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Abstract

Large Language Models (LLMs) are effective001
at synthesizing knowledge but often lack ac-002
curacy in domain-specific tasks. Retrieval-003
Augmented Generation (RAG) systems, utiliz-004
ing user-provided data, can mitigate the issue005
and assist in article writing. However, such006
systems lack the capability to generate proper007
references. In this paper, we present LLM-Ref,008
a writing assistant tool that aids researchers009
in writing articles from multiple source docu-010
ments with enhanced reference synthesis and011
handling capabilities. Unlike traditional RAG012
systems, which rely on chunking and indexing,013
LLM-Ref retrieves and generates content at the014
paragraph level, allowing for seamless refer-015
ence extraction for the generated text. Further-016
more, the tool incorporates iterative response017
generation to accommodate extended contexts018
within language model constraints while ac-019
tively mitigating hallucinations. Compared to020
baseline RAG-based systems, our approach021
achieves a 1.62× to 6.26× increase in Ragas022
score, a comprehensive metric that provides023
a holistic view of a RAG system’s ability to024
produce accurate, relevant, and contextually025
appropriate responses.026

1 Introduction027

Scientific research is fundamental in enriching our028

knowledge base, and contributing to the betterment029

of human lives. Precisely written research articles030

play a vital role in conveying new findings and031

innovations to a wide audience, preventing mis-032

interpretations that might impede further develop-033

ments. Writing research papers presents a chal-034

lenge as it requires balancing technical complexity035

with readability while ensuring logical coherence.036

There exist writing assistant tools that utilize the037

latest advancements in natural language processing038

(NLP) to help researchers refine grammar and style,039

strengthen coherence, and ultimately contribute to040

high-quality, impactful articles.041

Large Language Models (LLMs) have signifi- 042

cantly advanced NLP applications by improving 043

language understanding, generation, and interac- 044

tion. While they excel in many NLP tasks, they re- 045

quire substantial computational resources and may 046

struggle with specialized tasks without domain- 047

specific knowledge. LLMs often produce inaccu- 048

rate responses or ‘hallucinations’ when handling 049

tasks beyond their training data. Developing an 050

effective writing assistant using LLMs requires 051

fine-tuning with domain-specific data from various 052

fields, a process that demands extensive computa- 053

tional resources and a diverse dataset, making it 054

costly to create a versatile and effective tool for 055

diverse writing challenges. 056

Retrieval-Augmented Generation (RAG) (Lewis 057

et al., 2021) systems have gained popularity as 058

a means to alleviate the challenges involving 059

LLMs in downstream tasks by incorporating user- 060

provided information. Domain specific and up-to- 061

date data integration enables language model to 062

generate more factually accurate responses (Gao 063

et al., 2024). RAGs preprocess external data in 064

chunks and often utilize the top-k chunks as con- 065

text for a particular query, which plays a crucial 066

role in output generation. In research articles, the 067

trade-off between chunk size and top-k context se- 068

lection often leads to the omission of important 069

nuanced information. Since the data is not chunked 070

in a structured manner, it hinders the retrieval of 071

citations present in the context. 072

In this paper, we present LLM-Ref, a writing 073

assistant tool that helps researchers with enhanced 074

reference extraction while writing articles based 075

on multiple source documents. To preserve the 076

citations in the context paragraphs, our writing 077

assistant tool preserves the hierarchical section- 078

subsection structure of source documents. Rather 079

than dividing texts into chunks and transforming 080

them into embeddings, our approach directly uti- 081

lizes the paragraphs from research articles to iden- 082
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tify information relevant to specific queries. To083

efficiently retrieve all the relevant information from084

the source documents, an LLM is utilized due to its085

superior performance in finding semantic relevance.086

Furthermore, iterative generation of output allows087

handling long context and accurate responses. Ef-088

ficient retrieval and preservation of hierarchical089

source information enable the listing of compre-090

hensive references, ensuring that users have access091

to detailed citation details. The proposed LLM-Ref092

can provide both primary references—the source093

documents—and secondary references, which are094

listed in the context paragraphs of the source doc-095

uments. To the best of our knowledge, no other096

similar work focuses on providing both primary097

and secondary references.098

Evaluation results show the superior perfor-099

mance of our tool over existing RAG-based sys-100

tems. The proposed LLM-Ref demonstrates signif-101

icant performance improvements over other RAG102

systems, achieving a 5.5× higher Context Rele-103

vancy compared to Basic RAG. Additionally, it104

delivers an impressive increase in the Ragas Score,105

outperforming the best alternative by around 2×.106

These results highlight that the proposed tool pro-107

vides more accurate, relevant, and contextually pre-108

cise outputs, enhancing the overall utility and re-109

liability of the writing assistance it offers. The110

contributions of this paper include:111

• We develop LLM-Ref, an advanced system112

that employs a hierarchical document process-113

ing approach, setting it apart from traditional114

RAGs while outperforming them.115

• A key innovation of LLM-Ref is its ability116

to generate both primary and secondary ref-117

erences, a functionality absent in traditional118

systems.119

• LLM-Ref’s generation mechanism adopts120

an iterative approach, effectively managing121

long contexts while minimizing hallucinations122

through source-context alignment.123

2 Background and Related Works124

Large Language Models (LLMs) like Chat-125

GPT (OpenAI, 2023; Brown et al., 2020) and126

LLaMa (Touvron et al., 2023) have propelled127

the landscape of natural language processing128

(NLP) (Bubeck et al., 2023; Hendrycks et al., 2021;129

Srivastava et al., 2023), leveraging vast amounts130

of data to understand, generate, and interact with131

human language in a deeply nuanced and contex- 132

tually aware manner. However, this remarkable 133

performance of LLMs incurs huge computational 134

costs to train the several billions of parameters 135

of the model on enormous amounts of data (Kad- 136

dour et al., 2023). Moreover, unless fine-tuned 137

for domain-specific downstream tasks, the perfor- 138

mance of LLMs degrades notably (Kandpal et al., 139

2023; Gao et al., 2024). Being transformer-based 140

models (Vaswani et al., 2023), LLMs have restric- 141

tions on how much input context they can utilize 142

for response generation which affects the quality 143

of the output. Conversely, LLMs with long con- 144

text lengths fail to relate the content in the middle. 145

Compounding the challenges, LLMs exhibit ‘hallu- 146

cinations’ when tasks require up-to-date informa- 147

tion that extends beyond their training data (Zhang 148

et al., 2023; Kandpal et al., 2023; Gao et al., 2024). 149

These drawbacks often complicate developing cus- 150

tom downstream applications with LLMs. 151

Retrieval-Augmented Generation (RAG) tack- 152

les the problem of “hallucinations” by pulling in 153

real facts from an external knowledge base as it 154

writes (Lewis et al., 2021). First, RAG builds an 155

index—cleaning and tokenizing text to make it 156

searchable. Next, it uses a semantic retriever to 157

find the most relevant passages for your query. Fi- 158

nally, the generator utilizes those contexts with the 159

original question to produce a concise, accurate 160

answer that can still offer fresh insights. 161

Building on RAG, recent LLM-based methods 162

introduce novel solutions for long-context man- 163

agement, query refinement, and content distilla- 164

tion. MemWalker (Chen et al., 2023) builds a 165

memory tree over segmented text to overcome 166

context-window limits and support long-range 167

querying, while KnowledGPT (Wang et al., 2023) 168

and Rewrite-Retrieve-Read (Ma et al., 2023) pro- 169

grammatically rewrite queries to better capture user 170

intent—though multi-hop questions still suffer er- 171

ror propagation. To hone in on the most relevant in- 172

formation, PRCA uses domain-specific abstractive 173

summarization (Yang et al., 2023), FiD-light (Hof- 174

stätter et al., 2022) applies listwise autoregressive 175

re-ranking that links generated passages back to 176

their sources, and RECOMP (Xu et al., 2023) com- 177

presses retrieved content into concise summaries 178

for efficient generation (Xu et al., 2023). Together, 179

these advances make the retrieval-generation loop 180

more coherent and accurate, yet none of them ad- 181

dress the crucial challenge of reference handling. 182

Citation generation is the task of having an LLM 183
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answer a question while clearly showing which text184

passages it used as citations, helping to close the185

reference gap. ALCE uses in-context learning on186

the top 100-word snippets to prompt LLMs to an-187

swer questions with cited support, then benchmarks188

fluency, correctness, and citation quality—showing189

that models often undercite when synthesizing mul-190

tiple sources (Gao et al., 2023). To boost cita-191

tion accuracy, Chain-of-Thought prompting guides192

the model through explicit reasoning steps and a193

Citation Insurance Mechanism spots and corrects194

missing references, though this adds complexity195

and compute overhead (Ji et al., 2024). Citation-196

Enhanced Generation (CEG) takes a post-hoc ap-197

proach: it retrieves documents after an initial an-198

swer, uses natural language inference to verify fac-199

tual claims, and asks the model to regenerate any200

unsupported text (Li et al., 2024). Evaluations by201

Byun et al. reveal that GPT-4 surpasses earlier mod-202

els in citation accuracy—but not relevance—and203

performs better on NLP than HCI papers (Byun204

et al., 2024). Citekit (Shen et al., 2024) includes205

modules for loading data, generating citations, en-206

hancing citation quality, and evaluating results.207

The toolkit simplifies comparing existing citation-208

generation methods and facilitates developing new209

ones. Experiments demonstrate its effectiveness,210

though challenges remain in achieving fine-grained211

citations and consistently balancing citation qual-212

ity with answer accuracy. Existing works rely on213

chunks of contexts, whereas LLM-Ref feeds the214

contexts in the exact source paragraph, allowing the215

extraction of the citations accurately. Such context216

in paragraphs is paramount in references (citations)217

extraction since chunking often makes erroneous218

or missing citations.219

GPT-based models are highly effective at para-220

phrasing, and grammar correction, and also excel221

in crafting informative paragraphs suitable for re-222

search papers. Current popular LLMs can conduct223

question-answering tasks using user-provided data,224

marking a significant advancement in its functional-225

ity. Despite supporting multiple user files as inputs,226

most of them do not return the specific context uti-227

lized in the generation process nor do they offer228

comprehensive secondary references. While com-229

mercial tools exist to assist researchers, the lack of230

sufficient documentation limits transparency and231

prevents direct evaluation against LLM-Ref. The232

implementation of our method is open-source and233

available at [GitHub]1for reproducibility and fur-234

ther research. LLM-Ref is a novel system designed235

to enhance document processing through a hier- 236

archical approach. A significant contribution of 237

LLM-Ref is its capacity to generate both primary 238

and secondary references, a capability lacking in 239

existing systems. Furthermore, its iterative gener- 240

ation process improves long-context handling and 241

reduces hallucinations by aligning generated con- 242

tent with source contexts, making it a robust and 243

reliable solution for reference synthesis. 244

3 Architecture of Proposed LLM-Ref 245

In this section, we describe LLM-Ref, a writing 246

tool designed to assist researchers by providing 247

enhanced reference synthesis and handling capa- 248

bilities, while synthesizing responses based on the 249

information found within the context of provided 250

research articles. Most RAG-based systems face 251

challenges in the retrieval of relevant and correct 252

input contexts and do not provide primary sources 253

or secondary references when synthesizing results 254

from multiple source documents. In contrast, LLM- 255

Ref extracts a hierarchical structure of the contents 256

from the source documents and provides appropri- 257

ate references with the synthesized output. The 258

architecture of the system is shown in Figure 1. 259

A research article is typically structured into sec- 260

tions and subsections to present and elucidate a 261

particular problem, background information, and 262

analysis. Within a section or subsection, each para- 263

graph conveys a specific intention. To develop a 264

writing assistant for research articles, it is crucial 265

to extract source content efficiently with proper hi- 266

erarchy. Given this, the proposed LLM-Ref begins 267

with ① Content Extractor that extracts texts and the 268

reference list from the source documents, ensuring 269

that the original organization of the paragraphs is 270

kept intact. It stores information from each doc- 271

ument, including summaries of paragraphs gener- 272

ated by an LLM, in an offline repository. For any 273

particular query, ② Context Retrieval finds the most 274

relevant sections of texts using an LLM. A special- 275

ized component, ③ Iterative Output Synthesizer 276

then processes these contexts with the correspond- 277

ing query, using a language model to generate text 278

based on the given input and predefined context 279

length. In the final step, accurate citations of the 280

synthesized output are extracted from the contexts 281

by ④ Reference Extractor. All the prompts utilized 282

in our work are given in the Appendix A.5. 283

1https://github.com/dummy-anonymous-git/
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Figure 1: The overall architecture of the LLM-Ref. ① Content Extractor extracts texts and references of each source
documents. Each article metadata along with respective paragraph summaries extracted from an LLM are stored
offline. For a given query, in ② Context Retrieval, relevant paragraphs are extracted and combined with prompts to
generate answers. The ③ Iterative Output Synthesizer feeds the combined prompt and context to an LLM for output
text generation based on context length limit. Finally, the ④ Reference Extractor extracts respective references for
output text from relevant paragraphs. Formal definition of LLM-Ref is presented in the Appendix A.2.

3.1 Source Content Extraction284

RAG systems typically process source documents285

as discrete chunks, often disregarding section- and286

subsection-level abstraction. Capturing this abstrac-287

tion requires machine learning-based classification288

and segmentation trained on domain-specific re-289

search article datasets. While identifying sections290

and subsections is challenging, the standardized291

styles and formats of research articles provide valu-292

able cues for document hierarchy. Therefore, we293

utilize text formatting to infer the structural abstrac-294

tion of the source documents.295

Our text extractor, Content Extractor, reads each296

source file and extracts its contents while maintain-297

ing the abstraction of the content flow, utilizing the298

Python library pdfminer. This library offers fine-299

grained access to most content objects, allowing300

the Content Extractor to understand the research301

writing template. First, Content Extractor extracts302

the page layout and font-related statistics from all303

the pages in a document to identify article format-304

ting details, such as the number of columns and305

font attributes (name, size, and style). Section and306

subsection labels are identified by searching for307

common keywords like ‘Introduction’, ‘Abstract’,308

‘References’, ‘2.1’, ‘3.1’, ‘4.1’, ‘a.’, ‘(a)’, etc. How-309

ever, keyword searching alone is not sufficient to310

accurately position and extract sections or subsec-311

tions due to multiple possible instances of same312

section or subsection name. For precise position-313

ing and extraction, we verify the position and text314

details of each search item against the formatting315

details initially acquired. Once the sections and 316

subsections labels are accurately extracted, the text 317

organized in paragraphs is extracted. To identify 318

paragraph separation, we leverage indentation, line 319

spacing, and column information. Thus, we store 320

paragraphs within each section and subsection, pre- 321

serving the correct abstraction. 322

In general, RAGs process and store documents 323

by dividing them into chunks and applying em- 324

beddings. These embeddings are indexed and later 325

used to retrieve relevant chunks through a similarity 326

operation that compares the input chunks with the 327

query. On the contrary, in our approach, we store 328

source information offline in existing paragraphs. 329

To retrieve relevant context, we additionally store 330

concise and informative summaries of each para- 331

graph which are used in the retrieval stage. How- 332

ever, we utilize corresponding original paragraphs 333

for output generation and reference extraction. 334

3.2 Context Retrieval 335

In conventional RAG systems, effective text chunk- 336

ing is essential for transforming text segments into 337

vector embeddings for similarity-based retrieval, 338

ensuring both accuracy and relevance to a given 339

query. The effectiveness of chunking depends 340

on content type, embedding model specifications, 341

query complexity, and application needs. Chunk 342

size, if too large or too small, can greatly impact 343

retrieval accuracy and system efficiency. 344

To mitigate the existing challenges in the re- 345

trieval stage, we perform contextual similarity be- 346

tween the query and the summarized paragraphs of 347
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the source documents using an LLM. The prompt348

consists of the user query and a paragraph from a349

source document. Once the relevant paragraphs are350

identified using the corresponding summaries, the351

original paragraphs are selected and fed as context352

for the output generation step. In our experiments,353

LLM-based contextual similarity performs better354

than embedding-based approaches due to their su-355

perior performance in understanding underlying356

context. Although overlapping or sliding window-357

based large chunking positively affects retrieving358

contexts, LLM-based contextual similarity on para-359

graphs has a better outcome on output generation360

and reference extraction. Using paragraphs as con-361

text can be challenging due to the LLM’s context362

length limitations, a problem we mitigate with our363

iterative output generation step should it arise.364

3.3 Output Generation365

In the output generation step, the query and the366

relevant context paragraphs are combined and fed367

to the LLM. Usually, it is observed that research368

paper-related queries tend to have many context369

paragraphs which often do not fit within the context370

limit of the LLM. Moreover, LLM suffers from the371

‘Lost in the Middle’ phenomenon when the context372

is too long. To address these issues, the Iterative373

Output Synthesizer is capable of synthesizing re-374

sponses iteratively by processing input paragraphs375

and ensuring they fit within the context limit of376

the language model. Initially, the unit feeds the377

first paragraph (as context) along with the query378

to an LLM to generate output. The response from379

the LLM is then continuously updated with the380

rest of the relevant paragraphs. While the system381

generates output through continuous updates, it en-382

forces the context limit by monitoring the size of383

the query, the paragraphs, and the response.384

3.4 Reference Extraction385

Despite the popularity, RAG-based systems fall386

short in offering references. While the popular com-387

mercial LLMs now has the capability to process388

user data, it does not provide definite necessary con-389

texts or references that are essential for academic390

research. LLM-ref extracts the references from391

input context paragraphs. Our system adeptly iden-392

tifies the source documents, referred to as ‘primary393

references’, along with the citations found within394

the source context paragraphs, which we term ‘sec-395

ondary references’. During the generation phase,396

LLMs omit citation notations, posing challenges in397

reference extraction. So our system adopts two pre- 398

sentations of references: Coarse-grain references 399

for broader citation identification and Fine-grain 400

references for more detailed citation tracking. Most 401

research papers use either ‘enumerated’ (e.g., ‘[1]’, 402

‘[2-5]’, ‘[3,9]’) or ‘named’ (e.g., ‘(Author name et 403

al., 2024)’) reference notations and our reference 404

extractor is adept at recognizing both types. 405

3.4.1 Coarse-grain References 406

In coarse-grain reference extraction, the Refer- 407

ence Extractor catalogs all the references identi- 408

fied within the contexts. As contexts are extracted 409

as paragraphs containing information relevant to 410

the queries, this approach offers a comprehensive 411

overview of a specific issue. The tool enumer- 412

ates all the source papers and secondary references 413

found within these context paragraphs, enabling 414

users to analyze the referenced materials. 415

3.4.2 Fine-grain References 416

In fine-grain reference extraction, the Reference 417

Extractor meticulously identifies the context lines 418

most relevant to each line in the output text with the 419

help of an LLM. This method of pinpointing the 420

most similar context lines enables us to discover 421

more specific references, thus achieving greater 422

precision in our reference extraction process. We 423

determine the highest relevance between response 424

lines and source context lines using an LLM. By 425

identifying the most relevant source contexts, we 426

can extract primary and secondary references with 427

high precision. This process facilitates the rapid 428

compilation of synthesized outputs from a multi- 429

tude of source documents. 430

4 Experimental Setup 431

4.1 Evaluating RAG Approaches 432

Our evaluation compares LLM-Ref with four 433

other RAG implementations: Basic RAG (Lewis 434

et al., 2021), Parent-Document Retriever 435

(PDR) RAG (LangChain, 2023c), Ensemble 436

RAG (LangChain, 2023a), and RAPTOR (Sarthi 437

et al., 2024), highlighting their methodologies and 438

applications. 439

RAG systems divide documents into chunks, 440

embed those chunks, and store them in a vector 441

database so a retriever can pull back the most rele- 442

vant pieces for a language model to craft an answer. 443

PDR RAG builds on this by organizing content into 444

larger “parent” chunks and smaller “child” chunks; 445
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a ParentDocumentRetriever first finds the right par-446

ents and then grabs matching children for tighter,447

more focused context. Ensemble RAG goes fur-448

ther by running multiple retrievers—like BM25 for449

exact keyword hits and a vector-based model for450

semantic matches—and then combines their results451

so the language model gets a richer, more robust set452

of passages to handle complex queries. RAPTOR453

builds a hierarchical tree by recursively clustering454

text chunks and generating summaries, capturing455

both detailed and high-level context for long doc-456

uments. At inference, it retrieves the most rele-457

vant nodes across these abstraction levels, enabling458

more coherent and accurate question answering.459

4.2 Dataset460

The evaluation of systems similar to RAG neces-461

sitates human-annotated ground truth answers for462

a variety of questions, a requirement that proves463

difficult to fulfill across multiple domains. To ad-464

dress this challenge, Ragas (Es et al., 2023) and465

ARES (Saad-Falcon et al., 2023) employ datasets466

generated by ChatGPT as ground truth from spe-467

cific documents. We follow this approach by lever-468

aging GPT-4, simulating an advanced researcher,469

to create research question-answer-context pairs470

based on the provided source documents. These471

generated question-answer-context pairs serve as a472

benchmark to assess the relevance and accuracy of473

contexts retrieved and outputs generated by RAG,474

facilitating a comprehensive analysis of evaluation475

metrics in conjunction with Ragas.476

To evaluate our system on domain-specific tasks,477

we curated a diverse arXiv dataset with question-478

answer-context pairs from Physics, Mathematics,479

Computer Science, Quantitative Finance, Electrical480

Engineering and Systems Science, and Economics.481

The dataset contains 955 question-answer-context482

pairs derived from multiple documents within the483

same subject area. All question–answer–context484

pairs were created and reviewed under strict hu-485

man oversight to ensure that each answer logically486

aligns with its supporting context and is free of hal-487

lucinations or formatting errors. For every source488

document, we extracted 5–8 pairs, and any sam-489

ple that did not match our prompt or answer tem-490

plates was discarded—about 20% of the data was491

removed in this process. Annotators checked all en-492

tries for consistency, while the NLP subset received493

an extra layer of scrutiny by the authors themselves494

because of their domain expertise.495

4.3 Evaluation Metrics 496

We employ the Ragas (Es et al., 2023) frame- 497

work to evaluate the performance of the RAG sys- 498

tems. Faithfulness ensures the generated response 499

is based on the provided input context, avoiding 500

false or misleading information (‘hallucinations’). 501

It is crucial for transparency and accuracy, ensuring 502

the context serves as solid evidence for the answer. 503

Answer Relevance measures how well the gener- 504

ated response directly addresses the question, ensur- 505

ing responses are on-topic and accurately meet the 506

query’s requirements. Answer Similarity measures 507

how closely the generated answer aligns with the 508

ground truth in both content and intent, reflecting 509

the RAG system’s understanding of the concepts 510

and context (Es et al., 2023). 511

Context Relevance ensures the retrieved context 512

is precise and minimizes irrelevant content, which 513

is crucial due to the costs and inefficiencies asso- 514

ciated with processing lengthy passages through 515

LLMs, especially when key information is buried 516

in the middle (Liu et al., 2023). Context Precision 517

gauges the system’s ability to prioritize relevant 518

items, ensuring that the most pertinent information 519

is presented first and distinguishing it from irrel- 520

evant data. Context Recall measures the model’s 521

ability to retrieve all relevant information, balanc- 522

ing true positives against false negatives, to ensure 523

no key details are missed. (Es et al., 2023). 524

The Ragas score combines key metrics: faith- 525

fulness, answer relevancy, context relevancy, and 526

context recall (LangChain, 2023b). By integrating 527

these metrics, the Ragas score provides a holistic 528

view of a RAG system’s ability to produce accurate, 529

relevant, and contextually appropriate responses, 530

guiding improvements for enhanced performance. 531

A comprehensive explanation of the calculations is 532

provided in the Appendix A.6. 533

5 Results and Analysis 534

5.1 Metric Analysis 535

We first present the performance metrics of LLM- 536

Ref compared to Basic RAG, PDR RAG, Ens. 537

RAG, and RAPTOR using GPT-3.5 as the LLM 538

in Table 1. LLM-Ref significantly outperforms 539

five of the seven metrics, performs similarly in the 540

remaining two, and achieves an overall superior 541

performance in the Ragas Score. 542

During evaluation with the Ragas framework, 543

LLM-Ref consistently outperforms the other meth- 544

ods across most metrics, demonstrating its superior 545

6



Name Answer
Relevancy

Answer
Correctness

Answer
Similarity

Context
Relevancy

Context
Precision

Context
Recall

Faith
fulness

Ragas
Score

Basic RAG 0.598 0.448 0.892 0.049 0.857 0.697 0.547 0.158
PDR RAG 0.575 0.458 0.896 0.023 0.852 0.716 0.622 0.082
Ens. RAG 0.613 0.459 0.905 0.043 0.851 0.717 0.600 0.143
RAPTOR 0.688 0.535 0.930 0.125 0.91 0.614 0.64 0.316
LLM-Ref 0.948 0.568 0.942 0.268 0.976 0.705 0.629 0.513

Table 1: Metric evaluation result comparison of LLM-Ref with Basic RAG, Parent Document Retriever RAG,
Ensemble Retrieval RAG, and RAPTOR, using GPT-3.5 as the LLM. Higher values indicate better performance.
The highest scores are highlighted in bold. Additional results for GPT-4o-mini, Llama, and Claude models are given
in Table 5.

performance in terms of accuracy and relevance.546

It achieves an Answer Relevancy score of 0.948,547

substantially higher than Basic RAG (0.598), PDR548

RAG (0.575), Ens. RAG (0.613), and RAPTOR549

(0.688), indicating its effectiveness in providing550

pertinent and aligned answers to the questions. Its551

Answer Correctness is 0.568, surpassing others552

ranging from 0.448 to 0.535, demonstrating bet-553

ter accuracy. LLM-Ref also attains the highest554

Answer Similarity score of 0.942 compared to oth-555

ers between 0.892 and 0.930. These metrics based556

on the final responses demonstrate the superior ef-557

ficacy of LLM-Ref in generating answers that are558

well-aligned with the queries and underlying intent.559

For Context Relevancy and Precision, LLM-Ref560

scores 0.268 and 0.976 respectively, are signifi-561

cantly higher than the other methods, which indi-562

cates its exceptional ability to retrieve and utilize563

relevant information. While Context Recall scores564

are similar across all methods, LLM-Ref achieves565

the competitive Faithfulness score at 0.629, show-566

ing that its answers are well-grounded in the pro-567

vided context. The composite Ragas Score for568

LLM-Ref is 0.513, notably higher than Basic RAG569

(0.158), PDR RAG (0.082), Ens. RAG (0.143),570

and RAPTOR (0.316), highlighting its overall ef-571

fectiveness in synthesizing responses for research572

articles. LLM-Ref outperforms other RAG systems573

by retrieving more relevant information, providing574

precise context, and delivering accurate, consistent,575

and high-quality responses.576

5.2 Performance across LLMs577

The proposed LLM-Ref method outperforms base-578

line methods in terms of accuracy, as demonstrated579

by the Ragas scores in Table 2. Across various large580

language models (LLMs)—GPT-3.5, GPT-4o-mini,581

Llama 3.1-405b, and Claude 3.5 Sonnet—LLM-582

Ref consistently achieves the highest scores. For583

instance, with GPT-4o-mini, LLM-Ref records a 584

Ragas score of 0.413, substantially higher than Ba- 585

sic RAG (0.138), PDR RAG (0.112), Ens. RAG 586

(0.096), and RAPTOR (0.299). Similar trends are 587

observed across all LLMs, with LLM-Ref main- 588

taining a lead. 589

Method GPT
3.5

GPT
4o-mini

Llama
3.1-405b

Claude
3.5 Sonnet

Basic RAG 0.143 0.138 0.114 0.142
PDR RAG 0.052 0.112 0.079 0.055
Ens. RAG 0.097 0.096 0.105 0.096
RAPTOR 0.319 0.299 0.198 0.245
LLM-Ref 0.389 0.413 0.300 0.422

Table 2: Ragas score comparison for LLM-Ref across
various LLMs.

These results underscore LLM-Ref’s ability to 590

generate accurate, contextually relevant outputs 591

essential for research article writing. By integrat- 592

ing paragraph summarization, context extraction, 593

and reference alignment, it addresses the limita- 594

tions of standard RAG systems reliant solely on 595

embeddings. The improved accuracy justifies its 596

higher computational cost, proving its superiority 597

for precision-critical applications. 598

5.3 Computational Cost 599

LLM-Ref prioritizes accuracy in research article 600

writing, resulting in higher computational costs 601

compared to traditional Retrieval-Augmented Gen- 602

eration (RAG) systems. These costs are primarily 603

attributed to four stages: content extraction, context 604

retrieval, response generation, and reference vali- 605

dation. Each step involves calls to large language 606

models (LLMs), with overhead during content sum- 607

marization and reference extraction, both of which 608

are unique to our approach. While this increases 609

input and output tokens due to summarization and 610

similarity search, it ensures enhanced precision and 611

relevance in the generated outputs. 612
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Query: Pros and Cons of Discrete vs Cascaded Systems

Answer: Discrete units in direct speech-to-speech translation (S2ST) systems offer several advantages over cascaded systems
[1-8]. Firstly, they have lower computational costs and inference latency because they require fewer decoding steps [1, 8,
10-12]. This makes them more efficient and faster in translating speech [1-3, 7, 8, 10-12]. Additionally, direct S2ST is a
natural approach for languages that do not have a writing system, as it eliminates the need for intermediate text representation.
Another benefit of direct S2ST systems with discrete units is their flexibility in training. They can be trained with or without
text transcripts, making them suitable for both written and unwritten languages [1, 6, 7, 9, 13]. . . .

References:
[1] A. Lee et al., “Direct speech-to-speech translation with discrete units,” arXiv, 2021.
[2] A. Lee et al., “Textless speech-to-speech translation on real data,” arXiv, 2021.
[3] S. Popuri et al., “Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmen-

tation,” arXiv, 2022.
[4] Ye Jia et al., Direct speech-to-speech translation with a sequence-to-sequence model. Proc. Interspeech 2019.

. . .
[13] A. Tjandra et al., “Speech-to-speech translation between untranscribed unknown languages.” In 2019 IEEE Automatic

Speech Recognition and Understanding Workshop (ASRU), 2019.

Figure 2: Fine-grained reference samples generated by LLM-Ref when GPT-3.5 is used as the LLM.

Table 3 highlights the comparative cost, Ragas613

score, and token usage for LLM-Ref and baseline614

systems for 150 queries of the computer science615

subset. While LLM-Ref incurs higher computa-616

tional costs than existing RAG systems, the ex-617

pense is justified by its ability to minimize human618

labor and streamline academic writing. Consider-619

ing that research expenses run into thousands of620

dollars, LLM-Ref remains affordable. By generat-621

ing precise, contextually relevant responses, LLM-622

Ref significantly eases researchers’ workload, mak-623

ing it a valuable tool in scholarly writing. Ap-624

pendix A.3.2 details the computational cost of each625

LLM-Ref stage, while Appendices A.3 and A.4626

provide additional analyses with different LLMs.627

Cost
($)

Ragas
Score

Input
Tokens

Output
Tokens

Basic RAG 0.06 0.14 359,115 11,562
PDR RAG 0.08 0.11 589,582 13,911
Ens. RAG 0.09 0.10 569,531 13,885
RAPTOR 0.05 0.30 185,337 35,050
LLM-Ref 1.79 0.42 5,430,489 156,222

Table 3: Comparison of cost, Ragas score, input tokens,
and output tokens when GPT-4o-mini is used as the
LLM.

5.4 Reference Extraction628

To demonstrate the effective functionality of LLM-629

Ref, we present a sample of the fine-grained ref-630

erences in Figure 2. For a specific query, LLM-631

Ref successfully generates fine-grained references,632

which include both enumerated references such as633

‘[11, 12]’ and named references such as ‘(Jia et634

al., 2021)’. This capability highlights the system’s635

ability to seamlessly integrate both numerical and 636

textual citation styles, ensuring compatibility with 637

diverse referencing standards used across academic 638

disciplines. For improved clarity and presentation, 639

we organize all references in an enumerated format 640

in the figure. 641

In this example, we utilize three primary source 642

documents to generate the response. References 643

‘[1]’, ‘[2]’, and ‘[3]’ correspond to the primary 644

sources directly informing the response. Addition- 645

ally, the secondary references, ranging from ‘[4]’ 646

to ‘[13]’, are citations found within the primary 647

sources themselves. By integrating primary and 648

secondary references, LLM-Ref ensures a trace- 649

able foundation for responses and emphasizes its 650

use-case for in-depth source synthesis. 651

More examples are presented in Appendix A.7 652

that showcase LLM-Ref’s ability to consistently 653

identify and organize fine-grained references across 654

LLM architectures and its model-agnostic nature. 655

6 Conclusion 656

We present a novel writing assistant that can assist 657

researchers in the extraction of relevant references 658

while synthesizing information from source doc- 659

uments. The proposed system can alleviate the 660

challenging optimization required in RAGs and 661

generate output responses effectively. Moreover, 662

our system can list primary and secondary refer- 663

ences to assist researchers where in paying more 664

attention to literature investigation. We intend to 665

explore the opportunities of offline open-source 666

LLMs to build a more flexible system in the future. 667
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7 Limitations and Ethical Considerations668

Our contribution to this work begins with the669

PDF file reading component, the Content Extrac-670

tor, which is designed to handle the most common671

template styles of research articles. The extraction672

process is based on various heuristics; however, our673

Content Extractor may not efficiently handle all674

template styles. Extracting references, particularly675

reference lists, presents challenges that limit the676

support capabilities of LLM-Ref. We extract ref-677

erence lists and store them with their identifiers in678

the texts. Our system has been tested with various679

research paper templates, including IEEE, ACL,680

and many arXiv formats. It has demonstrated profi-681

ciency in successfully extracting context, especially682

when reference styles are enumerated (e.g., [1], [2],683

[4, 28]) or named (author et al., year). We ac-684

knowledge that the Content Extractor’s reliance on685

heuristics may not cover every possible template.686

While a heuristic-based framework cannot process687

all template variations, our experiments show that688

LLM-Ref generates effective results whenever we689

successfully extract the relevant paragraphs. To690

support broader applicability, we will open-source691

our code and provide guidance, enabling users to692

tweak a few straightforward heuristics to accommo-693

date most templates commonly used in the research694

community. Moreover, we developed this writing695

assistant tool primarily to guide researchers in ex-696

ploring different aspects of research, rather than to697

enable the writing of a research article overnight698

without in-depth investigation. Both our coarse-699

grain and fine-grain reference extraction methods700

can guide researchers on where to focus their ef-701

forts more intensively.702

In this paper, we present the evaluation of our703

system using GPT models. Additionally, we apply704

our writing assistant tool to the Llama and Claude705

models, demonstrating similar results, which un-706

derscores the efficacy of our approach across a707

broad range of LLMs. We plan to extend our com-708

prehensive evaluation of the tool across diverse709

domain-specific research articles, utilizing open-710

source Large Language Models (LLMs). Given711

that LLM-Ref leverages the LLM API, mitigat-712

ing model bias poses a significant challenge. To713

minimize potential bias in responses, several mea-714

sures have been implemented. Specifically, when715

generating responses to a query, only the contexts716

identified within the relevant uploaded PDF files717

are used. Furthermore, the ‘temperature’ parameter718

is set to zero, thereby eliminating randomness in 719

the generation process. This approach ensures that 720

the generated responses are closely aligned with 721

the input contexts and maintain a high degree of 722

specificity. 723
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A.1 Retrieval-Augmented Generation (RAG)894

Basic Retrieval-Augmented Generation (RAG) is895

an advanced technique that combines information896

retrieval with text generation, making it particularly897

effective when generating responses that require898

specific contextual information from an external899

knowledge base. The process is typically divided900

into three main stages: Ingestion, retrieval, and901

response generation.902

Ingestion: Once an input file is read, the first903

stage in RAG involves chunking and embedding,904

where source texts are segmented into smaller, man-905

ageable units, which are then converted into embed-906

ding vectors for retrieval. Smaller chunks gener-907

ally enhance query precision and relevance, while908

larger chunks may introduce noise, reducing ac-909

curacy. Effective chunk size management is cru-910

cial for balancing comprehensiveness and precision.911

Embedding transforms both the user’s query and912

knowledge base documents into comparable for-913

mats, enabling the retrieval of the most relevant914

information.915

Retrieval: In the next stage, the relevant informa-916

tion is retrieved from a vector knowledge base such917

as FAISS. The retriever searches this vector store to918

find the most relevant chunks of information based919

on the user’s query. This stage is crucial for en-920

suring that the model has access to the necessary921

context for generating accurate and contextually922

relevant responses.923

Response Generation: In the final stage, the re-924

trieved context is combined with the user’s query925

and fed into the LLM, such as GPT-4, to generate926

a coherent and relevant response. The model uses 927

the context provided by the retrieved documents to 928

produce answers that are informed by the most per- 929

tinent information available. This step highlights 930

the synergy between retrieval and generation, en- 931

suring that the output is not only accurate but also 932

contextually grounded. 933

Each stage of the RAG process is designed to 934

leverage the strengths of both retrieval and genera- 935

tion, enabling the creation of responses that are in- 936

formed by specific and relevant external knowledge. 937

By combining these components, RAG systems can 938

significantly enhance the quality and relevance of 939

generated content, making them a powerful tool 940

for applications requiring precise and contextually 941

aware responses. 942

The Basic RAG approach integrates a retriever 943

and a language model to answer questions based 944

on retrieved documents. It involves splitting docu- 945

ments into chunks, embedding them with models, 946

and storing them in a vector database. The retriever 947

fetches relevant chunks based on the query, which 948

the language model uses to generate accurate re- 949

sponses. 950

The PDR RAG enhances retrieval precision 951

by structuring documents into parent-child re- 952

lationships. Larger parent chunks and smaller 953

child chunks are embedded and stored in a vec- 954

tor database and in-memory store. A ParentDocu- 955

mentRetriever fetches relevant chunks, providing 956

refined context to the language model, ensuring 957

more precise context and accurate responses. 958

The Ensemble RAG combines multiple retriev- 959

ers to leverage their strengths, resulting in a more 960

robust retrieval system. It uses different retrievers, 961

such as BM25 for keyword matching and vector- 962

based retrievers for semantic similarity. An En- 963

sembleRetriever balances their contributions, using 964

the aggregated context for the language model to 965

generate responses, enhancing retrieval robustness 966

and accuracy for complex queries. 967

A.2 Our System: LLM-Ref 968

In contrast to traditional RAG-based systems, our 969

approach emphasizes preserving the hierarchical 970

structure of source data in research writing, en- 971

abling the sequential retrieval of relevant contexts 972

and references. During the ingestion stage, our 973

method eliminates the need for a vector store, al- 974

lowing extracted source information to be stored 975

either online or offline, thereby enhancing flexibil- 976

ity. In the retrieval stage, we leverage large lan- 977
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guage models (LLMs) to identify the most rele-978

vant context paragraphs corresponding to the user979

query. This approach is particularly well-suited for980

research article writing, where our findings indicate981

that each paragraph typically presents a coherent982

argument, sufficient for establishing contextual sim-983

ilarity. Embedding-based approaches like FAISS984

rely on pre-computed vector similarities for simi-985

larity search and retrieval, which can lead to a loss986

of subtle contextual nuances present in the data. In987

contrast, large language models (LLMs) dynami-988

cally process and interpret text to capture complex,989

nuanced relationships within the text. Finally, in990

the generation stage, our system iteratively pro-991

duces and refines the response, ensuring accuracy992

and relevance. While our approach invokes the993

LLM multiple times across various stages, the as-994

sociated financial costs are minimal in the context995

of overall research expenditures.996

Extracting both primary and secondary refer-997

ences from source documents requires the LLM998

to be deterministic. In research articles, the ability999

to extract contexts from exact paragraphs is crucial.1000

Our experiments with popular commercial LLMs1001

indicate that while such models can refer to up-1002

loaded source documents, their generative nature1003

prevents them from providing exact reproductions1004

of contexts or references from the original sources.1005

As a result, it is challenging to precisely identify1006

specific references or corresponding contexts in the1007

original documents based on output responses.1008

A.2.1 Formal Definition1009

In this section, we formally define the LLM-Ref1010

system for enhanced reference handling in scien-1011

tific writing. LLM-Ref operates on a collection of1012

hierarchical source documents and, given a user1013

query, retrieves the most relevant contexts, synthe-1014

sizes a response, and extracts both primary and1015

secondary references. The following formalism1016

specifies the data structures, functions, and system1017

workflow that together characterize the LLM-Ref1018

approach.1019

Let1020

D = {d1, d2, . . . , dN}1021

be a set of source documents (e.g., research arti-1022

cles), each hierarchically organized into sections,1023

subsections, and paragraphs. For each document1024

d ∈ D, denote its set of paragraphs as1025

Pd = {pd,1, pd,2, . . . , pd,Md
}.1026

Let the union of all paragraphs be 1027

P =
⋃
d∈D

Pd. 1028

Given a user query q, the objective is to generate 1029

a response r and extract relevant references through 1030

the following process: 1031

1. Contextual Synthesis: Define a selection 1032

function 1033

S : (q, P ) → Pq ⊆ P 1034

that retrieves a subset Pq of paragraphs most 1035

relevant to q, using LLM-based semantic sim- 1036

ilarity and the preserved document hierarchy. 1037

2. Response Generation: Let G denote a re- 1038

sponse generation function that uses q and Pq 1039

to generate a text response: 1040

r = G(q, Pq) 1041

Here, G may operate iteratively to handle long 1042

contexts, concatenating outputs as needed. 1043

3. Reference Extraction: Let X denote a refer- 1044

ence extraction function, which produces: 1045

• Primary References (Rp): the set of 1046

source documents from which any para- 1047

graph in Pq is drawn: 1048

Rp = {d ∈ D | ∃ p ∈ Pq ∩ Pd} 1049

• Secondary References (Rs): the set of 1050

in-text citation details (enumerated or 1051

named) found in Pq, aligned with seg- 1052

ments of r via a fine-grained matching 1053

process Xfine(r, Pq). 1054

The overall system function is defined as: 1055

F : (q,D) → (r, (Rp, Rs)) 1056

operating as follows: 1057

1. Content Extraction: Extract all paragraphs 1058

P from the documents D, preserving hierar- 1059

chical structure. 1060

2. Context Retrieval: Select relevant para- 1061

graphs Pq = S(q, P ) for the given query. 1062

3. Iterative Output Generation: Generate the 1063

response r = G(q, Pq), processing context in 1064

steps if needed. 1065
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4. Reference Extraction: Identify primary and1066

secondary references via X .1067

Remark. Preserving the hierarchical document1068

structure (sections, subsections, paragraphs) dur-1069

ing extraction and retrieval enables LLM-Ref to1070

maintain fine-grained alignment between queries,1071

contexts, and references. This facilitates accurate1072

synthesis and citation, outperforming traditional1073

RAG systems which rely on flat or arbitrary chunk-1074

ing.1075

A.3 Result and Analysis of GPT-4o mini1076

A.3.1 Metric Analysis1077

Table 4 presents a comparison of performance met-1078

rics for LLM-Ref, Basic RAG, PDR RAG, Ens.1079

RAG, and RAPTOR using GPT-4o-mini as the1080

LLM.1081

LLM-Ref consistently outperforms all other1082

methods across key dimensions. It achieves the1083

highest Answer Relevancy score of 0.966, well1084

above RAPTOR’s 0.898, Basic RAG’s 0.675, PDR1085

RAG’s 0.557, and Ens. RAG’s 0.709. Its Answer1086

Correctness of 0.546 is competitive to RAPTOR’s1087

0.581 and the baselines’ range of 0.465–0.531.1088

With an Answer Similarity of 0.947, LLM-Ref re-1089

mains competitive with RAPTOR’s top score of1090

0.950 and surpasses other systems. In Context Rel-1091

evancy, LLM-Ref leads with 0.246 versus RAP-1092

TOR’s 0.116, highlighting its superior retrieval1093

of pertinent passages. Although its Context Re-1094

call (0.732) slightly outperforms RAPTOR (0.613)1095

and Ens. RAG (0.726), LLM-Ref’s Context Preci-1096

sion of 0.980 far exceeds RAPTOR’s 0.891 and the1097

other methods. While RAPTOR attains the highest1098

Faithfulness score of 0.667, LLM-Ref’s 0.569 re-1099

mains robust in grounding answers. Finally, LLM-1100

Ref’s composite Ragas Score of 0.486 substantially1101

outstrips RAPTOR’s 0.311 and the baseline RAGs’1102

0.116–0.159, underscoring its balanced gains in1103

relevancy, accuracy, and overall answer quality.1104

A.3.2 Computation Costs1105

The proposed method is meticulously designed1106

to support the writing of research articles, a task1107

that requires a high degree of precision. Com-1108

pared to traditional Retrieval-Augmented Gener-1109

ation (RAG) systems, our approach incurs higher1110

computational costs due to its focus on achieving1111

enhanced accuracy. However, leveraging open-1112

source large language models (LLMs) fine-tuned1113

for specific tasks can help mitigate these expenses.1114

The computational overhead of our system, in 1115

contrast to traditional RAG systems, can be articu- 1116

lated as follows: 1117

1. Content Extraction: The system generates 1118

summaries for each paragraph extracted from 1119

the documents, storing these summaries for 1120

subsequent context extraction. The number of 1121

LLM calls made during this step is equal to 1122

the number of paragraphs, denoted as N . Tra- 1123

ditional RAG systems typically do not invoke 1124

LLMs at this stage, instead generating embed- 1125

dings and storing them in a vector index. 1126

2. Context Extraction: During this phase, the 1127

LLM is invoked N times to find relevant 1128

paragraphs to the query, utilizing the para- 1129

graph summaries to minimize the token count, 1130

thereby reducing the computational load. 1131

3. Generation: The generation of responses is 1132

conducted iteratively based on the retrieved 1133

contexts. The number of LLM calls in this 1134

phase depends on the number of contexts re- 1135

trieved, denoted as c. Our experiments in- 1136

dicate that LLM-Ref retrieves approximately 1137

half the number of contexts compared to tra- 1138

ditional RAG systems when all the relevant 1139

contexts are chosen, leading to reduced com- 1140

putational demands. 1141

4. Reference Extraction: This step is unique 1142

to our system and involves additional LLM 1143

calls, denoted as p × q, where p represents 1144

the number of lines in the generated response 1145

and q corresponds to the lines present in the 1146

context. This process ensures the precision 1147

and relevance of the extracted references. 1148

LLM calls in content extraction are executed 1149

only once during the initial reading of the docu- 1150

ment and storage of summaries. However, each 1151

query necessitates LLM calls in context extraction, 1152

answer generation, and reference extraction. 1153

Therefore, each query requires (N + c + p × q) 1154

LLM calls. Assuming we have N = 50 paragraphs, 1155

c = 8 contexts, p = 7 generated lines, and q = 8 1156

lines per context, the total is 56 lines. Additionally, 1157

each paragraph contains 220 tokens on average, 1158

each line approximately 25 tokens, and prompts 1159

contain 60 tokens. 1160
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Name Answer
Relevancy

Answer
Correctness

Answer
Similarity

Context
Relevancy

Context
Precision

Context
Recall

Faith
fulness

Ragas
Score

Basic RAG 0.675 0.517 0.890 0.049 0.846 0.698 0.582 0.159
PDR RAG 0.557 0.465 0.861 0.034 0.828 0.587 0.590 0.116
Ens. RAG 0.709 0.531 0.899 0.037 0.851 0.726 0.615 0.129
RAPTOR 0.898 0.581 0.950 0.116 0.891 0.613 0.667 0.311
LLM-Ref 0.966 0.546 0.947 0.246 0.980 0.732 0.569 0.486

Table 4: Metric evaluation result comparison of LLM-Ref with Basic RAG, Parent Document Retriever RAG,
Ensemble Retrieval RAG, and RAPTOR using GPT 4o-mini as the LLM. A higher value of a metric indicates better
performance.

N = 50× (220 + 60)1161

= 14, 000 tokens1162

c = 8× (7× 25 + 60) + 10001163

= 2, 880 tokens1164

p× q = 7× 8× 71165

= 392LLM calls1166

Total tokens = 14, 000 + 2, 8801167

+ 392× (25 + 25 + 15)1168

= 42, 360 tokens1169

Thus, the total input tokens amount to 42,360 to-1170

kens.1171

During both content extraction and reference ex-1172

traction, the LLM returns only ‘True’ or ‘False’ for1173

comparison, producing just one token. However,1174

during generation, as it iteratively generates and1175

refines the response, we estimate approximately1176

1,500 tokens are generated.1177

Output tokens = 50 + 1500 + 392 = 1942 tokens.1178

If we use GPT-4o-mini, which costs $0.150 per 1M1179

input tokens and $0.600 per 1M output tokens as1180

of October 2024, the cost per query (CpQ) in USD1181

is calculated as:1182

CpQ =
0.150

106
×42360+

0.600

106
×1942 ≈ 0.00751183

Considering the funds typically allocated to re-1184

search, the cost of using our proposed LLM-Ref1185

for article writing is minimal. Table 3 provides1186

a detailed account of the actual expenses associ-1187

ated with conducting the experiments outlined in1188

Table 4.1189

In conclusion, while our system incurs higher com-1190

putational costs, such costs are common in similar1191

applications. Evaluation frameworks like Ragas1192

and ARES, which rely on LLMs to assess similar-1193

ities, incur similar expenses. In return, LLM-Ref1194

offers enhanced accuracy and precision in content1195

generation, crucial for research article writing.1196

A.4 Ablation Study 1197

A.4.1 Performance Analysis on Different 1198

LLMs 1199

Table 5 compares the performance metrics of LLM- 1200

Ref against Basic RAG, PDR RAG, Ens. RAG, 1201

and RAPTOR across various language models, in- 1202

cluding GPT-3.5, GPT-4o-mini, Llama 3.1-405b, 1203

and Claude 3.5 Sonnet. In this experiment, we 1204

focus exclusively on the computer science subset 1205

of the dataset. As before, a higher value across 1206

the metrics signifies superior performance. The re- 1207

sults demonstrate LLM-Ref’s consistent advantage 1208

over other methods, particularly in providing more 1209

relevant, correct, and similar answers. 1210

In the GPT-3.5 evaluation, LLM-Ref achieves an 1211

Answer Relevancy score of 0.960, markedly higher 1212

than Basic RAG (0.545), PDR RAG (0.619), and 1213

Ens. RAG (0.629). It also leads in Answer Cor- 1214

rectness with 0.555, surpassing the others’ range 1215

of 0.412 to 0.471. With an Answer Similarity of 1216

0.950, LLM-Ref maintains a strong advantage over 1217

its peers, which hover between 0.899 and 0.936. 1218

These metrics confirm LLM-Ref’s superior capabil- 1219

ity to generate answers that are relevant and aligned 1220

with the provided context. Notably, while its Con- 1221

text Relevancy (0.157) is significantly higher than 1222

the others, it still lags behind in Context Recall, 1223

with scores slightly above those of Basic RAG 1224

(0.676 vs. 0.665) and Ens. RAG (0.775), but it 1225

compensates with a strong Faithfulness score of 1226

0.721. The composite Ragas Score of 0.389 further 1227

highlights LLM-Ref’s overall effectiveness com- 1228

pared to the other methods, which range from 0.052 1229

to 0.143. By comparison, RAPTOR achieves an 1230

Answer Relevancy of 0.972, Answer Correctness 1231

of 0.626, and an overall Ragas Score of 0.319, out- 1232

performing baseline RAGs but still trailing LLM- 1233

Ref. 1234

For GPT-4o-mini, LLM-Ref retains its domi- 1235

nance with an Answer Relevancy score of 0.953, 1236
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Name Answer
Relevancy

Answer
Correctness

Answer
Similarity

Context
Relevancy

Context
Precision

Context
Recall

Faith
fulness

Ragas
Score

GPT 3.5
Basic RAG 0.545 0.412 0.899 0.044 0.999 0.665 0.588 0.143
PDR RAG 0.619 0.460 0.926 0.014 0.999 0.783 0.607 0.052
Ens. RAG 0.629 0.471 0.936 0.027 0.999 0.775 0.624 0.097
RAPTOR 0.972 0.626 0.951 0.118 0.999 0.677 0.664 0.319
LLM-Ref 0.960 0.555 0.950 0.157 0.993 0.676 0.721 0.389

GPT 4o-mini
Basic RAG 0.765 0.540 0.916 0.041 0.999 0.689 0.564 0.138
PDR RAG 0.606 0.482 0.875 0.033 0.993 0.569 0.524 0.112
Ens. RAG 0.857 0.572 0.939 0.027 0.993 0.757 0.668 0.096
RAPTOR 0.932 0.589 0.948 0.112 0.999 0.587 0.602 0.299
LLM-Ref 0.953 0.575 0.951 0.179 0.999 0.683 0.640 0.413

Llama 3.1-405b
Basic RAG 0.571 0.443 0.875 0.035 0.987 0.538 0.390 0.114
PDR RAG 0.642 0.439 0.887 0.022 0.999 0.682 0.570 0.079
Ens. RAG 0.744 0.491 0.915 0.030 0.999 0.725 0.641 0.105
RAPTOR 0.246 0.394 0.664 0.107 0.993 0.567 0.2 0.198
LLM-Ref 0.958 0.556 0.950 0.112 0.987 0.650 0.564 0.300

Claude 3.5 Sonnet
Basic RAG 0.634 0.544 0.941 0.042 0.999 0.694 0.691 0.142
PDR RAG 0.702 0.550 0.942 0.015 0.999 0.762 0.723 0.055
Ens. RAG 0.799 0.601 0.945 0.027 0.993 0.741 0.741 0.096
RAPTOR 0.326 0.385 0.668 0.124 0.999 0.632 0.275 0.245
LLM-Ref 0.964 0.637 0.954 0.195 0.999 0.654 0.561 0.422

Table 5: Metric Evaluation result comparison of LLM-Ref with Basic RAG, Parent Document Retriever RAG, and
Ensemble Retrieval RAG for different LLMs. A higher value of a metric indicates better performance.

considerably higher than Basic RAG (0.765), PDR1237

RAG (0.606), and Ens. RAG (0.857). Its Answer1238

Correctness of 0.575 is on par with Ens. RAG1239

(0.572) and significantly higher than other systems,1240

reinforcing LLM-Ref’s consistent accuracy. With1241

the highest Answer Similarity (0.951) and a Ra-1242

gas Score of 0.413, LLM-Ref continues to outper-1243

form other methods. However, its Context Recall1244

(0.683) remains lower than PDR RAG (0.757) and1245

Ens. RAG (0.689), suggesting room for improve-1246

ment in extracting complete information from the1247

context. By comparison, RAPTOR achieves an1248

Answer Relevancy of 0.932, Answer Correctness1249

of 0.589, Answer Similarity of 0.948, and a Ragas1250

Score of 0.299, outperforming basic RAG variants1251

but still trailing LLM-Ref in overall precision and1252

effectiveness.1253

In the Llama 3.1-405b evaluation, LLM-Ref1254

again exhibits superior performance with an An-1255

swer Relevancy score of 0.958 and an Answer Cor-1256

rectness score of 0.556, well above Basic RAG1257

and PDR RAG, whose scores remain below 0.650.1258

Its Answer Similarity of 0.950 and Faithfulness of1259

0.564 confirm that LLM-Ref provides high-quality,1260

accurate responses while grounding its answers in 1261

relevant context. Although its Context Precision 1262

(0.987) is competitive, LLM-Ref still falls behind 1263

in Context Recall, with a score of 0.650 compared 1264

to Ens. RAG’s 0.725. The Ragas Score for LLM- 1265

Ref is 0.300, much higher than Basic RAG (0.114) 1266

and PDR RAG (0.079). In contrast, RAPTOR at- 1267

tains an Answer Relevancy of 0.246, Answer Cor- 1268

rectness of 0.394, Answer Similarity of 0.664, and 1269

a Ragas Score of 0.198, underscoring LLM-Ref’s 1270

retrieval robustness across different model architec- 1271

tures. 1272

Finally, with Claude 3.5 Sonnet, LLM-Ref main- 1273

tains its strong performance across multiple metrics. 1274

It achieves the highest Answer Relevancy of 0.964, 1275

Answer Correctness of 0.637, and Answer Sim- 1276

ilarity of 0.954, outperforming other systems by 1277

substantial margins. While it continues to deliver 1278

accurate and relevant answers, its Context Recall 1279

score of 0.654 and Faithfulness score of 0.561 re- 1280

main slightly lower compared to Ens. RAG (0.741 1281

for both). Despite this, LLM-Ref achieves the high- 1282

est overall Ragas Score of 0.422, highlighting its 1283

superior performance in generating accurate and 1284
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consistent answers across varied language models.1285

By contrast, RAPTOR records an Answer Rele-1286

vancy of 0.326, Answer Correctness of 0.385, An-1287

swer Similarity of 0.668, and a Ragas Score of1288

0.245, reinforcing the comprehensive advantage of1289

LLM-Ref.1290

Across all LLM evaluations, LLM-Ref excels in1291

delivering answers that are relevant, correct, and1292

well-aligned with the input context. Its higher Ra-1293

gas Scores across all models demonstrate its effec-1294

tiveness in handling complex retrieval tasks.1295

A.4.2 LLM-Ref with BERT1296

Table 6 compares RAG variants, LLM-Ref-L, and1297

LLM-Ref-B using an RTX 2080 GPU and a Core1298

i9-9900 CPU. For this BERT experiments, we1299

used huggingface’s default hyper-parameter con-1300

figuration. LLM-Ref-B—employing RoBERTa-1301

large for similarity—achieves strong Answer Rele-1302

vancy (0.952) and Answer Similarity (0.951), but1303

its Context Relevancy (0.090) and overall Ragas1304

Score (0.259) lag behind LLM-Ref-L (0.182 and1305

0.416, respectively), reflecting the limitations of1306

an un-fine-tuned BERT model in domain-specific1307

retrieval. Interestingly, RAPTOR—our new base-1308

line—attains an Ragas Score of 0.299, outperform-1309

ing LLM-Ref-B (0.259) by better balancing re-1310

trieval quality (Context Relevancy 0.112 vs. 0.090)1311

and faithfulness (0.602 vs. 0.594). However, RAP-1312

TOR still falls short of LLM-Ref-L across most di-1313

mensions, underscoring the benefit of LLM-based1314

similarity matching and hierarchical context extrac-1315

tion for robust, high-quality answer generation.1316

LLM-Ref-B achieves a high Answer Relevancy1317

score (0.952) and Answer Similarity score (0.951),1318

indicating its ability to retrieve and generate seman-1319

tically aligned responses. However, its Context1320

Relevancy score (0.090) is significantly lower than1321

that of LLM-Ref-L (0.182), suggesting that the1322

BERT-based retrieval mechanism struggles to iden-1323

tify the most relevant supporting contexts. This1324

limitation directly impacts its overall Ragas score1325

(0.259), which is lower than LLM-Ref-L (0.416),1326

but still higher than the baseline RAG models.1327

One of the primary reasons for LLM-Ref-B’s1328

lower performance in retrieval quality is that BERT1329

was not trained or fine-tuned for the specific do-1330

main of research article retrieval, making it less ef-1331

fective in capturing nuanced contextual dependen-1332

cies. While embedding-based models like BERT1333

provide a cost-effective alternative, their reliance1334

on pre-trained representations without task-specific1335

fine-tuning results in suboptimal performance when 1336

compared to LLM-based retrieval approaches. The 1337

drop in RAGAS score further suggests that as the 1338

number of relevant contexts decreases, LLM-Ref-B 1339

becomes less effective at retrieving and aligning 1340

information. 1341

Despite these limitations, LLM-Ref-B still out- 1342

performs baseline RAG systems, particularly in An- 1343

swer Relevancy, Faithfulness, and overall retrieval 1344

effectiveness. The results suggest that while BERT- 1345

based models offer a computationally efficient alter- 1346

native, the lack of domain adaptation hinders their 1347

ability to match the performance of LLM-based 1348

similarity computation methods. These findings 1349

reinforce the importance of hierarchical paragraph 1350

extraction and the need for fine-tuning similarity 1351

models to enhance retrieval performance. 1352

A.4.3 Stability Study 1353

As presented in Table 1 and Table 4, we provide 1354

comprehensive sets of evaluation metrics that un- 1355

derscore the effectiveness of our system. To assess 1356

our system’s performance, it is essential to consider 1357

it holistically. Specifically, the context precision 1358

and context recall metrics are crucial for evaluating 1359

the retrieval stage, while faithfulness and answer 1360

relevancy are key indicators of the system’s per- 1361

formance during the generation stage. Our met- 1362

rics demonstrate superior performance across these 1363

stages. 1364

In the content extraction stage, the process is 1365

deterministic; the system can either successfully 1366

extract text from a document or not. However, 1367

the summarization process introduces variability, 1368

as different summaries may be generated in each 1369

run, potentially impacting context extraction and 1370

the final response. To evaluate the stability of our 1371

system, we conducted multiple runs, with results 1372

indicating consistent performance with respect to 1373

Table 1 given in the paper. 1374

In the retrieval stage, unlike traditional RAG 1375

systems that typically select the top-k contexts, our 1376

approach involves retrieving all available contexts. 1377

This comprehensive retrieval method enhances the 1378

system’s ability to generate accurate responses. 1379

During the generation stage, we used a tempera- 1380

ture setting of zero, ensuring that the model relies 1381

solely on the input context to generate responses, 1382

thereby minimizing randomness. We also experi- 1383

mented with varying the temperature parameter to 1384

observe its impact on response quality, as detailed 1385

in Table 7. We observed that as the temperature set- 1386
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Name Answer
Relevancy

Answer
Correctness

Answer
Similarity

Context
Relevancy

Context
Precision

Context
Recall

Faith
fulness

Ragas
Score

Basic RAG 0.765 0.540 0.916 0.041 0.999 0.689 0.564 0.138
PDR RAG 0.606 0.482 0.875 0.033 0.993 0.569 0.524 0.112
Ens. RAG 0.857 0.572 0.939 0.027 0.993 0.757 0.668 0.096
RAPTOR 0.932 0.589 0.948 0.112 0.999 0.587 0.602 0.299

LLM-Ref-L 0.957 0.574 0.951 0.182 0.999 0.676 0.623 0.416
LLM-Ref-B 0.952 0.591 0.951 0.090 0.999 0.614 0.594 0.259

Table 6: Metric evaluation result comparison of different systems. Higher values indicate better performance. Here,
LLM-Ref-L employs an LLM for similarity computation, whereas LLM-Ref-B utilizes a BERT model.

ting increases, the model tends to incorporate more1387

of its pre-existing knowledge, which may include1388

biases from its training data, potentially impacting1389

the final Ragas score. The temperature parameter’s1390

influence on the model’s output highlights the del-1391

icate balance between utilizing retrieved context1392

and minimizing reliance on potentially biased or1393

extraneous information stored within the model.1394

Consequently, adjusting the temperature parameter1395

is crucial for maintaining the accuracy and integrity1396

of the generated responses.1397

These ablation studies highlight the robustness and1398

adaptability of our system in generating precise and1399

contextually relevant responses.1400

A.5 Prompt Designs1401

In our tool, we employ a large language model1402

(LLM) to determine contextual similarity. To1403

find the relevant contexts, we utilize the follow-1404

ing prompt (given in Figure 3) which returns ‘True’1405

when a paragraph is relevant to the query. This1406

prompt instructs the LLM to evaluate a given para-1407

graph in the context of a specific query, determining1408

if it provides direct answers or significant contri-1409

butions. Since we utilize entire paragraphs that1410

convey specific concepts, the LLM can discern rele-1411

vance to the query by understanding subtle nuances.1412

By responding with ‘True’ or ‘False’, the model1413

identifies relevant information without additional1414

explanation, thereby enhancing the accuracy and1415

efficiency of our tool.1416

To address challenges associated with long con-1417

texts, we employ an iterative approach to output1418

generation. Initially, a response is generated us-1419

ing the first context and query, utilizing the LLM1420

prompt provided in Figure 4.1421

This prompt (given in Figure 4) directs the LLM1422

to summarize and synthesize the paragraph to ad-1423

dress the query coherently. By preserving the orig-1424

inal vocabulary and style, the LLM ensures a nat-1425

You are an experienced researcher tasked
with identifying relevant

information.
Paragraph: {paragraph}
Query: {query}
Instructions: Determine whether the

paragraph provides information that
directly answers or significantly
contributes to the query.

If the paragraph is relevant to the
query , respond with 'True '. If it is
not relevant , respond with 'False '.
Provide no additional explanation.

Figure 3: Prompt to find relevant contexts to a query.

You are a researcher writing a research
paper.

** Paragraph **: {paragraph}
**Query **: {query}
** Instructions **: Summarize and

synthesize the provided paragraph to
create a cohesive and informative

paragraph that addresses the query.
Ensure the synthesis uses the vocabulary

and writing style of the original
paragraph to maintain a natural and
consistent tone.

Figure 4: Prompt used to generate the response based
on the context for query.

ural and consistent tone. This iterative approach 1426

manages long contexts and enhances the relevance 1427

and cohesiveness of the responses, improving our 1428

tool’s efficiency and accuracy. After the initial 1429

response is generated, subsequent responses are re- 1430

fined by incorporating later contexts using the fol- 1431

lowing prompt (shown in Figure 5). This iterative 1432

approach not only enhances the comprehensiveness 1433

of the synthesized output but also helps in mitigat- 1434

ing any errors present in the earlier responses. 1435

This prompt (given in Figure 5) guides the LLM 1436

to integrate new paragraph information into the ex- 1437

isting synthesis, maintaining coherence, relevance, 1438
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Impact of temperature change

Temperature Answer
Relevancy

Answer
Correctness

Context
Relevancy

Context
Precision

Context
Recall

Faith
fulness

Ragas
Score

0.0 0.94 0.72 0.44 0.29 0.71 0.44 0.57
0.05 0.94 0.71 0.40 0.27 0.74 0.40 0.54
0.1 0.95 0.71 0.44 0.28 0.70 0.44 0.56

0.15 0.93 0.67 0.35 0.24 0.65 0.37 0.49
Performance variation across different runs for the same queries

Runs Answer
Relevancy

Answer
Correctness

Context
Relevancy

Context
Precision

Context
Recall

Faith
fulness

Ragas
Score

Run 1 0.95 0.70 0.35 0.24 0.71 0.41 0.52
Run 2 0.94 0.72 0.44 0.29 0.71 0.44 0.57
Run 3 0.94 0.70 0.38 0.25 0.68 0.45 0.54

Table 7: Stability study of our proposed approach.

You are a researcher writing a research
paper.

** Existing Synthesis **: {response}
**New Paragraph **: {paragraph}
**Query **: {query}
** Instructions **: Integrate the

information from the new paragraph
into the existing synthesis to
create a cohesive and informative
paragraph that addresses the query.

Ensure the synthesis uses the vocabulary
and writing style of the original

paragraphs to maintain a natural and
consistent tone.

Figure 5: Prompt used to integrate new context into
existing responses.

and a consistent tone, while iteratively refining re-1439

sponses to address long context complexities and1440

improve the tool’s accuracy and cohesiveness.1441

Figure 6 shows a prompt directing the LLM to1442

match each line of a synthesized result with the1443

most relevant source lines from the provided para-1444

graphs. The output lists only the precisely relevant1445

source lines, enhancing the traceability and trans-1446

parency of the synthesis process by clarifying the1447

origins of each part of the synthesized result.1448

Figure 7 presents a prompt to generate questions1449

by synthesizing information from at least two of1450

three provided documents. The prompt requires for-1451

mulating questions, including exact original con-1452

text texts, and providing answers, all in a speci-1453

fied Python format. This ensures the integrity of1454

the original contexts for evaluation. Questions are1455

generated until a certain number of unique ques-1456

tions are produced, enhancing the tool’s ability to1457

synthesize information accurately across multiple1458

For a given synthesized result based on
some source paragraphs , find the
relevant source lines that are most
relevant to each line of the
synthesized result.

Synthesized result: {synthesized_result
}.

Source Paragraphs: {context }.
Just provide the source lines for each

line of synthesized result , for
example: Synthesized Line: ...
Corresponding Source Line: ... Do
not add explanation and source lines
if they are not exactly relevant.

Figure 6: Prompt for identifying the most relevant
source lines for each line in a synthesized result.

documents. 1459

A.6 Ragas Evaluation Metrics 1460

The Ragas score is computed by calculating the 1461

harmonic mean of Faithfulness (FF), Answer Rele- 1462

vancy (AR), Context Precision (CP), and Context 1463

Recall (CR). 1464

Ragas Score =
4

1
FF + 1

AR + 1
CP + 1

CR
(1) 1465

In this equation, FF stands for Faithfulness, AR 1466

represents Answer Relevancy, CP is Context Preci- 1467

sion, and CR denotes Context Recall. In the RAGs 1468

framework, Faithfulness and Answer Relevancy 1469

assess the accuracy of content generation, while 1470

Context Precision and Context Recall evaluate the 1471

effectiveness of information retrieval. Therefore, 1472

the Ragas score ensures a robust assessment of both 1473

generation and retrieval processes in RAGs. 1474
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You are an expert research scientist.
Instructions: Create a list of 150

questions (max 5 at a time) that
require using information from all
three provided input documents (or
at least two of the input documents)
. For each question , please include
the following details:

Question: Formulate a question that
integrates information from multiple
documents.

Original Context Texts: Provide the
exact contexts from the documents
that were used to create the
question , without any alterations.

Answer: Provide an answer for a research
article derived from the original

context texts.
Ensure that each question requires the

synthesis of information from
multiple documents. Maintain the
integrity of the original context
texts as they will be used later for
evaluation purposes.

Return the response in the following
python format:

data = [
{

"question ": "Question 1",
"context ": [" Context 11",

Context 12 ],
"ground_truth ": "Answer 1"

},
{

"question ": "Question 2",
"context ": [" Context 21",

Context 22 ],
"ground_truth ": "Answer 2"

},]

Please keep generating only if it is
possible to generate unique
questions that you did not generate
them before. Generate 5 questions at
a time. I want a total 150

questions.

Figure 7: Prompts for generating Question-Context-
Answer pair from source documents.

Faithfulness (FF): The Faithfulness score mea-1475

sures how relevant the statements in an answer1476

are to the provided context. Scores for this metric1477

range from 0 to 1, with higher scores indicating1478

better alignment and performance. The calculation1479

process, as defined by the Ragas framework, in-1480

volves three key steps: first, extracting statements1481

from the generated answers; second, determining1482

the contextual relevance of these statements using1483

the LLM; and third, calculating the Faithfulness1484

score by dividing the number of context-relevant1485

statements by the total number of statements. This 1486

score provides a quantifiable measure of how faith- 1487

fully the model’s answers reflect the original con- 1488

text. It is calculated as: 1489

FF =
NCS
TS

(2) 1490

Here, NCS refers to the Number of Context- 1491

Relevant Statements, and TS represents the Total 1492

Statements in the Answer. 1493

Answer Relevancy (AR): The Answer Relevance 1494

metric evaluates how closely the answers generated 1495

by a Language Learning Model (LLM) align with 1496

the original questions posed. Answers that are in- 1497

complete or redundant receive lower scores, with 1498

scores ranging from 0 to 1, where higher scores 1499

indicate better performance. The Ragas framework 1500

calculates this metric through a three-step process: 1501

first, generating pseudo-questions from both the 1502

context and the generated answer; second, calcu- 1503

lating the cosine similarity between the original 1504

question and each pseudo-question; and third, com- 1505

puting the average of these cosine similarities. This 1506

average provides a quantitative measure of how 1507

relevant the generated answers are to the original 1508

questions. 1509

AR =

∑
CS

NPQ
(3) 1510

In this context, CS denotes Cosine Similarities 1511

between pseudo-questions and the original ques- 1512

tion, and NPQ stands for the Number of Pseudo- 1513

Questions. 1514

Context Precision (CP): The Context Precision 1515

metric measures how effectively a Language Learn- 1516

ing Model (LLM) retrieves the necessary contex- 1517

tual information required to accurately answer a 1518

question. Scores for this metric range from 0 to 1, 1519

with higher scores indicating better retrieval perfor- 1520

mance. According to the Ragas framework, Con- 1521

text Precision is calculated through a two-step pro- 1522

cess: first, determining the relationship between 1523

each retrieved-context and the original question us- 1524

ing the LLM, where the context is marked as either 1525

relevant (Yes) or not (No); and second, comput- 1526

ing the Mean Average Precision (mAP) across all 1527

retrieved contexts. This score indicates how accu- 1528

rately the model retrieves relevant information to 1529

support its answers. 1530

CP = mAP (4) 1531
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Context Recall (CR): The Context Recall metric1532

evaluates how well the context retrieved by a Lan-1533

guage Learning Model (LLM) matches the Ground1534

Truth, indicating the completeness of the informa-1535

tion retrieval. Scores range from 0 to 1, with higher1536

scores reflecting better performance. The Ragas1537

framework computes this metric through a three-1538

step process: first, splitting the Ground Truth into1539

individual sentences; second, determining the rela-1540

tionship between each sub-Ground Truth sentence1541

and the retrieved context using the LLM, marking1542

each as either relevant (Yes) or not (No); and third,1543

calculating the Context Recall score by dividing the1544

number of context-relevant Ground Truth sentences1545

by the total number of Ground Truth sentences.1546

This score helps in quantifying how thoroughly the1547

model’s retrieved-context covers the Ground Truth.1548

CR =
NGTS
TGS

(5)1549

Here, NGTS stands for the Number of Ground1550

Truth Sentences inferred from the given contexts,1551

and TGS represents the Total Ground Truth Sen-1552

tences.1553

Context Relevance (CRL): The Context Rele-1554

vance metric evaluates the quality of the retrieved1555

contexts for a question. A highly relevant context is1556

important because it reduces the risk of confusing1557

the language model or prompting hallucinations,1558

and it ensures the answer can be directly justified1559

by the source text. It primarily assesses the re-1560

triever’s performance in providing useful, focused1561

evidence for the question-answering pipeline. The1562

metric is defined as:1563

CRL =
NERS
TSC

(6)1564

Here, NERS stands for the number of extracted rel-1565

evant sentences, and TSC represents the total num-1566

ber of sentences in the context. This ratio ranges1567

from 0 to 1, with 1.0 indicating a perfectly focused1568

context (every sentence in the provided context was1569

deemed needed for the answer) and lower values1570

indicating that some of the context was extraneous.1571

Answer Similarity: Answer Similarity quantifies1572

how semantically close the generated answer (re-1573

sponse) is to the ground truth answer (reference) by1574

leveraging embedding-based representations. Both1575

texts are converted into high-dimensional vector1576

representations via an embedding model. These1577

vectors are then normalized by dividing by their re-1578

spective Euclidean norms, and the cosine similarity1579

is computed as the dot product of the normalized 1580

vectors. This method ensures that the similarity 1581

measure directly reflects the semantic alignment 1582

between what is expected and what is generated. 1583

Answer Correctness: Answer Correctness is 1584

a composite evaluation metric within retrieval- 1585

augmented generation frameworks designed to as- 1586

sess whether a generated answer accurately reflects 1587

the intended content and is factually supported by 1588

the reference or ground truth. This metric operates 1589

on two main dimensions. First, it evaluates factual- 1590

ity by decomposing the answer into discrete state- 1591

ments and then verifying each against the ground 1592

truth, categorizing them as true positives, false pos- 1593

itives, or false negatives. These classifications are 1594

combined using an F-beta score, which balances 1595

precision and recall to quantify the degree of factual 1596

correctness. Second, Answer Correctness incorpo- 1597

rates a semantic similarity component that mea- 1598

sures the degree of semantic alignment between 1599

the generated answer and the reference answer us- 1600

ing embedding-based methods. The overall score 1601

is derived from a weighted average of these two 1602

components, ensuring that the answer is not only 1603

factually accurate but also semantically coherent 1604

with the expected response. 1605

A.7 Examples of Query-Answer Pairs 1606

We present additional query-answer pairs with fine- 1607

grained references extracted from LLM-Ref when 1608

different LLMs are utilized. This demonstrates the 1609

compatibility of our tool across different LLMs. 1610
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Query: Pros and Cons of Discrete vs Cascaded Systems

Answer: Discrete units in direct speech-to-speech translation (S2ST) systems offer several advantages over cascaded systems
[1-8]. Firstly, they have lower computational costs and inference latency because they require fewer decoding steps [1, 8,
10-12]. This makes them more efficient and faster in translating speech [1-3, 7, 8, 10-12]. Additionally, direct S2ST is a
natural approach for languages that do not have a writing system, as it eliminates the need for intermediate text representation.
Another benefit of direct S2ST systems with discrete units is their flexibility in training. They can be trained with or without
text transcripts, making them suitable for both written and unwritten languages [1, 6, 7, 9, 13]. This versatility allows for a
wider range of applications and language support. However, it is important to note that there is a performance gap between
direct S2ST systems with discrete units and cascaded systems. Cascaded systems, which combine speech-to-text translation
(S2T) and text-to-speech (TTS), may have an edge in terms of translation accuracy [1-3, 6, 7, 9, 13]. The paragraph does not
provide specific details about the extent of this performance gap, but it suggests that cascaded systems may outperform direct
S2ST systems in terms of translation quality. In summary, discrete units in direct S2ST systems offer advantages such as
lower computational costs, support for languages without a writing system, and flexibility in training. However, there is a
performance gap compared to cascaded systems, which may have better translation accuracy [1-3].

References:
[1] A. Lee et al., “Direct speech-to-speech translation with discrete units,” arXiv, 2021.
[2] A. Lee et al., “Textless speech-to-speech translation on real data,” arXiv, 2021.
[3] S. Popuri et al., “Enhanced Direct Speech-to-Speech Translation Using Self-supervised Pre-training and Data Augmen-

tation,” arXiv, 2022.
[4] Ye Jia et al., Direct speech-to-speech translation with a sequence-to-sequence model. Proc. Interspeech 2019.
[5] Ye Jia et al., Translatotron 2: Robust direct speech-to-speech translation. arXiv 2021.
[6] Lavie et al., “JANUS-III: Speech-to-speech translation in multiple languages.” In 1997 IEEE International Conference

on Acoustics, Speech, and Signal Processing.
[7] S. Nakamura, The ATR multilingual speech-to-speech translation system. IEEE Transactions on Audio, Speech, and

Language Processing, 2006.
[8] W. Hsu, HuBERT: Self-supervised speech representation learning by masked prediction of hidden units. arXiv preprint

arXiv:2106.07447.
[9] C. Zhang, X. Tan et al., “UWSpeech: Speech to speech translation for unwritten languages,” arXiv:2006.07926, 2020.

[10] Q. T. Do, et al., “Toward expressive speech translation: A unified sequence-to-sequence LSTMs approach for translating
words and emphasis.” In INTERSPEECH, 2017.

[11] P. D. Aguero, et al., “Prosody generation for speech-to-speech translation.” In 2006 IEEE International Conference on
Acoustics Speech and Signal Processing Proceedings, volume 1, pages I–I, 2006.

[12] G. K. Anumanchipalli et al., “Intent transfer in speech-to-speech machine translation.” In 2012 IEEE Spoken Language
Technology Workshop (SLT), 2012.

[13] A. Tjandra et al., “Speech-to-speech translation between untranscribed unknown languages.” In 2019 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), 2019.

Figure 8: Fine-grained reference samples generated by LLM-Ref when GPT-3.5 is used as the LLM.

21



Query: How does data augmentation improve speech-to-speech translation?

Answer: Data augmentation plays a crucial role in enhancing speech-to-speech translation (S2ST) systems by addressing
the challenges posed by data scarcity [1-8]. In the context of end-to-end S2T models, effective training strategies such as
multitask learning and model pre-training are complemented by data augmentation techniques, which help to enrich the
training dataset[1-4, 9-13]. This enrichment allows the models to better generalize and improve their performance, particularly
in mitigating the error propagation issues commonly encountered in traditional ASR+MT systems[1-3, 14-16]. By diversifying
the training data, data augmentation facilitates the synthesis of para-linguistic information, such as prosody and word-level
emphasis, which are essential for producing more natural and contextually appropriate translations[1-3, 17-19]. Recent
empirical findings further demonstrate that augmenting supervised S2ST data with directly mined S2ST data, particularly when
combined with speech normalization techniques, can significantly enhance the performance of textless S2ST systems[2-3].
For instance, the integration of mined data has shown to yield substantial improvements in BLEU scores across various
language pairs, indicating that the additional data not only enriches the training set but also aids in capturing variations
in speech that are difficult to model without such information.Moreover, the application of data augmentation techniques,
such as utilizing ASR, MT, and TTS models to create weakly supervised data, has been shown to effectively tackle the data
scarcity issue in S2ST. By leveraging the S2UT framework, researchers have demonstrated that large-scale self-supervised
pre-training with monolingual speech and text data, combined with data augmentation, can significantly enhance S2ST model
training [3,12]. Specifically, the use of a wav2vec 2.0 speech encoder and an mBART text decoder trained with discrete units
extracted from unlabeled speech data has proven effective [2-3, 14-16]. The incorporation of weakly supervised data from
ASR speech further increases the size of the parallel S2ST training data, leading to improved model performance[2,3]. For
example, experiments have shown that with a pre-trained wav2vec 2.0 encoder and a randomly initialized decoder, substantial
BLEU gains can be achieved, indicating that data augmentation not only enriches the training dataset but also enhances the
model’s ability to generalize across different setups, including low-resource scenarios[2-3]. Thus, through these enhancements,
data augmentation significantly contributes to the robustness and efficacy of S2ST systems, enabling them to leverage both
supervised and mined data for improved translation quality[1-2].
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[8] T. Hayashi, S. Watanabe et al., “Back-translation-style data augmentation for end-to-end asr,” in SLT, 2018.
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Figure 9: Fine-grained reference samples generated by LLM-Ref when GPT-4o-mini is used as the LLM.
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Query: Literature review on Direct speech-to-speech translation?

Answer: Direct speech-to-speech translation (S2ST) aims at translating speech from one language into speech in another
language without relying on text generation as an intermediate step. Compared to conventional cascaded approaches, which
take advantage of automatic speech recognition (ASR), machine translation (MT) or end-to-end speech-to-text translation
(S2T) followed by text-to-speech synthesis (TTS), direct S2ST has the advantage of faster inference and can support translation
between languages without text writing systems [1-12]. Recent studies have proposed various approaches to direct S2ST,
including self-supervised speech encoder pre-training with unlabeled speech data, and data augmentation techniques that
benefit S2T model training [1-3, 13-20,.]. For instance, [4] proposes to apply a self-supervised speech encoder pre-trained on
unlabeled speech to convert target speech into discrete units and build a speech-to-unit translation (S2UT) model for direct
S2ST [1-3, 5, 9-11, 15, 17, 20,.]. Self-supervised discrete targets can disentangle linguistic content from speaker identity and
prosodic information in speech, and enable opportunities for applying techniques from speech-to-text model training, such as
ASR and S2T, to direct S2ST[1-5, 10, 13 20-23]. Moreover, [6] shows that incorporating weakly supervised training data
from ASR speech can bring significant improvements to direct S2ST models[1-5, 13, 15, 20-22]. Our work builds upon these
advances and explores the effectiveness of self-supervised pre-training and data augmentation for direct S2ST models.
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Figure 10: Fine-grained reference samples generated by LLM-Ref when Llama is used as the LLM.
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