
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A DERANDOMIZATION FRAMEWORK FOR STRUCTURE
DISCOVERY: APPLICATIONS IN NEURAL NETWORKS
AND BEYOND

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding the dynamics of feature learning in neural networks (NNs) remains
a significant challenge. The work of (Mousavi-Hosseini et al., 2023) analyzes a
multiple index teacher-student setting and shows that a two-layer student attains a
low-rank structure in its first-layer weights when trained with stochastic gradient
descent (SGD) and a strong regularizer. This structural property is known to reduce
sample complexity of generalization. Indeed, in a second step, the same authors
establish algorithm-specific learning guarantees under additional assumptions. In
this paper, we focus exclusively on the structure discovery aspect and study it
under weaker assumptions, more specifically: we allow (a) NNs of arbitrary size
and depth, (b) with all parameters trainable, (c) under any smooth loss function,
(d) tiny regularization, and (e) trained by any method that attains a second-order
stationary point (SOSP), e.g. perturbed gradient descent (PGD). At the core of our
approach is a key derandomization lemma, which states that optimizing the func-
tion Ex [gθ(Wx+ b)] converges to a point where W = 0, under mild conditions.
The fundamental nature of this lemma directly explains structure discovery and has
immediate applications in other domains including an end-to-end approximation
for MAXCUT, and computing Johnson-Lindenstrauss embeddings.

1 INTRODUCTION

Neural networks (NNs) have become successful tools across different domains, demonstrating
exceptional performance in complex tasks, such as image recognition, natural language processing,
or speech synthesis (LeCun et al., 2015; Goodfellow, 2016). This broad applicability is primarily due
to their ability to learn and generalize from large datasets, enabling them to identify difficult patterns
and relationships that are difficult to capture with traditional techniques. Theoretical work in this area
focuses on various aspects, including the structure of optimization landscapes, and generalization
behavior, aiming to answer fundamental questions about why these models work as well as they do
and how they can be made more efficient and trustworthy (Arora et al., 2017; Montavon et al., 2018;
Neyshabur et al., 2018).

Since data is crucial in this line of research, teacher models have emerged in learning theory as a
formalism for structured data. Extensive research has been conducted on this topic, particularly
when the trained (student) model is a NN, offering precise and non-asymptotic guarantees in various
contexts (Zhong et al., 2017; Goldt et al., 2019; Ba et al., 2020; Sarao Mannelli et al., 2020; Zhou
et al., 2021; Akiyama & Suzuki, 2021; Abbe et al., 2022; Ba et al., 2022; Damian et al., 2022; Veiga
et al., 2022; Mousavi-Hosseini et al., 2023). Experimental evidence suggests that traditional learning
theory fails to fully explain the generalization properties of large NNs, highlighting the need for more
modern approaches (Zhang et al., 2021).

An important concept that frequently appears in modern learning theory is the implicit regularization
effect introduced by training dynamics (Neyshabur et al., 2015a). The work of (Soudry et al., 2018)
sparked a wave of recent studies investigating how gradient descent (GD) naturally tends to favor
lower-complexity models, often leading to minimum-norm and/or maximum-margin solutions even
without explicit regularization (Gunasekar et al., 2018; Li et al., 2018b; Ji & Telgarsky, 2019; Gidel
et al., 2019; Chizat & Bach, 2020; Pesme et al., 2021). However, much of this research focuses on

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

linear models or excessively wide NNs, with varying interpretations of reduced complexity and its
impact on generalization. A notable example in this context is compressibility and its relationship
to generalization (Arora et al., 2018; Suzuki et al., 2020). When a trained NN can be compressed
into a smaller model with similar predictive behavior, both models show comparable generalization
performance. This suggests that the original NN’s complexity may be understood via its simpler
compressed form, which is traditionally associated with improved generalization.

A key contribution in the area, and influence for our work, is the work of (Mousavi-Hosseini et al.,
2023), which studies the training dynamics of a two-layer NN using stochastic gradient descent (SGD)
on data drawn from a multiple-index teacher model. First, they show that low-complexity structures
emerge during training when a strong regularizer is used: on (first-order) stationary points, the first
layer weights align with key directions in the input space, the principal subspace. Low-dimensional
structure of this type is known to help with generalization (Neyshabur et al., 2015b; Bartlett et al.,
2017). As a second step, they establish GD-specific generalization guarantees under additional
assumptions. Our focus is on the first step, and the goal of this work is to answer the question:

Can we discover low-rank structure in neural networks under more natural
assumptions?

To this end, we consider a more precise and well-motivated solution concept, a ρ-approximate
second-order stationary point (ρ-SOSP), (Jin et al., 2017), see Definition 2.2 for a formal definition.
Using the properties of ρ-SOSPs, we provide a general derandomization lemma. When applied
specifically to NNs, our lemma implies that, for any arbitrarily small regularizer value, there exists a
ρ > 0 such that all ρ-SOSPs correspond to low-rank first-layer weights. Thus, we significantly relax
the sufficient conditions for uncovering this kind of structure as we allow (a) NNs of arbitrary size
and depth, (b) with all parameters trainable (including biases), (c) under any smooth loss function, (d)
arbitrarily small regularization, and (e) trained by any method that attains a ρ-SOSP, for example,
SGD with random initialization 1, PGD and Hessian descent.

Importance of training the biases. For the sake of analytical simplicity, some past work has frozen
the biases, for example in (Mousavi-Hosseini et al., 2023). Here, we show that training the biases
is necessary for derandomization to take effect. To illustrate this point, we consider the following
toy example. Let x be a one-dimensional standard Gaussian random variable, and suppose the target
label is fixed at 1, i.e., the output lies in a zero-dimensional space. We model the prediction using a
single-layer NN. The objective is to minimize the loss function:

f(w, b) = E
[(

ReLU3(wx+ b)− 1
)2]

+ λw2,

where w and b denote the weight and bias parameters, respectively, and λ > 0 is the regularizer.
Directly applying the result from (Mousavi-Hosseini et al., 2023), implies that w = 0, i.e. the
solution lies on a zero-dimensional space. However, this solution is evidently suboptimal when b ̸= 1.
Consequently, enforcing this behavior requires an artificially large regularization λ. We illustrate this
phenomenon in Figure 1 where the minimizer w∗ approaches zero only under large values of λ.

In contrast, our analytical approach, which allows the training of biases, avoids this drawback by
considering ρ-SOSPs. Instead of requiring an artificially large regularization parameter to explain
this structural behavior (w = 0), we only need a tiny amount of regularization, as shown in Figure 2,
because the bias term can adjust to b = 1. This shows that freezing the biases places an unnecessary
restriction, whereas allowing them to be trained explains the phenomenon more directly and under
milder conditions.

Discussion on ρ-SOSPs. Training the biases allows for smaller regularizers, but proving low-rank
solutions remains challenging. In (Mousavi-Hosseini et al., 2023), a strong regularizer is used to show
that no first-order stationary point (FOSP) can be high-rank; without it, higher-rank FOSPs may exist.
We address this analytical challenge by exploiting the extra properties of ρ-SOSPs, which bound the
negative curvature. The ρ-SOSP solution concept excludes all but the flattest of saddle points, in
other words, a ρ-SOSP is more likely to be a local minimum than the corresponding approximate
FOSP. Using this, we show that for sufficiently small ρ, the only valid solutions are low-rank.

1It is an open question whether this can be done efficiently, but empirical results on NNs strongly support
this behavior.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Plot of the global minimizer of
f(w, 0) = E[(ReLU3(wx) − 1)2] + λw2 as a
function of the regularization parameter λ.

Figure 2: Optimal w vs. λ for f(w, b) =
E[(ReLU3(wx+ b)− 1)2] + λw2 when biases
are trained. The solid line shows convergence to
0 at an exact SOSP.

We remark that our focus is on the landscape of the objective (Equation 1), not specific optimization
methods. Importantly, ρ-SOSPs capture the solutions reached by standard algorithms: GD/SGD
almost surely avoid strict saddles (Panageas et al., 2019), and PGD (Jin et al., 2017) guarantees
efficient convergence to ρ-SOSPs. Crucially, all local minima are ρ-SOSPs. Furthermore, empirical
observations show that gradient-based methods reliably reach good minima while avoiding saddles (Li
et al., 2018a; Zhou et al., 2020) and that these solutions have good learning properties. Thus, the
focus on ρ-SOSPs is well motivated as it captures the types of solutions seen in practice and theory,
while also providing a framework to study the mechanisms of implicit regularization.

Summary of our contributions. Our key contributions can be summarized as follows:

We consider a general family of functions of the form:

f(W , b; θ) = Ex [gθ(Wx+ b)] + λ∥W ∥2F , (1)

where W ∈ Rk×d, b ∈ Rk, x ∼ N (0, Id), gθ(·) : Rk → R denotes a parameterized nonlinear
function and λ > 0 is a regularization parameter. This formulation is highly general and encompasses
a wide range of applications, including the population risk of NNs of arbitrary depth and architecture,
under any smooth loss functions.

Below we present our key derandomization lemma, which forms the foundation of our results, stated
informally as follows:

Informal version of Lemma 3.1 Let f be a twice differentiable function in the form of Equation 1,
where x ∼ N (0, Id). Then, all SOSPs of f satisfy W = 0.

Structure discovery in NNs. We first show that the regularized risk of any NN can be expressed as
a function of the form in Equation 1. Then, by applying our key derandomization lemma, we establish
that in the teacher-student setting any ρ-SOSP solution of the risk yields a first-layer weight matrix
W which is near low-rank. This type of structure is closely associated with improved generalization
performance as shown in (Mousavi-Hosseini et al., 2023). In this paper, our express focus is on
providing guarantees for structure discovery under much broader and more minimal assumptions,
thereby capturing a wider class of models and cases of arbitrarily weak regularization.

In other words, our main result as applied to NNs suggests a new explanation for parsimony even
with weak regularizers. Recall that standard methods like SGD, GD, or PGD are known to escape
saddle points; when that happens, our results guarantee a solution with good structure (i.e. low rank).

Our results in other domains. Due to the generality of our derandomization lemma we obtain
strong theoretical results across domains. For example, we get (i) a deterministic MAXCUT ap-
proximation matching the randomized guarantee of (Goemans & Williamson, 1995), and (ii) a
deterministic construction for learning Johnson-Lindenstrauss (JL) embeddings (Johnson et al., 1984).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In the case of MAXCUT, our contribution is to show that derandomization can be achieved via
simple gradient-based optimization, without relying on explicit combinatorial constructions or pseu-
dorandom generators. To the best of our knowledge, this is the first optimization-based approach for
derandomizing the Goemans-Williamson algorithm, and we view it as a conceptual contribution that
enriches the literature on derandomization. In the case of JL, we match the state-of-the-art result
of (Tsikouras et al., 2024) further demonstrating the generality of our lemma. We expect the same
approach to extend to other domains.

2 NOTATION AND PRELIMINARIES

Notation. For vectors u,v we use ⟨u,v⟩ or u · v to denote their inner product and ∥u∥2 to denote
the L2 norm. For matrix M ∈ Rk×d, we denote the element of the ith row and jth column by
µi,j and we use ∥M∥F to denote the Frobenius norm. We use ∇f and ∇2f to denote the gradient
and Hessian operators, respectively. Additionally, we use A ∼ N (M ,Σ), where M = (µi,j) and
Σ = (σi,j) to indicate that A = (ai,j) is a matrix with independent random entries, and each entry
follows ai,j ∼ N(µi,j , σi,j). Using this notation we can write A = M + Z, where Z ∼ N (0,Σ).

Definition 2.1. A twice differentiable function f : Rd → R is defined to be L-smooth, if for all
x,y ∈ Rd it satisfies:

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2.
The function is K-Hessian Lipschitz if for all x,y ∈ Rd:

∥∇2f(x)−∇2f(y)∥2 ≤ K∥x− y∥2.

Below, we give the definition for approximate stationarity.
Definition 2.2 (Approximate second-order stationarity). For a K-Hessian Lipschitz function f(·),
we say that a point x∗ is a ρ-second-order stationary point (ρ-SOSP) if:

∥∇f(x∗)∥2 ≤ ρ and λmin(∇2f(x∗)) ≥ −
√

Kρ.

Assumption 2.3. The function is both L-smooth and K-Hessian Lipschitz.

Provided Assumption 2.3 holds, Algorithm 1 converges to a ρ-SOSP in O(1/ρ2) iterations with
high probability (Jin et al., 2017). Alternatively, Algorithm 2 achieves a deterministic ρ-SOSP in
O(1/ρ1.5) iterations (Tsikouras et al., 2024), but requires Hessian access.

3 MAIN CONTRIBUTION: KEY DERANDOMIZATION LEMMA

In this section, we prove that convergence to SOSPs is a sufficient condition for derandomization. Let
W ∈ Rk×d, b ∈ Rk, gθ(·) : Rk → R be a function satisfying Assumption 2.3, and let x ∼ N (0, Id).
We analyze the behavior of the following objective function at its SOSPs:

f(W , b; θ) = Ex[gθ(Wx+ b)] + λ∥W ∥2F , (2)

where λ > 0 is an arbitrarily small regularization parameter. Our main result is presented below.
Lemma 3.1 (Key Derandomization Lemma). Let x ∼ N (0, Id) be a standard multivariate Gaussian
random variable. For the objective function defined in Equation 2, with λ >

√
Kρ
2 where gθ(·)

satisfies Assumption 2.3, any ρ-SOSP satisfies ∥W ∥F ≤ ρ
2λ−

√
Kρ

.

Proof sketch: The key observation is that applying Stein’s Lemma (Stein, 1973; 1981) relates
the second derivative of b with the first derivative of W . This allows us to express the first-order
conditions for W in terms of expectations involving the second derivatives of gθ. Using these
relations and an approximate first-order optimality condition, we derive the required bound on the
Frobenius norm of W . Full proof can be found in Appendix A.1.
Remark 3.2. Note that achieving a perfect SOSP (i.e. ρ = 0), would result in W = 0; the proof of
this is in Appendix A.2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This result shows that when the objective function takes the form given in Equation 2, a common
structure in practice, it is possible to improve it by minimizing the inherent randomness. Since the
input x is random, having a small ∥W ∥F , ensures that Wx remains small on average, so the values
of gθ(Wx+ b) vary less. In other words, second-order stationarity implies that the randomness in
the objective function is effectively decreased. We illustrate the implications of this result by applying
it to three distinct examples from different fields, as demonstrated in the following sections. We
emphasize that the ρ-SOSP is taken with respect to all model parameters, see Appendix B for further
discussion.

It is important to note that a tiny amount of regularization is necessary to ensure a well-defined
solution in this lemma. Without it, choosing the function gθ(wx+ b) = 0, would result in all w ∈ R
being local minima, as the objective provides no preference among these values. Introducing a tiny
regularization term λ eliminates this ambiguity by penalizing non-zero weights, thereby enforcing
w = 0 as the unique optimal solution.

Additionally, λ is fully controllable by ρ which is set prior to the optimization process. As a result,
it is possible to use arbitrarily small regularization, provided one is willing to incur the additional
cost of executing the optimization algorithm for a greater number of steps. We emphasize this
point to remind the reader that only a minimal amount of regularization is necessary. Therefore, the
regularization term itself is not the primary factor influencing the outcome; rather, it is the interaction
between the second derivative of b and the first derivative of W that plays a more significant role in
the optimization process.

It is important to clarify that Lemma 3.1 serves as a structure discovery result rather than an
optimization result. In particular, our focus lies not on the specific optimization algorithm employed,
but rather on establishing that any solution satisfying the ρ-SOSP condition necessarily reveals
structure. There might be different methods under many different sets of assumptions that yield
a ρ-SOSP solution, even in more practical and realistic finite-sample regimes. Nonetheless, for
completeness, we note that PGD (Jin et al., 2017), originally developed for deterministic objectives
such as the population risk, has been shown to efficiently yield ρ-SOSP solutions in polynomial time
in stochastic and finite-sample regimes (see Theorem 15 in (Jin et al., 2018)).

4 STRUCTURE DISCOVERY IN NEURAL NETWORKS

In this section, we present our primary application, which builds on the central derandomization
Lemma 3.1. Our approach extends the work of (Mousavi-Hosseini et al., 2023), which demonstrated
a key insight: the convergence of the first-layer weights to a low-dimensional subspace. We refine
and generalize these results to a broader setting. Let x ∈ Rd, be a standard Gaussian distribution
x ∼ N (0, Id). The target labels are generated by a multiple-index teacher model of the form:

y = h(⟨u1,x⟩, . . . , ⟨uk,x⟩; ϵ) ≡ h(Ux; ϵ), (3)

where h : Rk+1 → R is a weakly differentiable link function and ϵ represents additive noise.

For any vector v ∈ Rd, let v∥ denote its orthogonal projection onto span(u1, . . . ,uk), and define
v⊥ := v − v∥. For a matrix W ∈ Rk×d, we define W∥ and W⊥ by projecting each row of W
similarly. Using this notation, we rewrite the labeling function to depend only on the x∥ component:

y = h(Ux) = h′(x∥).

Our goal is to show that the perpendicular component W⊥ converges to zero, implying that the
first-layer weight matrix W lies entirely in the teacher subspace.

(Mousavi-Hosseini et al., 2023) showed that, under certain conditions, training only the first-layer
weights of a two-layer NN suffices to ensure convergence to the low-dimensional principal subspace
defined by the teacher model. We extend this result by showing that training the first-layer bias is
also essential. Including the bias enables a simpler and more direct analysis of the training dynamics.

This expanded approach allows us to establish convergence guarantees under significantly more
general conditions, including: (a) arbitrary regularization parameters λ > 0 (resolving an open
question in earlier work), (b) arbitrary NN size and depth, (c) all parameters being trainable (including
biases), and (d) any choice of smooth loss function.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.1 DISCOVERING STRUCTURE IN NEURAL NETWORKS VIA SOSPS

Let W ∈ Rk×d and b ∈ Rk, and consider the first layer of a NN given by Wx+ b. We decompose
this expression into components that are parallel and perpendicular to a subspace U , as follows:

Wx+ b = W∥x∥ +W⊥x⊥ + b, (4)

since W⊥x∥ = 0 and W∥x⊥ = 0 due to orthogonality.

Now define the NN’s prediction as ŷ(x;W , b, θ) = gθ(Wx+ b), where gθ(·) is a NN of arbitrary
size and depth, parameterized by θ, which satisfies Assumption 2.3. Given a loss function ℓ(y, ŷ) that
also satisfies Assumption 2.3, and a regularization parameter λ > 0, we define the regularized risk as:

R(W , b; θ) := Ex [ℓ (y, ŷ(x;W , b, θ))] + λ∥W ∥2F . (5)

As shown in Appendix C, Equation 5 can be reformulated in a way that enables direct application
of Lemma 3.1. In particular, this reformulation expresses the regularized risk as a function of the
perpendicular components:

R(W⊥, b; θ
′) = Ex⊥ [ℓ′θ′ (W⊥x⊥ + b)] + λ∥W⊥∥2F . (6)

In this form, the parallel and perpendicular components are fully decoupled. The modified loss
ℓ′θ′ implicitly depends on the parallel components, the corresponding regularization, and all other
parameters of the NN. By applying Lemma 3.1, we conclude that ∥W⊥∥F can be made arbitrarily
small, implying that the perpendicular components are effectively suppressed during training.
Theorem 4.1. Consider an arbitrary NN of any size and depth that satisfies Assumption 2.3, and
a loss function that also satisfies this assumption. Let the input data x ∼ N (0, Id) be a standard
multivariate Gaussian distribution, and the labels generated according to Equation 3. If we minimize
Equation 6 with respect to (W , b), then for any precision parameter ρ and regularization parame-
ter λ >

√
Kρ
2 , where K denotes the Hessian Lipschitz constant of the objective, all ρ-SOSPs satisfy

the inequality:
∥W⊥∥F ≤

ρ

2λ−
√
Kρ

.

Proof. Since both the NN and the loss function are smooth and Hessian Lipschitz, their composition
inherits these properties. The result then follows directly from Lemma 3.1.

The result establishes the theoretical validity of our approach but is qualitative in nature, as it does not
specify the number of steps required for optimization. To complement this, we provide a quantitative
result demonstrating that the objective function can be minimized efficiently.
Theorem 4.2. Let the objective function in Equation 5 be twice differentiable, bounded below,
and satisfies Assumption 2.3. Let the data x ∼ N (0, Id), and suppose labels are generated
according to Equation 3. Let ρ > 0 be a prespecified accuracy, and define the regularization
parameter λ =

√
Kρ+∆
2 , where K is the Hessian Lipschitz constant of the objective and ∆ > 0

is an arbitrarily small constant. Then, with probability 1 − δ, running Algorithm 1 for T >
O
(
poly

(
L, log(d), log(δ), ε−1,∆−1

))
iterations with a step size O(1/L), yields a weight matrix

W = W⊥ +W∥ that satisfies:
∥W⊥∥F < ε.

Proof. Full proof can be found in Appendix D.1.

This result demonstrates that, with a number of samples that scales with the Hessian Lipschitz
constant, PGD can effectively generate iterates that are as close to the principal subspace as required.
This allows the model to learn low-dimensional representations, and introduce an implicit bias
toward simpler, lower-complexity solutions. The discovery of structure appears to be an inherent
characteristic of this optimization process for problems of this nature. This convergence to a low-
dimensional solution is often linked with the generalization behavior of NNs (Neyshabur et al., 2015b;
Bartlett et al., 2017; Arora et al., 2018; Suzuki et al., 2020; Mousavi-Hosseini et al., 2023). We
do not attempt to establish generalization guarantees here, as such results would require additional
assumptions on the data distribution or the hypothesis class. Instead, our contribution is to provide

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

guarantees for structure discovery under broader and more minimal conditions, thereby extending the
potential applicability of these ideas to a wider range of models.

Our results pertain to NNs with smooth activation functions; here we discuss the wide practical appli-
cability of this family of networks. Smooth nonlinearities are widely used in modern architectures,
and there is no strong evidence that non-smooth activations outperform their smooth counterparts.
For example, BERT adopts the Gaussian Error Linear Unit (GELU) (Hendrycks & Gimpel, 2016;
Devlin et al., 2019), a smooth activation that has been shown to benefit from this choice compared
with non-smooth alternatives. Thus, our assumption is aligned with standard practice. We provide
additional insights for the non-smooth ReLU case by employing a smooth approximation in the next
section.

4.2 THE CASE FOR RELU

The non-smoothness of ReLU poses challenges for our framework. To ensure the smoothness and
Hessian Lipschitz continuity needed for defining ρ-SOSPs, we use a smooth approximation of ReLU:

ReLUι(x) =
1

ι
log (1 + eιx) .

As ι → ∞, the function converges to the standard ReLU. Moreover, it is ι
4 -gradient Lipschitz

and
√
3ι2

9 -Hessian Lipschitz, ensuring that our framework remains valid for any smooth ReLU
approximation. In this sense, ReLUι captures the essential behavior of ReLU while enabling
theoretical guarantees. To show the dependence on ι we give the following theorem, regarding a one
layer NN using activation function ReLUι(·).
Theorem 4.3. Assume that the data x ∼ N (0, Id), and labels are generated according to Equa-
tion 3. Additionally, consider the NN a⊤ReLUι(Wx+ b) and the objective in Equation 5, which
is twice differentiable, bounded below, and satisfies Assumption 2.3, with gradient and Hessian
Lipschitz constants Lℓ and Kℓ, respectively. Let ρ > 0 be a prespecified accuracy and define
the regularization parameter λ =

√
Kρ+∆
2 , where K = O(ι2Kℓ) is the overall Hessian Lipschitz

constant and ∆ > 0 is arbitrarily small. Then, with probability 1 − δ, running Algorithm 1 for
T > O

(
poly

(
ι, Lℓ, log(δ), ε−1,∆−1

))
iterations, with a step size O(1/(ιLℓ)), yields a weight

matrix W = W⊥ +W∥ that satisfies:

∥W⊥∥F < ε.

Proof. This is a direct application of Theorem 4.2. The composition of the objective with ReLUι

satisfies Assumption 2.3 and is lower bounded.

4.3 NEURAL NETWORKS EXPERIMENTS

In this section, we empirically validate our theoretical
framework by showing that the student network con-
verges to the principal subspace. The teacher network
is a single-index model that generates outputs accord-
ing to y = tanh(θ · x) + noise, where x ∈ R2 and
θ = 1√

2
(1, 1)⊤ is a fixed direction. The student net-

work attempts to learn this mapping using a two-layer
NN of the form

y = a⊤ReLU2(Wx+ b),

where W ∈ Rh×d, b ∈ Rh, and a ∈ Rh is the second
layer. Full details can be found in Appendix E.
We observe that the randomly initialized first layer
weights converge to the principal subspace, as is ev-
ident in Figure 3. This highlights that, even starting
from random initialization, W recovers the signal de-
fined by the teacher network.

Figure 3: Two-layer ReLU2 network of
width h = 1000 and d = 2 for the
task of recovering a tanh single-index
teacher model. We observe convergence
of weights W to the principal subspace.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 OTHER APPLICATIONS

5.1 MAXCUT

The MAXCUT problem is a classical combinatorial optimization problem that seeks to partition the
vertices of a graph G = (V,E) into two disjoint sets, S and T , such that the sum of the weights of the
edges crossing between S and T is maximized. The objective function for the MAXCUT problem is:

Maximize:
∑

(i,j)∈E

wij(1− xixj)

2
, subject to xi ∈ {−1, 1}, ∀i ∈ V.

where wij denotes the weight of the edge (i, j) and the term 1− xixj equals 1 if edge (i, j) crosses
the cut and 0 otherwise. We follow the common assumption that wi,j = 1. This is a combinatorial
optimization problem that is NP-complete (Karp, 1972).

To make the problem more tractable, (Goemans & Williamson, 1995) proposed using a semidefinite
program (SDP) relaxation. In this relaxation, the discrete MAXCUT problem is lifted to a continuous
one by representing each vertex i as a unit vector vi ∈ Rm on the unit sphere, where m is the number
of nodes in the graph. The algorithm first solves the SDP to obtain these vectors. It then applies a
randomized rounding procedure to map the continuous solution back to a discrete cut: a standard
Gaussian vector z ∼ N (0, Im) is sampled, and each vertex is assigned to one of the two sets S or T
based on the sign of the inner product ⟨vi, z⟩.
We aim to approximate the MAXCUT problem by derandomizing this rounding algorithm. Let
V ∈ Rm×m be the matrix of SDP vectors. Define V z + µ, where z ∼ N (0, Im) and µ ∈ Rm is
a mean vector. Our goal is to minimize the negative expected cut value, leading to the regularized
objective function:

f(V ,µ) = −
∑
i<j

wi,j Pr [sgn(vi · z + µi) ̸= sgn(vj · z + µj)] + λ∥V ∥2F . (7)

Remark 5.1. The probability term in Equation 7 can be interpreted as the expectation of an indicator
function for the event inside the probability. To allow the application of Lemma 3.1, we replace this
indicator function with a smooth ϵ-approximation, as described in Appendix F.1.

We now present our main result on the derandomization of the randomized MAXCUT algorithm.
Theorem 5.2 (Derandomized Approximation for MAXCUT). Let G = (V,E) be a graph with m
edges, where the edge weights are given by wi,j = wj,i = 1 for all (i, j) ∈ E. Let V ∈ Rm×m

be the matrix of vectors obtained from the SDP relaxation of the MAXCUT problem, as described
in (Goemans & Williamson, 1995). Denote by z ∼ N (0, Im) a standard multivariate Gaussian
vector, and let µ represent a vector of means. Initialize Algorithm 1 with µ = 0, and optimize the
ϵ-smoothed version of the objective function in Equation 7 (see Equation 27), using the regularization

parameter λ =

√
ρ/ϵ3+∆

2 , and run for T = O
(
poly

(
log(m), log(δ), ϵ−1,∆−1

))
iterations. After

this optimization process, the resulting vector µ defines a cut whose value is guaranteed to be at
least:

OPT(α−O(ϵ)),

with probability 1− δ. Here, α = 0.878 is the approximation factor from (Goemans & Williamson,
1995).

Proof. Full proof can be found in Appendix F.1.

To the best of our knowledge, this work is the first optimization-based derandomization of the
MAXCUT problem: rather than relying on the method of conditional expectations, small-bias spaces,
or explicit pseudorandom constructions (Naor & Naor, 1990; Motwani & Raghavan, 1995; Mahajan
& Ramesh, 1995). The empirical results of our approach for MAXCUT can be found in Appendix F.2.

5.2 JOHNSON-LINDENSTRAUSS EMBEDDINGS

The JL Lemma is a well-known result in the field of dimensionality reduction (Johnson et al., 1984).
Specifically, consider unit norm data points x1, . . . ,xn ∈ Rd, which we aim to project into k

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

dimensions while preserving their norms with at most ε-distortion. Here, the distortion is given by
ε = O

(√
log n/k

)
. A detailed description of the JL Lemma is given in Appendix G.1. In this

context, we are interested in finding matrices that satisfy the JL guarantee:
Definition 5.3 (JL guarantee). The JL guarantee states that for given dataset x1, . . . ,xn ∈ Rd and
target dimension k, the distortion for all points does not exceed O(

√
log n/k).

Significant research has been dedicated to improving the construction of random projections (Indyk
& Motwani, 1998; Achlioptas, 2001; Matoušek, 2008). In contrast to these traditional methods, our
approach recovers the result from (Tsikouras et al., 2024), which proposes learning the linear mapping
directly from the data, deterministically. Other derandomization methods for JL include (Engebretsen
et al., 2002; Meka & Zuckerman, 2010).

Let A be a random matrix whose entries ai,j are independently drawn from a Gaussian distribution
with means µi,j and variances σ2

i,j . Let Σ denote the matrix collecting these variances. Our goal is to
minimize the following quantity:

Pr

(
max

i=1,...,n

∣∣∥Axi∥22 − 1
∣∣ > ε

)
+
∥Σ1/2∥2F

2kd
, (8)

which represents the probability that the maximum distortion across all input vectors exceeds a
prescribed threshold ε, augmented by a regularization term that penalizes large variances. Notably,
the regularizer vanishes as Σ→ 0, recovering a deterministic transformation in the limit.

As shown in Appendix G.1, we use a union bound to relax the original objective in Equation 8,
reducing it to an equivalent surrogate objective:

f
(
Σ1/2,µ

)
=

n∑
i=1

Pr

(∣∣∣∣∥∥∥(Σ1/2z + µ
)
xi

∥∥∥2
2
− 1

∣∣∣∣ > ε

)
+

∥∥Σ1/2
∥∥2
F

2kd
, (9)

where z ∼ N (0, Ikd). The optimization is performed over the parameters (Σ1/2,µ).
Remark 5.4. The probability term in Equation 9 can be interpreted as the expectation of an indicator
function for the event inside the probability. To allow the application of Lemma 3.1, we replace this
indicator function with a smooth ε1-approximation, as described in Appendix G.3.

We now present our main result on the derandomization of the JL Lemma.
Theorem 5.5. Let n be unit vectors in Rd, k be the target dimension, ϵ be a smoothening parameter
and ∆ > 0 be an accuracy parameter. For any ε ≥ C

√
log n/k, where C is a sufficiently large

constant, initialize M = 0 and Σ = Ikd and run Algorithm 1 to optimize the ε1-smoothed
version of the objective function in Equation 9 (see Equation 27) using the regularization parameter

λ =

√
ρ/ϵ3+∆

2 . After T = O
(
poly

(
n, k, d, log(δ),∆−1

))
iterations, this returns a matrix M that

satisfies the JL guarantee with distortion at most O(ε), with probability 1− δ.

Proof. Full proof can be found in Appendix G.4.
The empirical results of our approach for JL can be found in Appendix G.5.

6 CONCLUSION

We study the theoretical properties of NNs under specific conditions, showing they can discover
low-rank structures. Building on (Mousavi-Hosseini et al., 2023), we extend their framework to allow
(a) NNs of arbitrary size and depth, (b) all parameters trainable, (c) any smooth loss function, and (d)
minimal regularization. The core of our analysis is the derandomization Lemma 3.1, which ensures
effectiveness even with small regularization. Training biases is a common practice, and our theory
guarantees that it can improve model performance. The strength of our lemma is demonstrated in
three applications, mainly in NNs and secondarily in MAXCUT and JL embeddings.

Finally, we outline some limitations of our current work and suggest future research directions. Our
results rely on the assumption that the input distribution is Gaussian. Extending these findings to
other distributions is an interesting avenue for future research. Additionally, it would be valuable to
explore connections between our theoretical results and the learning and generalization guarantees
that are observed in practice.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Emmanuel Abbe, Enric Boix-Adsera, Matthew S Brennan, Guy Bresler, and Dheeraj Nagaraj. The
staircase property: How hierarchical structure can guide deep learning. Advances in Neural
Information Processing Systems, 34:26989–27002, 2021.

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: a
necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural
networks. In Conference on Learning Theory, pp. 4782–4887. PMLR, 2022.

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. Sgd learning on neural networks:
leap complexity and saddle-to-saddle dynamics. In The Thirty Sixth Annual Conference on
Learning Theory, pp. 2552–2623. PMLR, 2023.

Dimitris Achlioptas. Database-friendly random projections. In Proceedings of the twentieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 274–281, 2001.

Shunta Akiyama and Taiji Suzuki. On learnability via gradient method for two-layer relu neural
networks in teacher-student setting. In International Conference on Machine Learning, pp. 152–
162. PMLR, 2021.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence
embeddings. In International conference on learning representations, 2017.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for deep
nets via a compression approach. In International conference on machine learning, pp. 254–263.
PMLR, 2018.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on
non-convex losses from high-dimensional inference. Journal of Machine Learning Research, 22
(106):1–51, 2021.

Jimmy Ba, Murat Erdogdu, Taiji Suzuki, Denny Wu, and Tianzong Zhang. Generalization of
two-layer neural networks: An asymptotic viewpoint. In International conference on learning
representations, 2020.

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
Advances in Neural Information Processing Systems, 35:37932–37946, 2022.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hidden
progress in deep learning: Sgd learns parities near the computational limit. Advances in Neural
Information Processing Systems, 35:21750–21764, 2022.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. Advances in neural information processing systems, 30, 2017.

Raphaël Berthier, Andrea Montanari, and Kangjie Zhou. Learning time-scales in two-layers neural
networks. Foundations of Computational Mathematics, pp. 1–84, 2024.

Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index models with
shallow neural networks. Advances in Neural Information Processing Systems, 35:9768–9783,
2022.

Alberto Bietti, Joan Bruna, and Loucas Pillaud-Vivien. On learning gaussian multi-index models
with gradient flow. arXiv preprint arXiv:2310.19793, 2023.

Guillaume Braun, Minh Ha Quang, and Masaaki Imaizumi. Learning a single index model from
anisotropic data with vanilla stochastic gradient descent. arXiv preprint arXiv:2503.23642, 2025.

Sitan Chen and Raghu Meka. Learning polynomials in few relevant dimensions. In Conference on
Learning Theory, pp. 1161–1227. PMLR, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Siyu Chen, Beining Wu, Miao Lu, Zhuoran Yang, and Tianhao Wang. Can neural networks achieve
optimal computational-statistical tradeoff? an analysis on single-index model. In The Thirteenth
International Conference on Learning Representations, 2025.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. Advances in neural information processing systems, 31, 2018.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on learning theory, pp. 1305–1338. PMLR, 2020.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, 32, 2019.

Alex Damian, Loucas Pillaud-Vivien, Jason D Lee, and Joan Bruna. Computational-statistical gaps
in gaussian single-index models. arXiv preprint arXiv:2403.05529, 2024.

Alex Damian, Jason D Lee, and Joan Bruna. The generative leap: Sharp sample complexity for
efficiently learning gaussian multi-index models. arXiv preprint arXiv:2506.05500, 2025.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
with gradient descent. In Conference on Learning Theory, pp. 5413–5452. PMLR, 2022.

Amit Daniely and Eran Malach. Learning parities with neural networks. Advances in Neural
Information Processing Systems, 33:20356–20365, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. Ag-
nostically learning multi-index models with queries. In 2024 IEEE 65th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 1931–1952. IEEE, 2024.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2018.

Rishabh Dudeja and Daniel Hsu. Learning single-index models in gaussian space. In Conference On
Learning Theory, pp. 1887–1930. PMLR, 2018.

Lars Engebretsen, Piotr Indyk, and Ryan O’Donnell. Derandomized dimensionality reduction with
applications, 2002. Manuscript, Carnegie Mellon University.

Spencer Frei, Yuan Cao, and Quanquan Gu. Agnostic learning of a single neuron with gradient
descent. Advances in Neural Information Processing Systems, 33:5417–5428, 2020.

David Gamarnik, Eren C Kızıldağ, and Ilias Zadik. Stationary points of shallow neural networks
with quadratic activation function. arXiv preprint arXiv:1912.01599, 2019.

Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers of low-degree polynomials
in the non-degenerate case. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pp. 889–899. IEEE, 2020.

Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete gradient
dynamics in linear neural networks. Advances in Neural Information Processing Systems, 32,
2019.

Margalit Glasgow. Sgd finds then tunes features in two-layer neural networks with near-optimal
sample complexity: A case study in the xor problem. arXiv preprint arXiv:2309.15111, 2023.

Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):
1115–1145, 1995.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sebastian Goldt, Madhu Advani, Andrew M Saxe, Florent Krzakala, and Lenka Zdeborová. Dynamics
of stochastic gradient descent for two-layer neural networks in the teacher-student setup. Advances
in neural information processing systems, 32, 2019.

Ian Goodfellow. Deep learning, 2016.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on
linear convolutional networks. Advances in neural information processing systems, 31, 2018.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604–613, 1998.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
Conference on learning theory, pp. 1772–1798. PMLR, 2019.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle
points efficiently. In International conference on machine learning, pp. 1724–1732. PMLR, 2017.

Chi Jin, Lydia T Liu, Rong Ge, and Michael I Jordan. On the local minima of the empirical risk.
Advances in neural information processing systems, 31, 2018.

William B Johnson, Joram Lindenstrauss, et al. Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

Richard M Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W.
Thatcher (eds.), Complexity of Computer Computations, pp. 85–103. Springer, 1972.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Jason D Lee, Kazusato Oko, Taiji Suzuki, and Denny Wu. Neural network learns low-dimensional
polynomials with sgd near the information-theoretic limit. Advances in Neural Information
Processing Systems, 37:58716–58756, 2024.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. Advances in neural information processing systems, 31, 2018a.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference On Learning Theory,
pp. 2–47. PMLR, 2018b.

Cosme Louart, Zhenyu Liao, and Romain Couillet. A random matrix approach to neural networks.
The Annals of Applied Probability, 28(2):1190–1248, 2018.

Sanjeev Mahajan and Hariharan Ramesh. Derandomizing semidefinite programming based approxi-
mation algorithms. In Proceedings of IEEE 36th Annual Foundations of Computer Science, pp.
162–169. IEEE, 1995.

Arvind Mahankali, Haochen Zhang, Kefan Dong, Margalit Glasgow, and Tengyu Ma. Beyond ntk
with vanilla gradient descent: A mean-field analysis of neural networks with polynomial width,
samples, and time. Advances in Neural Information Processing Systems, 36:57367–57480, 2023.

Simon Martin, Francis Bach, and Giulio Biroli. On the impact of overparameterization on the
training of a shallow neural network in high dimensions. In International Conference on Artificial
Intelligence and Statistics, pp. 3655–3663. PMLR, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiří Matoušek. On variants of the johnson–lindenstrauss lemma. Random Structures & Algorithms,
33(2):142–156, 2008.

Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
asymptotics and the double descent curve. Communications on Pure and Applied Mathematics, 75
(4):667–766, 2022.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold functions.
In Proceedings of the Forty-second ACM Symposium on Theory of Computing, pp. 427–436, 2010.

Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting and
understanding deep neural networks. Digital signal processing, 73:1–15, 2018.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

Alireza Mousavi-Hosseini, Sejun Park, Manuela Girotti, Ioannis Mitliagkas, and Murat A Erdogdu.
Neural networks efficiently learn low-dimensional representations with sgd. In The Eleventh
International Conference on Learning Representations, 2023.

Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and applications.
In Proceedings of the twenty-second annual ACM symposium on Theory of computing, pp. 213–223,
1990.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning. International Conference on Machine Learning,
2015a.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In Conference on learning theory, pp. 1376–1401. PMLR, 2015b.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards
understanding the role of over-parametrization in generalization of neural networks. arXiv preprint
arXiv:1805.12076, 2018.

Kazusato Oko, Yujin Song, Taiji Suzuki, and Denny Wu. Learning sum of diverse features: com-
putational hardness and efficient gradient-based training for ridge combinations. arXiv preprint
arXiv:2406.11828, 2024.

Ioannis Panageas, Georgios Piliouras, and Xiao Wang. First-order methods almost always avoid
saddle points: The case of vanishing step-sizes. Advances in Neural Information Processing
Systems, 32, 2019.

Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of sgd for diagonal linear
networks: a provable benefit of stochasticity. Advances in Neural Information Processing Systems,
34:29218–29230, 2021.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

Stefano Sarao Mannelli, Eric Vanden-Eijnden, and Lenka Zdeborová. Optimization and generalization
of shallow neural networks with quadratic activation functions. Advances in Neural Information
Processing Systems, 33:13445–13455, 2020.

Mahdi Soltanolkotabi. Learning relus via gradient descent. Advances in neural information processing
systems, 30, 2017.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. Journal of Machine Learning Research, 19(70):1–57,
2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C. Stein. Estimation of the mean of a multivariate normal distribution. In Proceedings of the Prague
Symposium on Asymptotic Statistics, 1973.

Charles M Stein. Estimation of the mean of a multivariate normal distribution. The annals of Statistics,
pp. 1135–1151, 1981.

Taiji Suzuki, Hiroshi Abe, and Tomoaki Nishimura. Compression based bound for non-compressed
network: unified generalization error analysis of large compressible deep neural network. In
International conference on machine learning, 2020.

Taiji Suzuki, Denny Wu, Kazusato Oko, and Atsushi Nitanda. Feature learning via mean-field
langevin dynamics: classifying sparse parities and beyond. Advances in Neural Information
Processing Systems, 36, 2024.

Nikos Tsikouras, Constantine Caramanis, and Christos Tzamos. Optimization can learn johnson
lindenstrauss embeddings. Advances in neural information processing systems, 2024.

Rodrigo Veiga, Ludovic Stephan, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová. Phase
diagram of stochastic gradient descent in high-dimensional two-layer neural networks. Advances
in Neural Information Processing Systems, 35:23244–23255, 2022.

Puqian Wang, Nikos Zarifis, Ilias Diakonikolas, and Jelena Diakonikolas. Sample and computation-
ally efficient robust learning of gaussian single-index models. Advances in Neural Information
Processing Systems, 37:58376–58422, 2024.

Lei Wu. Learning a single neuron for non-monotonic activation functions. In International Conference
on Artificial Intelligence and Statistics, pp. 4178–4197. PMLR, 2022.

Weihang Xu and Simon Du. Over-parameterization exponentially slows down gradient descent
for learning a single neuron. In The Thirty Sixth Annual Conference on Learning Theory, pp.
1155–1198. PMLR, 2023.

Gilad Yehudai and Shamir Ohad. Learning a single neuron with gradient methods. In Conference on
Learning Theory, pp. 3756–3786. PMLR, 2020.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guarantees
for one-hidden-layer neural networks. In International conference on machine learning, pp.
4140–4149. PMLR, 2017.

Mo Zhou and Rong Ge. How does gradient descent learn features–a local analysis for regularized
two-layer neural networks. arXiv preprint arXiv:2406.01766, 2024.

Mo Zhou, Rong Ge, and Chi Jin. A local convergence theory for mildly over-parameterized two-layer
neural network. In Conference on Learning Theory, pp. 4577–4632. PMLR, 2021.

Mo Zhou, Rong Ge, and Chi Jin. A local convergence theory for mildly over-parameterized two-layer
neural network. In Conference on Learning Theory. PMLR, 2022.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoretically
understanding why sgd generalizes better than adam in deep learning. Advances in Neural
Information Processing Systems, 33:21285–21296, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A RELATED WORK

Feature learning in NNs. Despite the established importance of feature learning in NNs, the
specifics of how gradient-based algorithms develop useful features remain somewhat unclear. The
neural tangent kernel (NTK) framework, primarily used for examining overparameterized NNs,
suggests that neuron movement from their initial positions is minimal, highlighting the role of NN
architecture and initial settings (Jacot et al., 2018; Du et al., 2018; Allen-Zhu et al., 2019; Chizat et al.,
2019). Limitations of the NTK framework have led researchers to explore other analytical approaches,
such as mean-field analysis, initially requiring vast neuron counts (Chizat & Bach, 2018; Mei et al.,
2018). Later studies have shown that early stages of training, such as initial steps in GD, are crucial
for effective feature learning, with the first layer in 2-layer NNs capturing valuable features (Daniely
& Malach, 2020; Abbe et al., 2021; 2022; Zhou & Ge, 2024). This early capture of features by the
first layer offers better performance than models relying solely on kernel or random features. In the
exploration of NN and kernel method interconnections, it has become evident that gradient-based
training facilitates representation learning, setting NNs apart from kernel methods (Mousavi-Hosseini
et al., 2023; Abbe et al., 2022; Ba et al., 2022; Barak et al., 2022; Damian et al., 2022). A 2-layer NN
with untrained, randomly initialized weights epitomizes a random features model (Rahimi & Recht,
2007), capturing complex phenomena seen in NN practice (Louart et al., 2018; Mei & Montanari,
2022). Despite inheriting positive traits from optimization procedures, these cannot be fully expressed
as random feature regression. The implicit regularization aims of the training dynamics, favoring
low-complexity models, are widely discussed (Neyshabur et al., 2015a).

Single/Multi index models. NNs are widely studied for learning single-index and multi-index
models, which depend on a few directions in high-dimensional inputs. Recent works demonstrate
the effectiveness of two-layer NN in learning single-index (Soltanolkotabi, 2017; Yehudai & Ohad,
2020; Frei et al., 2020; Wu, 2022; Bietti et al., 2022; Xu & Du, 2023; Mahankali et al., 2023; Berthier
et al., 2024) and multi-index models (Damian et al., 2022; Bietti et al., 2023; Glasgow, 2023; Suzuki
et al., 2024). These studies emphasize the benefits of feature learning over fixed random features. For
multi-index functions representable by compact two-layer NN, a GD variant with weight decay can
recover ground-truth directions. Gradient-based learning shows that NNs trained via GD can learn
useful representations for single-index (Ba et al., 2022; Bietti et al., 2022; Mousavi-Hosseini et al.,
2023; Berthier et al., 2024; Oko et al., 2024) and multi-index models (Damian et al., 2022; Abbe et al.,
2022; Bietti et al., 2023). Learning complexity is influenced by the information exponent (Arous et al.,
2021) or leap complexity (Abbe et al., 2023). While guarantees for low-dimensional models often lead
to superpolynomial dependence, other research examines cases where student NN match the target
function’s architecture (Gamarnik et al., 2019; Akiyama & Suzuki, 2021; Zhou et al., 2022; Veiga
et al., 2022; Martin et al., 2024). This study considers an intermediate case where width scales with
dimensionality without assuming a known nonlinear activation, showing GD achieves polynomial
sample complexity when target weights are diverse. Additionally, statistical query algorithms address
related polynomial regression tasks (Dudeja & Hsu, 2018; Chen & Meka, 2020; Garg et al., 2020;
Diakonikolas et al., 2024).

A significant line of recent work investigates the learnability of single-index models via Hermite
decompositions under Gaussian inputs. These works show that for single-index targets, the first
nonzero Hermite term, captured by the information exponent or, in newer formulations, the generative
exponent, governs the difficulty of recovering the index direction using first-order or statistical
query-style methods (Arous et al., 2021; Wang et al., 2024; Braun et al., 2025). Recent lower bounds
based on the generative exponent reveal computational–statistical gaps, establishing sharp statistical
query and low-degree polynomial hardness results (Damian et al., 2024; 2025). Complementary
algorithmic results show that gradient-based learners can match these limits in certain regimes: two-
layer networks with data reuse effectively reduce the relevant Hermite order (Lee et al., 2024), and
new SGD-based methods achieve sample complexities near the generative-exponent boundary (Chen
et al., 2025).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.1 PROOF OF LEMMA 3.1

Lemma. Let x ∼ N (0, Id) be a standard Gaussian random variable. For the objective function
defined in Equation 2, with λ >

√
Kρ
2 where gθ(·) satisfies Assumption 2.3, any ρ-SOSP satisfies

∥W ∥F ≤ ρ
2λ−

√
Kρ

.

Proof. The first and second derivatives of f(W , b, θ) with respect to b are given by:

∂f(W , b, θ)

∂b
= Ex[∇gθ(Wx+ b)].

∂2f(W , b, θ)

∂2b
= Ex[∇2gθ(Wx+ b)].

The first derivative with respect to W is:

∂f(W , b, θ)

∂W
= Ex[∇gθ(Wx+ b)x⊤] + 2λW .

Using Stein’s Lemma in the multivariate case, this can be rewritten as:

∂f(W , b, θ)

∂W
= Ex[∇2gθ(Wx+ b) + 2λI]W . (10)

At a ρ-second-order stationary point, the Hessian with respect to b satisfies:

∂2f(W , b, θ)

∂2b
= Ex[∇2gθ(Wx+ b)] ≽ −

√
KρI. (11)

From Equation 11, it follows that:

Ex[∇2gθ(Wx+ b)] + 2λI ⪰ 2λI −
√
KρI.

Then dividing both sides with 2λ−
√
Kρ, we get:

Ex

[
∇2gθ(Wx+ b) + 2λI

2λ−
√
Kρ

]
⪰ I. (12)

Using the approximate first-order optimality condition
∥∥∥∂f(W,b)

∂W

∥∥∥
F
< ρ along with Equations 10

and 12, we have:

ρ

2λ−
√
Kρ
≥
∥∥∥∥Ex

[
∇2gθ(Wx+ b) + 2λI

2λ−
√
Kρ

]
W

∥∥∥∥
F

≥ σmin

(
Ex

[
∇2gθ(Wx+ b) + 2λI

2λ−
√
Kρ

])
∥W ∥F

≥ ∥W ∥F ,

where σmin in the penultimate inequality is the minimum singular value which is lower bounded by
one.

A.2 PROOF OF LEMMA 3.1 FOR ρ = 0

Lemma. Let x ∼ N (0, Id) be a standard Gaussian random variable. For the objective function
defined in Equation 2, with λ >

√
Kρ
2 where gθ(·) satisfies Assumption 2.3, any second-order

stationary point satisfies W = 0.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. The first and second derivatives of f(W , b, θ) with respect to b are given by:

∂f(W , b, θ)

∂b
= Ex[∇gθ(Wx+ b)].

∂2f(W , b, θ)

∂2b
= Ex[∇2gθ(Wx+ b)].

The first derivative with respect to W is:

∂f(W , b, θ)

∂W
= Ex[∇gθ(Wx+ b)x⊤] + 2λW . (13)

Using Stein’s Lemma in the multivariate case, this can be rewritten as:

∂f(W , b, θ)

∂W
= Ex[∇2gθ(Wx+ b) + 2λI]W . (14)

At a second-order stationary point, the Hessian with respect to b satisfies:

∂2f(W , b, θ)

∂2b
= Ex[∇2gθ(Wx+ b)] ≽ 0. (15)

From Equation 15, it follows that:

Ex[∇2gθ(Wx+ b)] + 2λI ≻ 0, (16)

where the addition of 2λI ensures strict positive definiteness.

Using the first-order optimality condition ∂f(W ,b,θ)
∂W = 0 along with Equations 14 and 16, we have:

Ex[∇2gθ(Wx+ b) + 2λI]W = 0. (17)

Since Ex[∇2g(Wx+ b)] + 2λI ≻ 0 (from Equation 2), the only solution is W = 0.

B OPTIMIZATION ALGORITHMS

Below we give the two main algorithms for finding SOSPs; PGD and Hessian Descent.

Algorithm 1 Perturbed Gradient Descent

Require: Objective function f(x), initial point x0, gradient Lipschitz constant L, learning rate
η = 1

L , maximum iterations T
1: Initialize x1 ← x0

2: for t = 1 to T do
3: if perturbation condition holds then
4: Draw random perturbation ξt
5: xt ← xt + ξt
6: end if
7: xt+1 ← xt − η∇f(xt)
8: end for
9: return xT+1

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2 Hessian Descent

Require: Gradient ∇g, Hessian ∇2g, initial point x0, step size ν = 1
L , perturbation step size

h =
3
√
ρ

K , Lipschitz constants L, K, ρ
1: Initialize t← 0
2: while true do
3: if ∥∇g(xt)∥ > ρ then
4: xt+1 ← xt − ν · ∇g(xt)
5: else if ∥∇g(xt)∥ ≤ ρ and λmin(∇2g(xt)) < −

√
Kρ then

6: u1 ← eigenvector corresponding to λmin(∇2g(xt))
7: xt+1 ← xt + hu1

8: else
9: return xt

10: end if
11: t← t+ 1
12: end while

DISCUSSION ON ρ-SOSPS

Additionally, we clarify that our analysis operates under the assumption that the optimization method
employed converges to a ρ-SOSP with respect to all model parameters, including those encapsulated
in θ. Specifically, we assume that an approximate SOSP is identified jointly over the entire parameter
space. Once such a point is found, we observe that fixing the auxiliary parameters θ preserves the
approximate second-order stationarity with respect to the first-layer weight matrix W .

C REFORMULATION

R(W∥,W⊥, b) = Ex⊥,x∥

[
ℓ
(
h′ (x∥

)
, gθ
(
W⊥x⊥ +W∥x∥ + b

))]
+ λ∥W∥ +W⊥∥2F

= Ex⊥

[
Ex∥

[
ℓ
(
h′ (x∥

)
, gθ
(
W⊥x⊥ +W∥x∥ + b

))]
+ λ∥W∥∥2F

]
+ λ∥W⊥∥2F

(18)

= Ex⊥ [ℓ′θ′ (W⊥x⊥ + b)] + λ∥W⊥∥2F ,
where ℓ′θ′ (W⊥x⊥ + b) := Ex∥

[
ℓ
(
h′ (x∥

)
, gθ
(
W⊥x⊥ +W∥x∥ + b

))]
+λ∥W∥∥2F . Equation 18

holds because W⊥ is orthogonal to W∥. For notational convenience, we suppress W∥, W⊥ and x⊥
in the expectation and just write

R(W⊥, b) = Ex⊥ [ℓ′θ′ (W⊥x⊥ + b)] + λ∥W⊥∥2F .

Additionally, we clarify that our analysis operates under the assumption that the optimization method
employed converges to a ρ-SOSP with respect to all model parameters, including those encapsulated
in θ. Specifically, we assume that an approximate SOSP is identified jointly over the entire parameter
space. Once such a point is found, we observe that fixing the auxiliary parameters θ preserves the
approximate second-order stationarity with respect to the first-layer weight matrix W .

D PROOFS OF SECTION 4

D.1 PROOF OF THEOREM 4.2

Theorem. Let the objective function in Equation 5 be twice differentiable, bounded below, and
satisfies Assumption 2.3. Let the data x ∼ N (0, Id), and suppose labels are generated according
to Equation 3. Let ρ > 0 be a prespecified accuracy, and define the regularization parameter
λ =

√
Kρ+∆
2 , where K is the Hessian Lipschitz constant and ∆ > 0 is an arbitrarily small constant.

Then, with probability 1− δ, running Algorithm 1 for T > O
(
poly

(
L, log(d), log(δ), ε−1,∆−1

))
iterations with a step size O(1/L), yields a weight matrix W = W⊥ +W∥ that satisfies:

∥W⊥∥F < ε.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. Since the objective function has Lipschitz continuous gradient and Hessian and is bounded
from below, this implies that it has at least one ρ-SOSP. Choose some ∆ > 0 and λ =

√
Kρ+∆
2

and using Lemma 3.1, we get that any ρ-SOSP is a weight matrix W = W⊥ +W∥, that satisfies
∥W⊥∥F ≤ ρ

∆ .

Let ε = ρ
∆ , solving for ρ, this gives ρ = ε∆. Then, running Algorithm 1 for:

T = O
(
L

ρ2
log4(d)− L

ρ2
log4 (δ)

)
= O

(
L

ε2∆2
log4(d)− L

ε2∆2
log4 (δ)

)
,

iterations gives the required result.

E EXPERIMENTS IN NEURAL NETWORKS OF SECTION 4.3

The student NN is a two-layer feedforward network with a single hidden layer. The input data
X ∈ Rn×d is sampled from a standard multivariate Gaussian distribution with d = 2. The network
architecture consists of an input layer with d features, a hidden layer of width h = 1000, and an
output layer that produces scalar predictions.

The first-layer weight matrix W ∈ Rh×d is initialized with entries drawn from N (0, 1/d), while
the bias vector b ∈ Rh and the second-layer weight vector a are initialized from N (0, 1/h2). The
trainable parameters include both W and b and we freeze the second layer for stability reasons. The
student NN computes predictions according to the mapping:

y = a⊤ReLU2(Wx+ b),

where, ReLU2 denotes a smoothed version of the ReLU. Although ReLU2 is used in our experiments,
other nonlinearities such as tanh can be employed in the same framework.

To generate the labels, we use a teacher network based on a single-index model. A fixed direction θ
is chosen as

θ =
1√
2
(1, 1)⊤,

and labels are generated according to the rule:

y = tanh(θ · x) + ε, where ε ∼ N (0, 0.1).

Training is conducted using PGD, in which small Gaussian noise is added to each gradient step
when the gradient norm is less than ϵ = 1 × 10−6. Specifically, the noise is drawn independently
for each trainable weight from a standard normal distribution and scaled by a factor δ = 0.005, i.e.,
W ← W + δ · N (0, I), with analogous updates applied to the bias terms b and, if trainable, the
output weights a. Although this threshold is small, the noise is applied many times during training,
ensuring exploration of flat regions of the loss landscape. This modification of standard SGD helps
the optimization escape saddle points and flat regions, which is particularly useful in our setting and
aligns with our theoretical guarantees. Training proceeds for T = 10,000 steps, minimizing the Mean
Squared Error (MSE) loss function with L2 regularization controlled by λ = 10−5. Learning rates
are set to η = 1 for the first layer and ηb = 1 for the bias terms.

Figure 3 shows that the first-layer weights of the student network have effectively converged to the
principal subspace, indicating that the network has focused on the relevant direction.

F SUPPORTING MATERIAL OF SECTION 5.1

F.1 PROOF OF THEOREM 5.2

Theorem. Let G = (V,E) be a graph with m edges, where the edge weights are given by
wi,j = wj,i = 1 for all (i, j) ∈ E. Let V ∈ Rm×m be the matrix of vectors obtained from the

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

SDP relaxation of the MAXCUT problem, as described in (Goemans & Williamson, 1995). Denote
by z ∼ N (0, Im) a standard multivariate Gaussian vector, and let µ represent a vector of means.
Initialize Algorithm 1 with µ = 0, and optimize the ϵ-smoothed version of the objective function

in Equation 7 (see Equation 27), using the regularization parameter λ =

√
ρ/ϵ3+∆

2 , and run for
T = O

(
poly

(
log(m), log(δ), ϵ−1,∆−1

))
iterations. After this optimization process, the resulting

vector µ defines a cut whose value is guaranteed to be at least:

OPT(α−O(ϵ)),

with probability 1− δ. Here, α = 0.878 is the approximation factor from (Goemans & Williamson,
1995).

Proof. Given a graph with m edges and weights that are equal to one, wi,j = wj,i = 1, we aim to
provide an approximation to the MAXCUT problem by derandomizing the randomized rounding
algorithm. Consider the matrix V ∈ Rm×m which gathers all the vectors from the Semidefinite
Program. Let us also define the function V z + µ, where z ∼ N (0, Im) and µ is a vector of means.
Our objective is to minimize the negative expected cut:

f(V ,µ) = −
∑
i<j

wi,j Pr [sgn(vi · z + µi) ̸= sgn(vj · z + µj)] ,

for which initially we have µ = 0. To minimize this function using our Lemma, we define the
indicator function:

I(x, y) =

{
1, if xy < 0

0, if xy ≥ 0

Using this indicator, we can reformulate the objective as:

f (V z + µ) = −Ez

∑
i<j

wi,jI(vi · z + µi,vj · z + µj)

+ λ∥V ∥2F , (19)

We are concerned with the value of I(vi ·z,vj ·z). If I(vi ·z,vj ·z) = 1, then this edge contributes
to the cut because the signs are different, otherwise it does not. However, since this function is not
smooth, we introduce a smoothed version:

Ĩ(x, y) =


1, if xy < 0 and |x|, |y| > ϵ

0, if |x| < ϵ
2 or |y| < ϵ

2 or xy > 0

[0, 1] , otherwise.

This function is smoothened to be twice differentiable in the interval [0, 1], and we can approximate
it as a polynomial to ensure that the Hessian Lipschitz constant is K = O

(
1
ϵ3

)
and the gradient

Lipschitz constant is L = O
(

1
ϵ2

)
.

The function Ĩ(x, y) is formally defined as follows. First, we define,

S(x) =


1, x ≥ ϵ

0, x < ϵ
2

8
ϵ2

(
x− ϵ

2

)2
, ϵ

2 < x ≤ 3ϵ
4

− 8
ϵ2 (x− ϵ)2 + 1, 3ϵ

4 < x < ϵ

then, the smoothened step function Ĩ is defined as:

Ĩ(x, y) = S(x)S(−y) + S(−x)S(y).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

By using this smoothened function to calculate the cut, we worsen the result from the original cut
by at most O(mϵ), where m is the number of edges. This corresponds to the area of disagreement
between using the actual indicator function and the smoothed indicator function. Our goal is now to
minimize the following function:

f (V z + µ) = Ez

∑
i<j

w̃i,j Ĩ(vi · z + µi,vj · z + µj)

+ λ∥V ∥2F , (20)

where we absorb the minus sign into the original definition of wi,j , for convenience. Choose ρ such
that at the end of the optimization we have ∥V ∥2F < ϵ2.

Next, we investigate the effect of ignoring V and only using the means µ. At the end of the
optimization, we have vectors vi, i = 1, . . . ,m, with ∥vi∥22 ≤ ϵ2, for all i. We examine two cases
for each edge of the graph:

1) If µiµj < 0, these two values contribute to the cut directly, so we do not need anything more.

2) If µiµj > 0, we need further analysis. Without loss of generality, assume that µi > 0 and µj > 0.

To analyze the difference when using full randomness, we need to consider the following. For the edge
to contribute to the randomized version, we require that either vi · z + µi < −ϵ or vj · z + µj < −ϵ,
since we want one of the terms to change signs and thus contribute to Ĩ . Consequently, we would
have to generate a z such that the magnitude ∥vi · z∥ > ϵ, which has exponentially small probability
because vi · z ∼ N (0,mϵ4). Because of this we can conclude that the total expected cut remains
nearly unchanged.

Initially, we have
∑

i<j Ezw̃i,j [I(vi · z,vj · z)] = αOPT, then after using the smoothened function
we obtain:

∑
i<j

Ezw̃i,j

[
Ĩ(vi · z,vj · z)

]
= αOPT−O(ϵm).

Finally, after optimization, we have:

∑
i<j

w̃i,jEz

[
Ĩ(vi · z + µi,vj · z + µj)

]
≥ αOPT−O(ϵm),

As a final step, we compare our (deterministic) cut, with what would have happened if we took the
original randomized version. To complete this step, we use a union bound:

∑
i<j

w̃i,j Ĩ(µi,µj) = αOPT−O(ϵm)− Pr (|viz| > ϵ for any edge)

≥ αOPT−O(ϵm)−mPr (|viz| > ϵ)

≥ αOPT−O(ϵm)−O
(
m · exp

(
− 1

2mϵ2

))
≥ αOPT−O(ϵm)−O(ϵm)

= αOPT−O(ϵOPT)
= OPT · (α−O(ϵ)) ,

where the penultimate equality follows since OPT is a function of the edges m.

For the iteration complexity, since we want to reach a point with ∥V ∥F < ϵ, for the specific choice

of λ =

√
ρ/ϵ3+∆

2 , and running Algorithm 1 for:

T = O
(
L

ρ2
log4(m)− L

ρ2
log4 (δ)

)
= O

(
1

ϵ4∆2
log4(m)− 1

ϵ4∆2
log4 (δ)

)
,

iterations gives the required result.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

F.2 EXPERIMENTS IN MAXCUT

In this experiment, we evaluated a stochastic optimization algorithm for solving the MAXCUT
problem on a randomly generated undirected graph with m = 15 vertices and an edge probability
of 0.6. The exact MAXCUT value (computed as 41) was obtained using exhaustive search and
used as a ground-truth reference. The optimization procedure is based on the Goemans-Williamson
relaxation, where node embeddings are derived from the top eigenvectors of the adjacency matrix. A
stochastic gradient-based method is then applied, which samples noisy directions from a Gaussian
distribution parameterized by a mean vector m and log-standard deviation logσ. and the number of
cut edges is evaluated. Gradients with respect to both m and σ are estimated using a Monte Carlo
approximation with 100 samples per step. The parameters are updated via SGD, which is sufficient
for this task, with adaptive learning rates: 0.01 for m and 0.001 for σ. To ensure stability and
exploration, a regularization term is applied to σ, and its values are clipped to the range [10−3, 1.5].
Learning rates are further annealed by decay factors every 100 iterations. The algorithm was run
for 5000 iterations. Throughout optimization, we tracked the evolution of cut values, the maximum
standard deviation across dimensions, and sampled cut edges to monitor progress relative to the exact
MAXCUT benchmark.

Figure 4 illustrates the progression of the cut value over the course of training, showing consistent
improvement and eventual convergence to the optimal cut obtained via brute force. In parallel, Figure
5 shows the evolution of the maximum value of σ2, which steadily decreased over time. This trend
indicates that the algorithm gradually reduced its randomness as it converged toward a confident,
high-quality solution. Notably, our optimization method substantially outperformed the baseline
cut value of approximately 36 achieved by the classical randomized algorithm. Overall, the results
demonstrate that the method not only successfully identified an optimal cut but also naturally annealed
its uncertainty, confirming both its effectiveness and stability.

Figure 4: Progress of the cut value over itera-
tions.

Figure 5: Evolution of the maximum σ2 value
over iterations.

G SUPPORTING MATERIAL OF SECTION 5.2

G.1 REFORMULATION OF JOHNSON-LINDENSTRAUSS OBJECTIVE FUNCTION

To achieve the JL guarantee from Definition 5.3 we define a linear mapping f(x) = Ax, where
A ∈ Rk×d. The JL Lemma guarantees the existence of a random linear mapping that achieves this
projection with high probability:
Lemma G.1 (Distributional JL Lemma). For ε, δ ∈ (0, 1) and k = O(log(1/δ)/ε2), there exists a
probability distribution D over linear functions f : Rd → Rk such that for every x ∈ Rd:

Pr
f∼D

(
∥f(x)∥22 ∈

[
(1− ε)∥x∥22, (1 + ε)∥x∥22

])
≥ 1− δ.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Let A be a random matrix whose elements ai,j are independently drawn from a Gaussian distribution
with mean µi,j and variance σ2

i,j . Define the distortion function as:

h(A;xi) =
∣∣∥Axi∥22 − 1

∣∣ , (21)

where A ∼ N (M ,Σ). Our objective is to minimize the following function:

f(A;xi) =

n∑
i=1

Pr (h(A;xi) > ε) +
∥Σ1/2∥2F

2kd
, (22)

where Σ1/2 denotes a matrix whose entries are the square roots of the corresponding variances in Σ.

The first term measures the number of distortion violations (i.e., how often the projected norm
deviates from 1 by more than ε), while the second term is a regularization penalty on the variance of
the matrix entries.

Applying a union bound, the objective in Equation 22 serves as an upper bound for:

Pr

(
max

i=1,...,n
h(A;xi) > ε

)
+
∥Σ1/2∥2F

2kd
, (23)

which represents the probability that the maximum distortion across all data points exceeds ε, plus a
regularization term. As the variances in Σ approach zero, this regularizer vanishes. In the context of
the JL Lemma, our goal is to minimize the probability expressed in Equation 23.

To use Lemma 3.1 we can think of the matrix A as a kd-dimensional vector and write:

Avec = Σ1/2z + µ, (24)

where µ = (µ1,1, µ2,1, . . . , µk,d)
⊤ ∈ Rkd is a vectorized version of each mean of matrix A,

Σ = diag
(
σ2
1,1, σ

2
1,2, . . . , σ

2
k,d

)⊤
∈ Rkd×kd

+ is the diagonal covariance matrix and z is a kd-
dimensional multivariate Gaussian vector with independent entries with zero mean and unit variance.

Then, define,

gθ(A
vec) = gθ

(
Σ1/2z + µ

)
=

n∑
i=1

1{h(Σ1/2z+µ;xi)>ε} (25)

Then, we can define the objective function:

f
(
Σ1/2,µ

)
= E

[
gθ

(
Σ1/2z + µ

)]
+

∥∥Σ1/2
∥∥2
F

2kd

=

n∑
i=1

E
[
1{h(Σ1/2z+µ;xi)>ε}

]
+

∥∥Σ1/2
∥∥2
F

2kd

=

n∑
i=1

Pr
(
h
(
Σ1/2z + µ;xi

)
> ε
)
+

∥∥Σ1/2
∥∥2
F

2kd
. (26)

Remark G.2. It is important to observe that Equations 22 and 26 represent the same quantity, but
are expressed using different parameterizations.

Thus, minimizing Equation 22 is equivalent to minimizing Equation 26, where optimization is carried
out over the parameters (Σ1/2,µ).

G.2 PROOF OF JOHNSON-LINDENSTRAUSS GUARANTEE PRESERVATION LEMMA

Here we give an extension of Lemma 4 from (Tsikouras et al., 2024) which is required due to the
practical limitation that achieving an exact SOSP is not feasible. Since Algorithm 1 identifies an
approximate ρ-SOSP, an additional result is required to provide a stopping criterion once the variance
becomes sufficiently small. This ensures that the mean can be used with a controlled deterioration of
the JL guarantee.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Lemma G.3. Given n unit vectors in Rd and a target dimension k, choose ε such that the random
matrix A ∼ N(M ,Σ) satisfies the JL guarantee with distortion ε with probability at least 1/6. Then
using matrix M instead of sampling from A retains the JL guarantee with a threshold increased by
at most poly(σmax, 1/k).

Proof. We start with the assumption that 1
k∥Ax∥22 ∈ (1− ε, 1 + ε) with probability at least 1

6 .

Expressing A as A = M + Z where Z ∼ N(0,Σ). For this, we have

∥Z˜x2
2∥ ≤ ∥Zx∥22 ≤ ∥Z̃x∥22,

where Z̃ and Z˜ are the same as Z but scaled with the maximum and minimum variance from Σ

respectively. This way, all the entries of Z̃ have the same common variance, σ2
max and all the entries

of Z˜ have the same common variance, σ2
min.

From the JL Lemma, we can select ε0 such that

1

k
∥Z̃x∥22 ∈ [σ2

max(1− ε0), σ
2
max(1 + ε0)]

1

k
∥Z˜x∥22 ∈ [σ2

min(1− ε0), σ
2
min(1 + ε0)]

with probability at least 6
7 . This ensures there exists an overlap where both inequalities for A, Z̃ and

Z˜ hold simultaneously. Our goal is to determine how much excess distortion we get when using M

instead of sampling from the random matrix A.

Using the triangle inequality we have:

1

k
∥Mx∥2 =

1

k
∥Mx+ Zx− Zx∥2 ≤

1

k
∥Mx+ Zx∥2 +

1

k
∥Zx∥2 ≤

1

k
∥Ax∥2 +

1

k
∥Z̃x∥2,

which by squaring both sides and using the JL guarantee for A and Z̃, we obtain:
1

k
∥Mx∥22 ≤

1

k
∥Ax∥22 +

2

k2
∥Ax∥2∥Z̃x∥2 +

1

k
∥Z̃x∥22

≤ 1 + ε+
2σmax

k

√
1 + ε

√
1 + ε0 + σ2

max(1 + ε0)

≤ 1 + ε+
2
√
2σmax

k

√
1 + ε+ 2σ2

max.

For the lower bound, using the Cauchy-Schwarz inequality and the JL guarantee for A and Z˜, we

have:

1

k
∥Mx∥22 ≥

1

2k
∥Mx+ Zx∥22 −

1

k
∥Zx∥22

≥ 1

2k
∥Ax∥22 −

1

k
∥Z˜x∥22

≥ 1/2(1− ε)− σ2
min(1 + ε0)

≥ 1/2(1− ε)− σ2
min

≥ 1/2(1− ε)− σ2
max.

Finally, combining these results, we observe that replacing A with M maintains the JL guarantee with
an increased distortion threshold, bounded by at most poly(σmax, 1/k), with high probability.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G.3 SMOOTHENING OF THE JOHNSON-LINDENSTRAUSS INDICATOR FUNCTION

For the JL objective function we have the indicator function:

I(xi;A) =

{
1 if

∣∣∥Axi∥2 − 1
∣∣ ≥ ε

0 if
∣∣∥Axi∥2 − 1

∣∣ < ε

and we define a smoothed version of it:

Ĩ(xi;A) =


0, if

∣∣∥Axi∥2 − 1
∣∣ ≤ ε

2
ε31
(
∣∣∥Axi∥2 − 1

∣∣− ε)3, if ε <
∣∣∥Axi∥2 − 1

∣∣ ≤ ε+ ε1
2

1− 2
ε31
(ε+ ε1 −

∣∣∥Axi∥2 − 1
∣∣)3, if ε+ ε1

2 <
∣∣∥Axi∥2 − 1

∣∣ < ε+ ε1

1, if
∣∣∥Axi∥2 − 1

∣∣ ≥ ε+ ε1

for a small value ε1. This smoothed indicator has gradient Lipschitz constant L = O(1/ε21), and
Hessian Lipschitz constant K = O(1/ε31) We define the ε1-smoothed version of the objective
function in Equation 26, that is:

f̃
(
Σ1/2,µ

)
≡ f̃ (A) = E[Ĩ(xi;A)].

and the regularized version of it, that is:

f̂
(
Σ1/2,µ

)
≡ f̂ (A) = E[Ĩ(xi;A)] +

∥Σ1/2∥
2kd

. (27)

By assumption we have that 1/(3n) > E[I(xi;A)] ≥ E[Ĩ(xi;A)].

We also have that

E[I(xi;A)] ≤ E[Ĩ(xi;A)] + Pr(ε <
∣∣∥Axi∥2 − 1

∣∣ < ε+ ε1).

Thus,

n∑
i=1

E[I(xi;A)] ≤
n∑

i=1

E[Ĩ(xi;A)] +
n∑

i=1

Pr(ε <
∣∣∥Axi∥2 − 1

∣∣ < ε+ ε1).

We will show that when A has small variance (for appropriately chosen small ρ), the E[Ĩ(xi;A)]
becomes smaller than δ1/n.

We have that E[Ĩ(xi;A)] ≤ Pr(
∣∣∥Axi∥2 − 1

∣∣ > ε + ε1) + Pr(ε <
∣∣∥Axi∥2 − 1

∣∣ < ε + ε1).
We assume that we have reached a point for which we have A ∼ N (M ,Σ). This means that∣∣∥Axi∥2 − 1

∣∣ follows a non-central chi-squared distribution. From subgaussian properties we have:

For t > 0:

Pr(X − µ ≥ t) ≤ exp

(
− t2

2σ2

)
.

For t < 0:

Pr(X − µ ≤ t) ≤ exp

(
− t2

2σ2

)
.

We have Var
(∣∣∥Axi∥2 − 1

∣∣) ≤ 2 k σ4
max + 4σ2

max

∑k
i=1 µ

2
i := Vi, where µi =

∑d
j=1 µijxj .

Choose t = ε+ ε1 and if t > E[
∣∣∥Axi∥2 − 1

∣∣] we have that:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Pr(
∣∣∥Axi∥2 − 1

∣∣− E[
∣∣∥Axi∥2 − 1

∣∣] ≥ t−
∣∣∥Axi∥2 − 1

∣∣) ≤ exp

(
−
(t− E[

∣∣∥Axi∥2 − 1
∣∣])2

2Var (|∥Ax∥2 − 1|)

)

≤ exp

(
−
(t− E[

∣∣∥Axi∥2 − 1
∣∣])2

2Vi

)
.

Otherwise if t < E[
∣∣∥Axi∥2 − 1

∣∣] we have that:

Pr(
∣∣∥Axi∥2 − 1

∣∣− E
[∣∣∥Axi∥2 − 1

∣∣] ≤ t−
∣∣∥Axi∥2 − 1

∣∣)
≤ exp

(
−
(
t− E

[∣∣∥Axi∥2 − 1
∣∣])2

2Vi

)
. (28)

This implies that

Pr(
∣∣∥Axi∥2 − 1

∣∣− E[
∣∣∥Axi∥2 − 1

∣∣] ≥ t−
∣∣∥Axi∥2 − 1

∣∣) ≥ 1− exp

(
−
(t− E[

∣∣∥Axi∥2 − 1
∣∣])2

2Vi

)

≥ 1− 2Vi

(t− E[|∥Axi∥2 − 1|])2
.

Since E[Ĩ(xi;A)] < 1/(3n) we have that the 2nd case where t < E[
∣∣∥Axi∥2 − 1

∣∣] is rejected.

We also have that for Vi ≤ −
(ε+ε1−E[|∥Axi∥2−1|])2

log(δ1/(2n))
the probability in Equation 28 is bounded by

δ1/(2n).

Similarly we have,

Pr(ε <
∣∣∥Axi∥2 − 1

∣∣ < ε+ ε1) = Pr(
∣∣∥Axi∥2 − 1

∣∣ < ε+ ε1)− Pr(
∣∣∥Axi∥2 − 1

∣∣ < ε)

= Pr(
∣∣∥Axi∥2 − 1

∣∣ > ε)− Pr(
∣∣∥Axi∥2 − 1

∣∣ > ε+ ε1).

This implies that

Pr(ε <
∣∣∥Axi∥2 − 1

∣∣ < ε+ ε1) ≤ Pr(
∣∣∥Axi∥2 − 1

∣∣ > ε).

Similarly to before we can get that:

Pr(
∣∣∥Axi∥2 − 1

∣∣ > ε) ≤ exp

(
−
(ε− E[

∣∣∥Axi∥2 − 1
∣∣])2

2Vi

)
. (29)

Therefore we have that for Vi ≤ −
(ε−E[|∥Axi∥2−1|])2

log(δ1/(2n))
the probability in Equation 29 is bounded by

δ1/(2n).

This means that choosing, Vi ≤ min

{
− (ε−E[|∥Axi∥2−1|])2

log(δ1/(2n))
,− (ε+ε1−E[|∥Axi∥2−1|])2

log(δ1/(2n))

}
=

− (ε−E[|∥Axi∥2−1|])2
log(δ1/(2n))

and overall, if we choose V = max {V1, . . . , Vn} to satisfy all inequalities
we get:

n∑
i=1

E[I(xi;A)] ≤
n∑

i=1

E[Ĩ(xi;A)] +

n∑
i=1

Pr(ε <
∣∣∥Axi∥2 − 1

∣∣ < ε+ ε1) < δ1.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Denote Mi :=
∑d

l=1 µi,l and C1 := mini=1,...,n−
(ε−E[|∥Axi∥2−1|])2

log(δ1/(2n))
. Then to get V ≤ C1, we

need σ2
max ≤ mini=1,...,n

{
−2Mi+

√
4M2

i +kC1

k

}
=: C2.

Choose δ1 < 5/6 and ρ < ∆
√
C2. Thus reaching a ρ-SOSP for E[Ĩ(xi;A)] has returned a random

matrix A that satisfies the JL guarantee with probability at least 1/6.

G.4 PROOF OF THEOREM 5.5

Theorem. Let n be unit vectors in Rd, k be the target dimension, ϵ be a smoothening parameter and
∆ > 0 be an accuracy parameter. For any ε ≥ C

√
log n/k, where C is a sufficiently large constant,

initialize M = 0 and Σ = Ikd and run Algorithm 1 to optimize the ε1-smoothed version of the

objective function in Equation 9 (see Equation 27) using the regularization parameter λ =

√
ρ/ϵ3+∆

2 .
After T = O

(
poly

(
n, k, d, log(δ),∆−1

))
iterations, this returns a matrix M that satisfies the JL

guarantee with distortion at most O(ε), with probability 1− δ.

Proof. To ensure good performance, we choose the dimension k such that the probability of
any individual distortion constraint being violated is no more than 1/(3n). This choice is critical,
particularly at the initialization point (Ikd×kd,0), where the regularization term contributes exactly
1/2. Under this setting, the objective function in Equation 26 satisfies:

f(Ikd×kd,0) <
n

3n
+

1

2
=

1

3
+

1

2
<

5

6
.

This observation implies that, if we follow a monotonically decreasing path of the objective and
converge to a deterministic solution, specifically one where Σ1/2 = 0, the only feasible outcome is
that each term in the summation becomes zero. Consequently, the distortion probability in Equation 26
will converge to zero.

However, to use our key Lemma we need to use a smoothed version of the indicator function. The
smoothed objective function in Equation 27 is both gradient and Hessian Lipschitz continuous. Let
L = O

(
1
ε2

)
,K = O

(
1
ε3

)
, be the gradient and Hessian Lipschitz constants, respectively.

Choose δ1 < 5/6, ∆ > 0, and λ =
√
Kρ+∆
2 =

√
ρ/ε3+∆

2 and using Lemma 3.1, we get that any
ρ-SOSP gives a matrix Σ1/2, that satisfies ∥Σ1/2∥F ≤ ρ

∆ .

Denote Mi :=
∑d

l=1 µi,l and C1 := mini=1,...,n

{
− (ε−E[|∥Axi∥2−1|])2

log(δ1/(2n))

}
. Then to get V ≤ C1, we

need σ2
max ≤ mini=1,...,n

{
−2Mi+

√
4M2

i +kC1

k

}
=: C2.

Choose ρ < ∆
√
C2, then running Algorithm 1 for:

T = O
(
L

ρ2
log4(d)− L

ρ2
log4 (δ)

)
= O

(
poly

(
n, k, d, log(δ),∆−1

))
,

returns a random matrix with σ2
max ≤

ρ2

∆2 , that satisfies the JL guarantee with distortion ε with
probability at least 1/6, with high probability. Then, from Lemma G.3, we get that we can use
the mean matrix M which will increase the distortion threshold by at most poly

(
σmax,

1
k

)
=

poly
(
ρ
∆ , 1

k

)
, meaning that it satisfies the JL guarantee with distortion at most O(ε).

G.5 EXPERIMENTS IN JOHNSON-LINDENSTRAUSS

In this experiment, we aim to minimize the distortion introduced by random linear projections in
the JL framework. A batch-based variational model is trained using the gradient-based method;
SGD, which is sufficient for this task, to produce random matrices A ∼ N (M ,Σ) ∈ Rk×d (with
k = 30 and d = 500) that minimize the maximum distortion when applied to a normalized dataset

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

of n = 100 samples, each with d = 500 dimensions. Unlike traditional JL embeddings that rely
on random Gaussian matrices, our approach optimizes the parameters (M ,Σ) of a distribution
over projection matrices using the Adam optimizer (Kingma & Ba, 2014) in order to minimize
the worst-case distortion. We used a batch size of 20, a learning rate of 0.01, over a maximum of
5000 iterations, and early stopping is triggered if the distortion falls below 0.01. To track how the
distortions evolve with our method, we sample from the current mean matrix and variance at each
iteration and then calculate the resulting distortion.

Figure 6 shows the evolution of the maximum distortion throughout training, demonstrating a
steady decrease. Over time, our method significantly outperforms both the average and minimum
distortions obtained from standard Gaussian matrices over 1000 trials. Specifically, our learned
projection achieves near-zero distortion, compared to typical random projections that yield average
and minimum distortions around 1 and 0.6, respectively. Figure 7 illustrates the evolution of the
maximum variance σ2, which converges toward zero during training. This indicates that the model
is refining its uncertainty and collapsing toward a deterministic, low-distortion projection. These
findings suggest that structured embeddings with far lower distortion than those from conventional
random constructions do exist, and that such embeddings can be effectively discovered via gradient-
based optimization.

Figure 6: Evolution of the optimized distortion
over iterations.

Figure 7: Evolution of maximum σ2 over itera-
tions.

28

	Introduction
	Notation and preliminaries
	Main Contribution: Key Derandomization Lemma
	Structure discovery in neural networks
	Discovering structure in neural networks via SOSPs
	The case for ReLU
	Neural networks experiments

	Other Applications
	MAXCUT
	Johnson-Lindenstrauss embeddings

	Conclusion
	Related work
	Proof of Lemma 3.1
	Proof of Lemma 3.1 for = 0

	Optimization algorithms
	Reformulation
	Proofs of Section 4
	Proof of Theorem 4.2

	Experiments in Neural Networks of Section 4.3
	Supporting material of Section 5.1
	Proof of Theorem 5.2
	Experiments in MAXCUT

	Supporting material of section 5.2
	Reformulation of Johnson-Lindenstrauss objective function
	Proof of Johnson-Lindenstrauss guarantee preservation Lemma
	Smoothening of the Johnson-Lindenstrauss indicator function
	Proof of Theorem 5.5
	Experiments in Johnson-Lindenstrauss

