

000 001 002 003 004 005 006 007 008 009 010 011 012 A DERANDOMIZATION FRAMEWORK FOR STRUCTURE DISCOVERY: APPLICATIONS IN NEURAL NETWORKS AND BEYOND

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Understanding the dynamics of feature learning in neural networks (NNs) remains a significant challenge. The work of (Mousavi-Hosseini et al., 2023) analyzes a multiple index teacher-student setting and shows that a two-layer student attains a low-rank structure in its first-layer weights when trained with stochastic gradient descent (SGD) and a strong regularizer. This structural property is known to reduce sample complexity of generalization. Indeed, in a second step, the same authors establish algorithm-specific learning guarantees under additional assumptions. In this paper, we focus exclusively on the structure discovery aspect and study it under weaker assumptions, more specifically: we allow (a) NNs of arbitrary size and depth, (b) with all parameters trainable, (c) under any smooth loss function, (d) tiny regularization, and (e) trained by any method that attains a second-order stationary point (SOSP), e.g. perturbed gradient descent (PGD). At the core of our approach is a key *derandomization* lemma, which states that optimizing the function $\mathbb{E}_{\mathbf{x}}[g_{\theta}(\mathbf{W}\mathbf{x} + \mathbf{b})]$ converges to a point where $\mathbf{W} = \mathbf{0}$, under mild conditions. The fundamental nature of this lemma directly explains structure discovery and has immediate applications in other domains including an end-to-end approximation for MAXCUT, and computing Johnson-Lindenstrauss embeddings.

1 INTRODUCTION

Neural networks (NNs) have become successful tools across different domains, demonstrating exceptional performance in complex tasks, such as image recognition, natural language processing, or speech synthesis (LeCun et al., 2015; Goodfellow, 2016). This broad applicability is primarily due to their ability to learn and generalize from large datasets, enabling them to identify difficult patterns and relationships that are difficult to capture with traditional techniques. Theoretical work in this area focuses on various aspects, including the structure of optimization landscapes, and generalization behavior, aiming to answer fundamental questions about why these models work as well as they do and how they can be made more efficient and trustworthy (Arora et al., 2017; Montavon et al., 2018; Neyshabur et al., 2018).

Since data is crucial in this line of research, *teacher models* have emerged in learning theory as a formalism for structured data. Extensive research has been conducted on this topic, particularly when the trained (*student*) model is a NN, offering precise and non-asymptotic guarantees in various contexts (Zhong et al., 2017; Goldt et al., 2019; Ba et al., 2020; Sarao Mannelli et al., 2020; Zhou et al., 2021; Akiyama & Suzuki, 2021; Abbe et al., 2022; Ba et al., 2022; Damian et al., 2022; Veiga et al., 2022; Mousavi-Hosseini et al., 2023). Experimental evidence suggests that traditional learning theory fails to fully explain the generalization properties of large NNs, highlighting the need for more modern approaches (Zhang et al., 2021).

An important concept that frequently appears in modern learning theory is the implicit regularization effect introduced by training dynamics (Neyshabur et al., 2015a). The work of (Soudry et al., 2018) sparked a wave of recent studies investigating how gradient descent (GD) naturally tends to favor lower-complexity models, often leading to minimum-norm and/or maximum-margin solutions even without explicit regularization (Gunasekar et al., 2018; Li et al., 2018b; Ji & Telgarsky, 2019; Gidel et al., 2019; Chizat & Bach, 2020; Pesme et al., 2021). However, much of this research focuses on

linear models or excessively wide NNs, with varying interpretations of reduced complexity and its impact on generalization. A notable example in this context is compressibility and its relationship to generalization (Arora et al., 2018; Suzuki et al., 2020). When a trained NN can be compressed into a smaller model with similar predictive behavior, both models show comparable generalization performance. This suggests that the original NN’s complexity may be understood via its simpler compressed form, which is traditionally associated with improved generalization.

A key contribution in the area, and influence for our work, is the work of (Mousavi-Hosseini et al., 2023), which studies the training dynamics of a two-layer NN using stochastic gradient descent (SGD) on data drawn from a multiple-index teacher model. First, they show that low-complexity structures emerge during training when a strong regularizer is used: on (first-order) stationary points, the first layer weights align with key directions in the input space, the *principal subspace*. Low-dimensional structure of this type is known to help with generalization (Neyshabur et al., 2015b; Bartlett et al., 2017). As a second step, they establish GD-specific generalization guarantees under additional assumptions. Our focus is on the first step, and the goal of this work is to answer the question:

068 *Can we discover low-rank structure in neural networks under more natural
069 assumptions?*
070

071 To this end, we consider a more precise and well-motivated solution concept, a ρ -approximate
072 *second-order stationary point* (ρ -SOSP), (Jin et al., 2017), see Definition 2.2 for a formal definition.
073 Using the properties of ρ -SOSPs, we provide a general derandomization lemma. When applied
074 specifically to NNs, our lemma implies that, for any *arbitrarily small* regularizer value, there exists a
075 $\rho > 0$ such that all ρ -SOSPs correspond to low-rank first-layer weights. Thus, we significantly relax
076 the sufficient conditions for uncovering this kind of structure as we allow (a) NNs of arbitrary size
077 and depth, (b) with all parameters trainable (including biases), (c) under any smooth loss function, (d)
078 arbitrarily small regularization, and (e) trained by any method that attains a ρ -SOSP, for example,
079 SGD with random initialization¹, PGD and Hessian descent.

080 **Importance of training the biases.** For the sake of analytical simplicity, some past work has frozen
081 the biases, for example in (Mousavi-Hosseini et al., 2023). Here, we show that training the biases
082 is necessary for derandomization to take effect. To illustrate this point, we consider the following
083 toy example. Let x be a one-dimensional standard Gaussian random variable, and suppose the target
084 label is fixed at 1, i.e., the output lies in a zero-dimensional space. We model the prediction using a
085 single-layer NN. The objective is to minimize the loss function:

$$086 \quad 087 \quad f(w, b) = \mathbb{E} \left[(\text{ReLU}^3(wx + b) - 1)^2 \right] + \lambda w^2,$$

088 where w and b denote the weight and bias parameters, respectively, and $\lambda > 0$ is the regularizer.
089 Directly applying the result from (Mousavi-Hosseini et al., 2023), implies that $w = 0$, i.e. the
090 solution lies on a zero-dimensional space. However, this solution is evidently suboptimal when $b \neq 1$.
091 Consequently, enforcing this behavior requires an artificially large regularization λ . We illustrate this
092 phenomenon in Figure 1 where the minimizer w^* approaches zero only under large values of λ .

093 In contrast, our analytical approach, which allows the training of biases, avoids this drawback by
094 considering ρ -SOSPs. Instead of requiring an artificially large regularization parameter to explain
095 this structural behavior ($w = 0$), we only need a tiny amount of regularization, as shown in Figure 2,
096 because the bias term can adjust to $b = 1$. This shows that freezing the biases places an unnecessary
097 restriction, whereas allowing them to be trained explains the phenomenon more directly and under
098 milder conditions.

100 **Discussion on ρ -SOSPs.** Training the biases allows for smaller regularizers, but proving low-rank
101 solutions remains challenging. In (Mousavi-Hosseini et al., 2023), a strong regularizer is used to show
102 that no first-order stationary point (FOSP) can be high-rank; without it, higher-rank FOSPs may exist.
103 We address this analytical challenge by exploiting the extra properties of ρ -SOSPs, which bound the
104 negative curvature. The ρ -SOSP solution concept excludes all but the flattest of saddle points, in
105 other words, a ρ -SOSP is more likely to be a local minimum than the corresponding approximate
106 FOSP. Using this, we show that for sufficiently small ρ , the only valid solutions are low-rank.

107 ¹It is an open question whether this can be done efficiently, but empirical results on NNs strongly support
this behavior.

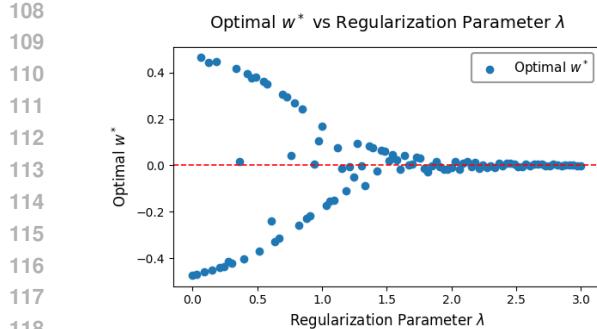


Figure 1: Plot of the global minimizer of $f(w, 0) = \mathbb{E}[(\text{ReLU}^3(wx) - 1)^2] + \lambda w^2$ as a function of the regularization parameter λ .

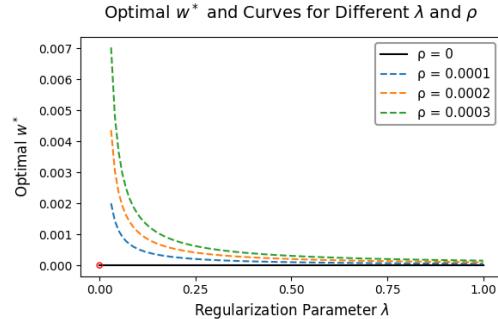


Figure 2: Optimal w vs. λ for $f(w, b) = \mathbb{E}[(\text{ReLU}^3(wx + b) - 1)^2] + \lambda w^2$ when biases are trained. The solid line shows convergence to 0 at an exact SOSP.

We remark that our focus is on the *landscape* of the objective (Equation 1), not specific optimization methods. Importantly, ρ -SOSPs capture the solutions reached by standard algorithms: GD/SGD almost surely avoid strict saddles (Panageas et al., 2019), and PGD (Jin et al., 2017) guarantees efficient convergence to ρ -SOSPs. Crucially, all local minima are ρ -SOSPs. Furthermore, empirical observations show that gradient-based methods reliably reach good minima while avoiding saddles (Li et al., 2018a; Zhou et al., 2020) and that these solutions have good learning properties. Thus, the focus on ρ -SOSPs is well motivated as it captures the types of solutions seen in practice and theory, while also providing a framework to study the mechanisms of implicit regularization.

Summary of our contributions. Our key contributions can be summarized as follows:

We consider a general family of functions of the form:

$$f(\mathbf{W}, \mathbf{b}; \theta) = \mathbb{E}_{\mathbf{x}} [g_{\theta}(\mathbf{W}\mathbf{x} + \mathbf{b})] + \lambda \|\mathbf{W}\|_F^2, \quad (1)$$

where $\mathbf{W} \in \mathbb{R}^{k \times d}$, $\mathbf{b} \in \mathbb{R}^k$, $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$, $g_{\theta}(\cdot) : \mathbb{R}^k \rightarrow \mathbb{R}$ denotes a parameterized nonlinear function and $\lambda > 0$ is a regularization parameter. This formulation is highly general and encompasses a wide range of applications, including the population risk of NNs of arbitrary depth and architecture, under any smooth loss functions.

Below we present our key *derandomization* lemma, which forms the foundation of our results, stated informally as follows:

Informal version of Lemma 3.1 Let f be a twice differentiable function in the form of Equation 1, where $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$. Then, all SOSPs of f satisfy $\mathbf{W} = \mathbf{0}$.

Structure discovery in NNs. We first show that the regularized risk of any NN can be expressed as a function of the form in Equation 1. Then, by applying our key *derandomization* lemma, we establish that in the teacher-student setting any ρ -SOSP solution of the risk yields a first-layer weight matrix \mathbf{W} which is near low-rank. This type of structure is closely associated with improved generalization performance as shown in (Mousavi-Hosseini et al., 2023). In this paper, our express focus is on providing guarantees for structure discovery under much broader and more minimal assumptions, thereby capturing a wider class of models and cases of arbitrarily weak regularization.

In other words, our main result as applied to NNs suggests a new explanation for parsimony even with weak regularizers. Recall that standard methods like SGD, GD, or PGD are known to escape saddle points; when that happens, our results guarantee a solution with good structure (i.e. low rank).

Our results in other domains. Due to the generality of our *derandomization* lemma we obtain strong theoretical results across domains. For example, we get (i) a deterministic MAXCUT approximation matching the randomized guarantee of (Goemans & Williamson, 1995), and (ii) a deterministic construction for learning Johnson-Lindenstrauss (JL) embeddings (Johnson et al., 1984).

162 In the case of MAXCUT, our contribution is to show that derandomization can be achieved via
 163 simple gradient-based optimization, without relying on explicit combinatorial constructions or pseudo-
 164 random generators. To the best of our knowledge, this is the first optimization-based approach for
 165 derandomizing the Goemans-Williamson algorithm, and we view it as a conceptual contribution that
 166 enriches the literature on derandomization. In the case of JL, we match the state-of-the-art result
 167 of (Tsikouras et al., 2024) further demonstrating the generality of our lemma. We expect the same
 168 approach to extend to other domains.

169

170 2 NOTATION AND PRELIMINARIES

171

172 **Notation.** For vectors \mathbf{u}, \mathbf{v} we use $\langle \mathbf{u}, \mathbf{v} \rangle$ or $\mathbf{u} \cdot \mathbf{v}$ to denote their inner product and $\|\mathbf{u}\|_2$ to denote
 173 the L_2 norm. For matrix $\mathbf{M} \in \mathbb{R}^{k \times d}$, we denote the element of the i^{th} row and j^{th} column by
 174 $\mu_{i,j}$ and we use $\|\mathbf{M}\|_F$ to denote the Frobenius norm. We use ∇f and $\nabla^2 f$ to denote the gradient
 175 and Hessian operators, respectively. Additionally, we use $\mathbf{A} \sim \mathcal{N}(\mathbf{M}, \Sigma)$, where $\mathbf{M} = (\mu_{i,j})$ and
 176 $\Sigma = (\sigma_{i,j})$ to indicate that $\mathbf{A} = (a_{i,j})$ is a matrix with independent random entries, and each entry
 177 follows $a_{i,j} \sim N(\mu_{i,j}, \sigma_{i,j})$. Using this notation we can write $\mathbf{A} = \mathbf{M} + \mathbf{Z}$, where $\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \Sigma)$.

178 **Definition 2.1.** A twice differentiable function $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is defined to be L -smooth, if for all
 179 $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ it satisfies:

180

$$181 \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \leq L\|\mathbf{x} - \mathbf{y}\|_2.$$

182

183 The function is K -Hessian Lipschitz if for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$:

184

$$185 \|\nabla^2 f(\mathbf{x}) - \nabla^2 f(\mathbf{y})\|_2 \leq K\|\mathbf{x} - \mathbf{y}\|_2.$$

186

187 Below, we give the definition for approximate stationarity.

188

189 **Definition 2.2** (Approximate second-order stationarity). For a K -Hessian Lipschitz function $f(\cdot)$,
 we say that a point \mathbf{x}^* is a ρ -second-order stationary point (ρ -SOSP) if:

190

$$191 \|\nabla f(\mathbf{x}^*)\|_2 \leq \rho \quad \text{and} \quad \lambda_{\min}(\nabla^2 f(\mathbf{x}^*)) \geq -\sqrt{K\rho}.$$

192

193 **Assumption 2.3.** The function is both L -smooth and K -Hessian Lipschitz.

194

195 Provided Assumption 2.3 holds, Algorithm 1 converges to a ρ -SOSP in $O(1/\rho^2)$ iterations with
 196 high probability (Jin et al., 2017). Alternatively, Algorithm 2 achieves a deterministic ρ -SOSP in
 197 $O(1/\rho^{1.5})$ iterations (Tsikouras et al., 2024), but requires Hessian access.

198

199 3 MAIN CONTRIBUTION: KEY DERANDOMIZATION LEMMA

200

201 In this section, we prove that convergence to SOSPs is a sufficient condition for derandomization. Let
 202 $\mathbf{W} \in \mathbb{R}^{k \times d}$, $\mathbf{b} \in \mathbb{R}^k$, $g_\theta(\cdot) : \mathbb{R}^k \rightarrow \mathbb{R}$ be a function satisfying Assumption 2.3, and let $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$.
 203 We analyze the behavior of the following objective function at its SOSPs:

204

$$205 f(\mathbf{W}, \mathbf{b}; \theta) = \mathbb{E}_{\mathbf{x}}[g_\theta(\mathbf{W}\mathbf{x} + \mathbf{b})] + \lambda\|\mathbf{W}\|_F^2, \quad (2)$$

206

207 where $\lambda > 0$ is an arbitrarily small regularization parameter. Our main result is presented below.

208

209 **Lemma 3.1** (Key Derandomization Lemma). Let $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ be a standard multivariate Gaussian
 210 random variable. For the objective function defined in Equation 2, with $\lambda > \frac{\sqrt{K\rho}}{2}$ where $g_\theta(\cdot)$
 211 satisfies Assumption 2.3, any ρ -SOSP satisfies $\|\mathbf{W}\|_F \leq \frac{\rho}{2\lambda - \sqrt{K\rho}}$.

212

213 **Proof sketch:** The key observation is that applying Stein’s Lemma (Stein, 1973; 1981) relates
 214 the second derivative of \mathbf{b} with the first derivative of \mathbf{W} . This allows us to express the first-order
 215 conditions for \mathbf{W} in terms of expectations involving the second derivatives of g_θ . Using these
 216 relations and an approximate first-order optimality condition, we derive the required bound on the
 217 Frobenius norm of \mathbf{W} . Full proof can be found in Appendix A.1. \square

218

219 **Remark 3.2.** Note that achieving a perfect SOSP (i.e. $\rho = 0$), would result in $\mathbf{W} = \mathbf{0}$; the proof of
 220 this is in Appendix A.2.

216 This result shows that when the objective function takes the form given in Equation 2, a common
 217 structure in practice, it is possible to improve it by minimizing the inherent randomness. Since the
 218 input \mathbf{x} is random, having a small $\|\mathbf{W}\|_F$, ensures that $\mathbf{W}\mathbf{x}$ remains small on average, so the values
 219 of $g_\theta(\mathbf{W}\mathbf{x} + \mathbf{b})$ vary less. In other words, second-order stationarity implies that the randomness in
 220 the objective function is effectively decreased. We illustrate the implications of this result by applying
 221 it to three distinct examples from different fields, as demonstrated in the following sections. **We**
 222 **emphasize that the ρ -SOSP is taken with respect to all model parameters, see Appendix B for further**
 223 **discussion.**

224 It is important to note that a tiny amount of regularization is necessary to ensure a well-defined
 225 solution in this lemma. Without it, choosing the function $g_\theta(w\mathbf{x} + b) = 0$, would result in all $w \in \mathbb{R}$
 226 being local minima, as the objective provides no preference among these values. Introducing a tiny
 227 regularization term λ eliminates this ambiguity by penalizing non-zero weights, thereby enforcing
 228 $w = 0$ as the unique optimal solution.

229 Additionally, λ is fully controllable by ρ which is set prior to the optimization process. As a result,
 230 it is possible to use arbitrarily small regularization, provided one is willing to incur the additional
 231 cost of executing the optimization algorithm for a greater number of steps. We emphasize this
 232 point to remind the reader that only a minimal amount of regularization is necessary. Therefore, the
 233 regularization term itself is not the primary factor influencing the outcome; rather, it is the interaction
 234 between the second derivative of \mathbf{b} and the first derivative of \mathbf{W} that plays a more significant role in
 235 the optimization process.

236 It is important to clarify that Lemma 3.1 serves as a *structure discovery* result rather than an
 237 *optimization* result. In particular, our focus lies not on the specific optimization algorithm employed,
 238 but rather on establishing that any solution satisfying the ρ -SOSP condition necessarily reveals
 239 structure. There might be different methods under many different sets of assumptions that yield
 240 a ρ -SOSP solution, even in more practical and realistic finite-sample regimes. Nonetheless, for
 241 completeness, we note that PGD (Jin et al., 2017), originally developed for deterministic objectives
 242 such as the population risk, has been shown to efficiently yield ρ -SOSP solutions in polynomial time
 243 in stochastic and finite-sample regimes (see Theorem 15 in (Jin et al., 2018)).

244 4 STRUCTURE DISCOVERY IN NEURAL NETWORKS

247 In this section, we present our primary application, which builds on the central *derandomization*
 248 Lemma 3.1. Our approach extends the work of (Mousavi-Hosseini et al., 2023), which demonstrated
 249 a key insight: the convergence of the first-layer weights to a low-dimensional subspace. We refine
 250 and generalize these results to a broader setting. Let $\mathbf{x} \in \mathbb{R}^d$, be a standard Gaussian distribution
 251 $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$. The target labels are generated by a multiple-index teacher model of the form:

$$252 \quad y = h(\langle \mathbf{u}_1, \mathbf{x} \rangle, \dots, \langle \mathbf{u}_k, \mathbf{x} \rangle; \epsilon) \equiv h(\mathbf{U}\mathbf{x}; \epsilon), \quad (3)$$

253 where $h : \mathbb{R}^{k+1} \rightarrow \mathbb{R}$ is a weakly differentiable link function and ϵ represents additive noise.

255 For any vector $\mathbf{v} \in \mathbb{R}^d$, let \mathbf{v}_\parallel denote its orthogonal projection onto $\text{span}(\mathbf{u}_1, \dots, \mathbf{u}_k)$, and define
 256 $\mathbf{v}_\perp := \mathbf{v} - \mathbf{v}_\parallel$. For a matrix $\mathbf{W} \in \mathbb{R}^{k \times d}$, we define \mathbf{W}_\parallel and \mathbf{W}_\perp by projecting each row of \mathbf{W}
 257 similarly. Using this notation, we rewrite the labeling function to depend only on the \mathbf{x}_\parallel component:

$$258 \quad y = h(\mathbf{U}\mathbf{x}) = h'(\mathbf{x}_\parallel).$$

260 Our goal is to show that the perpendicular component \mathbf{W}_\perp converges to zero, implying that the
 261 first-layer weight matrix \mathbf{W} lies entirely in the teacher subspace.

263 (Mousavi-Hosseini et al., 2023) showed that, under certain conditions, training only the first-layer
 264 weights of a two-layer NN suffices to ensure convergence to the low-dimensional principal subspace
 265 defined by the teacher model. We extend this result by showing that training the first-layer bias is
 266 also essential. Including the bias enables a simpler and more direct analysis of the training dynamics.

267 This expanded approach allows us to establish convergence guarantees under significantly more
 268 general conditions, including: (a) arbitrary regularization parameters $\lambda > 0$ (resolving an open
 269 question in earlier work), (b) arbitrary NN size and depth, (c) all parameters being trainable (including
 biases), and (d) any choice of smooth loss function.

270 4.1 DISCOVERING STRUCTURE IN NEURAL NETWORKS VIA SOSPs
271272 Let $\mathbf{W} \in \mathbb{R}^{k \times d}$ and $\mathbf{b} \in \mathbb{R}^k$, and consider the first layer of a NN given by $\mathbf{W}\mathbf{x} + \mathbf{b}$. We decompose
273 this expression into components that are parallel and perpendicular to a subspace U , as follows:

274
$$\mathbf{W}\mathbf{x} + \mathbf{b} = \mathbf{W}_{\parallel}\mathbf{x}_{\parallel} + \mathbf{W}_{\perp}\mathbf{x}_{\perp} + \mathbf{b}, \quad (4)$$

275

276 since $\mathbf{W}_{\perp}\mathbf{x}_{\parallel} = \mathbf{0}$ and $\mathbf{W}_{\parallel}\mathbf{x}_{\perp} = \mathbf{0}$ due to orthogonality.
277278 Now define the NN's prediction as $\hat{y}(\mathbf{x}; \mathbf{W}, \mathbf{b}, \theta) = g_{\theta}(\mathbf{W}\mathbf{x} + \mathbf{b})$, where $g_{\theta}(\cdot)$ is a NN of arbitrary
279 size and depth, parameterized by θ , which satisfies Assumption 2.3. Given a loss function $\ell(y, \hat{y})$ that
280 also satisfies Assumption 2.3, and a regularization parameter $\lambda > 0$, we define the regularized risk as:

281
$$R(\mathbf{W}, \mathbf{b}; \theta) := \mathbb{E}_{\mathbf{x}} [\ell(y, \hat{y}(\mathbf{x}; \mathbf{W}, \mathbf{b}, \theta))] + \lambda \|\mathbf{W}\|_F^2. \quad (5)$$

282

283 As shown in Appendix C, Equation 5 can be reformulated in a way that enables direct application
284 of Lemma 3.1. In particular, this reformulation expresses the regularized risk as a function of the
285 perpendicular components:

286
$$R(\mathbf{W}_{\perp}, \mathbf{b}; \theta') = \mathbb{E}_{\mathbf{x}_{\perp}} [\ell'_{\theta'}(\mathbf{W}_{\perp}\mathbf{x}_{\perp} + \mathbf{b})] + \lambda \|\mathbf{W}_{\perp}\|_F^2. \quad (6)$$

287

288 In this form, the parallel and perpendicular components are fully decoupled. The modified loss
289 $\ell'_{\theta'}$ implicitly depends on the parallel components, the corresponding regularization, and all other
290 parameters of the NN. By applying Lemma 3.1, we conclude that $\|\mathbf{W}_{\perp}\|_F$ can be made arbitrarily
291 small, implying that the perpendicular components are effectively suppressed during training.292 **Theorem 4.1.** *Consider an arbitrary NN of any size and depth that satisfies Assumption 2.3, and
293 a loss function that also satisfies this assumption. Let the input data $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ be a standard
294 multivariate Gaussian distribution, and the labels generated according to Equation 3. If we minimize
295 Equation 6 with respect to (\mathbf{W}, \mathbf{b}) , then for any precision parameter ρ and regularization parameter
296 $\lambda > \frac{\sqrt{K\rho}}{2}$, where K denotes the Hessian Lipschitz constant of the objective, all ρ -SOSPs satisfy
297 the inequality:*

298
$$\|\mathbf{W}_{\perp}\|_F \leq \frac{\rho}{2\lambda - \sqrt{K\rho}}.$$

299

300 **Proof.** Since both the NN and the loss function are smooth and Hessian Lipschitz, their composition
301 inherits these properties. The result then follows directly from Lemma 3.1. \square 303 The result establishes the theoretical validity of our approach but is qualitative in nature, as it does not
304 specify the number of steps required for optimization. To complement this, we provide a quantitative
305 result demonstrating that the objective function can be minimized efficiently.306 **Theorem 4.2.** *Let the objective function in Equation 5 be twice differentiable, bounded below,
307 and satisfies Assumption 2.3. Let the data $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$, and suppose labels are generated
308 according to Equation 3. Let $\rho > 0$ be a prespecified accuracy, and define the regularization
309 parameter $\lambda = \frac{\sqrt{K\rho} + \Delta}{2}$, where K is the Hessian Lipschitz constant of the objective and $\Delta > 0$
310 is an arbitrarily small constant. Then, with probability $1 - \delta$, running Algorithm 1 for $T >$
311 $\mathcal{O}(\text{poly}(L, \log(d), \log(\delta), \varepsilon^{-1}, \Delta^{-1}))$ iterations with a step size $\mathcal{O}(1/L)$, yields a weight matrix
312 $\mathbf{W} = \mathbf{W}_{\perp} + \mathbf{W}_{\parallel}$ that satisfies:*

313
$$\|\mathbf{W}_{\perp}\|_F < \varepsilon.$$

314

315 **Proof.** Full proof can be found in Appendix D.1. \square 316 This result demonstrates that, with a number of samples that scales with the Hessian Lipschitz
317 constant, PGD can effectively generate iterates that are as close to the principal subspace as required.
318 This allows the model to learn low-dimensional representations, and introduce an implicit bias
319 toward simpler, lower-complexity solutions. The discovery of structure appears to be an inherent
320 characteristic of this optimization process for problems of this nature. This convergence to a low-
321 dimensional solution is often linked with the generalization behavior of NNs (Neyshabur et al., 2015b;
322 Bartlett et al., 2017; Arora et al., 2018; Suzuki et al., 2020; Mousavi-Hosseini et al., 2023). We
323 do not attempt to establish generalization guarantees here, as such results would require additional
assumptions on the data distribution or the hypothesis class. Instead, our contribution is to provide

324 guarantees for structure discovery under broader and more minimal conditions, thereby extending the
 325 potential applicability of these ideas to a wider range of models.
 326

327 Our results pertain to NNs with smooth activation functions; here we discuss the wide practical appli-
 328 cability of this family of networks. Smooth nonlinearities are widely used in modern architectures,
 329 and there is no strong evidence that non-smooth activations outperform their smooth counterparts.
 330 For example, BERT adopts the Gaussian Error Linear Unit (GELU) (Hendrycks & Gimpel, 2016;
 331 Devlin et al., 2019), a smooth activation that has been shown to benefit from this choice compared
 332 with non-smooth alternatives. Thus, our assumption is aligned with standard practice. We provide
 333 additional insights for the non-smooth ReLU case by employing a smooth approximation in the next
 334 section.

335 4.2 THE CASE FOR RELU

336 The non-smoothness of ReLU poses challenges for our framework. To ensure the smoothness and
 337 Hessian Lipschitz continuity needed for defining ρ -SOSPs, we use a smooth approximation of ReLU:
 338

$$339 \text{ReLU}_\iota(x) = \frac{1}{\iota} \log(1 + e^{\iota x}).$$

342 As $\iota \rightarrow \infty$, the function converges to the standard ReLU. Moreover, it is $\frac{\iota}{4}$ -gradient Lipschitz
 343 and $\frac{\sqrt{3}\iota^2}{9}$ -Hessian Lipschitz, ensuring that our framework remains valid for any smooth ReLU
 344 approximation. In this sense, ReLU_ι captures the essential behavior of ReLU while enabling
 345 theoretical guarantees. To show the dependence on ι we give the following theorem, regarding a one
 346 layer NN using activation function $\text{ReLU}_\iota(\cdot)$.

347 **Theorem 4.3.** *Assume that the data $\mathbf{x} \sim \mathcal{N}(0, \mathbf{I}_d)$, and labels are generated according to Equation
 348 3. Additionally, consider the NN $\mathbf{a}^\top \text{ReLU}_\iota(\mathbf{W}\mathbf{x} + \mathbf{b})$ and the objective in Equation 5, which
 349 is twice differentiable, bounded below, and satisfies Assumption 2.3, with gradient and Hessian
 350 Lipschitz constants L_ℓ and K_ℓ , respectively. Let $\rho > 0$ be a prespecified accuracy and define
 351 the regularization parameter $\lambda = \frac{\sqrt{K\rho} + \Delta}{2}$, where $K = \mathcal{O}(\iota^2 K_\ell)$ is the overall Hessian Lipschitz
 352 constant and $\Delta > 0$ is arbitrarily small. Then, with probability $1 - \delta$, running Algorithm 1 for
 353 $T > \mathcal{O}(\text{poly}(\iota, L_\ell, \log(\delta), \varepsilon^{-1}, \Delta^{-1}))$ iterations, with a step size $\mathcal{O}(1/(\iota L_\ell))$, yields a weight
 354 matrix $\mathbf{W} = \mathbf{W}_\perp + \mathbf{W}_\parallel$ that satisfies:*

$$355 \|\mathbf{W}_\perp\|_F < \varepsilon.$$

357 **Proof.** This is a direct application of Theorem 4.2. The composition of the objective with ReLU_ι
 358 satisfies Assumption 2.3 and is lower bounded. \square
 359

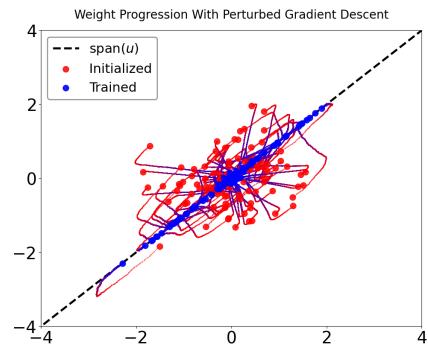
360 4.3 NEURAL NETWORKS EXPERIMENTS

361 In this section, we empirically validate our theoretical
 362 framework by showing that the student network con-
 363 verges to the principal subspace. The teacher network
 364 is a single-index model that generates outputs accord-
 365 ing to $y = \tanh(\theta \cdot \mathbf{x}) + \text{noise}$, where $\mathbf{x} \in \mathbb{R}^2$ and
 366 $\theta = \frac{1}{\sqrt{2}}(1, 1)^\top$ is a fixed direction. The student net-
 367 work attempts to learn this mapping using a two-layer
 368 NN of the form
 369

$$370 y = \mathbf{a}^\top \text{ReLU}_2(\mathbf{W}\mathbf{x} + \mathbf{b}),$$

371 where $\mathbf{W} \in \mathbb{R}^{h \times d}$, $\mathbf{b} \in \mathbb{R}^h$, and $\mathbf{a} \in \mathbb{R}^h$ is the second
 372 layer. Full details can be found in Appendix E.

373 We observe that the randomly initialized first layer
 374 weights converge to the principal subspace, as is evi-
 375 dent in Figure 3. This highlights that, even starting
 376 from random initialization, \mathbf{W} recovers the signal de-
 377 fined by the teacher network.



378 Figure 3: Two-layer ReLU_2 network of
 379 width $h = 1000$ and $d = 2$ for the
 380 task of recovering a \tanh single-index
 381 teacher model. We observe convergence
 382 of weights \mathbf{W} to the principal subspace.

378 5 OTHER APPLICATIONS
379380 5.1 MAXCUT
381382 The MAXCUT problem is a classical combinatorial optimization problem that seeks to partition the
383 vertices of a graph $G = (V, E)$ into two disjoint sets, S and T , such that the sum of the weights of the
384 edges crossing between S and T is maximized. The objective function for the MAXCUT problem is:

385
$$\text{Maximize: } \sum_{(i,j) \in E} \frac{w_{ij}(1 - x_i x_j)}{2}, \quad \text{subject to } x_i \in \{-1, 1\}, \quad \forall i \in V.$$

386
387

388 where w_{ij} denotes the weight of the edge (i, j) and the term $1 - x_i x_j$ equals 1 if edge (i, j) crosses
389 the cut and 0 otherwise. We follow the common assumption that $w_{i,j} = 1$. This is a combinatorial
390 optimization problem that is NP-complete (Karp, 1972).391 To make the problem more tractable, (Goemans & Williamson, 1995) proposed using a semidefinite
392 program (SDP) relaxation. In this relaxation, the discrete MAXCUT problem is lifted to a continuous
393 one by representing each vertex i as a unit vector $\mathbf{v}_i \in \mathbb{R}^m$ on the unit sphere, where m is the number
394 of nodes in the graph. The algorithm first solves the SDP to obtain these vectors. It then applies a
395 *randomized rounding* procedure to map the continuous solution back to a discrete cut: a standard
396 Gaussian vector $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_m)$ is sampled, and each vertex is assigned to one of the two sets S or T
397 based on the sign of the inner product $\langle \mathbf{v}_i, \mathbf{z} \rangle$.398 We aim to approximate the MAXCUT problem by derandomizing this rounding algorithm. Let
399 $\mathbf{V} \in \mathbb{R}^{m \times m}$ be the matrix of SDP vectors. Define $\mathbf{V}\mathbf{z} + \boldsymbol{\mu}$, where $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_m)$ and $\boldsymbol{\mu} \in \mathbb{R}^m$ is
400 a mean vector. Our goal is to minimize the negative expected cut value, leading to the regularized
401 objective function:

402
$$f(\mathbf{V}, \boldsymbol{\mu}) = - \sum_{i < j} w_{i,j} \Pr[\text{sgn}(\mathbf{v}_i \cdot \mathbf{z} + \mu_i) \neq \text{sgn}(\mathbf{v}_j \cdot \mathbf{z} + \mu_j)] + \lambda \|\mathbf{V}\|_F^2. \quad (7)$$

403
404

405 **Remark 5.1.** The probability term in Equation 7 can be interpreted as the expectation of an indicator
406 function for the event inside the probability. To allow the application of Lemma 3.1, we replace this
407 indicator function with a smooth ϵ -approximation, as described in Appendix F.1.408 We now present our main result on the derandomization of the randomized MAXCUT algorithm.
409410 **Theorem 5.2** (Derandomized Approximation for MAXCUT). *Let $G = (V, E)$ be a graph with m
411 edges, where the edge weights are given by $w_{i,j} = w_{j,i} = 1$ for all $(i, j) \in E$. Let $\mathbf{V} \in \mathbb{R}^{m \times m}$
412 be the matrix of vectors obtained from the SDP relaxation of the MAXCUT problem, as described
413 in (Goemans & Williamson, 1995). Denote by $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_m)$ a standard multivariate Gaussian
414 vector, and let $\boldsymbol{\mu}$ represent a vector of means. Initialize Algorithm 1 with $\boldsymbol{\mu} = \mathbf{0}$, and optimize the
415 ϵ -smoothed version of the objective function in Equation 7 (see Equation 27), using the regularization
416 parameter $\lambda = \frac{\sqrt{\rho/\epsilon^3} + \Delta}{2}$, and run for $T = \mathcal{O}(\text{poly}(\log(m), \log(\delta), \epsilon^{-1}, \Delta^{-1}))$ iterations. After
417 this optimization process, the resulting vector $\boldsymbol{\mu}$ defines a cut whose value is guaranteed to be at
418 least:*

419
$$\text{OPT}(\alpha - \mathcal{O}(\epsilon)),$$

420 with probability $1 - \delta$. Here, $\alpha = 0.878$ is the approximation factor from (Goemans & Williamson,
421 1995).422 **Proof.** Full proof can be found in Appendix F.1. □
423424 To the best of our knowledge, this work is the first optimization-based derandomization of the
425 MAXCUT problem: rather than relying on the method of conditional expectations, small-bias spaces,
426 or explicit pseudorandom constructions (Naor & Naor, 1990; Motwani & Raghavan, 1995; Mahajan
427 & Ramesh, 1995). The empirical results of our approach for MAXCUT can be found in Appendix F.2.
428429 5.2 JOHNSON-LINDENSTRAUSS EMBEDDINGS
430431 The JL Lemma is a well-known result in the field of dimensionality reduction (Johnson et al., 1984).
Specifically, consider unit norm data points $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$, which we aim to project into k

432 dimensions while preserving their norms with at most ε -distortion. Here, the distortion is given by
 433 $\varepsilon = \mathcal{O}(\sqrt{\log n/k})$. A detailed description of the JL Lemma is given in Appendix G.1. In this
 434 context, we are interested in finding matrices that satisfy the *JL guarantee*:

435 **Definition 5.3** (JL guarantee). *The JL guarantee states that for given dataset $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and
 436 target dimension k , the distortion for all points does not exceed $\mathcal{O}(\sqrt{\log n/k})$.*

437 Significant research has been dedicated to improving the construction of random projections (Indyk
 438 & Motwani, 1998; Achlioptas, 2001; Matoušek, 2008). In contrast to these traditional methods, our
 439 approach recovers the result from (Tsikouras et al., 2024), which proposes learning the linear mapping
 440 directly from the data, deterministically. Other derandomization methods for JL include (Engebretsen
 441 et al., 2002; Meka & Zuckerman, 2010).

442 Let \mathbf{A} be a random matrix whose entries $a_{i,j}$ are independently drawn from a Gaussian distribution
 443 with means $\mu_{i,j}$ and variances $\sigma_{i,j}^2$. Let Σ denote the matrix collecting these variances. Our goal is to
 444 minimize the following quantity:

$$445 \Pr \left(\max_{i=1, \dots, n} \left| \|\mathbf{A}\mathbf{x}_i\|_2^2 - 1 \right| > \varepsilon \right) + \frac{\|\Sigma^{1/2}\|_F^2}{2kd}, \quad (8)$$

446 which represents the probability that the maximum distortion across all input vectors exceeds a
 447 prescribed threshold ε , augmented by a regularization term that penalizes large variances. Notably,
 448 the regularizer vanishes as $\Sigma \rightarrow \mathbf{0}$, recovering a deterministic transformation in the limit.

449 As shown in Appendix G.1, we use a union bound to relax the original objective in Equation 8,
 450 reducing it to an equivalent surrogate objective:

$$451 f(\Sigma^{1/2}, \mu) = \sum_{i=1}^n \Pr \left(\left| \left\| (\Sigma^{1/2}z + \mu) \mathbf{x}_i \right\|_2^2 - 1 \right| > \varepsilon \right) + \frac{\|\Sigma^{1/2}\|_F^2}{2kd}, \quad (9)$$

452 where $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{kd})$. The optimization is performed over the parameters $(\Sigma^{1/2}, \mu)$.

453 **Remark 5.4.** *The probability term in Equation 9 can be interpreted as the expectation of an indicator
 454 function for the event inside the probability. To allow the application of Lemma 3.1, we replace this
 455 indicator function with a smooth ε_1 -approximation, as described in Appendix G.3.*

456 We now present our main result on the derandomization of the JL Lemma.

457 **Theorem 5.5.** *Let n be unit vectors in \mathbb{R}^d , k be the target dimension, ϵ be a smoothening parameter
 458 and $\Delta > 0$ be an accuracy parameter. For any $\varepsilon \geq C\sqrt{\log n/k}$, where C is a sufficiently large
 459 constant, initialize $\mathbf{M} = \mathbf{0}$ and $\Sigma = \mathbf{I}_{kd}$ and run Algorithm 1 to optimize the ε_1 -smoothed
 460 version of the objective function in Equation 9 (see Equation 27) using the regularization parameter
 461 $\lambda = \frac{\sqrt{\rho/\epsilon^3} + \Delta}{2}$. After $T = \mathcal{O}(\text{poly}(n, k, d, \log(\delta), \Delta^{-1}))$ iterations, this returns a matrix \mathbf{M} that
 462 satisfies the JL guarantee with distortion at most $\mathcal{O}(\varepsilon)$, with probability $1 - \delta$.*

463 **Proof.** Full proof can be found in Appendix G.4. □

464 The empirical results of our approach for JL can be found in Appendix G.5.

465 6 CONCLUSION

466 We study the theoretical properties of NNs under specific conditions, showing they can discover
 467 low-rank structures. Building on (Mousavi-Hosseini et al., 2023), we extend their framework to allow
 468 (a) NNs of arbitrary size and depth, (b) all parameters trainable, (c) any smooth loss function, and (d)
 469 minimal regularization. The core of our analysis is the *derandomization* Lemma 3.1, which ensures
 470 effectiveness even with small regularization. Training biases is a common practice, and our theory
 471 guarantees that it can improve model performance. The strength of our lemma is demonstrated in
 472 three applications, mainly in NNs and secondarily in MAXCUT and JL embeddings.

473 Finally, we outline some limitations of our current work and suggest future research directions. Our
 474 results rely on the assumption that the input distribution is Gaussian. Extending these findings to
 475 other distributions is an interesting avenue for future research. Additionally, it would be valuable to
 476 explore connections between our theoretical results and the learning and generalization guarantees
 477 that are observed in practice.

486 REFERENCES
487

488 Emmanuel Abbe, Enric Boix-Adsera, Matthew S Brennan, Guy Bresler, and Dheeraj Nagaraj. The
489 staircase property: How hierarchical structure can guide deep learning. *Advances in Neural
490 Information Processing Systems*, 34:26989–27002, 2021.

491 Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: a
492 necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural
493 networks. In *Conference on Learning Theory*, pp. 4782–4887. PMLR, 2022.

494 Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. Sgd learning on neural networks:
495 leap complexity and saddle-to-saddle dynamics. In *The Thirty Sixth Annual Conference on
496 Learning Theory*, pp. 2552–2623. PMLR, 2023.

497 Dimitris Achlioptas. Database-friendly random projections. In *Proceedings of the twentieth ACM
498 SIGMOD-SIGACT-SIGART symposium on Principles of database systems*, pp. 274–281, 2001.

499 Shunta Akiyama and Taiji Suzuki. On learnability via gradient method for two-layer relu neural
500 networks in teacher-student setting. In *International Conference on Machine Learning*, pp. 152–
501 162. PMLR, 2021.

502 Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
503 parameterization. In *International conference on machine learning*, pp. 242–252. PMLR, 2019.

504 Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence
505 embeddings. In *International conference on learning representations*, 2017.

506 Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for deep
507 nets via a compression approach. In *International conference on machine learning*, pp. 254–263.
508 PMLR, 2018.

509 Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent on
510 non-convex losses from high-dimensional inference. *Journal of Machine Learning Research*, 22
511 (106):1–51, 2021.

512 Jimmy Ba, Murat Erdogdu, Taiji Suzuki, Denny Wu, and Tianzong Zhang. Generalization of
513 two-layer neural networks: An asymptotic viewpoint. In *International conference on learning
514 representations*, 2020.

515 Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
516 dimensional asymptotics of feature learning: How one gradient step improves the representation.
517 *Advances in Neural Information Processing Systems*, 35:37932–37946, 2022.

518 Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hidden
519 progress in deep learning: Sgd learns parities near the computational limit. *Advances in Neural
520 Information Processing Systems*, 35:21750–21764, 2022.

521 Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
522 neural networks. *Advances in neural information processing systems*, 30, 2017.

523 Raphaël Berthier, Andrea Montanari, and Kangjie Zhou. Learning time-scales in two-layers neural
524 networks. *Foundations of Computational Mathematics*, pp. 1–84, 2024.

525 Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index models with
526 shallow neural networks. *Advances in Neural Information Processing Systems*, 35:9768–9783,
527 2022.

528 Alberto Bietti, Joan Bruna, and Loucas Pillaud-Vivien. On learning gaussian multi-index models
529 with gradient flow. *arXiv preprint arXiv:2310.19793*, 2023.

530 Guillaume Braun, Minh Ha Quang, and Masaaki Imaizumi. Learning a single index model from
531 anisotropic data with vanilla stochastic gradient descent. *arXiv preprint arXiv:2503.23642*, 2025.

532 Sitan Chen and Raghu Meka. Learning polynomials in few relevant dimensions. In *Conference on
533 Learning Theory*, pp. 1161–1227. PMLR, 2020.

540 Siyu Chen, Beining Wu, Miao Lu, Zhuoran Yang, and Tianhao Wang. Can neural networks achieve
 541 optimal computational-statistical tradeoff? an analysis on single-index model. In *The Thirteenth*
 542 *International Conference on Learning Representations*, 2025.

543

544 Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized
 545 models using optimal transport. *Advances in neural information processing systems*, 31, 2018.

546 Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
 547 trained with the logistic loss. In *Conference on learning theory*, pp. 1305–1338. PMLR, 2020.

548

549 Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
 550 *Advances in neural information processing systems*, 32, 2019.

551 Alex Damian, Loucas Pillaud-Vivien, Jason D Lee, and Joan Bruna. Computational-statistical gaps
 552 in gaussian single-index models. *arXiv preprint arXiv:2403.05529*, 2024.

553

554 Alex Damian, Jason D Lee, and Joan Bruna. The generative leap: Sharp sample complexity for
 555 efficiently learning gaussian multi-index models. *arXiv preprint arXiv:2506.05500*, 2025.

556

557 Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations
 558 with gradient descent. In *Conference on Learning Theory*, pp. 5413–5452. PMLR, 2022.

559 Amit Daniely and Eran Malach. Learning parities with neural networks. *Advances in Neural*
 560 *Information Processing Systems*, 33:20356–20365, 2020.

561 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 562 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
 563 *the North American chapter of the association for computational linguistics: human language*
 564 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

565

566 Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. Ag-
 567 nostically learning multi-index models with queries. In *2024 IEEE 65th Annual Symposium on*
 568 *Foundations of Computer Science (FOCS)*, pp. 1931–1952. IEEE, 2024.

569

570 Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
 571 over-parameterized neural networks. In *International Conference on Learning Representations*,
 2018.

572

573 Rishabh Dudeja and Daniel Hsu. Learning single-index models in gaussian space. In *Conference On*
 574 *Learning Theory*, pp. 1887–1930. PMLR, 2018.

575

576 Lars Engebretsen, Piotr Indyk, and Ryan O’Donnell. Derandomized dimensionality reduction with
 577 applications, 2002. Manuscript, Carnegie Mellon University.

578

579 Spencer Frei, Yuan Cao, and Quanquan Gu. Agnostic learning of a single neuron with gradient
 580 descent. *Advances in Neural Information Processing Systems*, 33:5417–5428, 2020.

581

582 David Gamarnik, Eren C Kızıldağ, and Ilias Zadik. Stationary points of shallow neural networks
 583 with quadratic activation function. *arXiv preprint arXiv:1912.01599*, 2019.

584

585 Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers of low-degree polynomials
 586 in the non-degenerate case. In *2020 IEEE 61st Annual Symposium on Foundations of Computer*
 587 *Science (FOCS)*, pp. 889–899. IEEE, 2020.

588

589 Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete gradient
 590 dynamics in linear neural networks. *Advances in Neural Information Processing Systems*, 32,
 2019.

591

592 Margalit Glasgow. Sgd finds then tunes features in two-layer neural networks with near-optimal
 593 sample complexity: A case study in the xor problem. *arXiv preprint arXiv:2309.15111*, 2023.

594

595 Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum cut
 596 and satisfiability problems using semidefinite programming. *Journal of the ACM (JACM)*, 42(6):
 597 1115–1145, 1995.

594 Sebastian Goldt, Madhu Advani, Andrew M Saxe, Florent Krzakala, and Lenka Zdeborová. Dynamics
 595 of stochastic gradient descent for two-layer neural networks in the teacher-student setup. *Advances*
 596 *in neural information processing systems*, 32, 2019.

597

598 Ian Goodfellow. Deep learning, 2016.

599 Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on
 600 linear convolutional networks. *Advances in neural information processing systems*, 31, 2018.

601

602 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint*
 603 *arXiv:1606.08415*, 2016.

604 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
 605 dimensionality. In *Proceedings of the thirtieth annual ACM symposium on Theory of computing*,
 606 pp. 604–613, 1998.

607

608 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
 609 generalization in neural networks. *Advances in neural information processing systems*, 31, 2018.

610

611 Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
 612 *Conference on learning theory*, pp. 1772–1798. PMLR, 2019.

613

614 Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle
 615 points efficiently. In *International conference on machine learning*, pp. 1724–1732. PMLR, 2017.

616

617 Chi Jin, Lydia T Liu, Rong Ge, and Michael I Jordan. On the local minima of the empirical risk.
 618 *Advances in neural information processing systems*, 31, 2018.

619

620 William B Johnson, Joram Lindenstrauss, et al. Extensions of lipschitz mappings into a hilbert space.
 621 *Contemporary mathematics*, 26(189-206):1, 1984.

622

623 Richard M Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W.
 624 Thatcher (eds.), *Complexity of Computer Computations*, pp. 85–103. Springer, 1972.

625

626 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 627 *arXiv:1412.6980*, 2014.

628

629 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):436–444,
 630 2015.

631

632 Jason D Lee, Kazusato Oko, Taiji Suzuki, and Denny Wu. Neural network learns low-dimensional
 633 polynomials with sgd near the information-theoretic limit. *Advances in Neural Information
 634 Processing Systems*, 37:58716–58756, 2024.

635

636 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
 637 of neural nets. *Advances in neural information processing systems*, 31, 2018a.

638

639 Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
 640 matrix sensing and neural networks with quadratic activations. In *Conference On Learning Theory*,
 641 pp. 2–47. PMLR, 2018b.

642

643 Cosme Louart, Zhenyu Liao, and Romain Couillet. A random matrix approach to neural networks.
 644 *The Annals of Applied Probability*, 28(2):1190–1248, 2018.

645

646 Sanjeev Mahajan and Hariharan Ramesh. Derandomizing semidefinite programming based approxi-
 647 mation algorithms. In *Proceedings of IEEE 36th Annual Foundations of Computer Science*, pp.
 648 162–169. IEEE, 1995.

649

650 Arvind Mahankali, Haochen Zhang, Kefan Dong, Margalit Glasgow, and Tengyu Ma. Beyond ntk
 651 with vanilla gradient descent: A mean-field analysis of neural networks with polynomial width,
 652 samples, and time. *Advances in Neural Information Processing Systems*, 36:57367–57480, 2023.

653

654 Simon Martin, Francis Bach, and Giulio Biroli. On the impact of overparameterization on the
 655 training of a shallow neural network in high dimensions. In *International Conference on Artificial
 656 Intelligence and Statistics*, pp. 3655–3663. PMLR, 2024.

648 Jiří Matoušek. On variants of the johnson–lindenstrauss lemma. *Random Structures & Algorithms*,
 649 33(2):142–156, 2008.
 650

651 Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
 652 asymptotics and the double descent curve. *Communications on Pure and Applied Mathematics*, 75
 653 (4):667–766, 2022.

654 Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
 655 layer neural networks. *Proceedings of the National Academy of Sciences*, 115(33):E7665–E7671,
 656 2018.

657 Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold functions.
 658 In *Proceedings of the Forty-second ACM Symposium on Theory of Computing*, pp. 427–436, 2010.
 659

660 Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting and
 661 understanding deep neural networks. *Digital signal processing*, 73:1–15, 2018.

662 Rajeev Motwani and Prabhakar Raghavan. *Randomized Algorithms*. Cambridge University Press,
 663 1995.

664 Alireza Mousavi-Hosseini, Sejun Park, Manuela Girotti, Ioannis Mitliagkas, and Murat A Erdogdu.
 665 Neural networks efficiently learn low-dimensional representations with sgd. In *The Eleventh
 666 International Conference on Learning Representations*, 2023.

667 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and applications.
 668 In *Proceedings of the twenty-second annual ACM symposium on Theory of computing*, pp. 213–223,
 669 1990.

670 Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
 671 role of implicit regularization in deep learning. *International Conference on Machine Learning*,
 672 2015a.

673 Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
 674 networks. In *Conference on learning theory*, pp. 1376–1401. PMLR, 2015b.

675 Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards
 676 understanding the role of over-parametrization in generalization of neural networks. *arXiv preprint
 677 arXiv:1805.12076*, 2018.

678 Kazusato Oko, Yujin Song, Taiji Suzuki, and Denny Wu. Learning sum of diverse features: com-
 679 putational hardness and efficient gradient-based training for ridge combinations. *arXiv preprint
 680 arXiv:2406.11828*, 2024.

681 Ioannis Panageas, Georgios Piliouras, and Xiao Wang. First-order methods almost always avoid
 682 saddle points: The case of vanishing step-sizes. *Advances in Neural Information Processing
 683 Systems*, 32, 2019.

684 Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of sgd for diagonal linear
 685 networks: a provable benefit of stochasticity. *Advances in Neural Information Processing Systems*,
 686 34:29218–29230, 2021.

687 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. *Advances in
 688 neural information processing systems*, 20, 2007.

689 Stefano Sarao Mannelli, Eric Vanden-Eijnden, and Lenka Zdeborová. Optimization and generalization
 690 of shallow neural networks with quadratic activation functions. *Advances in Neural Information
 691 Processing Systems*, 33:13445–13455, 2020.

692 Mahdi Soltanolkotabi. Learning relus via gradient descent. *Advances in neural information processing
 693 systems*, 30, 2017.

694 Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
 695 bias of gradient descent on separable data. *Journal of Machine Learning Research*, 19(70):1–57,
 696 2018.

697

702 C. Stein. Estimation of the mean of a multivariate normal distribution. In *Proceedings of the Prague*
 703 *Symposium on Asymptotic Statistics*, 1973.

704

705 Charles M Stein. Estimation of the mean of a multivariate normal distribution. *The annals of Statistics*,
 706 pp. 1135–1151, 1981.

707

708 Taiji Suzuki, Hiroshi Abe, and Tomoaki Nishimura. Compression based bound for non-compressed
 709 network: unified generalization error analysis of large compressible deep neural network. In
 710 *International conference on machine learning*, 2020.

711

712 Taiji Suzuki, Denny Wu, Kazusato Oko, and Atsushi Nitanda. Feature learning via mean-field
 713 langevin dynamics: classifying sparse parities and beyond. *Advances in Neural Information*
 714 *Processing Systems*, 36, 2024.

715

716 Nikos Tsikouras, Constantine Caramanis, and Christos Tzamos. Optimization can learn johnson
 717 lindenstrauss embeddings. *Advances in neural information processing systems*, 2024.

718

719 Rodrigo Veiga, Ludovic Stephan, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová. Phase
 720 diagram of stochastic gradient descent in high-dimensional two-layer neural networks. *Advances*
 721 *in Neural Information Processing Systems*, 35:23244–23255, 2022.

722

723 Puqian Wang, Nikos Zarifis, Ilias Diakonikolas, and Jelena Diakonikolas. Sample and computationally
 724 efficient robust learning of gaussian single-index models. *Advances in Neural Information*
 725 *Processing Systems*, 37:58376–58422, 2024.

726

727 Lei Wu. Learning a single neuron for non-monotonic activation functions. In *International Conference*
 728 *on Artificial Intelligence and Statistics*, pp. 4178–4197. PMLR, 2022.

729

730 Weihang Xu and Simon Du. Over-parameterization exponentially slows down gradient descent
 731 for learning a single neuron. In *The Thirty Sixth Annual Conference on Learning Theory*, pp.
 732 1155–1198. PMLR, 2023.

733

734 Gilad Yehudai and Shamir Ohad. Learning a single neuron with gradient methods. In *Conference on*
 735 *Learning Theory*, pp. 3756–3786. PMLR, 2020.

736

737 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
 738 learning (still) requires rethinking generalization. *Communications of the ACM*, 64(3):107–115,
 739 2021.

740

741 Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guarantees
 742 for one-hidden-layer neural networks. In *International conference on machine learning*, pp.
 743 4140–4149. PMLR, 2017.

744

745 Mo Zhou and Rong Ge. How does gradient descent learn features—a local analysis for regularized
 746 two-layer neural networks. *arXiv preprint arXiv:2406.01766*, 2024.

747

748 Mo Zhou, Rong Ge, and Chi Jin. A local convergence theory for mildly over-parameterized two-layer
 749 neural network. In *Conference on Learning Theory*, pp. 4577–4632. PMLR, 2021.

750

751 Mo Zhou, Rong Ge, and Chi Jin. A local convergence theory for mildly over-parameterized two-layer
 752 neural network. In *Conference on Learning Theory*. PMLR, 2022.

753

754 Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoretically
 755 understanding why sgd generalizes better than adam in deep learning. *Advances in Neural*
Information Processing Systems, 33:21285–21296, 2020.

APPENDIX

A RELATED WORK

Feature learning in NNs. Despite the established importance of feature learning in NNs, the specifics of how gradient-based algorithms develop useful features remain somewhat unclear. The neural tangent kernel (NTK) framework, primarily used for examining overparameterized NNs, suggests that neuron movement from their initial positions is minimal, highlighting the role of NN architecture and initial settings (Jacot et al., 2018; Du et al., 2018; Allen-Zhu et al., 2019; Chizat et al., 2019). Limitations of the NTK framework have led researchers to explore other analytical approaches, such as mean-field analysis, initially requiring vast neuron counts (Chizat & Bach, 2018; Mei et al., 2018). Later studies have shown that early stages of training, such as initial steps in GD, are crucial for effective feature learning, with the first layer in 2-layer NNs capturing valuable features (Daniely & Malach, 2020; Abbe et al., 2021; 2022; Zhou & Ge, 2024). This early capture of features by the first layer offers better performance than models relying solely on kernel or random features. In the exploration of NN and kernel method interconnections, it has become evident that gradient-based training facilitates representation learning, setting NNs apart from kernel methods (Mousavi-Hosseini et al., 2023; Abbe et al., 2022; Ba et al., 2022; Barak et al., 2022; Damian et al., 2022). A 2-layer NN with untrained, randomly initialized weights epitomizes a random features model (Rahimi & Recht, 2007), capturing complex phenomena seen in NN practice (Louart et al., 2018; Mei & Montanari, 2022). Despite inheriting positive traits from optimization procedures, these cannot be fully expressed as random feature regression. The implicit regularization aims of the training dynamics, favoring low-complexity models, are widely discussed (Neyshabur et al., 2015a).

Single/Multi index models. NNs are widely studied for learning single-index and multi-index models, which depend on a few directions in high-dimensional inputs. Recent works demonstrate the effectiveness of two-layer NN in learning single-index (Soltanolkotabi, 2017; Yehudai & Ohad, 2020; Frei et al., 2020; Wu, 2022; Bietti et al., 2022; Xu & Du, 2023; Mahankali et al., 2023; Berthier et al., 2024) and multi-index models (Damian et al., 2022; Bietti et al., 2023; Glasgow, 2023; Suzuki et al., 2024). These studies emphasize the benefits of feature learning over fixed random features. For multi-index functions representable by compact two-layer NN, a GD variant with weight decay can recover ground-truth directions. Gradient-based learning shows that NNs trained via GD can learn useful representations for single-index (Ba et al., 2022; Bietti et al., 2022; Mousavi-Hosseini et al., 2023; Berthier et al., 2024; Oko et al., 2024) and multi-index models (Damian et al., 2022; Abbe et al., 2022; Bietti et al., 2023). Learning complexity is influenced by the information exponent (Arous et al., 2021) or leap complexity (Abbe et al., 2023). While guarantees for low-dimensional models often lead to superpolynomial dependence, other research examines cases where student NN match the target function’s architecture (Gamarnik et al., 2019; Akiyama & Suzuki, 2021; Zhou et al., 2022; Veiga et al., 2022; Martin et al., 2024). This study considers an intermediate case where width scales with dimensionality without assuming a known nonlinear activation, showing GD achieves polynomial sample complexity when target weights are diverse. Additionally, statistical query algorithms address related polynomial regression tasks (Dudeja & Hsu, 2018; Chen & Meka, 2020; Garg et al., 2020; Diakonikolas et al., 2024).

A significant line of recent work investigates the learnability of single-index models via Hermite decompositions under Gaussian inputs. These works show that for single-index targets, the first nonzero Hermite term, captured by the information exponent or, in newer formulations, the generative exponent, governs the difficulty of recovering the index direction using first-order or statistical query-style methods (Arous et al., 2021; Wang et al., 2024; Braun et al., 2025). Recent lower bounds based on the generative exponent reveal computational–statistical gaps, establishing sharp statistical query and low-degree polynomial hardness results (Damian et al., 2024; 2025). Complementary algorithmic results show that gradient-based learners can match these limits in certain regimes: two-layer networks with data reuse effectively reduce the relevant Hermite order (Lee et al., 2024), and new SGD-based methods achieve sample complexities near the generative-exponent boundary (Chen et al., 2025).

810 A.1 PROOF OF LEMMA 3.1
811

812 **Lemma.** Let $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ be a standard Gaussian random variable. For the objective function
813 defined in Equation 2, with $\lambda > \frac{\sqrt{K\rho}}{2}$ where $g_\theta(\cdot)$ satisfies Assumption 2.3, any ρ -SOSP satisfies
814 $\|\mathbf{W}\|_F \leq \frac{\rho}{2\lambda - \sqrt{K\rho}}$.
815

816 **Proof.** The first and second derivatives of $f(\mathbf{W}, \mathbf{b}, \theta)$ with respect to \mathbf{b} are given by:
817

$$\begin{aligned} \frac{\partial f(\mathbf{W}, \mathbf{b}, \theta)}{\partial \mathbf{b}} &= \mathbb{E}_{\mathbf{x}}[\nabla g_\theta(\mathbf{W}\mathbf{x} + \mathbf{b})]. \\ \frac{\partial^2 f(\mathbf{W}, \mathbf{b}, \theta)}{\partial^2 \mathbf{b}} &= \mathbb{E}_{\mathbf{x}}[\nabla^2 g_\theta(\mathbf{W}\mathbf{x} + \mathbf{b})]. \end{aligned}$$

823 The first derivative with respect to \mathbf{W} is:
824

$$\frac{\partial f(\mathbf{W}, \mathbf{b}, \theta)}{\partial \mathbf{W}} = \mathbb{E}_{\mathbf{x}}[\nabla g_\theta(\mathbf{W}\mathbf{x} + \mathbf{b})\mathbf{x}^\top] + 2\lambda\mathbf{W}.$$

825 Using Stein's Lemma in the multivariate case, this can be rewritten as:
826

$$\frac{\partial f(\mathbf{W}, \mathbf{b}, \theta)}{\partial \mathbf{W}} = \mathbb{E}_{\mathbf{x}}[\nabla^2 g_\theta(\mathbf{W}\mathbf{x} + \mathbf{b}) + 2\lambda\mathbf{I}]\mathbf{W}. \quad (10)$$

827 At a ρ -second-order stationary point, the Hessian with respect to \mathbf{b} satisfies:
828

$$\frac{\partial^2 f(\mathbf{W}, \mathbf{b}, \theta)}{\partial^2 \mathbf{b}} = \mathbb{E}_{\mathbf{x}}[\nabla^2 g_\theta(\mathbf{W}\mathbf{x} + \mathbf{b})] \succcurlyeq -\sqrt{K\rho}\mathbf{I}. \quad (11)$$

830 From Equation 11, it follows that:
831

$$\mathbb{E}_{\mathbf{x}}[\nabla^2 g_\theta(\mathbf{W}\mathbf{x} + \mathbf{b})] + 2\lambda\mathbf{I} \succeq 2\lambda\mathbf{I} - \sqrt{K\rho}\mathbf{I}.$$

833 Then dividing both sides with $2\lambda - \sqrt{K\rho}$, we get:
834

$$\mathbb{E}_{\mathbf{x}}\left[\frac{\nabla^2 g_\theta(\mathbf{W}\mathbf{x} + \mathbf{b}) + 2\lambda\mathbf{I}}{2\lambda - \sqrt{K\rho}}\right] \succeq \mathbf{I}. \quad (12)$$

836 Using the approximate first-order optimality condition $\left\|\frac{\partial f(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}}\right\|_F < \rho$ along with Equations 10
837 and 12, we have:
838

$$\begin{aligned} \frac{\rho}{2\lambda - \sqrt{K\rho}} &\geq \left\|\mathbb{E}_{\mathbf{x}}\left[\frac{\nabla^2 g_\theta(\mathbf{W}\mathbf{x} + \mathbf{b}) + 2\lambda\mathbf{I}}{2\lambda - \sqrt{K\rho}}\right]\mathbf{W}\right\|_F \\ &\geq \sigma_{\min}\left(\mathbb{E}_{\mathbf{x}}\left[\frac{\nabla^2 g_\theta(\mathbf{W}\mathbf{x} + \mathbf{b}) + 2\lambda\mathbf{I}}{2\lambda - \sqrt{K\rho}}\right]\right)\|\mathbf{W}\|_F \\ &\geq \|\mathbf{W}\|_F, \end{aligned}$$

848 where σ_{\min} in the penultimate inequality is the minimum singular value which is lower bounded by
849 one.
850

□

851 A.2 PROOF OF LEMMA 3.1 FOR $\rho = 0$
852

853 **Lemma.** Let $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ be a standard Gaussian random variable. For the objective function
854 defined in Equation 2, with $\lambda > \frac{\sqrt{K\rho}}{2}$ where $g_\theta(\cdot)$ satisfies Assumption 2.3, any second-order
855 stationary point satisfies $\mathbf{W} = \mathbf{0}$.
856

864 **Proof.** The first and second derivatives of $f(\mathbf{W}, \mathbf{b}, \theta)$ with respect to \mathbf{b} are given by:
 865

$$\begin{aligned} 866 \quad \frac{\partial f(\mathbf{W}, \mathbf{b}, \theta)}{\partial \mathbf{b}} &= \mathbb{E}_{\mathbf{x}}[\nabla g_{\theta}(\mathbf{W}\mathbf{x} + \mathbf{b})]. \\ 867 \quad \frac{\partial^2 f(\mathbf{W}, \mathbf{b}, \theta)}{\partial^2 \mathbf{b}} &= \mathbb{E}_{\mathbf{x}}[\nabla^2 g_{\theta}(\mathbf{W}\mathbf{x} + \mathbf{b})]. \\ 868 \end{aligned}$$

871 The first derivative with respect to \mathbf{W} is:
 872

$$874 \quad \frac{\partial f(\mathbf{W}, \mathbf{b}, \theta)}{\partial \mathbf{W}} = \mathbb{E}_{\mathbf{x}}[\nabla g_{\theta}(\mathbf{W}\mathbf{x} + \mathbf{b})\mathbf{x}^{\top}] + 2\lambda\mathbf{W}. \quad (13) \\ 875 \\ 876$$

877 Using Stein's Lemma in the multivariate case, this can be rewritten as:
 878

$$879 \quad \frac{\partial f(\mathbf{W}, \mathbf{b}, \theta)}{\partial \mathbf{W}} = \mathbb{E}_{\mathbf{x}}[\nabla^2 g_{\theta}(\mathbf{W}\mathbf{x} + \mathbf{b}) + 2\lambda\mathbf{I}]\mathbf{W}. \quad (14) \\ 880 \\ 881$$

882 At a second-order stationary point, the Hessian with respect to \mathbf{b} satisfies:
 883

$$884 \quad \frac{\partial^2 f(\mathbf{W}, \mathbf{b}, \theta)}{\partial^2 \mathbf{b}} = \mathbb{E}_{\mathbf{x}}[\nabla^2 g_{\theta}(\mathbf{W}\mathbf{x} + \mathbf{b})] \succcurlyeq 0. \quad (15) \\ 885 \\ 886$$

887 From Equation 15, it follows that:
 888

$$889 \quad \mathbb{E}_{\mathbf{x}}[\nabla^2 g_{\theta}(\mathbf{W}\mathbf{x} + \mathbf{b})] + 2\lambda\mathbf{I} \succ 0, \quad (16) \\ 890$$

891 where the addition of $2\lambda\mathbf{I}$ ensures strict positive definiteness.
 892

893 Using the first-order optimality condition $\frac{\partial f(\mathbf{W}, \mathbf{b}, \theta)}{\partial \mathbf{W}} = 0$ along with Equations 14 and 16, we have:
 894

$$895 \quad \mathbb{E}_{\mathbf{x}}[\nabla^2 g_{\theta}(\mathbf{W}\mathbf{x} + \mathbf{b}) + 2\lambda\mathbf{I}]\mathbf{W} = \mathbf{0}. \quad (17) \\ 896$$

897 Since $\mathbb{E}_{\mathbf{x}}[\nabla^2 g(\mathbf{W}\mathbf{x} + \mathbf{b})] + 2\lambda\mathbf{I} \succ 0$ (from Equation 2), the only solution is $\mathbf{W} = \mathbf{0}$.
 898

□

901 B OPTIMIZATION ALGORITHMS

904 Below we give the two main algorithms for finding SOSPs; PGD and Hessian Descent.
 905

907 **Algorithm 1** Perturbed Gradient Descent

908 **Require:** Objective function $f(\mathbf{x})$, initial point \mathbf{x}_0 , gradient Lipschitz constant L , learning rate
 909 $\eta = \frac{1}{L}$, maximum iterations T
 910 1: Initialize $\mathbf{x}_1 \leftarrow \mathbf{x}_0$
 911 2: **for** $t = 1$ to T **do**
 912 3: **if** perturbation condition holds **then**
 913 4: Draw random perturbation ξ_t
 914 5: $\mathbf{x}_t \leftarrow \mathbf{x}_t + \xi_t$
 915 6: **end if**
 916 7: $\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t - \eta \nabla f(\mathbf{x}_t)$
 917 8: **end for**
 9: **return** \mathbf{x}_{T+1}

918 **Algorithm 2** Hessian Descent

919

920 **Require:** Gradient ∇g , Hessian $\nabla^2 g$, initial point \mathbf{x}_0 , step size $\nu = \frac{1}{L}$, perturbation step size

921 $h = \frac{3\sqrt{\rho}}{K}$, Lipschitz constants L, K, ρ

922 1: Initialize $t \leftarrow 0$

923 2: **while** true **do**

924 3: **if** $\|\nabla g(\mathbf{x}_t)\| > \rho$ **then**

925 4: $\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t - \nu \cdot \nabla g(\mathbf{x}_t)$

926 5: **else if** $\|\nabla g(\mathbf{x}_t)\| \leq \rho$ **and** $\lambda_{\min}(\nabla^2 g(\mathbf{x}_t)) < -\sqrt{K\rho}$ **then**

927 6: $u_1 \leftarrow$ eigenvector corresponding to $\lambda_{\min}(\nabla^2 g(\mathbf{x}_t))$

928 7: $\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t + hu_1$

929 8: **else**

930 9: **return** \mathbf{x}_t

931 10: **end if**

932 11: $t \leftarrow t + 1$

933 12: **end while**

934

DISCUSSION ON ρ -SOSPs

935

936 Additionally, we clarify that our analysis operates under the assumption that the optimization method

937 employed converges to a ρ -SOSP with respect to all model parameters, including those encapsulated

938 in θ . Specifically, we assume that an approximate SOSP is identified jointly over the entire parameter

939 space. Once such a point is found, we observe that fixing the auxiliary parameters θ preserves the

940 approximate second-order stationarity with respect to the first-layer weight matrix \mathbf{W} .

941

942

C REFORMULATION

943

944

$$\begin{aligned} 945 R(\mathbf{W}_{\parallel}, \mathbf{W}_{\perp}, \mathbf{b}) &= \mathbb{E}_{\mathbf{x}_{\perp}, \mathbf{x}_{\parallel}} [\ell(h'(\mathbf{x}_{\parallel}), g_{\theta}(\mathbf{W}_{\perp}\mathbf{x}_{\perp} + \mathbf{W}_{\parallel}\mathbf{x}_{\parallel} + \mathbf{b}))] + \lambda\|\mathbf{W}_{\parallel} + \mathbf{W}_{\perp}\|_F^2 \\ 946 &= \mathbb{E}_{\mathbf{x}_{\perp}} [\mathbb{E}_{\mathbf{x}_{\parallel}} [\ell(h'(\mathbf{x}_{\parallel}), g_{\theta}(\mathbf{W}_{\perp}\mathbf{x}_{\perp} + \mathbf{W}_{\parallel}\mathbf{x}_{\parallel} + \mathbf{b}))]] + \lambda\|\mathbf{W}_{\parallel}\|_F^2 + \lambda\|\mathbf{W}_{\perp}\|_F^2 \\ 947 &= \mathbb{E}_{\mathbf{x}_{\perp}} [\ell'_{\theta'}(\mathbf{W}_{\perp}\mathbf{x}_{\perp} + \mathbf{b})] + \lambda\|\mathbf{W}_{\perp}\|_F^2, \end{aligned} \tag{18}$$

948

949 where $\ell'_{\theta'}(\mathbf{W}_{\perp}\mathbf{x}_{\perp} + \mathbf{b}) := \mathbb{E}_{\mathbf{x}_{\parallel}} [\ell(h'(\mathbf{x}_{\parallel}), g_{\theta}(\mathbf{W}_{\perp}\mathbf{x}_{\perp} + \mathbf{W}_{\parallel}\mathbf{x}_{\parallel} + \mathbf{b}))] + \lambda\|\mathbf{W}_{\parallel}\|_F^2$. Equation 18

950 holds because \mathbf{W}_{\perp} is orthogonal to \mathbf{W}_{\parallel} . For notational convenience, we suppress \mathbf{W}_{\parallel} , \mathbf{W}_{\perp} and \mathbf{x}_{\perp}

951 in the expectation and just write

952

953

$$954 R(\mathbf{W}_{\perp}, \mathbf{b}) = \mathbb{E}_{\mathbf{x}_{\perp}} [\ell'_{\theta'}(\mathbf{W}_{\perp}\mathbf{x}_{\perp} + \mathbf{b})] + \lambda\|\mathbf{W}_{\perp}\|_F^2.$$

955

956 Additionally, we clarify that our analysis operates under the assumption that the optimization method

957 employed converges to a ρ -SOSP with respect to all model parameters, including those encapsulated

958 in θ . Specifically, we assume that an approximate SOSP is identified jointly over the entire parameter

959 space. Once such a point is found, we observe that fixing the auxiliary parameters θ preserves the

960 approximate second-order stationarity with respect to the first-layer weight matrix \mathbf{W} .

961

D PROOFS OF SECTION 4

962

963

D.1 PROOF OF THEOREM 4.2

964

965 **Theorem.** Let the objective function in Equation 5 be twice differentiable, bounded below, and

966 satisfies Assumption 2.3. Let the data $\mathbf{x} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$, and suppose labels are generated according

967 to Equation 3. Let $\rho > 0$ be a prespecified accuracy, and define the regularization parameter

968 $\lambda = \frac{\sqrt{K\rho} + \Delta}{2}$, where K is the Hessian Lipschitz constant and $\Delta > 0$ is an arbitrarily small constant.

969 Then, with probability $1 - \delta$, running Algorithm 1 for $T > \mathcal{O}(\text{poly}(L, \log(d), \log(\delta), \varepsilon^{-1}, \Delta^{-1}))$

970 iterations with a step size $\mathcal{O}(1/L)$, yields a weight matrix $\mathbf{W} = \mathbf{W}_{\perp} + \mathbf{W}_{\parallel}$ that satisfies:

971

$$\|\mathbf{W}_{\perp}\|_F < \varepsilon.$$

972 **Proof.** Since the objective function has Lipschitz continuous gradient and Hessian and is bounded
 973 from below, this implies that it has at least one ρ -SOSP. Choose some $\Delta > 0$ and $\lambda = \frac{\sqrt{K\rho} + \Delta}{2}$
 974 and using Lemma 3.1, we get that any ρ -SOSP is a weight matrix $\mathbf{W} = \mathbf{W}_\perp + \mathbf{W}_\parallel$, that satisfies
 975 $\|\mathbf{W}_\perp\|_F \leq \frac{\rho}{\Delta}$.
 976

977 Let $\varepsilon = \frac{\rho}{\Delta}$, solving for ρ , this gives $\rho = \varepsilon\Delta$. Then, running Algorithm 1 for:

$$978 \quad T = \mathcal{O} \left(\frac{L}{\rho^2} \log^4(d) - \frac{L}{\rho^2} \log^4(\delta) \right) = \mathcal{O} \left(\frac{L}{\varepsilon^2 \Delta^2} \log^4(d) - \frac{L}{\varepsilon^2 \Delta^2} \log^4(\delta) \right),$$

981 iterations gives the required result. \square
 982

983 E EXPERIMENTS IN NEURAL NETWORKS OF SECTION 4.3 984

985 The student NN is a two-layer feedforward network with a single hidden layer. The input data
 986 $\mathbf{X} \in \mathbb{R}^{n \times d}$ is sampled from a standard multivariate Gaussian distribution with $d = 2$. The network
 987 architecture consists of an input layer with d features, a hidden layer of width $h = 1000$, and an
 988 output layer that produces scalar predictions.

989 The first-layer weight matrix $\mathbf{W} \in \mathbb{R}^{h \times d}$ is initialized with entries drawn from $\mathcal{N}(0, 1/d)$, while
 990 the bias vector $\mathbf{b} \in \mathbb{R}^h$ and the second-layer weight vector \mathbf{a} are initialized from $\mathcal{N}(0, 1/h^2)$. The
 991 trainable parameters include both \mathbf{W} and \mathbf{b} and we freeze the second layer for stability reasons. The
 992 student NN computes predictions according to the mapping:

$$994 \quad y = \mathbf{a}^\top \text{ReLU}_2(\mathbf{W}\mathbf{x} + \mathbf{b}),$$

996 where, ReLU_2 denotes a smoothed version of the ReLU. Although ReLU_2 is used in our experiments,
 997 other nonlinearities such as \tanh can be employed in the same framework.

998 To generate the labels, we use a teacher network based on a single-index model. A fixed direction θ
 999 is chosen as
 1000

$$1001 \quad \theta = \frac{1}{\sqrt{2}}(1, 1)^\top,$$

1004 and labels are generated according to the rule:

$$1006 \quad y = \tanh(\theta \cdot \mathbf{x}) + \varepsilon, \text{ where } \varepsilon \sim \mathcal{N}(0, 0.1).$$

1008 Training is conducted using PGD, in which small Gaussian noise is added to each gradient step
 1009 when the gradient norm is less than $\epsilon = 1 \times 10^{-6}$. Specifically, the noise is drawn independently
 1010 for each trainable weight from a standard normal distribution and scaled by a factor $\delta = 0.005$, i.e.,
 1011 $\mathbf{W} \leftarrow \mathbf{W} + \delta \cdot \mathcal{N}(0, I)$, with analogous updates applied to the bias terms \mathbf{b} and, if trainable, the
 1012 output weights \mathbf{a} . Although this threshold is small, the noise is applied many times during training,
 1013 ensuring exploration of flat regions of the loss landscape. This modification of standard SGD helps
 1014 the optimization escape saddle points and flat regions, which is particularly useful in our setting and
 1015 aligns with our theoretical guarantees. Training proceeds for $T = 10,000$ steps, minimizing the Mean
 1016 Squared Error (MSE) loss function with L_2 regularization controlled by $\lambda = 10^{-5}$. Learning rates
 1017 are set to $\eta = 1$ for the first layer and $\eta_b = 1$ for the bias terms.

1018 Figure 3 shows that the first-layer weights of the student network have effectively converged to the
 1019 principal subspace, indicating that the network has focused on the relevant direction.

1021 F SUPPORTING MATERIAL OF SECTION 5.1 1022

1023 F.1 PROOF OF THEOREM 5.2

1024 **Theorem.** Let $G = (V, E)$ be a graph with m edges, where the edge weights are given by
 1025 $w_{i,j} = w_{j,i} = 1$ for all $(i, j) \in E$. Let $\mathbf{V} \in \mathbb{R}^{m \times m}$ be the matrix of vectors obtained from the

1026 SDP relaxation of the MAXCUT problem, as described in (Goemans & Williamson, 1995). Denote
 1027 by $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_m)$ a standard multivariate Gaussian vector, and let $\boldsymbol{\mu}$ represent a vector of means.
 1028 Initialize Algorithm 1 with $\boldsymbol{\mu} = \mathbf{0}$, and optimize the ϵ -smoothed version of the objective function
 1029 in Equation 7 (see Equation 27), using the regularization parameter $\lambda = \frac{\sqrt{\rho/\epsilon^3} + \Delta}{2}$, and run for
 1030 $T = \mathcal{O}(\text{poly}(\log(m), \log(\delta), \epsilon^{-1}, \Delta^{-1}))$ iterations. After this optimization process, the resulting
 1031 vector $\boldsymbol{\mu}$ defines a cut whose value is guaranteed to be at least:
 1032

$$\text{OPT}(\alpha - \mathcal{O}(\epsilon)),$$

1033 with probability $1 - \delta$. Here, $\alpha = 0.878$ is the approximation factor from (Goemans & Williamson,
 1034 1995).
 1035

1036 **Proof.** Given a graph with m edges and weights that are equal to one, $w_{i,j} = w_{j,i} = 1$, we aim to
 1037 provide an approximation to the MAXCUT problem by derandomizing the randomized rounding
 1038 algorithm. Consider the matrix $\mathbf{V} \in \mathbb{R}^{m \times m}$ which gathers all the vectors from the Semidefinite
 1039 Program. Let us also define the function $\mathbf{V}\mathbf{z} + \boldsymbol{\mu}$, where $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_m)$ and $\boldsymbol{\mu}$ is a vector of means.
 1040 Our objective is to minimize the negative expected cut:
 1041

$$1043 \quad f(\mathbf{V}, \boldsymbol{\mu}) = - \sum_{i < j} w_{i,j} \Pr[\text{sgn}(\mathbf{v}_i \cdot \mathbf{z} + \mu_i) \neq \text{sgn}(\mathbf{v}_j \cdot \mathbf{z} + \mu_j)],$$

1044 for which initially we have $\boldsymbol{\mu} = \mathbf{0}$. To minimize this function using our Lemma, we define the
 1045 indicator function:
 1046

$$1049 \quad I(x, y) = \begin{cases} 1, & \text{if } xy < 0 \\ 0, & \text{if } xy \geq 0 \end{cases}$$

1052 Using this indicator, we can reformulate the objective as:
 1053

$$1054 \quad f(\mathbf{V}\mathbf{z} + \boldsymbol{\mu}) = -\mathbb{E}_{\mathbf{z}} \left[\sum_{i < j} w_{i,j} I(\mathbf{v}_i \cdot \mathbf{z} + \mu_i, \mathbf{v}_j \cdot \mathbf{z} + \mu_j) \right] + \lambda \|\mathbf{V}\|_F^2, \quad (19)$$

1058 We are concerned with the value of $I(\mathbf{v}_i \cdot \mathbf{z}, \mathbf{v}_j \cdot \mathbf{z})$. If $I(\mathbf{v}_i \cdot \mathbf{z}, \mathbf{v}_j \cdot \mathbf{z}) = 1$, then this edge contributes
 1059 to the cut because the signs are different, otherwise it does not. However, since this function is not
 1060 smooth, we introduce a smoothed version:
 1061

$$1062 \quad \tilde{I}(x, y) = \begin{cases} 1, & \text{if } xy < 0 \text{ and } |x|, |y| > \epsilon \\ 0, & \text{if } |x| < \frac{\epsilon}{2} \text{ or } |y| < \frac{\epsilon}{2} \text{ or } xy > 0 \\ [0, 1], & \text{otherwise.} \end{cases}$$

1066 This function is smoothed to be twice differentiable in the interval $[0, 1]$, and we can approximate
 1067 it as a polynomial to ensure that the Hessian Lipschitz constant is $K = \mathcal{O}(\frac{1}{\epsilon^3})$ and the gradient
 1068 Lipschitz constant is $L = \mathcal{O}(\frac{1}{\epsilon^2})$.
 1069

1070 The function $\tilde{I}(x, y)$ is formally defined as follows. First, we define,
 1071

$$1073 \quad S(x) = \begin{cases} 1, & x \geq \epsilon \\ 0, & x < \frac{\epsilon}{2} \\ \frac{8}{\epsilon^2} (x - \frac{\epsilon}{2})^2, & \frac{\epsilon}{2} < x \leq \frac{3\epsilon}{4} \\ -\frac{8}{\epsilon^2} (x - \epsilon)^2 + 1, & \frac{3\epsilon}{4} < x < \epsilon \end{cases}$$

1078 then, the smoothed step function \tilde{I} is defined as:
 1079

$$\tilde{I}(x, y) = S(x)S(-y) + S(-x)S(y).$$

1080 By using this smoothed function to calculate the cut, we worsen the result from the original cut
 1081 by at most $\mathcal{O}(m\epsilon)$, where m is the number of edges. This corresponds to the area of disagreement
 1082 between using the actual indicator function and the smoothed indicator function. Our goal is now to
 1083 minimize the following function:
 1084

$$1085 \quad 1086 \quad 1087 \quad 1088 \quad f(\mathbf{V}\mathbf{z} + \boldsymbol{\mu}) = \mathbb{E}_{\mathbf{z}} \left[\sum_{i < j} \tilde{w}_{i,j} \tilde{I}(\mathbf{v}_i \cdot \mathbf{z} + \mu_i, \mathbf{v}_j \cdot \mathbf{z} + \mu_j) \right] + \lambda \|\mathbf{V}\|_F^2, \quad (20)$$

1089 where we absorb the minus sign into the original definition of $w_{i,j}$, for convenience. Choose ρ such
 1090 that at the end of the optimization we have $\|\mathbf{V}\|_F^2 < \epsilon^2$.

1091 Next, we investigate the effect of ignoring \mathbf{V} and only using the means $\boldsymbol{\mu}$. At the end of the
 1092 optimization, we have vectors $\mathbf{v}_i, i = 1, \dots, m$, with $\|\mathbf{v}_i\|_2^2 \leq \epsilon^2$, for all i . We examine two cases
 1093 for each edge of the graph:

1094 1) If $\mu_i \mu_j < 0$, these two values contribute to the cut directly, so we do not need anything more.
 1095 2) If $\mu_i \mu_j > 0$, we need further analysis. Without loss of generality, assume that $\mu_i > 0$ and $\mu_j > 0$.

1096 To analyze the difference when using full randomness, we need to consider the following. For the edge
 1097 to contribute to the randomized version, we require that either $\mathbf{v}_i \cdot \mathbf{z} + \mu_i < -\epsilon$ or $\mathbf{v}_j \cdot \mathbf{z} + \mu_j < -\epsilon$,
 1098 since we want one of the terms to change signs and thus contribute to \tilde{I} . Consequently, we would
 1099 have to generate a \mathbf{z} such that the magnitude $\|\mathbf{v}_i \cdot \mathbf{z}\| > \epsilon$, which has exponentially small probability
 1100 because $\mathbf{v}_i \cdot \mathbf{z} \sim \mathcal{N}(0, m\epsilon^4)$. Because of this we can conclude that the total expected cut remains
 1101 nearly unchanged.

1102 Initially, we have $\sum_{i < j} \mathbb{E}_{\mathbf{z}} \tilde{w}_{i,j} [I(\mathbf{v}_i \cdot \mathbf{z}, \mathbf{v}_j \cdot \mathbf{z})] = \alpha \text{OPT}$, then after using the smoothed function
 1103 we obtain:

$$1104 \quad \sum_{i < j} \mathbb{E}_{\mathbf{z}} \tilde{w}_{i,j} [\tilde{I}(\mathbf{v}_i \cdot \mathbf{z}, \mathbf{v}_j \cdot \mathbf{z})] = \alpha \text{OPT} - \mathcal{O}(\epsilon m).$$

1105 Finally, after optimization, we have:

$$1106 \quad \sum_{i < j} \tilde{w}_{i,j} \mathbb{E}_{\mathbf{z}} [\tilde{I}(\mathbf{v}_i \cdot \mathbf{z} + \mu_i, \mathbf{v}_j \cdot \mathbf{z} + \mu_j)] \geq \alpha \text{OPT} - \mathcal{O}(\epsilon m),$$

1107 As a final step, we compare our (deterministic) cut, with what would have happened if we took the
 1108 original randomized version. To complete this step, we use a union bound:

$$1109 \quad \begin{aligned} \sum_{i < j} \tilde{w}_{i,j} \tilde{I}(\mu_i, \mu_j) &= \alpha \text{OPT} - \mathcal{O}(\epsilon m) - \Pr(|\mathbf{v}_i \mathbf{z}| > \epsilon \text{ for any edge}) \\ 1110 &\geq \alpha \text{OPT} - \mathcal{O}(\epsilon m) - m \Pr(|\mathbf{v}_i \mathbf{z}| > \epsilon) \\ 1111 &\geq \alpha \text{OPT} - \mathcal{O}(\epsilon m) - \mathcal{O}\left(m \cdot \exp\left(-\frac{1}{2m\epsilon^2}\right)\right) \\ 1112 &\geq \alpha \text{OPT} - \mathcal{O}(\epsilon m) - \mathcal{O}(\epsilon m) \\ 1113 &= \alpha \text{OPT} - \mathcal{O}(\epsilon \text{OPT}) \\ 1114 &= \text{OPT} \cdot (\alpha - \mathcal{O}(\epsilon)), \end{aligned}$$

1115 where the penultimate equality follows since OPT is a function of the edges m .

1116 For the iteration complexity, since we want to reach a point with $\|\mathbf{V}\|_F < \epsilon$, for the specific choice
 1117 of $\lambda = \frac{\sqrt{\rho/\epsilon^3} + \Delta}{2}$, and running Algorithm 1 for:

$$1118 \quad T = \mathcal{O}\left(\frac{L}{\rho^2} \log^4(m) - \frac{L}{\rho^2} \log^4(\delta)\right) = \mathcal{O}\left(\frac{1}{\epsilon^4 \Delta^2} \log^4(m) - \frac{1}{\epsilon^4 \Delta^2} \log^4(\delta)\right),$$

1119 iterations gives the required result. \square

1134
1135

F.2 EXPERIMENTS IN MAXCUT

1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149

In this experiment, we evaluated a stochastic optimization algorithm for solving the MAXCUT problem on a randomly generated undirected graph with $m = 15$ vertices and an edge probability of 0.6. The exact MAXCUT value (computed as 41) was obtained using exhaustive search and used as a ground-truth reference. The optimization procedure is based on the Goemans-Williamson relaxation, where node embeddings are derived from the top eigenvectors of the adjacency matrix. A stochastic gradient-based method is then applied, which samples noisy directions from a Gaussian distribution parameterized by a mean vector \mathbf{m} and log-standard deviation $\log \sigma$. The number of cut edges is evaluated. Gradients with respect to both \mathbf{m} and σ are estimated using a Monte Carlo approximation with 100 samples per step. The parameters are updated via SGD, which is sufficient for this task, with adaptive learning rates: 0.01 for \mathbf{m} and 0.001 for σ . To ensure stability and exploration, a regularization term is applied to σ , and its values are clipped to the range $[10^{-3}, 1.5]$. Learning rates are further annealed by decay factors every 100 iterations. The algorithm was run for 5000 iterations. Throughout optimization, we tracked the evolution of cut values, the maximum standard deviation across dimensions, and sampled cut edges to monitor progress relative to the exact MAXCUT benchmark.

1150
1151
1152
1153
1154
1155
1156
1157

Figure 4 illustrates the progression of the cut value over the course of training, showing consistent improvement and eventual convergence to the optimal cut obtained via brute force. In parallel, Figure 5 shows the evolution of the maximum value of σ^2 , which steadily decreased over time. This trend indicates that the algorithm gradually reduced its randomness as it converged toward a confident, high-quality solution. Notably, our optimization method substantially outperformed the baseline cut value of approximately 36 achieved by the classical randomized algorithm. Overall, the results demonstrate that the method not only successfully identified an optimal cut but also naturally annealed its uncertainty, confirming both its effectiveness and stability.

1158

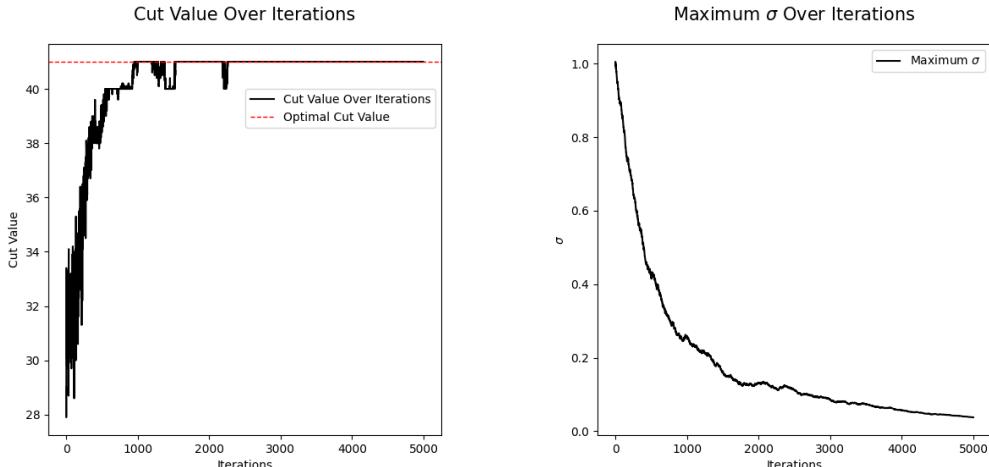
1174
1175
1176

Figure 4: Progress of the cut value over iterations.

Figure 5: Evolution of the maximum σ^2 value over iterations.

1177

1178

G SUPPORTING MATERIAL OF SECTION 5.2

1180

1181

G.1 REFORMULATION OF JOHNSON-LINDENSTRAUSS OBJECTIVE FUNCTION

1182
1183
1184
1185
1186
1187

To achieve the JL guarantee from Definition 5.3 we define a linear mapping $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$, where $\mathbf{A} \in \mathbb{R}^{k \times d}$. The JL Lemma guarantees the existence of a random linear mapping that achieves this projection with high probability:

Lemma G.1 (Distributional JL Lemma). *For $\varepsilon, \delta \in (0, 1)$ and $k = \mathcal{O}(\log(1/\delta)/\varepsilon^2)$, there exists a probability distribution D over linear functions $f : \mathbb{R}^d \rightarrow \mathbb{R}^k$ such that for every $\mathbf{x} \in \mathbb{R}^d$:*

$$\Pr_{f \sim D} (\|f(\mathbf{x})\|_2^2 \in [(1 - \varepsilon)\|\mathbf{x}\|_2^2, (1 + \varepsilon)\|\mathbf{x}\|_2^2]) \geq 1 - \delta.$$

Let \mathbf{A} be a random matrix whose elements $a_{i,j}$ are independently drawn from a Gaussian distribution with mean $\mu_{i,j}$ and variance $\sigma_{i,j}^2$. Define the distortion function as:

$$h(\mathbf{A}; \mathbf{x}_i) = |\|\mathbf{A}\mathbf{x}_i\|_2^2 - 1|, \quad (21)$$

where $\mathbf{A} \sim \mathcal{N}(\mathbf{M}, \Sigma)$. Our objective is to minimize the following function:

$$f(\mathbf{A}; \mathbf{x}_i) = \sum_{i=1}^n \Pr(h(\mathbf{A}; \mathbf{x}_i) > \varepsilon) + \frac{\|\Sigma^{1/2}\|_F^2}{2kd}, \quad (22)$$

where $\Sigma^{1/2}$ denotes a matrix whose entries are the square roots of the corresponding variances in Σ .

The first term measures the number of distortion violations (i.e., how often the projected norm deviates from 1 by more than ε), while the second term is a regularization penalty on the variance of the matrix entries.

Applying a union bound, the objective in Equation 22 serves as an upper bound for:

$$\Pr\left(\max_{i=1, \dots, n} h(\mathbf{A}; \mathbf{x}_i) > \varepsilon\right) + \frac{\|\Sigma^{1/2}\|_F^2}{2kd}, \quad (23)$$

which represents the probability that the maximum distortion across all data points exceeds ε , plus a regularization term. As the variances in Σ approach zero, this regularizer vanishes. In the context of the JL Lemma, our goal is to minimize the probability expressed in Equation 23.

To use Lemma 3.1 we can think of the matrix \mathbf{A} as a kd -dimensional vector and write:

$$\mathbf{A}^{vec} = \Sigma^{1/2}\mathbf{z} + \boldsymbol{\mu}, \quad (24)$$

where $\boldsymbol{\mu} = (\mu_{1,1}, \mu_{2,1}, \dots, \mu_{k,d})^\top \in \mathbb{R}^{kd}$ is a vectorized version of each mean of matrix \mathbf{A} , $\Sigma = \text{diag}(\sigma_{1,1}^2, \sigma_{1,2}^2, \dots, \sigma_{k,d}^2)^\top \in \mathbb{R}_+^{kd \times kd}$ is the diagonal covariance matrix and \mathbf{z} is a kd -dimensional multivariate Gaussian vector with independent entries with zero mean and unit variance.

Then, define,

$$g_\theta(\mathbf{A}^{vec}) = g_\theta\left(\Sigma^{1/2}\mathbf{z} + \boldsymbol{\mu}\right) = \sum_{i=1}^n \mathbf{1}_{\{h(\Sigma^{1/2}\mathbf{z} + \boldsymbol{\mu}; \mathbf{x}_i) > \varepsilon\}} \quad (25)$$

Then, we can define the objective function:

$$\begin{aligned} f\left(\Sigma^{1/2}, \boldsymbol{\mu}\right) &= \mathbb{E}\left[g_\theta\left(\Sigma^{1/2}\mathbf{z} + \boldsymbol{\mu}\right)\right] + \frac{\|\Sigma^{1/2}\|_F^2}{2kd} \\ &= \sum_{i=1}^n \mathbb{E}\left[\mathbf{1}_{\{h(\Sigma^{1/2}\mathbf{z} + \boldsymbol{\mu}; \mathbf{x}_i) > \varepsilon\}}\right] + \frac{\|\Sigma^{1/2}\|_F^2}{2kd} \\ &= \sum_{i=1}^n \Pr\left(h\left(\Sigma^{1/2}\mathbf{z} + \boldsymbol{\mu}; \mathbf{x}_i\right) > \varepsilon\right) + \frac{\|\Sigma^{1/2}\|_F^2}{2kd}. \end{aligned} \quad (26)$$

Remark G.2. It is important to observe that Equations 22 and 26 represent the same quantity, but are expressed using different parameterizations.

Thus, minimizing Equation 22 is equivalent to minimizing Equation 26, where optimization is carried out over the parameters $(\Sigma^{1/2}, \boldsymbol{\mu})$.

G.2 PROOF OF JOHNSON-LINDENSTRAUSS GUARANTEE PRESERVATION LEMMA

Here we give an extension of Lemma 4 from (Tsikouras et al., 2024) which is required due to the practical limitation that achieving an exact SOSP is not feasible. Since Algorithm 1 identifies an approximate ρ -SOSP, an additional result is required to provide a stopping criterion once the variance becomes sufficiently small. This ensures that the mean can be used with a controlled deterioration of the JL guarantee.

1242 **Lemma G.3.** *Given n unit vectors in \mathbb{R}^d and a target dimension k , choose ε such that the random
 1243 matrix $\mathbf{A} \sim N(\mathbf{M}, \Sigma)$ satisfies the JL guarantee with distortion ε with probability at least $1/6$. Then
 1244 using matrix \mathbf{M} instead of sampling from \mathbf{A} retains the JL guarantee with a threshold increased by
 1245 at most $\text{poly}(\sigma_{\max}, 1/k)$.*

1246 **Proof.** We start with the assumption that $\frac{1}{k} \|\mathbf{A}\mathbf{x}\|_2^2 \in (1 - \varepsilon, 1 + \varepsilon)$ with probability at least $\frac{1}{6}$.

1247 Expressing \mathbf{A} as $\mathbf{A} = \mathbf{M} + \mathbf{Z}$ where $\mathbf{Z} \sim N(\mathbf{0}, \Sigma)$. For this, we have

$$1250 \quad \|\mathbf{Z}\mathbf{x}\|_2^2 \leq \|\mathbf{Z}\mathbf{x}\|_2^2 \leq \|\tilde{\mathbf{Z}}\mathbf{x}\|_2^2,$$

1253 where $\tilde{\mathbf{Z}}$ and \mathbf{Z} are the same as \mathbf{Z} but scaled with the maximum and minimum variance from Σ
 1254 respectively. This way, all the entries of $\tilde{\mathbf{Z}}$ have the same common variance, σ_{\max}^2 and all the entries
 1255 of \mathbf{Z} have the same common variance, σ_{\min}^2 .

1258 From the JL Lemma, we can select ε_0 such that

$$1261 \quad \frac{1}{k} \|\tilde{\mathbf{Z}}\mathbf{x}\|_2^2 \in [\sigma_{\max}^2(1 - \varepsilon_0), \sigma_{\max}^2(1 + \varepsilon_0)]$$

$$1262 \quad \frac{1}{k} \|\mathbf{Z}\mathbf{x}\|_2^2 \in [\sigma_{\min}^2(1 - \varepsilon_0), \sigma_{\min}^2(1 + \varepsilon_0)]$$

1265 with probability at least $\frac{6}{7}$. This ensures there exists an overlap where both inequalities for \mathbf{A} , $\tilde{\mathbf{Z}}$ and
 1266 \mathbf{Z} hold simultaneously. Our goal is to determine how much excess distortion we get when using \mathbf{M}
 1267 instead of sampling from the random matrix \mathbf{A} .

1269 Using the triangle inequality we have:

$$1272 \quad \frac{1}{k} \|\mathbf{M}\mathbf{x}\|_2 = \frac{1}{k} \|\mathbf{M}\mathbf{x} + \mathbf{Z}\mathbf{x} - \mathbf{Z}\mathbf{x}\|_2 \leq \frac{1}{k} \|\mathbf{M}\mathbf{x} + \mathbf{Z}\mathbf{x}\|_2 + \frac{1}{k} \|\mathbf{Z}\mathbf{x}\|_2 \leq \frac{1}{k} \|\mathbf{A}\mathbf{x}\|_2 + \frac{1}{k} \|\tilde{\mathbf{Z}}\mathbf{x}\|_2,$$

1274 which by squaring both sides and using the JL guarantee for \mathbf{A} and $\tilde{\mathbf{Z}}$, we obtain:

$$1276 \quad \frac{1}{k} \|\mathbf{M}\mathbf{x}\|_2^2 \leq \frac{1}{k} \|\mathbf{A}\mathbf{x}\|_2^2 + \frac{2}{k^2} \|\mathbf{A}\mathbf{x}\|_2 \|\tilde{\mathbf{Z}}\mathbf{x}\|_2 + \frac{1}{k} \|\tilde{\mathbf{Z}}\mathbf{x}\|_2^2$$

$$1277 \leq 1 + \varepsilon + \frac{2\sigma_{\max}}{k} \sqrt{1 + \varepsilon} \sqrt{1 + \varepsilon_0} + \sigma_{\max}^2(1 + \varepsilon_0)$$

$$1278 \leq 1 + \varepsilon + \frac{2\sqrt{2}\sigma_{\max}}{k} \sqrt{1 + \varepsilon} + 2\sigma_{\max}^2.$$

1282 For the lower bound, using the Cauchy-Schwarz inequality and the JL guarantee for \mathbf{A} and $\tilde{\mathbf{Z}}$, we
 1283 have:

$$1286 \quad \frac{1}{k} \|\mathbf{M}\mathbf{x}\|_2^2 \geq \frac{1}{2k} \|\mathbf{M}\mathbf{x} + \mathbf{Z}\mathbf{x}\|_2^2 - \frac{1}{k} \|\mathbf{Z}\mathbf{x}\|_2^2$$

$$1287 \geq \frac{1}{2k} \|\mathbf{A}\mathbf{x}\|_2^2 - \frac{1}{k} \|\tilde{\mathbf{Z}}\mathbf{x}\|_2^2$$

$$1288 \geq 1/2(1 - \varepsilon) - \sigma_{\min}^2(1 + \varepsilon_0)$$

$$1289 \geq 1/2(1 - \varepsilon) - \sigma_{\min}^2$$

$$1290 \geq 1/2(1 - \varepsilon) - \sigma_{\max}^2.$$

1295 Finally, combining these results, we observe that replacing \mathbf{A} with \mathbf{M} maintains the JL guarantee with
 an increased distortion threshold, bounded by at most $\text{poly}(\sigma_{\max}, 1/k)$, with high probability. \square

1296 G.3 SMOOTHENING OF THE JOHNSON-LINDENSTRAUSS INDICATOR FUNCTION
12971298 For the JL objective function we have the indicator function:
1299

1300
1301
$$I(x_i; \mathbf{A}) = \begin{cases} 1 & \text{if } |\|\mathbf{A}x_i\|^2 - 1| \geq \varepsilon \\ 0 & \text{if } |\|\mathbf{A}x_i\|^2 - 1| < \varepsilon \end{cases}$$

1302

1303 and we define a smoothed version of it:
1304

1305
1306
$$\tilde{I}(x_i; \mathbf{A}) = \begin{cases} 0, & \text{if } |\|\mathbf{A}x_i\|^2 - 1| \leq \varepsilon \\ \frac{2}{\varepsilon^3}(|\|\mathbf{A}x_i\|^2 - 1| - \varepsilon)^3, & \text{if } \varepsilon < |\|\mathbf{A}x_i\|^2 - 1| \leq \varepsilon + \frac{\varepsilon_1}{2} \\ 1 - \frac{2}{\varepsilon^3}(\varepsilon + \varepsilon_1 - |\|\mathbf{A}x_i\|^2 - 1|)^3, & \text{if } \varepsilon + \frac{\varepsilon_1}{2} < |\|\mathbf{A}x_i\|^2 - 1| < \varepsilon + \varepsilon_1 \\ 1, & \text{if } |\|\mathbf{A}x_i\|^2 - 1| \geq \varepsilon + \varepsilon_1 \end{cases}$$

1307
1308
1309
1310

1311 for a small value ε_1 . This smoothed indicator has gradient Lipschitz constant $L = \mathcal{O}(1/\varepsilon_1^2)$, and
1312 Hessian Lipschitz constant $K = \mathcal{O}(1/\varepsilon_1^3)$. We define the ε_1 -smoothed version of the objective
1313 function in Equation 26, that is:
1314

1315
1316
$$\tilde{f}(\Sigma^{1/2}, \boldsymbol{\mu}) \equiv \tilde{f}(\mathbf{A}) = \mathbb{E}[\tilde{I}(x_i; \mathbf{A})].$$

1317

1318 and the regularized version of it, that is:
1319

1320
1321
$$\hat{f}(\Sigma^{1/2}, \boldsymbol{\mu}) \equiv \hat{f}(\mathbf{A}) = \mathbb{E}[\tilde{I}(x_i; \mathbf{A})] + \frac{\|\Sigma^{1/2}\|}{2kd}. \quad (27)$$

1322

1323 By assumption we have that $1/(3n) > \mathbb{E}[I(x_i; \mathbf{A})] \geq \mathbb{E}[\tilde{I}(x_i; \mathbf{A})]$.
13241325 We also have that
1326

1327
$$\mathbb{E}[I(x_i; \mathbf{A})] \leq \mathbb{E}[\tilde{I}(x_i; \mathbf{A})] + \Pr(\varepsilon < |\|\mathbf{A}x_i\|^2 - 1| < \varepsilon + \varepsilon_1).$$

1328

1329 Thus,
1330

1331
1332
$$\sum_{i=1}^n \mathbb{E}[I(x_i; \mathbf{A})] \leq \sum_{i=1}^n \mathbb{E}[\tilde{I}(x_i; \mathbf{A})] + \sum_{i=1}^n \Pr(\varepsilon < |\|\mathbf{A}x_i\|^2 - 1| < \varepsilon + \varepsilon_1).$$

1333

1334 We will show that when \mathbf{A} has small variance (for appropriately chosen small ρ), the $\mathbb{E}[\tilde{I}(x_i; \mathbf{A})]$
1335 becomes smaller than δ_1/n .
13361337 We have that $\mathbb{E}[\tilde{I}(x_i; \mathbf{A})] \leq \Pr(|\|\mathbf{A}x_i\|^2 - 1| > \varepsilon + \varepsilon_1) + \Pr(\varepsilon < |\|\mathbf{A}x_i\|^2 - 1| < \varepsilon + \varepsilon_1)$.
1338 We assume that we have reached a point for which we have $\mathbf{A} \sim \mathcal{N}(\mathbf{M}, \Sigma)$. This means that
1339 $|\|\mathbf{A}x_i\|^2 - 1|$ follows a non-central chi-squared distribution. From subgaussian properties we have:
13401341 For $t > 0$:
1342

1343
$$\Pr(X - \mu \geq t) \leq \exp\left(-\frac{t^2}{2\sigma^2}\right).$$

1344 For $t < 0$:
1345

1346
$$\Pr(X - \mu \leq t) \leq \exp\left(-\frac{t^2}{2\sigma^2}\right).$$

1347

1348 We have $\text{Var}(|\|\mathbf{A}x_i\|^2 - 1|) \leq 2k\sigma_{\max}^4 + 4\sigma_{\max}^2 \sum_{i=1}^k \mu_i^2 := V_i$, where $\mu_i = \sum_{j=1}^d \mu_{ij}x_j$.
1349 Choose $t = \varepsilon + \varepsilon_1$ and if $t > \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|]$ we have that:

$$\begin{aligned}
1350 \\
1351 \\
1352 & \Pr(|\|\mathbf{A}x_i\|^2 - 1| - \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|] \geq t - |\|\mathbf{A}x_i\|^2 - 1|) \leq \exp\left(-\frac{(t - \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|])^2}{2\text{Var}(|\|\mathbf{A}x_i\|^2 - 1|)}\right) \\
1353 \\
1354 & \leq \exp\left(-\frac{(t - \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|])^2}{2V_i}\right).
1355 \\
1356 \\
1357
\end{aligned}$$

1358 Otherwise if $t < \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|]$ we have that:

$$\begin{aligned}
1360 \\
1361 & \Pr(|\|\mathbf{A}x_i\|^2 - 1| - \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|] \leq t - |\|\mathbf{A}x_i\|^2 - 1|) \\
1362 & \leq \exp\left(-\frac{(t - \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|])^2}{2V_i}\right). \quad (28) \\
1363 \\
1364
\end{aligned}$$

1365 This implies that

$$\begin{aligned}
1366 \\
1367 \\
1368 & \Pr(|\|\mathbf{A}x_i\|^2 - 1| - \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|] \geq t - |\|\mathbf{A}x_i\|^2 - 1|) \geq 1 - \exp\left(-\frac{(t - \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|])^2}{2V_i}\right) \\
1369 \\
1370 & \geq 1 - \frac{2V_i}{(t - \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|])^2}. \\
1371 \\
1372 \\
1373
\end{aligned}$$

1374 Since $\mathbb{E}[\tilde{I}(x_i; \mathbf{A})] < 1/(3n)$ we have that the 2nd case where $t < \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|]$ is rejected.

1375 We also have that for $V_i \leq -\frac{(\varepsilon + \varepsilon_1 - \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|])^2}{\log(\delta_1/(2n))}$ the probability in Equation 28 is bounded by
1377 $\delta_1/(2n)$.

1378 Similarly we have,

$$\begin{aligned}
1379 \\
1380 \\
1381 & \Pr(\varepsilon < |\|\mathbf{A}x_i\|^2 - 1| < \varepsilon + \varepsilon_1) = \Pr(|\|\mathbf{A}x_i\|^2 - 1| < \varepsilon + \varepsilon_1) - \Pr(|\|\mathbf{A}x_i\|^2 - 1| < \varepsilon) \\
1382 & = \Pr(|\|\mathbf{A}x_i\|^2 - 1| > \varepsilon) - \Pr(|\|\mathbf{A}x_i\|^2 - 1| > \varepsilon + \varepsilon_1). \\
1383
\end{aligned}$$

1384 This implies that

$$1385 \Pr(\varepsilon < |\|\mathbf{A}x_i\|^2 - 1| < \varepsilon + \varepsilon_1) \leq \Pr(|\|\mathbf{A}x_i\|^2 - 1| > \varepsilon).$$

1386 Similarly to before we can get that:

$$\begin{aligned}
1387 \\
1388 \\
1389 & \Pr(|\|\mathbf{A}x_i\|^2 - 1| > \varepsilon) \leq \exp\left(-\frac{(\varepsilon - \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|])^2}{2V_i}\right). \quad (29) \\
1390 \\
1391 \\
1392
\end{aligned}$$

1393 Therefore we have that for $V_i \leq -\frac{(\varepsilon - \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|])^2}{\log(\delta_1/(2n))}$ the probability in Equation 29 is bounded by
1395 $\delta_1/(2n)$.

1396 This means that choosing, $V_i \leq \min\left\{-\frac{(\varepsilon - \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|])^2}{\log(\delta_1/(2n))}, -\frac{(\varepsilon + \varepsilon_1 - \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|])^2}{\log(\delta_1/(2n))}\right\} =$
1397 $-\frac{(\varepsilon - \mathbb{E}[|\|\mathbf{A}x_i\|^2 - 1|])^2}{\log(\delta_1/(2n))}$ and overall, if we choose $V = \max\{V_1, \dots, V_n\}$ to satisfy all inequalities
1400 we get:

$$\begin{aligned}
1401 \\
1402 & \sum_{i=1}^n \mathbb{E}[I(x_i; \mathbf{A})] \leq \sum_{i=1}^n \mathbb{E}[\tilde{I}(x_i; \mathbf{A})] + \sum_{i=1}^n \Pr(\varepsilon < |\|\mathbf{A}x_i\|^2 - 1| < \varepsilon + \varepsilon_1) < \delta_1. \\
1403
\end{aligned}$$

1404 Denote $M_i := \sum_{l=1}^d \mu_{i,l}$ and $C_1 := \min_{i=1,\dots,n} -\frac{(\varepsilon - \mathbb{E}[\|\mathbf{A}x_i\|^2 - 1])^2}{\log(\delta_1/(2n))}$. Then to get $V \leq C_1$, we
 1405 need $\sigma_{\max}^2 \leq \min_{i=1,\dots,n} \left\{ \frac{-2M_i + \sqrt{4M_i^2 + kC_1}}{k} \right\} =: C_2$.

1406 Choose $\delta_1 < 5/6$ and $\rho < \Delta\sqrt{C_2}$. Thus reaching a ρ -SOSP for $\mathbb{E}[\tilde{I}(x_i; \mathbf{A})]$ has returned a random
 1407 matrix \mathbf{A} that satisfies the JL guarantee with probability at least $1/6$.

1411 **G.4 PROOF OF THEOREM 5.5**

1413 **Theorem.** Let n be unit vectors in \mathbb{R}^d , k be the target dimension, ϵ be a smoothening parameter and
 1414 $\Delta > 0$ be an accuracy parameter. For any $\varepsilon \geq C\sqrt{\log n/k}$, where C is a sufficiently large constant,
 1415 initialize $\mathbf{M} = \mathbf{0}$ and $\Sigma = \mathbf{I}_{kd}$ and run Algorithm 1 to optimize the ε_1 -smoothed version of the
 1416 objective function in Equation 9 (see Equation 27) using the regularization parameter $\lambda = \frac{\sqrt{\rho/\epsilon^3} + \Delta}{2}$.
 1417 After $T = \mathcal{O}(\text{poly}(n, k, d, \log(\delta), \Delta^{-1}))$ iterations, this returns a matrix \mathbf{M} that satisfies the JL
 1418 guarantee with distortion at most $\mathcal{O}(\varepsilon)$, with probability $1 - \delta$.

1420 **Proof.** To ensure good performance, we choose the dimension k such that the probability of
 1421 any individual distortion constraint being violated is no more than $1/(3n)$. This choice is critical,
 1422 particularly at the initialization point $(\mathbf{I}_{kd \times kd}, \mathbf{0})$, where the regularization term contributes exactly
 1423 $1/2$. Under this setting, the objective function in Equation 26 satisfies:

$$1425 \quad f(\mathbf{I}_{kd \times kd}, \mathbf{0}) < \frac{n}{3n} + \frac{1}{2} = \frac{1}{3} + \frac{1}{2} < \frac{5}{6}.$$

1427 This observation implies that, if we follow a monotonically decreasing path of the objective and
 1428 converge to a deterministic solution, specifically one where $\Sigma^{1/2} = \mathbf{0}$, the only feasible outcome is
 1429 that each term in the summation becomes zero. Consequently, the distortion probability in Equation 26
 1430 will converge to zero.

1432 However, to use our key Lemma we need to use a smoothed version of the indicator function. The
 1433 smoothed objective function in Equation 27 is both gradient and Hessian Lipschitz continuous. Let
 1434 $L = \mathcal{O}(\frac{1}{\varepsilon^2})$, $K = \mathcal{O}(\frac{1}{\varepsilon^3})$, be the gradient and Hessian Lipschitz constants, respectively.

1435 Choose $\delta_1 < 5/6$, $\Delta > 0$, and $\lambda = \frac{\sqrt{K\rho} + \Delta}{2} = \frac{\sqrt{\rho/\varepsilon^3} + \Delta}{2}$ and using Lemma 3.1, we get that any
 1436 ρ -SOSP gives a matrix $\Sigma^{1/2}$, that satisfies $\|\Sigma^{1/2}\|_F \leq \frac{\rho}{\Delta}$.

1437 Denote $M_i := \sum_{l=1}^d \mu_{i,l}$ and $C_1 := \min_{i=1,\dots,n} \left\{ -\frac{(\varepsilon - \mathbb{E}[\|\mathbf{A}x_i\|^2 - 1])^2}{\log(\delta_1/(2n))} \right\}$. Then to get $V \leq C_1$, we
 1438 need $\sigma_{\max}^2 \leq \min_{i=1,\dots,n} \left\{ \frac{-2M_i + \sqrt{4M_i^2 + kC_1}}{k} \right\} =: C_2$.

1439 Choose $\rho < \Delta\sqrt{C_2}$, then running Algorithm 1 for:

$$1445 \quad T = \mathcal{O}\left(\frac{L}{\rho^2} \log^4(d) - \frac{L}{\rho^2} \log^4(\delta)\right) = \mathcal{O}(\text{poly}(n, k, d, \log(\delta), \Delta^{-1})),$$

1447 returns a random matrix with $\sigma_{\max}^2 \leq \frac{\rho^2}{\Delta^2}$, that satisfies the JL guarantee with distortion ε with
 1448 probability at least $1/6$, with high probability. Then, from Lemma G.3, we get that we can use
 1449 the mean matrix \mathbf{M} which will increase the distortion threshold by at most $\text{poly}(\sigma_{\max}, \frac{1}{k}) =$
 1450 $\text{poly}(\frac{\rho}{\Delta}, \frac{1}{k})$, meaning that it satisfies the JL guarantee with distortion at most $\mathcal{O}(\varepsilon)$. \square

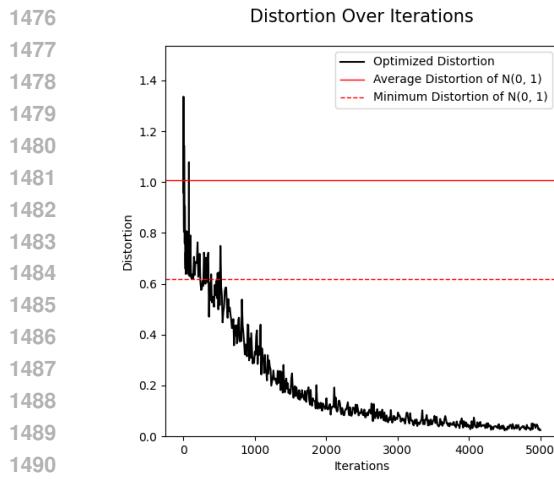
1453 **G.5 EXPERIMENTS IN JOHNSON-LINDENSTRAUSS**

1455 In this experiment, we aim to minimize the distortion introduced by random linear projections in
 1456 the JL framework. A batch-based variational model is trained using the gradient-based method;
 1457 SGD, which is sufficient for this task, to produce random matrices $\mathbf{A} \sim \mathcal{N}(\mathbf{M}, \Sigma) \in \mathbb{R}^{k \times d}$ (with
 1458 $k = 30$ and $d = 500$) that minimize the maximum distortion when applied to a normalized dataset

of $n = 100$ samples, each with $d = 500$ dimensions. Unlike traditional JL embeddings that rely on random Gaussian matrices, our approach optimizes the parameters (M, Σ) of a distribution over projection matrices using the Adam optimizer (Kingma & Ba, 2014) in order to minimize the worst-case distortion. We used a batch size of 20, a learning rate of 0.01, over a maximum of 5000 iterations, and early stopping is triggered if the distortion falls below 0.01. To track how the distortions evolve with our method, we sample from the current mean matrix and variance at each iteration and then calculate the resulting distortion.

Figure 6 shows the evolution of the maximum distortion throughout training, demonstrating a steady decrease. Over time, our method significantly outperforms both the average and minimum distortions obtained from standard Gaussian matrices over 1000 trials. Specifically, our learned projection achieves near-zero distortion, compared to typical random projections that yield average and minimum distortions around 1 and 0.6, respectively. Figure 7 illustrates the evolution of the maximum variance σ^2 , which converges toward zero during training. This indicates that the model is refining its uncertainty and collapsing toward a deterministic, low-distortion projection. These findings suggest that structured embeddings with far lower distortion than those from conventional random constructions do exist, and that such embeddings can be effectively discovered via gradient-based optimization.

1475



1491

Figure 6: Evolution of the optimized distortion over iterations.

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

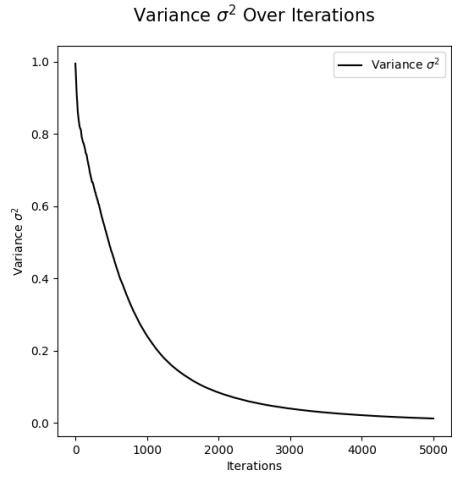


Figure 7: Evolution of maximum σ^2 over iterations.