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ABSTRACT

Understanding the dynamics of feature learning in neural networks (NNs) remains
a significant challenge. The work of (Mousavi-Hosseini et al., 2023) analyzes a
multiple index teacher-student setting and shows that a two-layer student attains a
low-rank structure in its first-layer weights when trained with stochastic gradient
descent (SGD) and a strong regularizer. This structural property is known to reduce
sample complexity of generalization. Indeed, in a second step, the same authors
establish algorithm-specific learning guarantees under additional assumptions. In
this paper, we focus exclusively on the structure discovery aspect and study it
under weaker assumptions, more specifically: we allow (a) NNs of arbitrary size
and depth, (b) with all parameters trainable, (c) under any smooth loss function,
(d) tiny regularization, and (e) trained by any method that attains a second-order
stationary point (SOSP), e.g. perturbed gradient descent (PGD). At the core of our
approach is a key derandomization lemma, which states that optimizing the func-
tion Ex [gθ(Wx+ b)] converges to a point where W = 0, under mild conditions.
The fundamental nature of this lemma directly explains structure discovery and has
immediate applications in other domains including an end-to-end approximation
for MAXCUT, and computing Johnson-Lindenstrauss embeddings.

1 INTRODUCTION

Neural networks (NNs) have become successful tools across different domains, demonstrating
exceptional performance in complex tasks, such as image recognition, natural language processing,
or speech synthesis (LeCun et al., 2015; Goodfellow, 2016). This broad applicability is primarily due
to their ability to learn and generalize from large datasets, enabling them to identify difficult patterns
and relationships that are difficult to capture with traditional techniques. Theoretical work in this area
focuses on various aspects, including the structure of optimization landscapes, and generalization
behavior, aiming to answer fundamental questions about why these models work as well as they do
and how they can be made more efficient and trustworthy (Arora et al., 2017; Montavon et al., 2018;
Neyshabur et al., 2018).

Since data is crucial in this line of research, teacher models have emerged in learning theory as a
formalism for structured data. Extensive research has been conducted on this topic, particularly
when the trained (student) model is a NN, offering precise and non-asymptotic guarantees in various
contexts (Zhong et al., 2017; Goldt et al., 2019; Ba et al., 2020; Sarao Mannelli et al., 2020; Zhou
et al., 2021; Akiyama & Suzuki, 2021; Abbe et al., 2022; Ba et al., 2022; Damian et al., 2022; Veiga
et al., 2022; Mousavi-Hosseini et al., 2023). Experimental evidence suggests that traditional learning
theory fails to fully explain the generalization properties of large NNs, highlighting the need for more
modern approaches (Zhang et al., 2021).

An important concept that frequently appears in modern learning theory is the implicit regularization
effect introduced by training dynamics (Neyshabur et al., 2015a). The work of (Soudry et al., 2018)
sparked a wave of recent studies investigating how gradient descent (GD) naturally tends to favor
lower-complexity models, often leading to minimum-norm and/or maximum-margin solutions even
without explicit regularization (Gunasekar et al., 2018; Li et al., 2018b; Ji & Telgarsky, 2019; Gidel
et al., 2019; Chizat & Bach, 2020; Pesme et al., 2021). However, much of this research focuses on
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linear models or excessively wide NNs, with varying interpretations of reduced complexity and its
impact on generalization. A notable example in this context is compressibility and its relationship
to generalization (Arora et al., 2018; Suzuki et al., 2020). When a trained NN can be compressed
into a smaller model with similar predictive behavior, both models show comparable generalization
performance. This suggests that the original NN’s complexity may be understood via its simpler
compressed form, which is traditionally associated with improved generalization.

A key contribution in the area, and influence for our work, is the work of (Mousavi-Hosseini et al.,
2023), which studies the training dynamics of a two-layer NN using stochastic gradient descent (SGD)
on data drawn from a multiple-index teacher model. First, they show that low-complexity structures
emerge during training when a strong regularizer is used: on (first-order) stationary points, the first
layer weights align with key directions in the input space, the principal subspace. Low-dimensional
structure of this type is known to help with generalization (Neyshabur et al., 2015b; Bartlett et al.,
2017). As a second step, they establish GD-specific generalization guarantees under additional
assumptions. Our focus is on the first step, and the goal of this work is to answer the question:

Can we discover low-rank structure in neural networks under more natural
assumptions?

To this end, we consider a more precise and well-motivated solution concept, a ρ-approximate
second-order stationary point (ρ-SOSP), (Jin et al., 2017), see Definition 2.2 for a formal definition.
Using the properties of ρ-SOSPs, we provide a general derandomization lemma. When applied
specifically to NNs, our lemma implies that, for any arbitrarily small regularizer value, there exists a
ρ > 0 such that all ρ-SOSPs correspond to low-rank first-layer weights. Thus, we significantly relax
the sufficient conditions for uncovering this kind of structure as we allow (a) NNs of arbitrary size
and depth, (b) with all parameters trainable (including biases), (c) under any smooth loss function, (d)
arbitrarily small regularization, and (e) trained by any method that attains a ρ-SOSP, for example,
SGD with random initialization 1, PGD and Hessian descent.

Importance of training the biases. For the sake of analytical simplicity, some past work has frozen
the biases, for example in (Mousavi-Hosseini et al., 2023). Here, we show that training the biases
is necessary for derandomization to take effect. To illustrate this point, we consider the following
toy example. Let x be a one-dimensional standard Gaussian random variable, and suppose the target
label is fixed at 1, i.e., the output lies in a zero-dimensional space. We model the prediction using a
single-layer NN. The objective is to minimize the loss function:

f(w, b) = E
[(

ReLU3(wx+ b)− 1
)2]

+ λw2,

where w and b denote the weight and bias parameters, respectively, and λ > 0 is the regularizer.
Directly applying the result from (Mousavi-Hosseini et al., 2023), implies that w = 0, i.e. the
solution lies on a zero-dimensional space. However, this solution is evidently suboptimal when b ̸= 1.
Consequently, enforcing this behavior requires an artificially large regularization λ. We illustrate this
phenomenon in Figure 1 where the minimizer w∗ approaches zero only under large values of λ.

In contrast, our analytical approach, which allows the training of biases, avoids this drawback by
considering ρ-SOSPs. Instead of requiring an artificially large regularization parameter to explain
this structural behavior (w = 0), we only need a tiny amount of regularization, as shown in Figure 2,
because the bias term can adjust to b = 1. This shows that freezing the biases places an unnecessary
restriction, whereas allowing them to be trained explains the phenomenon more directly and under
milder conditions.

Discussion on ρ-SOSPs. Training the biases allows for smaller regularizers, but proving low-rank
solutions remains challenging. In (Mousavi-Hosseini et al., 2023), a strong regularizer is used to show
that no first-order stationary point (FOSP) can be high-rank; without it, higher-rank FOSPs may exist.
We address this analytical challenge by exploiting the extra properties of ρ-SOSPs, which bound the
negative curvature. The ρ-SOSP solution concept excludes all but the flattest of saddle points, in
other words, a ρ-SOSP is more likely to be a local minimum than the corresponding approximate
FOSP. Using this, we show that for sufficiently small ρ, the only valid solutions are low-rank.

1It is an open question whether this can be done efficiently, but empirical results on NNs strongly support
this behavior.
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Figure 1: Plot of the global minimizer of
f(w, 0) = E[(ReLU3(wx) − 1)2] + λw2 as a
function of the regularization parameter λ.

Figure 2: Optimal w vs. λ for f(w, b) =
E[(ReLU3(wx+ b)− 1)2] + λw2 when biases
are trained. The solid line shows convergence to
0 at an exact SOSP.

We remark that our focus is on the landscape of the objective (Equation 1), not specific optimization
methods. Importantly, ρ-SOSPs capture the solutions reached by standard algorithms: GD/SGD
almost surely avoid strict saddles (Panageas et al., 2019), and PGD (Jin et al., 2017) guarantees
efficient convergence to ρ-SOSPs. Crucially, all local minima are ρ-SOSPs. Furthermore, empirical
observations show that gradient-based methods reliably reach good minima while avoiding saddles (Li
et al., 2018a; Zhou et al., 2020) and that these solutions have good learning properties. Thus, the
focus on ρ-SOSPs is well motivated as it captures the types of solutions seen in practice and theory,
while also providing a framework to study the mechanisms of implicit regularization.

Summary of our contributions. Our key contributions can be summarized as follows:

We consider a general family of functions of the form:

f(W , b; θ) = Ex [gθ(Wx+ b)] + λ∥W ∥2F , (1)

where W ∈ Rk×d, b ∈ Rk, x ∼ N (0, Id), gθ(·) : Rk → R denotes a parameterized nonlinear
function and λ > 0 is a regularization parameter. This formulation is highly general and encompasses
a wide range of applications, including the population risk of NNs of arbitrary depth and architecture,
under any smooth loss functions.

Below we present our key derandomization lemma, which forms the foundation of our results, stated
informally as follows:

Informal version of Lemma 3.1 Let f be a twice differentiable function in the form of Equation 1,
where x ∼ N (0, Id). Then, all SOSPs of f satisfy W = 0.

Structure discovery in NNs. We first show that the regularized risk of any NN can be expressed as
a function of the form in Equation 1. Then, by applying our key derandomization lemma, we establish
that in the teacher-student setting any ρ-SOSP solution of the risk yields a first-layer weight matrix
W which is near low-rank. This type of structure is closely associated with improved generalization
performance as shown in (Mousavi-Hosseini et al., 2023). In this paper, our express focus is on
providing guarantees for structure discovery under much broader and more minimal assumptions,
thereby capturing a wider class of models and cases of arbitrarily weak regularization.

In other words, our main result as applied to NNs suggests a new explanation for parsimony even
with weak regularizers. Recall that standard methods like SGD, GD, or PGD are known to escape
saddle points; when that happens, our results guarantee a solution with good structure (i.e. low rank).

Our results in other domains. Due to the generality of our derandomization lemma we obtain
strong theoretical results across domains. For example, we get (i) a deterministic MAXCUT ap-
proximation matching the randomized guarantee of (Goemans & Williamson, 1995), and (ii) a
deterministic construction for learning Johnson-Lindenstrauss (JL) embeddings (Johnson et al., 1984).
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In the case of MAXCUT, our contribution is to show that derandomization can be achieved via
simple gradient-based optimization, without relying on explicit combinatorial constructions or pseu-
dorandom generators. To the best of our knowledge, this is the first optimization-based approach for
derandomizing the Goemans-Williamson algorithm, and we view it as a conceptual contribution that
enriches the literature on derandomization. In the case of JL, we match the state-of-the-art result
of (Tsikouras et al., 2024) further demonstrating the generality of our lemma. We expect the same
approach to extend to other domains.

2 NOTATION AND PRELIMINARIES

Notation. For vectors u,v we use ⟨u,v⟩ or u · v to denote their inner product and ∥u∥2 to denote
the L2 norm. For matrix M ∈ Rk×d, we denote the element of the ith row and jth column by
µi,j and we use ∥M∥F to denote the Frobenius norm. We use ∇f and ∇2f to denote the gradient
and Hessian operators, respectively. Additionally, we use A ∼ N (M ,Σ), where M = (µi,j) and
Σ = (σi,j) to indicate that A = (ai,j) is a matrix with independent random entries, and each entry
follows ai,j ∼ N(µi,j , σi,j). Using this notation we can write A = M + Z, where Z ∼ N (0,Σ).

Definition 2.1. A twice differentiable function f : Rd → R is defined to be L-smooth, if for all
x,y ∈ Rd it satisfies:

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2.
The function is K-Hessian Lipschitz if for all x,y ∈ Rd:

∥∇2f(x)−∇2f(y)∥2 ≤ K∥x− y∥2.

Below, we give the definition for approximate stationarity.
Definition 2.2 (Approximate second-order stationarity). For a K-Hessian Lipschitz function f(·),
we say that a point x∗ is a ρ-second-order stationary point (ρ-SOSP) if:

∥∇f(x∗)∥2 ≤ ρ and λmin(∇2f(x∗)) ≥ −
√

Kρ.

Assumption 2.3. The function is both L-smooth and K-Hessian Lipschitz.

Provided Assumption 2.3 holds, Algorithm 1 converges to a ρ-SOSP in O(1/ρ2) iterations with
high probability (Jin et al., 2017). Alternatively, Algorithm 2 achieves a deterministic ρ-SOSP in
O(1/ρ1.5) iterations (Tsikouras et al., 2024), but requires Hessian access.

3 MAIN CONTRIBUTION: KEY DERANDOMIZATION LEMMA

In this section, we prove that convergence to SOSPs is a sufficient condition for derandomization. Let
W ∈ Rk×d, b ∈ Rk, gθ(·) : Rk → R be a function satisfying Assumption 2.3, and let x ∼ N (0, Id).
We analyze the behavior of the following objective function at its SOSPs:

f(W , b; θ) = Ex[gθ(Wx+ b)] + λ∥W ∥2F , (2)

where λ > 0 is an arbitrarily small regularization parameter. Our main result is presented below.
Lemma 3.1 (Key Derandomization Lemma). Let x ∼ N (0, Id) be a standard multivariate Gaussian
random variable. For the objective function defined in Equation 2, with λ >

√
Kρ
2 where gθ(·)

satisfies Assumption 2.3, any ρ-SOSP satisfies ∥W ∥F ≤ ρ
2λ−

√
Kρ

.

Proof sketch: The key observation is that applying Stein’s Lemma (Stein, 1973; 1981) relates
the second derivative of b with the first derivative of W . This allows us to express the first-order
conditions for W in terms of expectations involving the second derivatives of gθ. Using these
relations and an approximate first-order optimality condition, we derive the required bound on the
Frobenius norm of W . Full proof can be found in Appendix A.1.
Remark 3.2. Note that achieving a perfect SOSP (i.e. ρ = 0), would result in W = 0; the proof of
this is in Appendix A.2.
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This result shows that when the objective function takes the form given in Equation 2, a common
structure in practice, it is possible to improve it by minimizing the inherent randomness. Since the
input x is random, having a small ∥W ∥F , ensures that Wx remains small on average, so the values
of gθ(Wx+ b) vary less. In other words, second-order stationarity implies that the randomness in
the objective function is effectively decreased. We illustrate the implications of this result by applying
it to three distinct examples from different fields, as demonstrated in the following sections. We
emphasize that the ρ-SOSP is taken with respect to all model parameters, see Appendix B for further
discussion.

It is important to note that a tiny amount of regularization is necessary to ensure a well-defined
solution in this lemma. Without it, choosing the function gθ(wx+ b) = 0, would result in all w ∈ R
being local minima, as the objective provides no preference among these values. Introducing a tiny
regularization term λ eliminates this ambiguity by penalizing non-zero weights, thereby enforcing
w = 0 as the unique optimal solution.

Additionally, λ is fully controllable by ρ which is set prior to the optimization process. As a result,
it is possible to use arbitrarily small regularization, provided one is willing to incur the additional
cost of executing the optimization algorithm for a greater number of steps. We emphasize this
point to remind the reader that only a minimal amount of regularization is necessary. Therefore, the
regularization term itself is not the primary factor influencing the outcome; rather, it is the interaction
between the second derivative of b and the first derivative of W that plays a more significant role in
the optimization process.

It is important to clarify that Lemma 3.1 serves as a structure discovery result rather than an
optimization result. In particular, our focus lies not on the specific optimization algorithm employed,
but rather on establishing that any solution satisfying the ρ-SOSP condition necessarily reveals
structure. There might be different methods under many different sets of assumptions that yield
a ρ-SOSP solution, even in more practical and realistic finite-sample regimes. Nonetheless, for
completeness, we note that PGD (Jin et al., 2017), originally developed for deterministic objectives
such as the population risk, has been shown to efficiently yield ρ-SOSP solutions in polynomial time
in stochastic and finite-sample regimes (see Theorem 15 in (Jin et al., 2018)).

4 STRUCTURE DISCOVERY IN NEURAL NETWORKS

In this section, we present our primary application, which builds on the central derandomization
Lemma 3.1. Our approach extends the work of (Mousavi-Hosseini et al., 2023), which demonstrated
a key insight: the convergence of the first-layer weights to a low-dimensional subspace. We refine
and generalize these results to a broader setting. Let x ∈ Rd, be a standard Gaussian distribution
x ∼ N (0, Id). The target labels are generated by a multiple-index teacher model of the form:

y = h(⟨u1,x⟩, . . . , ⟨uk,x⟩; ϵ) ≡ h(Ux; ϵ), (3)

where h : Rk+1 → R is a weakly differentiable link function and ϵ represents additive noise.

For any vector v ∈ Rd, let v∥ denote its orthogonal projection onto span(u1, . . . ,uk), and define
v⊥ := v − v∥. For a matrix W ∈ Rk×d, we define W∥ and W⊥ by projecting each row of W
similarly. Using this notation, we rewrite the labeling function to depend only on the x∥ component:

y = h(Ux) = h′(x∥).

Our goal is to show that the perpendicular component W⊥ converges to zero, implying that the
first-layer weight matrix W lies entirely in the teacher subspace.

(Mousavi-Hosseini et al., 2023) showed that, under certain conditions, training only the first-layer
weights of a two-layer NN suffices to ensure convergence to the low-dimensional principal subspace
defined by the teacher model. We extend this result by showing that training the first-layer bias is
also essential. Including the bias enables a simpler and more direct analysis of the training dynamics.

This expanded approach allows us to establish convergence guarantees under significantly more
general conditions, including: (a) arbitrary regularization parameters λ > 0 (resolving an open
question in earlier work), (b) arbitrary NN size and depth, (c) all parameters being trainable (including
biases), and (d) any choice of smooth loss function.
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4.1 DISCOVERING STRUCTURE IN NEURAL NETWORKS VIA SOSPS

Let W ∈ Rk×d and b ∈ Rk, and consider the first layer of a NN given by Wx+ b. We decompose
this expression into components that are parallel and perpendicular to a subspace U , as follows:

Wx+ b = W∥x∥ +W⊥x⊥ + b, (4)

since W⊥x∥ = 0 and W∥x⊥ = 0 due to orthogonality.

Now define the NN’s prediction as ŷ(x;W , b, θ) = gθ(Wx+ b), where gθ(·) is a NN of arbitrary
size and depth, parameterized by θ, which satisfies Assumption 2.3. Given a loss function ℓ(y, ŷ) that
also satisfies Assumption 2.3, and a regularization parameter λ > 0, we define the regularized risk as:

R(W , b; θ) := Ex [ℓ (y, ŷ(x;W , b, θ))] + λ∥W ∥2F . (5)

As shown in Appendix C, Equation 5 can be reformulated in a way that enables direct application
of Lemma 3.1. In particular, this reformulation expresses the regularized risk as a function of the
perpendicular components:

R(W⊥, b; θ
′) = Ex⊥ [ℓ′θ′ (W⊥x⊥ + b)] + λ∥W⊥∥2F . (6)

In this form, the parallel and perpendicular components are fully decoupled. The modified loss
ℓ′θ′ implicitly depends on the parallel components, the corresponding regularization, and all other
parameters of the NN. By applying Lemma 3.1, we conclude that ∥W⊥∥F can be made arbitrarily
small, implying that the perpendicular components are effectively suppressed during training.
Theorem 4.1. Consider an arbitrary NN of any size and depth that satisfies Assumption 2.3, and
a loss function that also satisfies this assumption. Let the input data x ∼ N (0, Id) be a standard
multivariate Gaussian distribution, and the labels generated according to Equation 3. If we minimize
Equation 6 with respect to (W , b), then for any precision parameter ρ and regularization parame-
ter λ >

√
Kρ
2 , where K denotes the Hessian Lipschitz constant of the objective, all ρ-SOSPs satisfy

the inequality:
∥W⊥∥F ≤

ρ

2λ−
√
Kρ

.

Proof. Since both the NN and the loss function are smooth and Hessian Lipschitz, their composition
inherits these properties. The result then follows directly from Lemma 3.1.

The result establishes the theoretical validity of our approach but is qualitative in nature, as it does not
specify the number of steps required for optimization. To complement this, we provide a quantitative
result demonstrating that the objective function can be minimized efficiently.
Theorem 4.2. Let the objective function in Equation 5 be twice differentiable, bounded below,
and satisfies Assumption 2.3. Let the data x ∼ N (0, Id), and suppose labels are generated
according to Equation 3. Let ρ > 0 be a prespecified accuracy, and define the regularization
parameter λ =

√
Kρ+∆
2 , where K is the Hessian Lipschitz constant of the objective and ∆ > 0

is an arbitrarily small constant. Then, with probability 1 − δ, running Algorithm 1 for T >
O
(
poly

(
L, log(d), log(δ), ε−1,∆−1

))
iterations with a step size O(1/L), yields a weight matrix

W = W⊥ +W∥ that satisfies:
∥W⊥∥F < ε.

Proof. Full proof can be found in Appendix D.1.

This result demonstrates that, with a number of samples that scales with the Hessian Lipschitz
constant, PGD can effectively generate iterates that are as close to the principal subspace as required.
This allows the model to learn low-dimensional representations, and introduce an implicit bias
toward simpler, lower-complexity solutions. The discovery of structure appears to be an inherent
characteristic of this optimization process for problems of this nature. This convergence to a low-
dimensional solution is often linked with the generalization behavior of NNs (Neyshabur et al., 2015b;
Bartlett et al., 2017; Arora et al., 2018; Suzuki et al., 2020; Mousavi-Hosseini et al., 2023). We
do not attempt to establish generalization guarantees here, as such results would require additional
assumptions on the data distribution or the hypothesis class. Instead, our contribution is to provide
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guarantees for structure discovery under broader and more minimal conditions, thereby extending the
potential applicability of these ideas to a wider range of models.

Our results pertain to NNs with smooth activation functions; here we discuss the wide practical appli-
cability of this family of networks. Smooth nonlinearities are widely used in modern architectures,
and there is no strong evidence that non-smooth activations outperform their smooth counterparts.
For example, BERT adopts the Gaussian Error Linear Unit (GELU) (Hendrycks & Gimpel, 2016;
Devlin et al., 2019), a smooth activation that has been shown to benefit from this choice compared
with non-smooth alternatives. Thus, our assumption is aligned with standard practice. We provide
additional insights for the non-smooth ReLU case by employing a smooth approximation in the next
section.

4.2 THE CASE FOR RELU

The non-smoothness of ReLU poses challenges for our framework. To ensure the smoothness and
Hessian Lipschitz continuity needed for defining ρ-SOSPs, we use a smooth approximation of ReLU:

ReLUι(x) =
1

ι
log (1 + eιx) .

As ι → ∞, the function converges to the standard ReLU. Moreover, it is ι
4 -gradient Lipschitz

and
√
3ι2

9 -Hessian Lipschitz, ensuring that our framework remains valid for any smooth ReLU
approximation. In this sense, ReLUι captures the essential behavior of ReLU while enabling
theoretical guarantees. To show the dependence on ι we give the following theorem, regarding a one
layer NN using activation function ReLUι(·).
Theorem 4.3. Assume that the data x ∼ N (0, Id), and labels are generated according to Equa-
tion 3. Additionally, consider the NN a⊤ReLUι(Wx+ b) and the objective in Equation 5, which
is twice differentiable, bounded below, and satisfies Assumption 2.3, with gradient and Hessian
Lipschitz constants Lℓ and Kℓ, respectively. Let ρ > 0 be a prespecified accuracy and define
the regularization parameter λ =

√
Kρ+∆
2 , where K = O(ι2Kℓ) is the overall Hessian Lipschitz

constant and ∆ > 0 is arbitrarily small. Then, with probability 1 − δ, running Algorithm 1 for
T > O

(
poly

(
ι, Lℓ, log(δ), ε−1,∆−1

))
iterations, with a step size O(1/(ιLℓ)), yields a weight

matrix W = W⊥ +W∥ that satisfies:

∥W⊥∥F < ε.

Proof. This is a direct application of Theorem 4.2. The composition of the objective with ReLUι

satisfies Assumption 2.3 and is lower bounded.

4.3 NEURAL NETWORKS EXPERIMENTS

In this section, we empirically validate our theoretical
framework by showing that the student network con-
verges to the principal subspace. The teacher network
is a single-index model that generates outputs accord-
ing to y = tanh(θ · x) + noise, where x ∈ R2 and
θ = 1√

2
(1, 1)⊤ is a fixed direction. The student net-

work attempts to learn this mapping using a two-layer
NN of the form

y = a⊤ReLU2(Wx+ b),

where W ∈ Rh×d, b ∈ Rh, and a ∈ Rh is the second
layer. Full details can be found in Appendix E.
We observe that the randomly initialized first layer
weights converge to the principal subspace, as is ev-
ident in Figure 3. This highlights that, even starting
from random initialization, W recovers the signal de-
fined by the teacher network.

Figure 3: Two-layer ReLU2 network of
width h = 1000 and d = 2 for the
task of recovering a tanh single-index
teacher model. We observe convergence
of weights W to the principal subspace.
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5 OTHER APPLICATIONS

5.1 MAXCUT

The MAXCUT problem is a classical combinatorial optimization problem that seeks to partition the
vertices of a graph G = (V,E) into two disjoint sets, S and T , such that the sum of the weights of the
edges crossing between S and T is maximized. The objective function for the MAXCUT problem is:

Maximize:
∑

(i,j)∈E

wij(1− xixj)

2
, subject to xi ∈ {−1, 1}, ∀i ∈ V.

where wij denotes the weight of the edge (i, j) and the term 1− xixj equals 1 if edge (i, j) crosses
the cut and 0 otherwise. We follow the common assumption that wi,j = 1. This is a combinatorial
optimization problem that is NP-complete (Karp, 1972).

To make the problem more tractable, (Goemans & Williamson, 1995) proposed using a semidefinite
program (SDP) relaxation. In this relaxation, the discrete MAXCUT problem is lifted to a continuous
one by representing each vertex i as a unit vector vi ∈ Rm on the unit sphere, where m is the number
of nodes in the graph. The algorithm first solves the SDP to obtain these vectors. It then applies a
randomized rounding procedure to map the continuous solution back to a discrete cut: a standard
Gaussian vector z ∼ N (0, Im) is sampled, and each vertex is assigned to one of the two sets S or T
based on the sign of the inner product ⟨vi, z⟩.
We aim to approximate the MAXCUT problem by derandomizing this rounding algorithm. Let
V ∈ Rm×m be the matrix of SDP vectors. Define V z + µ, where z ∼ N (0, Im) and µ ∈ Rm is
a mean vector. Our goal is to minimize the negative expected cut value, leading to the regularized
objective function:

f(V ,µ) = −
∑
i<j

wi,j Pr [sgn(vi · z + µi) ̸= sgn(vj · z + µj)] + λ∥V ∥2F . (7)

Remark 5.1. The probability term in Equation 7 can be interpreted as the expectation of an indicator
function for the event inside the probability. To allow the application of Lemma 3.1, we replace this
indicator function with a smooth ϵ-approximation, as described in Appendix F.1.

We now present our main result on the derandomization of the randomized MAXCUT algorithm.
Theorem 5.2 (Derandomized Approximation for MAXCUT). Let G = (V,E) be a graph with m
edges, where the edge weights are given by wi,j = wj,i = 1 for all (i, j) ∈ E. Let V ∈ Rm×m

be the matrix of vectors obtained from the SDP relaxation of the MAXCUT problem, as described
in (Goemans & Williamson, 1995). Denote by z ∼ N (0, Im) a standard multivariate Gaussian
vector, and let µ represent a vector of means. Initialize Algorithm 1 with µ = 0, and optimize the
ϵ-smoothed version of the objective function in Equation 7 (see Equation 27), using the regularization

parameter λ =

√
ρ/ϵ3+∆

2 , and run for T = O
(
poly

(
log(m), log(δ), ϵ−1,∆−1

))
iterations. After

this optimization process, the resulting vector µ defines a cut whose value is guaranteed to be at
least:

OPT(α−O(ϵ)),

with probability 1− δ. Here, α = 0.878 is the approximation factor from (Goemans & Williamson,
1995).

Proof. Full proof can be found in Appendix F.1.

To the best of our knowledge, this work is the first optimization-based derandomization of the
MAXCUT problem: rather than relying on the method of conditional expectations, small-bias spaces,
or explicit pseudorandom constructions (Naor & Naor, 1990; Motwani & Raghavan, 1995; Mahajan
& Ramesh, 1995). The empirical results of our approach for MAXCUT can be found in Appendix F.2.

5.2 JOHNSON-LINDENSTRAUSS EMBEDDINGS

The JL Lemma is a well-known result in the field of dimensionality reduction (Johnson et al., 1984).
Specifically, consider unit norm data points x1, . . . ,xn ∈ Rd, which we aim to project into k
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dimensions while preserving their norms with at most ε-distortion. Here, the distortion is given by
ε = O

(√
log n/k

)
. A detailed description of the JL Lemma is given in Appendix G.1. In this

context, we are interested in finding matrices that satisfy the JL guarantee:
Definition 5.3 (JL guarantee). The JL guarantee states that for given dataset x1, . . . ,xn ∈ Rd and
target dimension k, the distortion for all points does not exceed O(

√
log n/k).

Significant research has been dedicated to improving the construction of random projections (Indyk
& Motwani, 1998; Achlioptas, 2001; Matoušek, 2008). In contrast to these traditional methods, our
approach recovers the result from (Tsikouras et al., 2024), which proposes learning the linear mapping
directly from the data, deterministically. Other derandomization methods for JL include (Engebretsen
et al., 2002; Meka & Zuckerman, 2010).

Let A be a random matrix whose entries ai,j are independently drawn from a Gaussian distribution
with means µi,j and variances σ2

i,j . Let Σ denote the matrix collecting these variances. Our goal is to
minimize the following quantity:

Pr

(
max

i=1,...,n

∣∣∥Axi∥22 − 1
∣∣ > ε

)
+
∥Σ1/2∥2F

2kd
, (8)

which represents the probability that the maximum distortion across all input vectors exceeds a
prescribed threshold ε, augmented by a regularization term that penalizes large variances. Notably,
the regularizer vanishes as Σ→ 0, recovering a deterministic transformation in the limit.

As shown in Appendix G.1, we use a union bound to relax the original objective in Equation 8,
reducing it to an equivalent surrogate objective:

f
(
Σ1/2,µ

)
=

n∑
i=1

Pr

(∣∣∣∣∥∥∥(Σ1/2z + µ
)
xi

∥∥∥2
2
− 1

∣∣∣∣ > ε

)
+

∥∥Σ1/2
∥∥2
F

2kd
, (9)

where z ∼ N (0, Ikd). The optimization is performed over the parameters (Σ1/2,µ).
Remark 5.4. The probability term in Equation 9 can be interpreted as the expectation of an indicator
function for the event inside the probability. To allow the application of Lemma 3.1, we replace this
indicator function with a smooth ε1-approximation, as described in Appendix G.3.

We now present our main result on the derandomization of the JL Lemma.
Theorem 5.5. Let n be unit vectors in Rd, k be the target dimension, ϵ be a smoothening parameter
and ∆ > 0 be an accuracy parameter. For any ε ≥ C

√
log n/k, where C is a sufficiently large

constant, initialize M = 0 and Σ = Ikd and run Algorithm 1 to optimize the ε1-smoothed
version of the objective function in Equation 9 (see Equation 27) using the regularization parameter

λ =

√
ρ/ϵ3+∆

2 . After T = O
(
poly

(
n, k, d, log(δ),∆−1

))
iterations, this returns a matrix M that

satisfies the JL guarantee with distortion at most O(ε), with probability 1− δ.

Proof. Full proof can be found in Appendix G.4.
The empirical results of our approach for JL can be found in Appendix G.5.

6 CONCLUSION

We study the theoretical properties of NNs under specific conditions, showing they can discover
low-rank structures. Building on (Mousavi-Hosseini et al., 2023), we extend their framework to allow
(a) NNs of arbitrary size and depth, (b) all parameters trainable, (c) any smooth loss function, and (d)
minimal regularization. The core of our analysis is the derandomization Lemma 3.1, which ensures
effectiveness even with small regularization. Training biases is a common practice, and our theory
guarantees that it can improve model performance. The strength of our lemma is demonstrated in
three applications, mainly in NNs and secondarily in MAXCUT and JL embeddings.

Finally, we outline some limitations of our current work and suggest future research directions. Our
results rely on the assumption that the input distribution is Gaussian. Extending these findings to
other distributions is an interesting avenue for future research. Additionally, it would be valuable to
explore connections between our theoretical results and the learning and generalization guarantees
that are observed in practice.

9
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APPENDIX

A RELATED WORK

Feature learning in NNs. Despite the established importance of feature learning in NNs, the
specifics of how gradient-based algorithms develop useful features remain somewhat unclear. The
neural tangent kernel (NTK) framework, primarily used for examining overparameterized NNs,
suggests that neuron movement from their initial positions is minimal, highlighting the role of NN
architecture and initial settings (Jacot et al., 2018; Du et al., 2018; Allen-Zhu et al., 2019; Chizat et al.,
2019). Limitations of the NTK framework have led researchers to explore other analytical approaches,
such as mean-field analysis, initially requiring vast neuron counts (Chizat & Bach, 2018; Mei et al.,
2018). Later studies have shown that early stages of training, such as initial steps in GD, are crucial
for effective feature learning, with the first layer in 2-layer NNs capturing valuable features (Daniely
& Malach, 2020; Abbe et al., 2021; 2022; Zhou & Ge, 2024). This early capture of features by the
first layer offers better performance than models relying solely on kernel or random features. In the
exploration of NN and kernel method interconnections, it has become evident that gradient-based
training facilitates representation learning, setting NNs apart from kernel methods (Mousavi-Hosseini
et al., 2023; Abbe et al., 2022; Ba et al., 2022; Barak et al., 2022; Damian et al., 2022). A 2-layer NN
with untrained, randomly initialized weights epitomizes a random features model (Rahimi & Recht,
2007), capturing complex phenomena seen in NN practice (Louart et al., 2018; Mei & Montanari,
2022). Despite inheriting positive traits from optimization procedures, these cannot be fully expressed
as random feature regression. The implicit regularization aims of the training dynamics, favoring
low-complexity models, are widely discussed (Neyshabur et al., 2015a).

Single/Multi index models. NNs are widely studied for learning single-index and multi-index
models, which depend on a few directions in high-dimensional inputs. Recent works demonstrate
the effectiveness of two-layer NN in learning single-index (Soltanolkotabi, 2017; Yehudai & Ohad,
2020; Frei et al., 2020; Wu, 2022; Bietti et al., 2022; Xu & Du, 2023; Mahankali et al., 2023; Berthier
et al., 2024) and multi-index models (Damian et al., 2022; Bietti et al., 2023; Glasgow, 2023; Suzuki
et al., 2024). These studies emphasize the benefits of feature learning over fixed random features. For
multi-index functions representable by compact two-layer NN, a GD variant with weight decay can
recover ground-truth directions. Gradient-based learning shows that NNs trained via GD can learn
useful representations for single-index (Ba et al., 2022; Bietti et al., 2022; Mousavi-Hosseini et al.,
2023; Berthier et al., 2024; Oko et al., 2024) and multi-index models (Damian et al., 2022; Abbe et al.,
2022; Bietti et al., 2023). Learning complexity is influenced by the information exponent (Arous et al.,
2021) or leap complexity (Abbe et al., 2023). While guarantees for low-dimensional models often lead
to superpolynomial dependence, other research examines cases where student NN match the target
function’s architecture (Gamarnik et al., 2019; Akiyama & Suzuki, 2021; Zhou et al., 2022; Veiga
et al., 2022; Martin et al., 2024). This study considers an intermediate case where width scales with
dimensionality without assuming a known nonlinear activation, showing GD achieves polynomial
sample complexity when target weights are diverse. Additionally, statistical query algorithms address
related polynomial regression tasks (Dudeja & Hsu, 2018; Chen & Meka, 2020; Garg et al., 2020;
Diakonikolas et al., 2024).

A significant line of recent work investigates the learnability of single-index models via Hermite
decompositions under Gaussian inputs. These works show that for single-index targets, the first
nonzero Hermite term, captured by the information exponent or, in newer formulations, the generative
exponent, governs the difficulty of recovering the index direction using first-order or statistical
query-style methods (Arous et al., 2021; Wang et al., 2024; Braun et al., 2025). Recent lower bounds
based on the generative exponent reveal computational–statistical gaps, establishing sharp statistical
query and low-degree polynomial hardness results (Damian et al., 2024; 2025). Complementary
algorithmic results show that gradient-based learners can match these limits in certain regimes: two-
layer networks with data reuse effectively reduce the relevant Hermite order (Lee et al., 2024), and
new SGD-based methods achieve sample complexities near the generative-exponent boundary (Chen
et al., 2025).
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A.1 PROOF OF LEMMA 3.1

Lemma. Let x ∼ N (0, Id) be a standard Gaussian random variable. For the objective function
defined in Equation 2, with λ >

√
Kρ
2 where gθ(·) satisfies Assumption 2.3, any ρ-SOSP satisfies

∥W ∥F ≤ ρ
2λ−

√
Kρ

.

Proof. The first and second derivatives of f(W , b, θ) with respect to b are given by:

∂f(W , b, θ)

∂b
= Ex[∇gθ(Wx+ b)].

∂2f(W , b, θ)

∂2b
= Ex[∇2gθ(Wx+ b)].

The first derivative with respect to W is:

∂f(W , b, θ)

∂W
= Ex[∇gθ(Wx+ b)x⊤] + 2λW .

Using Stein’s Lemma in the multivariate case, this can be rewritten as:

∂f(W , b, θ)

∂W
= Ex[∇2gθ(Wx+ b) + 2λI]W . (10)

At a ρ-second-order stationary point, the Hessian with respect to b satisfies:

∂2f(W , b, θ)

∂2b
= Ex[∇2gθ(Wx+ b)] ≽ −

√
KρI. (11)

From Equation 11, it follows that:

Ex[∇2gθ(Wx+ b)] + 2λI ⪰ 2λI −
√
KρI.

Then dividing both sides with 2λ−
√
Kρ, we get:

Ex

[
∇2gθ(Wx+ b) + 2λI

2λ−
√
Kρ

]
⪰ I. (12)

Using the approximate first-order optimality condition
∥∥∥∂f(W,b)

∂W

∥∥∥
F
< ρ along with Equations 10

and 12, we have:

ρ

2λ−
√
Kρ
≥
∥∥∥∥Ex

[
∇2gθ(Wx+ b) + 2λI

2λ−
√
Kρ

]
W

∥∥∥∥
F

≥ σmin

(
Ex

[
∇2gθ(Wx+ b) + 2λI

2λ−
√
Kρ

])
∥W ∥F

≥ ∥W ∥F ,

where σmin in the penultimate inequality is the minimum singular value which is lower bounded by
one.

A.2 PROOF OF LEMMA 3.1 FOR ρ = 0

Lemma. Let x ∼ N (0, Id) be a standard Gaussian random variable. For the objective function
defined in Equation 2, with λ >

√
Kρ
2 where gθ(·) satisfies Assumption 2.3, any second-order

stationary point satisfies W = 0.
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Proof. The first and second derivatives of f(W , b, θ) with respect to b are given by:

∂f(W , b, θ)

∂b
= Ex[∇gθ(Wx+ b)].

∂2f(W , b, θ)

∂2b
= Ex[∇2gθ(Wx+ b)].

The first derivative with respect to W is:

∂f(W , b, θ)

∂W
= Ex[∇gθ(Wx+ b)x⊤] + 2λW . (13)

Using Stein’s Lemma in the multivariate case, this can be rewritten as:

∂f(W , b, θ)

∂W
= Ex[∇2gθ(Wx+ b) + 2λI]W . (14)

At a second-order stationary point, the Hessian with respect to b satisfies:

∂2f(W , b, θ)

∂2b
= Ex[∇2gθ(Wx+ b)] ≽ 0. (15)

From Equation 15, it follows that:

Ex[∇2gθ(Wx+ b)] + 2λI ≻ 0, (16)

where the addition of 2λI ensures strict positive definiteness.

Using the first-order optimality condition ∂f(W ,b,θ)
∂W = 0 along with Equations 14 and 16, we have:

Ex[∇2gθ(Wx+ b) + 2λI]W = 0. (17)

Since Ex[∇2g(Wx+ b)] + 2λI ≻ 0 (from Equation 2), the only solution is W = 0.

B OPTIMIZATION ALGORITHMS

Below we give the two main algorithms for finding SOSPs; PGD and Hessian Descent.

Algorithm 1 Perturbed Gradient Descent

Require: Objective function f(x), initial point x0, gradient Lipschitz constant L, learning rate
η = 1

L , maximum iterations T
1: Initialize x1 ← x0

2: for t = 1 to T do
3: if perturbation condition holds then
4: Draw random perturbation ξt
5: xt ← xt + ξt
6: end if
7: xt+1 ← xt − η∇f(xt)
8: end for
9: return xT+1
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Algorithm 2 Hessian Descent

Require: Gradient ∇g, Hessian ∇2g, initial point x0, step size ν = 1
L , perturbation step size

h =
3
√
ρ

K , Lipschitz constants L, K, ρ
1: Initialize t← 0
2: while true do
3: if ∥∇g(xt)∥ > ρ then
4: xt+1 ← xt − ν · ∇g(xt)
5: else if ∥∇g(xt)∥ ≤ ρ and λmin(∇2g(xt)) < −

√
Kρ then

6: u1 ← eigenvector corresponding to λmin(∇2g(xt))
7: xt+1 ← xt + hu1

8: else
9: return xt

10: end if
11: t← t+ 1
12: end while

DISCUSSION ON ρ-SOSPS

Additionally, we clarify that our analysis operates under the assumption that the optimization method
employed converges to a ρ-SOSP with respect to all model parameters, including those encapsulated
in θ. Specifically, we assume that an approximate SOSP is identified jointly over the entire parameter
space. Once such a point is found, we observe that fixing the auxiliary parameters θ preserves the
approximate second-order stationarity with respect to the first-layer weight matrix W .

C REFORMULATION

R(W∥,W⊥, b) = Ex⊥,x∥

[
ℓ
(
h′ (x∥

)
, gθ
(
W⊥x⊥ +W∥x∥ + b

))]
+ λ∥W∥ +W⊥∥2F

= Ex⊥

[
Ex∥

[
ℓ
(
h′ (x∥

)
, gθ
(
W⊥x⊥ +W∥x∥ + b

))]
+ λ∥W∥∥2F

]
+ λ∥W⊥∥2F

(18)

= Ex⊥ [ℓ′θ′ (W⊥x⊥ + b)] + λ∥W⊥∥2F ,
where ℓ′θ′ (W⊥x⊥ + b) := Ex∥

[
ℓ
(
h′ (x∥

)
, gθ
(
W⊥x⊥ +W∥x∥ + b

))]
+λ∥W∥∥2F . Equation 18

holds because W⊥ is orthogonal to W∥. For notational convenience, we suppress W∥, W⊥ and x⊥
in the expectation and just write

R(W⊥, b) = Ex⊥ [ℓ′θ′ (W⊥x⊥ + b)] + λ∥W⊥∥2F .

Additionally, we clarify that our analysis operates under the assumption that the optimization method
employed converges to a ρ-SOSP with respect to all model parameters, including those encapsulated
in θ. Specifically, we assume that an approximate SOSP is identified jointly over the entire parameter
space. Once such a point is found, we observe that fixing the auxiliary parameters θ preserves the
approximate second-order stationarity with respect to the first-layer weight matrix W .

D PROOFS OF SECTION 4

D.1 PROOF OF THEOREM 4.2

Theorem. Let the objective function in Equation 5 be twice differentiable, bounded below, and
satisfies Assumption 2.3. Let the data x ∼ N (0, Id), and suppose labels are generated according
to Equation 3. Let ρ > 0 be a prespecified accuracy, and define the regularization parameter
λ =

√
Kρ+∆
2 , where K is the Hessian Lipschitz constant and ∆ > 0 is an arbitrarily small constant.

Then, with probability 1− δ, running Algorithm 1 for T > O
(
poly

(
L, log(d), log(δ), ε−1,∆−1

))
iterations with a step size O(1/L), yields a weight matrix W = W⊥ +W∥ that satisfies:

∥W⊥∥F < ε.

18
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Proof. Since the objective function has Lipschitz continuous gradient and Hessian and is bounded
from below, this implies that it has at least one ρ-SOSP. Choose some ∆ > 0 and λ =

√
Kρ+∆
2

and using Lemma 3.1, we get that any ρ-SOSP is a weight matrix W = W⊥ +W∥, that satisfies
∥W⊥∥F ≤ ρ

∆ .

Let ε = ρ
∆ , solving for ρ, this gives ρ = ε∆. Then, running Algorithm 1 for:

T = O
(
L

ρ2
log4(d)− L

ρ2
log4 (δ)

)
= O

(
L

ε2∆2
log4(d)− L

ε2∆2
log4 (δ)

)
,

iterations gives the required result.

E EXPERIMENTS IN NEURAL NETWORKS OF SECTION 4.3

The student NN is a two-layer feedforward network with a single hidden layer. The input data
X ∈ Rn×d is sampled from a standard multivariate Gaussian distribution with d = 2. The network
architecture consists of an input layer with d features, a hidden layer of width h = 1000, and an
output layer that produces scalar predictions.

The first-layer weight matrix W ∈ Rh×d is initialized with entries drawn from N (0, 1/d), while
the bias vector b ∈ Rh and the second-layer weight vector a are initialized from N (0, 1/h2). The
trainable parameters include both W and b and we freeze the second layer for stability reasons. The
student NN computes predictions according to the mapping:

y = a⊤ReLU2(Wx+ b),

where, ReLU2 denotes a smoothed version of the ReLU. Although ReLU2 is used in our experiments,
other nonlinearities such as tanh can be employed in the same framework.

To generate the labels, we use a teacher network based on a single-index model. A fixed direction θ
is chosen as

θ =
1√
2
(1, 1)⊤,

and labels are generated according to the rule:

y = tanh(θ · x) + ε, where ε ∼ N (0, 0.1).

Training is conducted using PGD, in which small Gaussian noise is added to each gradient step
when the gradient norm is less than ϵ = 1 × 10−6. Specifically, the noise is drawn independently
for each trainable weight from a standard normal distribution and scaled by a factor δ = 0.005, i.e.,
W ← W + δ · N (0, I), with analogous updates applied to the bias terms b and, if trainable, the
output weights a. Although this threshold is small, the noise is applied many times during training,
ensuring exploration of flat regions of the loss landscape. This modification of standard SGD helps
the optimization escape saddle points and flat regions, which is particularly useful in our setting and
aligns with our theoretical guarantees. Training proceeds for T = 10,000 steps, minimizing the Mean
Squared Error (MSE) loss function with L2 regularization controlled by λ = 10−5. Learning rates
are set to η = 1 for the first layer and ηb = 1 for the bias terms.

Figure 3 shows that the first-layer weights of the student network have effectively converged to the
principal subspace, indicating that the network has focused on the relevant direction.

F SUPPORTING MATERIAL OF SECTION 5.1

F.1 PROOF OF THEOREM 5.2

Theorem. Let G = (V,E) be a graph with m edges, where the edge weights are given by
wi,j = wj,i = 1 for all (i, j) ∈ E. Let V ∈ Rm×m be the matrix of vectors obtained from the
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SDP relaxation of the MAXCUT problem, as described in (Goemans & Williamson, 1995). Denote
by z ∼ N (0, Im) a standard multivariate Gaussian vector, and let µ represent a vector of means.
Initialize Algorithm 1 with µ = 0, and optimize the ϵ-smoothed version of the objective function

in Equation 7 (see Equation 27), using the regularization parameter λ =

√
ρ/ϵ3+∆

2 , and run for
T = O

(
poly

(
log(m), log(δ), ϵ−1,∆−1

))
iterations. After this optimization process, the resulting

vector µ defines a cut whose value is guaranteed to be at least:

OPT(α−O(ϵ)),

with probability 1− δ. Here, α = 0.878 is the approximation factor from (Goemans & Williamson,
1995).

Proof. Given a graph with m edges and weights that are equal to one, wi,j = wj,i = 1, we aim to
provide an approximation to the MAXCUT problem by derandomizing the randomized rounding
algorithm. Consider the matrix V ∈ Rm×m which gathers all the vectors from the Semidefinite
Program. Let us also define the function V z + µ, where z ∼ N (0, Im) and µ is a vector of means.
Our objective is to minimize the negative expected cut:

f(V ,µ) = −
∑
i<j

wi,j Pr [sgn(vi · z + µi) ̸= sgn(vj · z + µj)] ,

for which initially we have µ = 0. To minimize this function using our Lemma, we define the
indicator function:

I(x, y) =

{
1, if xy < 0

0, if xy ≥ 0

Using this indicator, we can reformulate the objective as:

f (V z + µ) = −Ez

∑
i<j

wi,jI(vi · z + µi,vj · z + µj)

+ λ∥V ∥2F , (19)

We are concerned with the value of I(vi ·z,vj ·z). If I(vi ·z,vj ·z) = 1, then this edge contributes
to the cut because the signs are different, otherwise it does not. However, since this function is not
smooth, we introduce a smoothed version:

Ĩ(x, y) =


1, if xy < 0 and |x|, |y| > ϵ

0, if |x| < ϵ
2 or |y| < ϵ

2 or xy > 0

[0, 1] , otherwise.

This function is smoothened to be twice differentiable in the interval [0, 1], and we can approximate
it as a polynomial to ensure that the Hessian Lipschitz constant is K = O

(
1
ϵ3

)
and the gradient

Lipschitz constant is L = O
(

1
ϵ2

)
.

The function Ĩ(x, y) is formally defined as follows. First, we define,

S(x) =


1, x ≥ ϵ

0, x < ϵ
2

8
ϵ2

(
x− ϵ

2

)2
, ϵ

2 < x ≤ 3ϵ
4

− 8
ϵ2 (x− ϵ)2 + 1, 3ϵ

4 < x < ϵ

then, the smoothened step function Ĩ is defined as:

Ĩ(x, y) = S(x)S(−y) + S(−x)S(y).
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By using this smoothened function to calculate the cut, we worsen the result from the original cut
by at most O(mϵ), where m is the number of edges. This corresponds to the area of disagreement
between using the actual indicator function and the smoothed indicator function. Our goal is now to
minimize the following function:

f (V z + µ) = Ez

∑
i<j

w̃i,j Ĩ(vi · z + µi,vj · z + µj)

+ λ∥V ∥2F , (20)

where we absorb the minus sign into the original definition of wi,j , for convenience. Choose ρ such
that at the end of the optimization we have ∥V ∥2F < ϵ2.

Next, we investigate the effect of ignoring V and only using the means µ. At the end of the
optimization, we have vectors vi, i = 1, . . . ,m, with ∥vi∥22 ≤ ϵ2, for all i. We examine two cases
for each edge of the graph:

1) If µiµj < 0, these two values contribute to the cut directly, so we do not need anything more.

2) If µiµj > 0, we need further analysis. Without loss of generality, assume that µi > 0 and µj > 0.

To analyze the difference when using full randomness, we need to consider the following. For the edge
to contribute to the randomized version, we require that either vi · z + µi < −ϵ or vj · z + µj < −ϵ,
since we want one of the terms to change signs and thus contribute to Ĩ . Consequently, we would
have to generate a z such that the magnitude ∥vi · z∥ > ϵ, which has exponentially small probability
because vi · z ∼ N (0,mϵ4). Because of this we can conclude that the total expected cut remains
nearly unchanged.

Initially, we have
∑

i<j Ezw̃i,j [I(vi · z,vj · z)] = αOPT, then after using the smoothened function
we obtain:

∑
i<j

Ezw̃i,j

[
Ĩ(vi · z,vj · z)

]
= αOPT−O(ϵm).

Finally, after optimization, we have:

∑
i<j

w̃i,jEz

[
Ĩ(vi · z + µi,vj · z + µj)

]
≥ αOPT−O(ϵm),

As a final step, we compare our (deterministic) cut, with what would have happened if we took the
original randomized version. To complete this step, we use a union bound:

∑
i<j

w̃i,j Ĩ(µi,µj) = αOPT−O(ϵm)− Pr (|viz| > ϵ for any edge)

≥ αOPT−O(ϵm)−mPr (|viz| > ϵ)

≥ αOPT−O(ϵm)−O
(
m · exp

(
− 1

2mϵ2

))
≥ αOPT−O(ϵm)−O(ϵm)

= αOPT−O(ϵOPT)
= OPT · (α−O(ϵ)) ,

where the penultimate equality follows since OPT is a function of the edges m.

For the iteration complexity, since we want to reach a point with ∥V ∥F < ϵ, for the specific choice

of λ =

√
ρ/ϵ3+∆

2 , and running Algorithm 1 for:

T = O
(
L

ρ2
log4(m)− L

ρ2
log4 (δ)

)
= O

(
1

ϵ4∆2
log4(m)− 1

ϵ4∆2
log4 (δ)

)
,

iterations gives the required result.
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F.2 EXPERIMENTS IN MAXCUT

In this experiment, we evaluated a stochastic optimization algorithm for solving the MAXCUT
problem on a randomly generated undirected graph with m = 15 vertices and an edge probability
of 0.6. The exact MAXCUT value (computed as 41) was obtained using exhaustive search and
used as a ground-truth reference. The optimization procedure is based on the Goemans-Williamson
relaxation, where node embeddings are derived from the top eigenvectors of the adjacency matrix. A
stochastic gradient-based method is then applied, which samples noisy directions from a Gaussian
distribution parameterized by a mean vector m and log-standard deviation logσ. and the number of
cut edges is evaluated. Gradients with respect to both m and σ are estimated using a Monte Carlo
approximation with 100 samples per step. The parameters are updated via SGD, which is sufficient
for this task, with adaptive learning rates: 0.01 for m and 0.001 for σ. To ensure stability and
exploration, a regularization term is applied to σ, and its values are clipped to the range [10−3, 1.5].
Learning rates are further annealed by decay factors every 100 iterations. The algorithm was run
for 5000 iterations. Throughout optimization, we tracked the evolution of cut values, the maximum
standard deviation across dimensions, and sampled cut edges to monitor progress relative to the exact
MAXCUT benchmark.

Figure 4 illustrates the progression of the cut value over the course of training, showing consistent
improvement and eventual convergence to the optimal cut obtained via brute force. In parallel, Figure
5 shows the evolution of the maximum value of σ2, which steadily decreased over time. This trend
indicates that the algorithm gradually reduced its randomness as it converged toward a confident,
high-quality solution. Notably, our optimization method substantially outperformed the baseline
cut value of approximately 36 achieved by the classical randomized algorithm. Overall, the results
demonstrate that the method not only successfully identified an optimal cut but also naturally annealed
its uncertainty, confirming both its effectiveness and stability.

Figure 4: Progress of the cut value over itera-
tions.

Figure 5: Evolution of the maximum σ2 value
over iterations.

G SUPPORTING MATERIAL OF SECTION 5.2

G.1 REFORMULATION OF JOHNSON-LINDENSTRAUSS OBJECTIVE FUNCTION

To achieve the JL guarantee from Definition 5.3 we define a linear mapping f(x) = Ax, where
A ∈ Rk×d. The JL Lemma guarantees the existence of a random linear mapping that achieves this
projection with high probability:
Lemma G.1 (Distributional JL Lemma). For ε, δ ∈ (0, 1) and k = O(log(1/δ)/ε2), there exists a
probability distribution D over linear functions f : Rd → Rk such that for every x ∈ Rd:

Pr
f∼D

(
∥f(x)∥22 ∈

[
(1− ε)∥x∥22, (1 + ε)∥x∥22

])
≥ 1− δ.
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Let A be a random matrix whose elements ai,j are independently drawn from a Gaussian distribution
with mean µi,j and variance σ2

i,j . Define the distortion function as:

h(A;xi) =
∣∣∥Axi∥22 − 1

∣∣ , (21)

where A ∼ N (M ,Σ). Our objective is to minimize the following function:

f(A;xi) =

n∑
i=1

Pr (h(A;xi) > ε) +
∥Σ1/2∥2F

2kd
, (22)

where Σ1/2 denotes a matrix whose entries are the square roots of the corresponding variances in Σ.

The first term measures the number of distortion violations (i.e., how often the projected norm
deviates from 1 by more than ε), while the second term is a regularization penalty on the variance of
the matrix entries.

Applying a union bound, the objective in Equation 22 serves as an upper bound for:

Pr

(
max

i=1,...,n
h(A;xi) > ε

)
+
∥Σ1/2∥2F

2kd
, (23)

which represents the probability that the maximum distortion across all data points exceeds ε, plus a
regularization term. As the variances in Σ approach zero, this regularizer vanishes. In the context of
the JL Lemma, our goal is to minimize the probability expressed in Equation 23.

To use Lemma 3.1 we can think of the matrix A as a kd-dimensional vector and write:

Avec = Σ1/2z + µ, (24)

where µ = (µ1,1, µ2,1, . . . , µk,d)
⊤ ∈ Rkd is a vectorized version of each mean of matrix A,

Σ = diag
(
σ2
1,1, σ

2
1,2, . . . , σ

2
k,d

)⊤
∈ Rkd×kd

+ is the diagonal covariance matrix and z is a kd-
dimensional multivariate Gaussian vector with independent entries with zero mean and unit variance.

Then, define,

gθ(A
vec) = gθ

(
Σ1/2z + µ

)
=

n∑
i=1

1{h(Σ1/2z+µ;xi)>ε} (25)

Then, we can define the objective function:

f
(
Σ1/2,µ

)
= E

[
gθ

(
Σ1/2z + µ

)]
+

∥∥Σ1/2
∥∥2
F

2kd

=

n∑
i=1

E
[
1{h(Σ1/2z+µ;xi)>ε}

]
+

∥∥Σ1/2
∥∥2
F

2kd

=

n∑
i=1

Pr
(
h
(
Σ1/2z + µ;xi

)
> ε
)
+

∥∥Σ1/2
∥∥2
F

2kd
. (26)

Remark G.2. It is important to observe that Equations 22 and 26 represent the same quantity, but
are expressed using different parameterizations.

Thus, minimizing Equation 22 is equivalent to minimizing Equation 26, where optimization is carried
out over the parameters (Σ1/2,µ).

G.2 PROOF OF JOHNSON-LINDENSTRAUSS GUARANTEE PRESERVATION LEMMA

Here we give an extension of Lemma 4 from (Tsikouras et al., 2024) which is required due to the
practical limitation that achieving an exact SOSP is not feasible. Since Algorithm 1 identifies an
approximate ρ-SOSP, an additional result is required to provide a stopping criterion once the variance
becomes sufficiently small. This ensures that the mean can be used with a controlled deterioration of
the JL guarantee.
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Lemma G.3. Given n unit vectors in Rd and a target dimension k, choose ε such that the random
matrix A ∼ N(M ,Σ) satisfies the JL guarantee with distortion ε with probability at least 1/6. Then
using matrix M instead of sampling from A retains the JL guarantee with a threshold increased by
at most poly(σmax, 1/k).

Proof. We start with the assumption that 1
k∥Ax∥22 ∈ (1− ε, 1 + ε) with probability at least 1

6 .

Expressing A as A = M + Z where Z ∼ N(0,Σ). For this, we have

∥Z˜x2
2∥ ≤ ∥Zx∥22 ≤ ∥Z̃x∥22,

where Z̃ and Z˜ are the same as Z but scaled with the maximum and minimum variance from Σ

respectively. This way, all the entries of Z̃ have the same common variance, σ2
max and all the entries

of Z˜ have the same common variance, σ2
min.

From the JL Lemma, we can select ε0 such that

1

k
∥Z̃x∥22 ∈ [σ2

max(1− ε0), σ
2
max(1 + ε0)]

1

k
∥Z˜x∥22 ∈ [σ2

min(1− ε0), σ
2
min(1 + ε0)]

with probability at least 6
7 . This ensures there exists an overlap where both inequalities for A, Z̃ and

Z˜ hold simultaneously. Our goal is to determine how much excess distortion we get when using M

instead of sampling from the random matrix A.

Using the triangle inequality we have:

1

k
∥Mx∥2 =

1

k
∥Mx+ Zx− Zx∥2 ≤

1

k
∥Mx+ Zx∥2 +

1

k
∥Zx∥2 ≤

1

k
∥Ax∥2 +

1

k
∥Z̃x∥2,

which by squaring both sides and using the JL guarantee for A and Z̃, we obtain:
1

k
∥Mx∥22 ≤

1

k
∥Ax∥22 +

2

k2
∥Ax∥2∥Z̃x∥2 +

1

k
∥Z̃x∥22

≤ 1 + ε+
2σmax

k

√
1 + ε

√
1 + ε0 + σ2

max(1 + ε0)

≤ 1 + ε+
2
√
2σmax

k

√
1 + ε+ 2σ2

max.

For the lower bound, using the Cauchy-Schwarz inequality and the JL guarantee for A and Z˜, we

have:

1

k
∥Mx∥22 ≥

1

2k
∥Mx+ Zx∥22 −

1

k
∥Zx∥22

≥ 1

2k
∥Ax∥22 −

1

k
∥Z˜x∥22

≥ 1/2(1− ε)− σ2
min(1 + ε0)

≥ 1/2(1− ε)− σ2
min

≥ 1/2(1− ε)− σ2
max.

Finally, combining these results, we observe that replacing A with M maintains the JL guarantee with
an increased distortion threshold, bounded by at most poly(σmax, 1/k), with high probability.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G.3 SMOOTHENING OF THE JOHNSON-LINDENSTRAUSS INDICATOR FUNCTION

For the JL objective function we have the indicator function:

I(xi;A) =

{
1 if

∣∣∥Axi∥2 − 1
∣∣ ≥ ε

0 if
∣∣∥Axi∥2 − 1

∣∣ < ε

and we define a smoothed version of it:

Ĩ(xi;A) =


0, if

∣∣∥Axi∥2 − 1
∣∣ ≤ ε

2
ε31
(
∣∣∥Axi∥2 − 1

∣∣− ε)3, if ε <
∣∣∥Axi∥2 − 1

∣∣ ≤ ε+ ε1
2

1− 2
ε31
(ε+ ε1 −

∣∣∥Axi∥2 − 1
∣∣)3, if ε+ ε1

2 <
∣∣∥Axi∥2 − 1

∣∣ < ε+ ε1

1, if
∣∣∥Axi∥2 − 1

∣∣ ≥ ε+ ε1

for a small value ε1. This smoothed indicator has gradient Lipschitz constant L = O(1/ε21), and
Hessian Lipschitz constant K = O(1/ε31) We define the ε1-smoothed version of the objective
function in Equation 26, that is:

f̃
(
Σ1/2,µ

)
≡ f̃ (A) = E[Ĩ(xi;A)].

and the regularized version of it, that is:

f̂
(
Σ1/2,µ

)
≡ f̂ (A) = E[Ĩ(xi;A)] +

∥Σ1/2∥
2kd

. (27)

By assumption we have that 1/(3n) > E[I(xi;A)] ≥ E[Ĩ(xi;A)].

We also have that

E[I(xi;A)] ≤ E[Ĩ(xi;A)] + Pr(ε <
∣∣∥Axi∥2 − 1

∣∣ < ε+ ε1).

Thus,

n∑
i=1

E[I(xi;A)] ≤
n∑

i=1

E[Ĩ(xi;A)] +
n∑

i=1

Pr(ε <
∣∣∥Axi∥2 − 1

∣∣ < ε+ ε1).

We will show that when A has small variance (for appropriately chosen small ρ), the E[Ĩ(xi;A)]
becomes smaller than δ1/n.

We have that E[Ĩ(xi;A)] ≤ Pr(
∣∣∥Axi∥2 − 1

∣∣ > ε + ε1) + Pr(ε <
∣∣∥Axi∥2 − 1

∣∣ < ε + ε1).
We assume that we have reached a point for which we have A ∼ N (M ,Σ). This means that∣∣∥Axi∥2 − 1

∣∣ follows a non-central chi-squared distribution. From subgaussian properties we have:

For t > 0:

Pr(X − µ ≥ t) ≤ exp

(
− t2

2σ2

)
.

For t < 0:

Pr(X − µ ≤ t) ≤ exp

(
− t2

2σ2

)
.

We have Var
(∣∣∥Axi∥2 − 1

∣∣) ≤ 2 k σ4
max + 4σ2

max

∑k
i=1 µ

2
i := Vi, where µi =

∑d
j=1 µijxj .

Choose t = ε+ ε1 and if t > E[
∣∣∥Axi∥2 − 1

∣∣] we have that:
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Pr(
∣∣∥Axi∥2 − 1

∣∣− E[
∣∣∥Axi∥2 − 1

∣∣] ≥ t−
∣∣∥Axi∥2 − 1

∣∣) ≤ exp

(
−
(t− E[

∣∣∥Axi∥2 − 1
∣∣])2

2Var (|∥Ax∥2 − 1|)

)

≤ exp

(
−
(t− E[

∣∣∥Axi∥2 − 1
∣∣])2

2Vi

)
.

Otherwise if t < E[
∣∣∥Axi∥2 − 1

∣∣] we have that:

Pr(
∣∣∥Axi∥2 − 1

∣∣− E
[∣∣∥Axi∥2 − 1

∣∣] ≤ t−
∣∣∥Axi∥2 − 1

∣∣)
≤ exp

(
−
(
t− E

[∣∣∥Axi∥2 − 1
∣∣])2

2Vi

)
. (28)

This implies that

Pr(
∣∣∥Axi∥2 − 1

∣∣− E[
∣∣∥Axi∥2 − 1

∣∣] ≥ t−
∣∣∥Axi∥2 − 1

∣∣) ≥ 1− exp

(
−
(t− E[

∣∣∥Axi∥2 − 1
∣∣])2

2Vi

)

≥ 1− 2Vi

(t− E[|∥Axi∥2 − 1|])2
.

Since E[Ĩ(xi;A)] < 1/(3n) we have that the 2nd case where t < E[
∣∣∥Axi∥2 − 1

∣∣] is rejected.

We also have that for Vi ≤ −
(ε+ε1−E[|∥Axi∥2−1|])2

log(δ1/(2n))
the probability in Equation 28 is bounded by

δ1/(2n).

Similarly we have,

Pr(ε <
∣∣∥Axi∥2 − 1

∣∣ < ε+ ε1) = Pr(
∣∣∥Axi∥2 − 1

∣∣ < ε+ ε1)− Pr(
∣∣∥Axi∥2 − 1

∣∣ < ε)

= Pr(
∣∣∥Axi∥2 − 1

∣∣ > ε)− Pr(
∣∣∥Axi∥2 − 1

∣∣ > ε+ ε1).

This implies that

Pr(ε <
∣∣∥Axi∥2 − 1

∣∣ < ε+ ε1) ≤ Pr(
∣∣∥Axi∥2 − 1

∣∣ > ε).

Similarly to before we can get that:

Pr(
∣∣∥Axi∥2 − 1

∣∣ > ε) ≤ exp

(
−
(ε− E[

∣∣∥Axi∥2 − 1
∣∣])2

2Vi

)
. (29)

Therefore we have that for Vi ≤ −
(ε−E[|∥Axi∥2−1|])2

log(δ1/(2n))
the probability in Equation 29 is bounded by

δ1/(2n).

This means that choosing, Vi ≤ min

{
− (ε−E[|∥Axi∥2−1|])2

log(δ1/(2n))
,− (ε+ε1−E[|∥Axi∥2−1|])2

log(δ1/(2n))

}
=

− (ε−E[|∥Axi∥2−1|])2
log(δ1/(2n))

and overall, if we choose V = max {V1, . . . , Vn} to satisfy all inequalities
we get:

n∑
i=1

E[I(xi;A)] ≤
n∑

i=1

E[Ĩ(xi;A)] +

n∑
i=1

Pr(ε <
∣∣∥Axi∥2 − 1

∣∣ < ε+ ε1) < δ1.
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Denote Mi :=
∑d

l=1 µi,l and C1 := mini=1,...,n−
(ε−E[|∥Axi∥2−1|])2

log(δ1/(2n))
. Then to get V ≤ C1, we

need σ2
max ≤ mini=1,...,n

{
−2Mi+

√
4M2

i +kC1

k

}
=: C2.

Choose δ1 < 5/6 and ρ < ∆
√
C2. Thus reaching a ρ-SOSP for E[Ĩ(xi;A)] has returned a random

matrix A that satisfies the JL guarantee with probability at least 1/6.

G.4 PROOF OF THEOREM 5.5

Theorem. Let n be unit vectors in Rd, k be the target dimension, ϵ be a smoothening parameter and
∆ > 0 be an accuracy parameter. For any ε ≥ C

√
log n/k, where C is a sufficiently large constant,

initialize M = 0 and Σ = Ikd and run Algorithm 1 to optimize the ε1-smoothed version of the

objective function in Equation 9 (see Equation 27) using the regularization parameter λ =

√
ρ/ϵ3+∆

2 .
After T = O

(
poly

(
n, k, d, log(δ),∆−1

))
iterations, this returns a matrix M that satisfies the JL

guarantee with distortion at most O(ε), with probability 1− δ.

Proof. To ensure good performance, we choose the dimension k such that the probability of
any individual distortion constraint being violated is no more than 1/(3n). This choice is critical,
particularly at the initialization point (Ikd×kd,0), where the regularization term contributes exactly
1/2. Under this setting, the objective function in Equation 26 satisfies:

f(Ikd×kd,0) <
n

3n
+

1

2
=

1

3
+

1

2
<

5

6
.

This observation implies that, if we follow a monotonically decreasing path of the objective and
converge to a deterministic solution, specifically one where Σ1/2 = 0, the only feasible outcome is
that each term in the summation becomes zero. Consequently, the distortion probability in Equation 26
will converge to zero.

However, to use our key Lemma we need to use a smoothed version of the indicator function. The
smoothed objective function in Equation 27 is both gradient and Hessian Lipschitz continuous. Let
L = O

(
1
ε2

)
,K = O

(
1
ε3

)
, be the gradient and Hessian Lipschitz constants, respectively.

Choose δ1 < 5/6, ∆ > 0, and λ =
√
Kρ+∆
2 =

√
ρ/ε3+∆

2 and using Lemma 3.1, we get that any
ρ-SOSP gives a matrix Σ1/2, that satisfies ∥Σ1/2∥F ≤ ρ

∆ .

Denote Mi :=
∑d

l=1 µi,l and C1 := mini=1,...,n

{
− (ε−E[|∥Axi∥2−1|])2

log(δ1/(2n))

}
. Then to get V ≤ C1, we

need σ2
max ≤ mini=1,...,n

{
−2Mi+

√
4M2

i +kC1

k

}
=: C2.

Choose ρ < ∆
√
C2, then running Algorithm 1 for:

T = O
(
L

ρ2
log4(d)− L

ρ2
log4 (δ)

)
= O

(
poly

(
n, k, d, log(δ),∆−1

))
,

returns a random matrix with σ2
max ≤

ρ2

∆2 , that satisfies the JL guarantee with distortion ε with
probability at least 1/6, with high probability. Then, from Lemma G.3, we get that we can use
the mean matrix M which will increase the distortion threshold by at most poly

(
σmax,

1
k

)
=

poly
(
ρ
∆ , 1

k

)
, meaning that it satisfies the JL guarantee with distortion at most O(ε).

G.5 EXPERIMENTS IN JOHNSON-LINDENSTRAUSS

In this experiment, we aim to minimize the distortion introduced by random linear projections in
the JL framework. A batch-based variational model is trained using the gradient-based method;
SGD, which is sufficient for this task, to produce random matrices A ∼ N (M ,Σ) ∈ Rk×d (with
k = 30 and d = 500) that minimize the maximum distortion when applied to a normalized dataset
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of n = 100 samples, each with d = 500 dimensions. Unlike traditional JL embeddings that rely
on random Gaussian matrices, our approach optimizes the parameters (M ,Σ) of a distribution
over projection matrices using the Adam optimizer (Kingma & Ba, 2014) in order to minimize
the worst-case distortion. We used a batch size of 20, a learning rate of 0.01, over a maximum of
5000 iterations, and early stopping is triggered if the distortion falls below 0.01. To track how the
distortions evolve with our method, we sample from the current mean matrix and variance at each
iteration and then calculate the resulting distortion.

Figure 6 shows the evolution of the maximum distortion throughout training, demonstrating a
steady decrease. Over time, our method significantly outperforms both the average and minimum
distortions obtained from standard Gaussian matrices over 1000 trials. Specifically, our learned
projection achieves near-zero distortion, compared to typical random projections that yield average
and minimum distortions around 1 and 0.6, respectively. Figure 7 illustrates the evolution of the
maximum variance σ2, which converges toward zero during training. This indicates that the model
is refining its uncertainty and collapsing toward a deterministic, low-distortion projection. These
findings suggest that structured embeddings with far lower distortion than those from conventional
random constructions do exist, and that such embeddings can be effectively discovered via gradient-
based optimization.

Figure 6: Evolution of the optimized distortion
over iterations.

Figure 7: Evolution of maximum σ2 over itera-
tions.
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