groups known for their cult-
like behavior and tragic endings. 
\boxed{B}

Qwen2.5-VL-32B-Instruct VL-Rethinker-7B ProxyThinker-32B

Figure 9: A knowledge-intensive test case from the MMMU Val set with reasoning trajectories from
Qwen2.5-VL-32B-Instruct, VL-Rethinker-7B and PROXYTHINKER-32B.

A.3 PROMPT TEMPLATES

We provide the prompt templates of different reasoning experts in Figure 7. For MathVerse evalua-
tion, we employ the prompt template in Figure 8 to first extract the answer and then score the answer
using gpt-4o-mini as a judge, following VLMEvalKit (Duan et al., 2024).

A.4 FAILURE CASE ANALYSIS

Although PROXYTHINKER achieves consistent improvements across multiple reasoning-intensive
datasets, we observe that it struggles to deliver statistically significant gains on certain knowledge-
intensive benchmarks, such as MMMU (Yue et al., 2024) – a limitation also present in full-scale RFT
experts. To illustrate this, we present a test case from the MMMU Val set in Figure 9, comparing
the reasoning processes of the large base model (Qwen2.5-VL-32B-Instruct), the small reasoning
expert (VL-Rethinker-7B), and PROXYTHINKER. The results show that the small reasoning expert
fails to accurately validate the knowledge content of answer choices, likely due to its limited model
capacity. This type of knowledge verification is particularly challenging to learn via reinforcement
learning with verifiable rewards. As a result, ProxyThinker inherits this limitation as well.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B ADDITIONAL ANALYSIS

B.1 DOMAIN-AGNOSTIC REASONING ACTIVATION

Table 4: Performance (Accuracy %) on EMMA and R1-Bench benchmarks. Best scores are in bold.

Model Expert EMMA
Overall

R1-Bench

Overall Math Physics Biology Chemistry

Qwen2.5-VL-7B – 21.5 32.1 31.2 31.3 52.2 43.8
OpenVLThinker-7B – 24.9 32.9 29.4 34.2 50.0 35.2
Qwen2.5-VL-32B – 31.1 49.4 41.9 51.1 61.9 61.0
Qwen2.5-VL-32B OpenVLThinker-7B 35.3 53.0 46.2 55.4 69.4 62.9

To further substantiate the claim that PROXYTHINKER reasoning transferability is domain-agnostic,
we provide a detailed breakdown of its performance on EMMA and R1-OneVision-Bench (R1-
Bench). The latter one covers reasoning-intensive tasks across four distinct disciplines: Math,
Physics, Biology, and Chemistry. Table 4 reports the per-domain accuracies for the base model,
the expert model and PROXYTHINKER.

OpenVLThinker-7B, despite being a relatively under-aligned visual reasoner, exhibits only marginal
gains over the smaller Qwen2.5-VL-7B baseline, with improvements only in the Physics subject.
However, when PROXYTHINKER is applied, we observe consistent improvements across every do-
main. This validates that ProxyThinker’s transfer ability is not restricted to a specific subject but
instead activates domain-agnostic reasoning capabilities. Such findings provide concrete evidence
that PROXYTHINKER induces structural shifts in the output distribution of experts, enabling system-
atic cross-domain gains.

B.2 QUALITY OF RFT EXPERT

Table 5: Impact of expert quality on PROXYTHINKER. Performance (Accuracy %) across three
mathematical reasoning benchmarks.

Model Expert Amateur MathVista MathVerse MathVision

Qwen2.5-VL-32B – – 74.7 53.8 38.4
VL-Rethinker-7B – – 74.9 54.2 32.3
Qwen2.5-VL-32B VL-Rethinker-7B Qwen2.5-VL-7B 78.1 55.1 39.2
VLAA-Thinker-3B – – 61.0 36.4 24.4
Qwen2.5-VL-32B VLAA-Thinker-3B Qwen2.5-VL-3B 51.5 49.2 37.8

To gain deeper insights into the role of RFT experts, we further examine how under-performing
experts may introduce negative effects on PROXYTHINKER. In our main experiments, we primarily
choose 32B/72B models as the large base and 7B models as reasoning experts, since 7B is gener-
ally the smallest scale capable of supporting effective RFT-based visual reasoning. Smaller models
tend to struggle with capturing consistent reasoning patterns, leading to suboptimal transfer in the
PROXYTHINKER setting.

Table 5 reports results with VLAA-Thinker-3B (Chen et al., 2025a), an early visual reasoning expert.
Using VLAA-Thinker-3B as an expert not only fails to improve performance but also significantly
degrades results on MathVista (from 61.0 to 51.5), yielding performance even worse than the 3B
expert alone. This demonstrates that the quality and scale of the RFT expert are crucial: a poorly
aligned or undersized expert can misguide the base model and introduce negative transfer effects.

C COMPUTATIONAL OVERHEAD ANALYSIS

Setup and assumptions. We analyze the computational overhead of PROXYTHINKER by com-
paring the training FLOPs of small vs. large visual reasoners and the additional inference FLOPs
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introduced by the collaborative decoding with Amateur and Expert models. Following the reports
of VL-Rethinker (Wang et al., 2025a), training VL-Rethinker-7B uses 2 × 8 A800 (80GB) GPUs
for 8 hours, while VL-Rethinker-32B uses 10× 8 A800 (80GB) GPUs for 60 hours. We assume the
peak bf16 throughput of an A800 (80GB) GPU to be 312 TFLOPS and a conservative training-time
FLOPs utilization of 0.5 to account for communication and system overheads.

Training FLOPs. Under the above assumptions, the training FLOPs are

7B: 16 (#GPUs)× 28,800 s × 3.12× 1014 FLOPS × 0.5 = 7.19× 1019 FLOPs,

32B: 80 (#GPUs)× 216,000 s × 3.12× 1014 FLOPS × 0.5 = 2.70× 1021 FLOPs.

Hence, training a 32B reasoner costs approximately

2.70× 1021 − 7.19× 1019 ≈ 2.62× 1021 FLOPs

more than training a 7B reasoner.

Inference FLOPs for collaborative decoding. According to scaling-law estimates (Kaplan et al.,
2020), the forward pass of a Transformer requires roughly 2× (number of parameters) FLOPs per
generated token.1 Therefore, the per-token decoding cost of two 7B models (Amateur and Expert)
is

2× 2× 7× 109 = 2.8× 1010 FLOPs/token.

Let ∆train ≈ 2.62× 1021 be the extra training FLOPs of 32B over 7B. The number of tokens T after
which the accumulated collaborative-decoding overhead matches ∆train satisfies

T ≈ ∆train

2.8× 1010
≈ 9.37× 1010 tokens.

Thus, in terms of FLOPs, the additional inference overhead of PROXYTHINKER-32B does not out-
weigh the training cost until roughly 9.37 × 1010 generated tokens, i.e. around 93 billion tokens.
Importantly, PROXYTHINKER-32B and VL-Rethinker-32B achieve comparable accuracy, while the
former avoids the full training budget of a 32B reasoner.

Latency in practice. FLOPs do not map one-to-one to wall-clock latency. With our cus-
tomized vLLM-based implementation for multi-model collaborative decoding, Table 3 shows that
ProxyThinker-32B incurs only an ∼ 11% latency overhead on the same hardware (from 451 s to
501 s), indicating that the practical runtime penalty is small relative to the savings from avoiding
32B training.

Memory overhead. As a multi-model collaborative decoding approach, PROXYTHINKER entails
additional memory to host multiple model weights. Using DeepSpeed (Rasley et al., 2020) Memory
Profiler, we measure the GPU memory required to load bfloat16 weights:

Model Size 7B 32B 72B ProxyThinker-32B ProxyThinker-72B

Memory ∆ (GiB) 15.31 64.44 138.86 95.14 (+47.6%) 169.48 (+22.0%)

The overhead introduced by PROXYTHINKER is approximately fixed in absolute terms, hence its
relative percentage decreases with the base model size (e.g., +22% at 72B). This is negligible com-
pared with the resources needed to fully train an RFT expert; e.g., EasyR1 (Zheng et al., 2025)
estimates that training a 32B RFT model with AMP requires at least 16 × 80GB GPUs (≈ 960GB
of device memory). Moreover, modern inference frameworks typically reserve most GPU memory
for KV caches, so the extra weight memory is less constraining in practice. Prior collaborative-
decoding or multi-model methods (e.g., contrastive decoding (Li et al., 2023b), ProxyTuning (Liu
et al., 2024a)) exhibit similar memory characteristics.

1We deliberately ignore the modest dependence on sequence length and note that modern KV cache designs
further reduce effective compute per token, so our estimate is conservative (i.e., an overestimate).
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Takeaways and limitations. PROXYTHINKER is an inference-time strategy that trades modest
multi-model decoding overhead for avoiding the substantial training cost of scaling a single rea-
soner. There must exist a tipping point where cumulative inference cost exceeds the avoided training
budget, and our conservative calculation places this far beyond typical academic inference volumes.
Additionally, the requirement of simultaneously hosting multiple models leads to a fixed memory
premium whose relative impact diminishes for larger base models. Finally, not all academic groups
can access clusters with 80 high-end GPUs. From a systems and economic perspective, PROXY-
THINKER offers a practical path to high reasoning quality with substantially lower upfront compute.

D LIMITATIONS

While PROXYTHINKER demonstrates strong empirical performance and practical scalability, several
limitations remain. First, our method relies on access to both an RFT expert and an amateur model
sharing the same vocabulary and preferably sharing the same model architecture. This requirement
may limit applicability in settings where high-quality RFT experts are unavailable or where model
architectures are not easily aligned. Existing cross-model alignment methods, such as CDM (Chen
et al., 2025c), might help mitigate this issue. In addition, our current experiments focus primarily
on visual reasoning benchmarks. The effectiveness of PROXYTHINKER in other domains, such as
natural language-only reasoning or real-world embodied tasks, remains to be thoroughly explored.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed large language models (LLMs) only for language refinement, such as correcting gram-
mar and enhancing clarity. The LLM was not involved in generating ideas, conducting analysis, or
contributing substantive content. All conceptual framing, methodological design, results, and inter-
pretations were carried out solely by the authors.
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